WO2000016240A1 - Fast edge detection system tolerant of high degree of intersymbol interference - Google Patents
Fast edge detection system tolerant of high degree of intersymbol interference Download PDFInfo
- Publication number
- WO2000016240A1 WO2000016240A1 PCT/US1999/021121 US9921121W WO0016240A1 WO 2000016240 A1 WO2000016240 A1 WO 2000016240A1 US 9921121 W US9921121 W US 9921121W WO 0016240 A1 WO0016240 A1 WO 0016240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- photodetector
- derivative
- peak
- threshold
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10821—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
- G06K7/10851—Circuits for pulse shaping, amplifying, eliminating noise signals, checking the function of the sensing device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1439—Methods for optical code recognition including a method step for retrieval of the optical code
- G06K7/1452—Methods for optical code recognition including a method step for retrieval of the optical code detecting bar code edges
Definitions
- the field of the present invention relates to data reading devices, such as scanners and barcode reading devices.
- data reading devices such as scanners and barcode reading devices.
- barcode readers are described herein which employ methods and apparatus for improved edge detection for more accurately measuring bar and space widths under high Inter-Symbol Interference (hereafter "ISI”) conditions.
- ISI Inter-Symbol Interference
- a barcode label comprises a series of parallel dark bars of varying widths with intervening light spaces, also of varying widths.
- the information encoded in the barcode is represented by the specific sequence of bar and space widths, the precise nature of this representation depending on the particular barcode symbology in use.
- Barcode reading methods typically comprise the generation of an electronic signal wherein signal voltage alternates between two preset voltage levels, one representative of the dark bars and the other representative of the light spaces.
- the temporal widths of these alternating pulses of high and low voltage levels correspond to the spatial widths of the bars and spaces.
- the temporal sequence of alternating voltage pulses of varying widths comprising the electronic signal is presented to an electronic decoding apparatus for decoding of the information encoded in the barcode.
- barcode readers include spot scanners and line scanners.
- Spot scanners comprise barcode reading systems wherein a source of illumination, the reading spot, is moved (i.e., scanned) across the barcode while a photodetector monitors the reflected or backscattered light.
- a source of illumination typically referred to as a wand reader
- the reading spot of the scanner is manually moved across the barcode.
- the reading spot of the scanner is automatically moved across the barcode in a controlled pattern.
- the path followed by the scanned illumination beam is typically referred to as a scan line.
- the illumination source in spot scanners is typically a coherent light source (such as a laser), but may comprise a non-coherent light source (such as a light emitting diode).
- a laser illumination source offers the advantage of high intensity illumination over a small area which may allow barcodes to be read over a large range of distances from the barcode scanner (large depth of field) and under a wide range of background illumination conditions.
- the photodetector associated with spot scanners may generate a high current when a large amount of light scattered from the barcode impinges on the detector, as from a light space, and likewise may produce a lower current when a small amount of light scattered from the barcode impinges on the photodetector, as from a dark bar.
- a scanning mechanism In automatic spot scanning systems, a scanning mechanism, or scan engine, is utilized to automatically scan the illumination beam across the barcode.
- Such scanning mechanism may comprise a rotating mirror facet wheel, a dithering mirror, or other means for repetitively moving the illumination beam.
- a barcode scanner may also employ a set of scan pattern generating optics to produce a multiplicity of scan lines in various directions from the scanner and at varying orientations, thereby allowing barcodes to be read over a large angular field of view and over a wide range of orientations (i.e., a multi-dimensional scan pattern).
- the scan pattern generating optics typically comprise a set of mirrors aligned at varying angles, each of which intercepts the illumination beam during a portion of its motion and projects it into the region in front of the barcode scanner, hereinafter referred to as the scan volume.
- Each mirror in the set in conjunction with the scan engine, produces a scan line at a particular position and at a particular orientation.
- the photodetector array may comprise a CCD array (charge coupled device), a CMOS active or passive pixel sensor array, or other multi-element photodetector array.
- This type of reader may also include a light source to illuminate the barcode to provide the required signal response corresponding to the image.
- the imaging optics which produce an image of the barcode on the photodetector array can alternatively be thought of as projecting an image of the photodetector array (a "virtual scan line") into the scan volume in a manner completely analogous to the real scan line produced by a spot scanner.
- scan pattern generating optics may be used to project multiple virtual scan lines into the scan volume in various directions and at varying orientations, thereby generating a virtual scan pattern, once again completely analogous to the real scan pattern produced by a spot scanner.
- Virtual scan pattern systems are further described in U.S. Patent No. 5,446,271, entitled “Omnidirectional Scanning Method and Apparatus" and issued in the name of inventors Craig D. Cherry and Robert J. Actis, which patent is owned by the owner of the present application and is hereby incorporated by reference as if fully set forth herein.
- a raw electronic signal is generated from which the relative widths of the bars and spaces must be extracted.
- High-to-low or low-to-high transitions (i.e., edges) in the electronic signal voltage may be detected by any of a number of means well known in the art.
- a common and well known technique for edge detection is second derivative signal processing.
- optical edges result in peaks in the first derivative signal, and zero crossings in the second derivative signal.
- zero crossings of the second derivative of the electronic signal are found during selected timing intervals as a means of detecting valid transitions. Examples of this technique are described in U.S. Patent No.
- U.S. Patent No. 4,000,397 describes the "classic" second derivative edge detector for bar code scanners, wherein zero crossings of the second derivative signal are considered valid edges if, at the moment of crossing, the absolute value of the first derivative signal exceeds a threshold.
- This threshold may be fixed, or it may be a function of the amplitude of neighboring first derivative peaks. In either case, though, the threshold level must be greater than the baseline level plus an allowance for noise. This is required since, in the absence of optical features, second derivative zero crossings would otherwise be considered valid.
- the threshold in the second derivative edge detector is not exceeded, and thus these legitimate edges may be incorrectly rejected as noise.
- the instant inventors have determined that, typically, when the spot size (measured as 1/e 2 diameter) is more than about 2.5 times the size of the smallest target label feature (such ratio hereafter being referred to as the STBR, or spot-to-bar ratio), then unsatisfactory performance may result.
- U.S. Patent No. 5,210,397 to Eastman, et al., describes a dual diode edge detector for bar code scanners.
- edges are validated if the difference between the current and the previous first derivative peaks exceeds a threshold, regardless of absolute position with respect to the baseline.
- a threshold regardless of absolute position with respect to the baseline.
- a dual-diode implementation may perform satisfactorily under many circumstances, the instant inventors have identified that such implementation is primarily suited to when the signal modulation depth is large compared to the forward voltage drop of the diodes.
- the dynamic range of the dual diode detector is limited on the high side by the supply rails, and on the low side by the forward diode drop. This available range is typically much less than that required by the optical system in a long range scanner. While an automatic gain control can be employed to maintain the first derivative amplitude within the usable range, such controls require multiple passes for settling. As a result, response time is slowed. The instant inventors have identified a faster solution as provided herein.
- the present disclosure relates to systems and methods for improving the accuracy of edge detection under high Inter-Symbol Interference, or ISI, conditions.
- the systems and methods detailed herein use an adaptive threshold set in real time as a function of peak amplitude.
- an amplified and filtered first derivative signal is offset by equal amounts in both directions to generate positive and negative offsets which serve as inputs to negative and positive peak detectors, respectively.
- a preferred embodiment herein implements a fast adaptive approach wherein the first derivative signal is attenuated and AC-coupled to the positive supply to drive a peak detector with a fairly short attack time, such that its output is nearly settled on the first peak of the first derivative signal, but having a decay time long enough to keep the threshold level approximately constant across the label.
- a peak is qualified if the original first derivative signal crosses one of the peak detector outputs.
- peaks are qualified if the peak in question differs in amplitude from the previously qualified peak by the offset amount.
- modulation depth gating a threshold, regardless of the absolute level of the peaks (such qualification strategy is hereafter referred to as "modulation depth gating").
- the disclosed approach has an improved ability to render highly crowded pulses with peaks occurring through most of the range between supply rails being properly detected and with the lower limit of the dynamic range being set by the noise floor and electronic offsets, which is significantly lower than the diode forward drop limit for the dual diode detector.
- the disclosed approach has a relatively broad dynamic range and fast response, as well as capability to reject baseline noise similar to that of second derivative systems.
- the peak detector stage may directly drive a following voltage-to-current converter while, at the same time, maintaining the largest possible dynamic range for the first derivative and offset signals.
- a slow AGC loop circuit is wrapped around the system to assist in maintaining the first derivative signal within the dynamic range.
- the preferred embodiments herein may advantageously offer more accurate rendering of relative bar and space widths under high ISI conditions, thus allowing the barcode scanner to be used under a wider range of conditions. Accordingly, the preferred embodiments herein may provide one or more of the following objects and advantages: to provide an edge detection system which is tolerant of a high degree of inter- symbol interference; to provide an edge detection system wherein the dynamic range is limited on the low end only by the noise in the input signal and electronic offsets; — to provide an edge detection system capable of detecting peaks through most of the dynamic range between supply rails; to provide an edge detection system having a fast adaptive response; to provide an edge detection system capable of rejecting baseline noise similarly to that of second derivative edge detector systems; and, — to provide such a system and method which offers improved depth of field performance over that of second derivative edge detector systems.
- Figure 1 is a schematic illustration of an edge detector according to a preferred embodiment herein.
- Figure 2 is an exemplary oscillograph representation illustrating representative edge detector signals under uncrowded label conditions in accordance with a preferred embodiment herein.
- Figure 3 is an exemplary oscillograph representation comparatively illustrating a IDER signal in relation to associated bar/space elements under uncrowded label conditions in accordance with a preferred embodiment herein.
- Figure 4 is an exemplary oscillograph representation comparatively illustrating a IDER signal in relation to associated bar/space elements under crowded (e.g., high-ISI) conditions in accordance with a preferred embodiment herein.
- Figure 5 is a block diagram of an edge detection system illustrating various principles in accordance with the more detailed schematic shown in Figure 1.
- Figure 6 is a block diagram of an alternative embodiment of an edge detection system.
- Figure 5 is a functional block diagram of an edge detection system 500 in accordance with a preferred embodiment as described herein, and Figure 1 is a schematic diagram of an edge detector 10 utilizing principles of the embodiment depicted in Figure 5. As shown in
- a photodetector 501 receives light reflected from a target, such as a bar code or other symbol or target.
- the photodetector 501 outputs a signal 502 which generally has peaks and valleys corresponding to lighter and darker portions of the target being read.
- the photodetector 501 may comprise any of a variety of photosensitive elements as commonly used in the art, or their equivalent(s), including one or more photodiodes, a CCD array, a
- CMOS sensor array or any other single or multi-element photodetection scheme.
- the precise manner of generating an input signal is not critical to the functioning of the invention as described herein.
- the invention is particularly useful in addressing the phenomena of intersymbol interference in a bar code or other symbol reader wherein the input is generally a signal from a photodetector, the invention may also be useful in other applications which require precise detection of transitions between high signal levels and low signal levels in an input signal.
- the photodetector signal 502 is connected to a signal conditioning circuit 504, which serves to amplify, filter and differentiate the photodetector signal 502.
- the signal conditioning circuit 504 outputs an amplified, filtered and differentiated photodetector signal 505 (hereinafter referred to as the first derivative photodetector signal).
- the amplification, filtering and differentiation performed by the signal conditioning circuit 504 may be accomplished in any of a variety of manners conventionally practiced and well known in the art of bar code scanning, for example.
- the first derivative photodetector signal 505 is provided to circuitry for generating positive and negative offset signals. Specifically, the first derivative photodetector signal 505 is provided to a peak detector 510, which is connected to a voltage-to-current converter 515.
- the voltage-to-current converter 515 has a source output 516 and a sink output 517, which provide equal currents of opposite polarity, and which are connected together across two series-connected resistors Rl and R2.
- the first derivative photodetector signal 505 is connected to the junction of resistors Rl and R2.
- the peak detector 510, voltage-to-current converter 515 and resistors Rl and R2 serve to generate a positive offset signal 518 and a negative offset signal 519, in a manner described in more detail with reference to the schematic diagram depicted in Figure 1.
- the amount of offset is proportional to (typically a fraction of) the peak signal amplitude detected by the peak detector 510.
- the positive offset signal 518 is connected to a negative peak detector 520, and the negative offset signal 519 is connected to a positive peak detector 521.
- the negative peak detector 520 detects a negative peak in the positive offset signal 518, and holds the negative peak value, using it as a threshold signal 524 (denoted Neg_pk in Fig. 5).
- the positive peak detector 521 detects a positive peak in the negative offset signal 519, and holds the positive peak value, using it as another threshold signal 525 (denoted Pos_pk in Fig. 5).
- the two threshold signals 524, 525 and the first derivative photodetector signal 505 are connected to a pair of comparators 530, 531.
- One comparator 530 detects a low-to-high (i.e., dark-to-light) transition in the first derivative photodetector signal 505, while the other comparator 531 detects a high-to-low (i.e., light-to-dark) transition in the first derivative photodetector signal 505.
- comparator 530 changes states when the first derivative photodetector signal 505 crosses the threshold signal 524 generated by the negative-peak-detected positive offset signal 518, thereby indicating a low-to-high (i.e., dark- to-light) transition in the first derivative photodetector signal 505, while the other comparator 531 changes states when the first derivative photodetector signal 505 crosses the threshold signal 525 generated by the positive-peak detected negative offset signal 519, thereby indicating a high-to-low (i.e., light-to-dark) transition in the first derivative photodetector signal 505.
- the outputs of the comparators 530, 531 are preferably differentiated, using differentiators 532 and 533, respectively.
- One differentiator 532 outputs a low-to-high (i.e., dark-to-light) transition output signal 540 (designated as "RTV” or “reset video” signal in Fig. 5).
- the other differentiator 533 outputs a high-to-low (i.e., light-to-dark) transition output signal 541 (designated as "STV” or “set video” signal in Fig. 5).
- the low-to-high (RTV) signal 540 resets the positive peak detector 521, while the high-to-low (STV) signal 541 resets the negative peak detector 520.
- Differentiators 532 and 533 ensure that a relatively brief reset pulse is applied to peak detectors 521 and 520, after which the RTV signal 540 and STV signal 541 are decoupled from the peak detectors 521 and 520, respectively. Differentiators 532 and 533 also allow discrimination of multiple adjacent pulses output by the RTV signal 540 or STV signal 541, should such occur.
- the low-to-high (RTV) signal 540 and high-to-low (STV) signal 541 are preferably provided to a decoder (not shown) or other similar circuitry for interpreting the low-to-high and high-to-low transitions in the input signal.
- the decoder may, for example, measure the time between low-to-high and high-to-low transitions, using techniques well known in the art, and thereby determine the size of features (such as bars and spaces) in the target being read.
- the decoder or other processing circuitry can decide which of the two adjacent transitions is legitimate based, for example, on the relative amplitudes of the two consecutive pulses in the RTV signal or STV signal. Assuming that the "steeper" of the two consecutive peaks in the first derivative photodetector signal 505 is more likely to be the peak corresponding to an actual transition in the input signal, the larger of the two consecutive RTV or STV signals output by the edge detection system 500 would be deemed the valid transition.
- a peak detector connected to the RTV signal 540 or STV signal 541 could be used to temporarily store the peak amplitude of the first pulse in the RTV signal 540 or STV signal 541, for comparison with the amplitude of the second pulse therein should two consecutive events (i.e., pulses) in the RTV signal 540 or STV signal 541 occur.
- each RTV or STV event may be converted from an analog value to a digital value (using, e.g., an analog-to-digital (A/D) converter) for storage in a buffer, along with polarity information (i.e., RTV vs. STV) and time of occurrence of the event (or other similar feature measurement information, such as the relative time from the previous event). If multiple consecutive RTV or STV events occur, then subsequent processing circuitry may compare the digitized amplitude values for each consecutive RTV or STV event and select the event having the highest amplitude as corresponding to a valid transition, while rejecting the others.
- FIG. 1 A more detailed schematic of a particular embodiment of an edge detector 10 in accordance with principles utilized in the embodiment of Figure 5 is depicted in Figure 1.
- the input to the edge detector 10 is a first derivative photodetector signal 15 (designated as "IDER” in Fig. 1).
- the first derivative photodetector signal 15 is a differentiated, amplified and filtered version of the photodiode current (such as may be generated in a manner known to those skilled in the art).
- Transistors 20 and 25 (designated as Q33 and Q31, respectively, in Fig.
- a negative peak detector 50 comprises operational amplifier 55 (U97A) and associated components.
- the negative peak detector 50 receives the positive offset signal 40 (OFFSET+) as its input and generates a negative peak threshold signal 60 (Neg_pk) as its output.
- a positive peak detector 65 comprises operational amplifier 70 (U98A) and associated components.
- the positive peak detector 65 receives the negative offset signal 45 (OFFSET-) as its input and generates a positive peak threshold signal 75 (Pos_pk) as its output.
- Negative peak comparison circuitry 80 comprises a comparator 90 (U96A) and associated components, which collectively compare the first derivative photodetector signal 15 with the negative peak threshold signal 60 (Neg_pk) so as to generate an RTV ("reset video") signal 95 when a crossing is detected.
- positive peak comparison circuitry 85 comprises a comparator 100 (U95A) and associated components, which collectively compare the first derivative photodetector signal 15 with the positive peak threshold signal 75 (Pos_pk) so as to generate the STV ("set video") signal 105 when a crossing is detected.
- the RTV signal 95 and STV signal 105 may then be utilized to provide edge information regarding the bar/space elements to the system decoder to enable decoding of the label.
- the RTV signal 95 and STV signal 105 may be provided to a decoder or other circuitry for measuring the time between transitions (corresponding to size of the features in the target being read) and to decode or otherwise interpret the feature measurement data.
- various circuit components are utilized to implement a fast adaptive approach.
- Such components include operational amplifiers 110 (U99) and 115 (U107), transistors 120 (Q30), 25 (Q31), 130 (Q32), and 20 (Q33), and associated other components connected thereto.
- the first derivative photodetector signal 15 is attenuated and AC- coupled to the positive power supply, using resistors 140 (R184) and 145 (R185) and capacitor 150 (C79).
- the resulting signal drives a negative peak detector 155, which is comprised of operational amplifier 115 (U107) and capacitor 165 (C80), such that an envelope detected signal 170 (designated to the peak amplitude of the first derivative photodetector signal 15, referenced to the positive power supply.
- the peak detector 155 as thus implemented, has a relatively short attack time, i.e., its output is nearly settled on the first peak of the first derivative photodetector signal 15, but has a decay time long enough to keep the corresponding threshold level approximately constant across the bar code label or other target being read.
- this latter stage may directly drive a following voltage-to-current converter (comprised of operational amplifier 110 (U99), transistor 20 (Q33), and resistor 80 (R200)) while maintaining the largest possible dynamic range for the first derivative photodetector signal 15, the positive offset signal 40 (OFFSET+) and the negative offset signal 45 (OFFSET-).
- the collector current of transistor 20 (Q33) is then proportional to the peak amplitude of the first derivative photodetector signal 15 as well.
- an exemplary oscillograph representation 200 is provided to illustrate the operation of the preferred embodiment in Figure 1 in relation to a sample first derivative photodetector signal 205 (designated "IDER", as in Fig. 1) and associated OFFSET+ 210 and OFFSET- 215 signals derived as detailed above, as well as sample POS_PK and NEG_PK signals 220 and 225, respectively.
- the representation 200 of Figure 2 is illustrative of sample signals under uncrowded label conditions. In operation, when a positive peak 230 of the first derivative photodetector signal 205 crosses the POS_PK signal 220, then the output of comparator U95A 100 (of Figure 1) goes high (not shown) indicating that a dark region has been entered.
- the negative peak detector 50 (of Figure 1) to be reset to the positive supply so that it is able to detect negative peaks of the first derivative photodetector signal 15 (or 205) with amplitudes much higher than the previous negative peak.
- Corresponding operation with respect to the crossing of the NEG_PK signal 225 by a negative peak 235 of the first derivative photodetector signal 205 is illustrated in Figures 1 and 2 with respect to the detection of negative peaks.
- peaks occurring through most of the range between supply rails may be properly detected. Peaks are qualified in the preferred embodiment herein only if the peak in question differs in amplitude from the previously qualified peak by the offset amount V OFS 240 (in Figure 2), thus providing a threshold which is irrespective of the absolute level of the peaks. Accordingly, since peaks are qualified if their modulation depth exceeds such threshold, this qualification strategy is referred to as modulation depth gating. Modulation depth gating provides improved ability to render crowded edges, e.g., as compared to a second derivative and other approaches, yet has similar capability to reject baseline noise, e.g., as in second derivative approaches.
- the actual location of transitions in the photodetector input signal is preferably defined as the points at which the first derivative photodetector signal crosses the threshold used for modulation depth gating, as opposed to the actual topmost point (i.e., crest) of a peak.
- the effect is to shift the apparent position of each transition to the right by a small amount (i.e., transitions in the RTV or STV signals lag the actual crest of the positive or negative peaks by a small amount). It is possible that variation in the steepness of the peaks could cause some distortion in the observed transition points, since steeper peaks will cause the threshold for modulation depth gating to be crossed sooner, while more shallow peaks will cause the threshold to be crossed later.
- the amount of distortion is not viewed as significant. In conditions where feature edges (and thus the signal peaks) are not crowded, the peaks in the photodetector signal will generally be wide and the amount of distortion will be so small as to be insignificant. On the other hand, in conditions where the feature edges are crowded, intersymbol inteference will generally cause the apparent peak location to shift to the left or right. Based on empirical studies by the inventors, the distortion caused by the effect of intersymbol interference is estimated to be on the order often times greater than any distortion that might be caused by modulation depth gating. Thus, in crowded edge conditions, any distortion arising from modulation depth gating is relatively insignificant compared to other sources of distortion in such conditions.
- FIG. 3 there is shown oscillograph representations comparing exemplary first derivative photodetector signals 300 and 400 (in each case designated as "IDER", as in Figs. 1 and 2), respectively, to the corresponding BAR-OUT signals 305 and 405, respectively, which may realized in accordance with the preferred system and methods herein.
- Figure 3 provides such comparison in the case of a label portion which exhibits uncrowded conditions and, thus, the signal peaks 310 in the first derivative photodetector signal 300 are relatively uniform across the label portion.
- Figure 4 provides a similar comparison in the case of a label portion which exhibits crowded label conditions indicative of a high degree of Inter-Symbol Interference.
- the signal peaks 410 in the first derivative photodetector signal 400 are not uniform across the label portion but, in fact, vary considerably. While a system utilizing an existing threshold approach (e.g., a second derivative approach) may be capable of adequately detecting the signal peaks 310 in the first derivative photodetector signal 300 as exhibited in Figure 3, such systems would reject as noise many of the signal peaks 410 in the first derivative photodetector signal 400 illustrated in Figure 4.
- the fast adaptive, modulation depth gating approach of the instant system and methods allow the signal peaks 310 and 410 under either of the conditions shown in Figure 3 or 4 to be properly detected. Thus, crowded labels exhibiting high degrees of Inter-Symbol Interference may be decoded without sacrificing an ability to properly render uncrowded labels as provided in existing systems.
- an adaptive threshold can be initialized on the first peak of the target bar code; thus, enabling successful rendering of the code on the first pass.
- AGC Automatic Gain Control
- the approach of the preferred embodiment herein provides a dynamic range in which the lower limit is set by the noise floor and electronic offsets, which is significantly lower than the diode forward drop limit for the dual diode detector as previously discussed.
- a dual diode detector implementation would exhibit a dynamic range of about 15:1 (24dB); by contrast, a detector in accordance with the disclosure herein would exhibit a range greater than 30:1.
- the label should be properly rendered on the first pass providing the fastest response for the user.
- a slower AGC loop circuit could be wrapped around the system described here.
- the system would respond very quickly if the AGC initial conditions caused the first derivative photodetector signal 15 to fall within the 30:1 range, otherwise the AGC would bring the level of the first derivative photodetector signal 15 within the dynamic range within a few frames. It is further envisioned that such AGC could have a very "coarse” adjustment, because of the larger detector dynamic range exhibited in the first place.
- the systems and methods herein may offer further improved performance in relation to scanner depth of field.
- Exemplary of such improved depth of field performance are results of certain comparative tests by the instant inventors between an existing second derivative edge detector system and a system implementing the methods herein.
- the disclosed system and methods herein yielded a far depth of field of 11.5" in relation to element width of 7.5 mil, 18" in relation to element width of 13 mil (Code 39 label), 28" in relation to element width of 20 mil, when applied in a miniature bar code scanning module.
- the conventional second derivative edge detector system utilized in these comparative tests yielded corresponding depth of field results of 10", 16" and 23", respectively.
- Such results were obtained in relation to a disclosed system without an AGC loop circuit as provided herein.
- the disclosed system and methods yielded a depth of field of 45" in relation to element width of 55 Mil, while the second derivative edge detector system yielded a corresponding depth of field of 40".
- FIG. 6 An alternative embodiment in accordance with various inventive principles as disclosed herein is depicted in a block form in Figure 6.
- Components in Figure 6 having a similar function to components depicted in Figure 5 are identified by similar last two digits in the respective reference numerals, except that the components in Figure 6 are referenced with a series "6xx" whereas in Figure 5 they are referenced with a series "5xx”.
- the edge detection system 600 depicted in Figure 6 has a photodetector 601 similar to photodetector 501 in Figure 5, and has a signal conditioning block 604 similar to signal conditioning block 504 shown in Figure 5, and so on.
- the embodiment shown in Figure 6 differs from that shown in Figure 5 in that only a single offset signal 618 is generated, as opposed to positive and negative offset signals 518 and 519 in Figure 5.
- the Figure 6 embodiment eliminates the current mirrors Q30 - Q32 and R107 in Figure 5, and therefore may be viewed as more hardware efficient.
- the (positive) offset signal 618 is provided to negative peak detector 620, but the fi st derivative photodetector signal 605 (as opposed to a negative offset signal) is provided to positive peak detector 621.
- Comparator 630 uses the negative peak value of the positive offset signal 618 as a threshold signal 624, and changes states when the first derivative photodetector signal 605 crosses the threshold signal 624, thereby indicating a dark-to-light transition. Conversely, comparator 631 uses the positive peak value of the first derivative photodetector signal 605 as a threshold signal 625, and changes states when the positive offset signal 618 crosses the threshold signal 625, thereby indicating a light- to-dark transition.
- the outputs of comparators 630, 631 may be differentiated using differentiators 632 and 633, respectively, and the resulting RTV signal 640 and STV signal 641 may be used to reset positive and negative peak detectors 620 and 621, respectively, as well as provided to a decoder or other circuitry for further processing.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99948221A EP1114391B1 (en) | 1998-09-14 | 1999-09-13 | Fast edge detection system tolerant of high degree of intersymbol interference |
DE69941090T DE69941090D1 (en) | 1998-09-14 | 1999-09-13 | PROCESS FOR FAST EDGE DETECTION, RESISTANT TO HIGH INTERSYMBOL FAULT |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10026898P | 1998-09-14 | 1998-09-14 | |
US60/100,268 | 1998-09-14 | ||
USNOTFURNISHED | 2006-03-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2000016240A1 true WO2000016240A1 (en) | 2000-03-23 |
WO2000016240A9 WO2000016240A9 (en) | 2000-08-10 |
Family
ID=22278909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1999/021121 WO2000016240A1 (en) | 1998-09-14 | 1999-09-13 | Fast edge detection system tolerant of high degree of intersymbol interference |
Country Status (4)
Country | Link |
---|---|
US (1) | US6499662B1 (en) |
EP (1) | EP1114391B1 (en) |
DE (1) | DE69941090D1 (en) |
WO (1) | WO2000016240A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012639A (en) * | 1996-11-01 | 2000-01-11 | Psc Scanning Inc. | Edge detection method and apparatus for shot noise limited signals |
US6830190B2 (en) * | 1999-02-02 | 2004-12-14 | Metrologic Instruments, Inc. | Multipath scan data signal processor having multiple signal processing paths with different operational characteristics to enable processing of signals having increased dynamic range |
JP3597433B2 (en) * | 1999-12-20 | 2004-12-08 | 富士通株式会社 | Clock adjustment device and optical disk device in data reproduction system |
US7118042B2 (en) * | 2002-01-18 | 2006-10-10 | Microscan Systems Incorporated | Method and apparatus for rapid image capture in an image system |
US8146823B2 (en) * | 2002-01-18 | 2012-04-03 | Microscan Systems, Inc. | Method and apparatus for rapid image capture in an image system |
JP4188104B2 (en) * | 2003-02-21 | 2008-11-26 | 富士通株式会社 | Bar code reader |
JP4213490B2 (en) * | 2003-02-21 | 2009-01-21 | 富士通株式会社 | Bar code reader |
US7230782B2 (en) * | 2003-08-28 | 2007-06-12 | Quantum Corporation | Correlation receiver for demodulating servo track information |
US7201322B2 (en) * | 2004-06-10 | 2007-04-10 | Psc Scanning, Inc. | System, circuit, and method for edge detection in a binary optical code |
US7204422B2 (en) * | 2004-06-10 | 2007-04-17 | Psc Scanning, Inc. | System, circuit, and method for edge detection in a binary optical code |
US7672532B2 (en) * | 2004-07-01 | 2010-03-02 | Exphand Inc. | Dithered encoding and decoding information transference system and method |
US7506816B2 (en) * | 2004-10-04 | 2009-03-24 | Datalogic Scanning, Inc. | System and method for determining a threshold for edge detection based on an undifferentiated equalized scan line signal |
US7503497B2 (en) * | 2006-06-08 | 2009-03-17 | Optoelectronics Co., Ltd. | Digitizing circuit for anti-ambient light noise |
US20080204922A1 (en) * | 2007-02-28 | 2008-08-28 | Motomu Hashizume | Methods and apparatus to monitor hard-disk drive head position |
DE102007017895A1 (en) * | 2007-04-13 | 2008-10-23 | Siemens Ag | Method and device for measuring a level of a time-variable electrical measurement |
US8788460B2 (en) * | 2008-06-12 | 2014-07-22 | Microsoft Corporation | Exploring attached and unattached content databases |
KR20140108749A (en) * | 2013-02-27 | 2014-09-15 | 한국전자통신연구원 | Apparatus for generating privacy-protecting document authentication information and method of privacy-protecting document authentication using the same |
US20150161429A1 (en) * | 2013-12-10 | 2015-06-11 | Hand Held Products, Inc. | High dynamic-range indicia reading system |
US12117566B2 (en) | 2021-03-29 | 2024-10-15 | Beijing Voyager Technology Co., Ltd. | Feed-forward equalization for enhanced distance resolution |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993894A (en) * | 1975-12-18 | 1976-11-23 | Recognition Equipment Incorporated | Dual edge detector for bar codes |
US5449893A (en) * | 1992-04-02 | 1995-09-12 | Symbol Technologies, Inc. | Digitizer for bar code reader |
US5463211A (en) * | 1993-05-07 | 1995-10-31 | Spectra-Physics Scanning Systems, Inc. | Method and apparatus for detecting transitions in a time sampled input signal |
US5528023A (en) * | 1992-10-09 | 1996-06-18 | Johnson & Johnson Clinical Diagnostics, Inc. | Bar code detecting circuitry |
US5612531A (en) * | 1993-03-08 | 1997-03-18 | Symbol Technologies, Inc. | Bar code reader with multiple sensitivity modes using variable thresholding comparisons |
US5811782A (en) * | 1993-08-11 | 1998-09-22 | Fujitu Limited | Binary device for bar code reader |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4000397A (en) | 1975-03-21 | 1976-12-28 | Spectra-Physics, Inc. | Signal processor method and apparatus |
US4262257A (en) * | 1979-06-29 | 1981-04-14 | Datapoint Corporation | Peak detector |
US4987500A (en) * | 1988-11-14 | 1991-01-22 | Brier Technology, Inc. | Self compensating high density data recording and detection scheme |
US5408081A (en) * | 1989-06-16 | 1995-04-18 | Symbol Technologies, Inc. | Digital circuit for a laser scanner using a first derivative signal and a comparison signal |
US5019698A (en) * | 1989-08-07 | 1991-05-28 | Photographic Sciences Corporation | Bar code reading systems having electrical power conservation and laser radiation power limiting means |
US5210397A (en) | 1990-05-03 | 1993-05-11 | Psc, Inc. | Differentiating and integrating circuit for translating bar code signals into corresponding pulses |
US5210398A (en) * | 1991-06-14 | 1993-05-11 | Symbol Technologies, Inc. | Optical scanner with extended depth of focus |
US5493108A (en) | 1992-10-14 | 1996-02-20 | Spectra-Physics Scanning Systems, Inc. | Method and apparatus for recognizing and assembling optical code information from partially scanned segments |
US5446271A (en) | 1993-08-06 | 1995-08-29 | Spectra-Physics Scanning Systems, Inc. | Omnidirectional scanning method and apparatus |
US5777309A (en) * | 1995-10-30 | 1998-07-07 | Intermec Corporation | Method and apparatus for locating and decoding machine-readable symbols |
US6073849A (en) * | 1996-11-01 | 2000-06-13 | Psc Scanning, Inc. | Electronic edge detection system using a second derivative signal processor |
US5936224A (en) * | 1996-12-11 | 1999-08-10 | Intermec Ip Corporation | Method and apparatus for reading machine-readable symbols by employing a combination of multiple operators and/or processors |
-
1999
- 1999-09-13 DE DE69941090T patent/DE69941090D1/en not_active Expired - Lifetime
- 1999-09-13 US US09/395,089 patent/US6499662B1/en not_active Expired - Lifetime
- 1999-09-13 WO PCT/US1999/021121 patent/WO2000016240A1/en active Application Filing
- 1999-09-13 EP EP99948221A patent/EP1114391B1/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993894A (en) * | 1975-12-18 | 1976-11-23 | Recognition Equipment Incorporated | Dual edge detector for bar codes |
US5449893A (en) * | 1992-04-02 | 1995-09-12 | Symbol Technologies, Inc. | Digitizer for bar code reader |
US5528023A (en) * | 1992-10-09 | 1996-06-18 | Johnson & Johnson Clinical Diagnostics, Inc. | Bar code detecting circuitry |
US5612531A (en) * | 1993-03-08 | 1997-03-18 | Symbol Technologies, Inc. | Bar code reader with multiple sensitivity modes using variable thresholding comparisons |
US5463211A (en) * | 1993-05-07 | 1995-10-31 | Spectra-Physics Scanning Systems, Inc. | Method and apparatus for detecting transitions in a time sampled input signal |
US5923023A (en) * | 1993-05-07 | 1999-07-13 | Spectra-Physics Scanning Systems, Inc. | Method and apparatus for detecting transitions in an input signal |
US5811782A (en) * | 1993-08-11 | 1998-09-22 | Fujitu Limited | Binary device for bar code reader |
Non-Patent Citations (1)
Title |
---|
See also references of EP1114391A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP1114391B1 (en) | 2009-07-08 |
US6499662B1 (en) | 2002-12-31 |
EP1114391A4 (en) | 2002-10-02 |
DE69941090D1 (en) | 2009-08-20 |
EP1114391A1 (en) | 2001-07-11 |
WO2000016240A9 (en) | 2000-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1114391B1 (en) | Fast edge detection system tolerant of high degree of intersymbol interference | |
US6073849A (en) | Electronic edge detection system using a second derivative signal processor | |
US5548109A (en) | Bar code detecting circuitry | |
US6152371A (en) | Method and apparatus for decoding bar code symbols | |
US6209788B1 (en) | Optical scanners | |
US5103080A (en) | Digitizer signal processing circuit for a bar code | |
WO2001029576A1 (en) | Rangefinder using collected spot spread and insert shadowing | |
AU2005226045A1 (en) | Data collection signal processing for increased performance in electro-optical readers | |
US7775434B2 (en) | Bar-code reading apparatus and bar-code reading method | |
EP1443450B1 (en) | Optical barcode scanner | |
EP0965097B1 (en) | Symbology scanning system for efficiently locating coded symbologies | |
US5914478A (en) | Scanning system and method of operation with intelligent automatic gain control | |
US6012639A (en) | Edge detection method and apparatus for shot noise limited signals | |
US5780830A (en) | Method and system for decoding distorted image and symbology data | |
US7093763B1 (en) | Laser scanner having analog digitizer with increased noise immunity | |
US5637853A (en) | Reading indicia by analysis of different light reflecting portions based on signal-to-noise ratios | |
NL1008260C2 (en) | Optical device for reading and decoding a barcode. | |
US20060065734A1 (en) | Dual scanner signal acquisition | |
US8047440B2 (en) | Method and system for decoding a barcode | |
JP2738108B2 (en) | Barcode reader | |
JPH07302299A (en) | Bar code reader | |
JPH07101428B2 (en) | Bar code detector | |
JPH0668776B2 (en) | Optical information reader | |
JPH05282477A (en) | Bar code detecting device | |
JPH10149408A (en) | Code information reader |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: C2 Designated state(s): DE GB |
|
AL | Designated countries for regional patents |
Kind code of ref document: C2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/6-6/6, DRAWINGS, REPLACED BY NEW PAGES 1/6-6/6; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999948221 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1999948221 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |