WO2000011122A1 - Lubricating oil composition useful in hydraulic fluids - Google Patents

Lubricating oil composition useful in hydraulic fluids Download PDF

Info

Publication number
WO2000011122A1
WO2000011122A1 PCT/EP1999/006094 EP9906094W WO0011122A1 WO 2000011122 A1 WO2000011122 A1 WO 2000011122A1 EP 9906094 W EP9906094 W EP 9906094W WO 0011122 A1 WO0011122 A1 WO 0011122A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
formula
alkyl group
represented
Prior art date
Application number
PCT/EP1999/006094
Other languages
French (fr)
Inventor
Yoshiharu Baba
Kiyoshi Hanyuda
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP23475898A external-priority patent/JP4836298B2/en
Priority to AT99944447T priority Critical patent/ATE220712T1/en
Priority to AU57377/99A priority patent/AU746879B2/en
Priority to EP99944447A priority patent/EP1109882B1/en
Priority to US09/763,278 priority patent/US6756346B1/en
Priority to NZ509838A priority patent/NZ509838A/en
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to DK99944447T priority patent/DK1109882T3/en
Priority to CA002340737A priority patent/CA2340737C/en
Priority to BRPI9913469-1A priority patent/BR9913469B1/en
Priority to DE69902181T priority patent/DE69902181T2/en
Publication of WO2000011122A1 publication Critical patent/WO2000011122A1/en
Priority to HK01105113A priority patent/HK1034738A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/16Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/08Ammonium or amine salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • C10M137/105Thio derivatives not containing metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/122Phtalamic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/046Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/06Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids

Definitions

  • the present invention relates to a lubricating oil composition having a low ash content or an ashless lubricating oil composition, and more specifically an antiwear type lubricating oil composition in which the ash content is reduced as low as possible, is excellent in thermal oxidation stability under severe conditions of a high temperature, is excellent in lubricating properties on various hydraulic apparatuses, and does not generate sludge even when a water content or a lubricating oil containing an overbasic alkaline earth metals additive, such as an engine oil, is incorporated.
  • an oil is being used at a high temperature of 100°C or higher instead of the conventional temperature range of from 50 to 70°C. Therefore, the conventional oils are not sufficient in thermal oxidation stability, and involve problems in that sludge is formed due to deterioration of the oil at a high pressure and a high temperature, the lubricating performance on a hydraulic pump is deteriorated, and friction between a seal and a rod of a hydraulic cylinder becomes large to generate rapid deterioration of the seal and abnormal vibration.
  • a conventional lubricating oil containing zinc dialkyldithiophosphate as an antiwear agent exhibits good antiwear performance on a vane pump using a sliding material mainly composed of steel.
  • the zinc dialkyldithiophosphate tends to accelerate wear of a copper alloy on a piston pump using a sliding material composed of various copper alloys and steel.
  • Denison Standard in U.S. recommends lowering the operation conditions when a zinc dialkyldithiophosphate type antiwear hydraulic oil is used in a piston pump.
  • a filter having an extremely small pore diameter of from 3 to 10 micrometer is being used in the apparatus. Therefore, a hydraulic oil is required to have excellent filtering properties.
  • the conventional oil tends to clog the filter in an early stage because sludge is formed by inclusion of a water content or an alkaline earth metal salt-containing lubricating oil, such as an engine oil, which reacts with an additive contained in the hydraulic oil.
  • a non-zinc type antiwear oil composition for hydraulic operation containing no zinc dialkyldithiophosphate has been known, and particularly an antiwear composition combining tricresyl phosphate or a triaryl phosphorothionate described in British Patent No 1,415,964 with an acidic phosphoric ester amine salt or triaryl phosphate has been known.
  • such conventional non-zinc type antiwear oil compositions for hydraulic operation involve problems in that friction between a seal and a rod of a hydraulic cylinder is large, the wear resistance becomes insufficient due to a rust preventing agent used in combination, and the filtering properties are extremely deteriorated by inclusion of a slight amount of an alkaline earth metal salt.
  • An object of the invention is to provide a lubricating oil composition in which the content of ashes such as zinc is reduced to as low as possible, that is excellent in thermal oxidation stability, lubricating property, water proofing property and filtering property.
  • the invention relates to a lubricating oil composition
  • a lubricating oil composition comprising
  • R 1 represents an alkyl and/or an aryl group having from 1 to 30 carbon atoms
  • X P(-XR 2 ) 2 XH (2a) (in the formula, X represents a sulfur atom and/or an oxygen atom and R 2 represents an alkyl and/or aryl group having from 2 to 30 carbon atoms) ,
  • R 6 represents an alkyl and/or aryl group having 1 to 30 carbon atoms and A' represents a hydrocarbon group optionally further containing one or more oxygen atoms
  • R 10 represents an alkylene group having from 1 to 10 carbon atoms
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and/or a hydroxyalkyl group having from 1 to 30 carbon atoms and m is an integer from 1 to 10) .
  • the present invention relates to the use of lubricating compositions according to the present invention in hydraulic operation, in gears, in turbines and/or in bearings.
  • the base oil component constituting the lubricating oil composition of the invention is not particularly limited, if it contains petroleum base oils and/or synthetic hydrocarbon base oils. It preferably exhibits a kinematic viscosity of from 2 to 680 mm /s (40°C) , preferably from 5 to 320 mm /s (40°C), and particularly preferably from 8 to 220 2 mm /s (40°C) , a total sulfur content (% by weight) of from 0 to 1%, preferably from 0 to 0.3%, a total nitrogen content (% by weight) of from 0 to 100 ppm, preferably from 0 to 30 ppm, and an aniline point of from 80 to 130°C, preferably from 100 to 125°C.
  • the petroleum base oil for a lubricating oil is a sole substance or a mixture of a solvent refined base oil, a hydrogenation refined base oil and a high hydrogenation decomposed base oil.
  • the high hydrogenation decomposed base oil is a base oil for a lubricating oil having a viscosity index of 130 or more (typically from 145 to 155) obtained by such a manner that slack wax separated by solvent dewaxing as a raw material is isomerized from a linear paraffin to a branched paraffin by hydrogenolysis (catalytic cracking) in the presence of a catalyst, or a base oil for a lubricating oil having a viscosity index of 130 or more (typically from 145 to 155) obtained by such a manner that hydrogen and carbon monoxide as raw materials obtained by a gasification process (partial oxidation) of natural gas (e.g., methane) is subjected to the Fischer-Tropsch polymerization to form a heavy linear par
  • the synthetic hydrocarbon base oil may be an olefin oligomer obtained by sole polymerization or copolymerization of a monomer selected from a linear or branched olefin hydrocarbon having from 3 to 15 carbon atoms, preferably from 4 to 12 carbon atoms.
  • the petroleum base oil and the synthetic hydrocarbon base oil may be used singly or in combination as a mixture thereof.
  • the phosphorothionate is represented by formula (1) :
  • R 1 represents an alkyl and/or an aryl group having from 1 to 30 carbon atoms, preferably R 1 represents an alkyl group having from 1 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms. Most preferably, R 1 represents a, preferably saturated, linear or branched alkyl group having from 4 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms) .
  • R 1 examples include a linear or branched alkyl group, such as a linear or branched butyl group, a linear or branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group, a linear or branched octyl group, a linear or branched nonyl group, a linear or branched decyl group, a linear or branched undecyl group, a linear or branched dodecyl group, a linear or branched tridecyl group, a linear or branched tetradecyl group, a linear or branched pentadecyl group, a linear or branched hexadecyl group, a linear or branched heptadecyl group and a linear or branched octadecyl group, and an aryl group, such as a phenyl group,
  • the compound examples include tributyl phosphorothionate, triisobutyl phosphorothionate, tri-2- ethylhexyl phosphorothionate, triphenyl phosphorothionate, trimethylphenyl phosphorothionate, triethylphenyl phosphorothionate, tripropylphenyl phosphorothionate, tributylphenyl phosphorothionate, trioctylphenyl phosphorothionate and trinonylphenyl phosphorothionate .
  • both an alkyl and an aryl group can be present. Further, mixtures of trialkyl phosphorothionate and triaryl phosphorothionate can be used.
  • the addition amount of the phosphorothionate of formula (1) is from 0.05 to 10 parts by weight, preferably from 0.05 to 5 parts by weight, and ideally from 0.1 to 2 parts by weight, per 100 parts by weight of the base oil for a lubricating oil.
  • the addition amount is less than 0.05 part by weight, it is not preferred since sufficient lubricating performance cannot be obtained.
  • it exceeds 10 parts by weight it is not preferred since although the lubricating performance is saturated, corrosion resistance, thermal oxidation stability and hydrolytic stability are lowered.
  • the amine salt of a phosphorus compound is of a phosphorus compound represented by formula (2a) :
  • X P(-XR 2 ) 2 XH (2a) in which X represents a sulfur atom and/or an oxygen atom and R 2 represents an alkyl and/or aryl group having from 2 to 30 carbon atoms.
  • the amine salt of the phosphorus compound is represented by
  • X represents an atom selected from a sulfur atom and an oxygen atom, in which at least from 2 to 4 atoms represented by X are oxygen atoms, and the others may be sulfur atoms, and it is particularly preferred that at least one or two of X is/are a sulfur atom;
  • R 2 represents an alkyl group having from 2 to 30 carbon atoms;
  • R 3 , R 4 and R 5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and a group containing from 1 to 5 mole of an alkylene oxide group; preferably, R 3 represents an alkyl group having from 1 to 30 carbon atoms; and preferably R 4 and R 5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and from 1 to 5 mole of an ethylene oxide group) .
  • the phosphorus compound is a phosphoric ester.
  • the compounds can be prepared by the following method. A primary, secondary or tertiary aliphatic amine compound containing an alkyl group having from 1 to 30 carbon atoms, preferably from 1 to 18 carbon atoms, and/or from 1 to 5 mole of an ethylene oxide in the molecule is reacted with an acidic phosphoric ester and/or an acidic thiophosphoric ester, and the whole or a part of the residual acidic hydrogen is neutralized.
  • Examples of a linear or branched alkyl group having from 2 to 30 carbon atoms, preferably from 4 to 18 carbon atoms include an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a linear or branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group, a linear or branched octyl group, a linear or branched nonyl group, a linear or branched decyl group, a linear or branched undecyl group, a linear or branched dodecyl group, a linear or branched tridecyl group, a linear or branched tetradecyl group, a linear or branched pentadecyl group, a
  • the preferred amine compound used in the above reaction include a primary aliphatic amine (in which the alkyl group may be linear or branched) , such as monomethy1amine, monoethy1amine, monopropylamine, monobutylamine, monopentylamine, monohexylamine, monoheptylamine, monooctylamine, monononylamine, monodecylamine, monoundecylamine, monododecylamine, monotridecylamine, monotetradecylamine, monopentadecylamine, monohexadecylamine, monoheptadecylamine, monooctadecylamine, monononadecylamine, monoicosylamine, monohenicosylamine, monotricosyla ine and monotetracosylamine, a secondary aliphatic alkylamine (in which the alkyl groups may be linear or branched) , such as mono
  • examples of an amine added with ethylene oxide include a secondary or tertiary amine as a product obtained by adding from 1 to 5 mole of ethylene oxide to monooctylamine, monononylamine, monodecylamine, monoundecylamine, monododecylamine, monotridecylamine, monotetradecylamine, monopentadecylamine, monohexadecyla ine, monoheptadecylamine, monooctadecylamine, monononadecylamine, monoicosylamine, monohenicosylamine, monotricosylamine or monotetracosylamine (in which the alkyl groups may be linear or branched) .
  • an alkylamine having from 6 to 24 carbon atoms and an alkylamine having from 6 to 24 carbon atoms added with from 1 to 2 mole of ethylene oxide are preferably used as the amine compound from the standpoint in that a lubricating oil composition excellent in wear resistance and corrosion prevention performance.
  • an alkylamine for neutralization may contain either a linear alkyl group or a branched alkyl group.
  • an alkylamine for neutralization preferably contains a branched alkyl group from the standpoint of solubility in the base oil.
  • the addition amount of the amine salt of the acidic phosphoric ester and/or the acidic thiophosphoric ester, i.e., the neutralized product of an amine is from 0.01 to 1 part by weight, preferably from 0.01 to 0.2 part by weight, per 100 parts by weight of the base oil for a lubricating oil.
  • the addition amount is less than 0.01 part by weight, sufficient lubricating property cannot be obtained.
  • it exceeds 1 part by weight the lubricating performance is saturated, but corrosion resistance, thermal oxidation stability and hydrolytic stability are lowered. Particularly, in the case where
  • R is a linear alkyl group, when the addition amount exceeds 0.1 part by weight, the filtering property is extremely deteriorated on inclusion of a lubricating oil containing an alkaline earth metal salt.
  • the dithiophosphate is represented by formula (3a) :
  • R 6 represents an alkyl and/or an aryl group having 1 to 30 carbon atoms and A' represents a hydrocarbon group optionally further containing one or more oxygen atoms
  • R 6 represents an aryl group having from 6 to 12 carbon atoms or an alkyl group having from 1 to 30 carbon atoms
  • A represents a group independently selected from SR 7
  • OR 9 and R 7 , R 8 and R 9 each represents a group independently selected from an alkyl group having from 1 to 30 carbon atoms, and n is an integer from 0 to 10. preferably, R 6 , R 7 , R 8 and R 9 each represents a group independently selected from an alkyl group having from 1 to 8 carbon atoms, and n is an integer from 0 to 10, preferably from 0 to 6) .
  • alkyl group having from 1 to 8 carbon atoms represented by R 6 , R 7 , R 8 and R 9 include an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butl group, a linear or branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group and a linear or branched octyl group .
  • the compound include a trialkyl dithiophosphate, such as tripropyl dithiophosphate, tributyl dithiophosphate, tripentyl dithiophosphate, trihexyl dithiophosphate and trioctyl dithiophosphate, and an 0,0-dialkyl dithiophosphoryl- alkylenealkyl carboxylate, such as Irgalube 63 (produced by Ciba Specialty Chemicals, Inc.), Vanlube 727 and Vanlube 7611 (produced by Vanderbilt Co., Ltd.).
  • a trialkyl dithiophosphate such as tripropyl dithiophosphate, tributyl dithiophosphate, tripentyl dithiophosphate, trihexyl dithiophosphate and trioctyl dithiophosphate
  • an 0,0-dialkyl dithiophosphoryl- alkylenealkyl carboxylate such as Irgalube 63 (produced by Ciba Specialty Chemicals, Inc.
  • the addition amount of the trialkyl dithiophosphate used in the invention is from 0.05 to 10 parts by weight, preferably from 0.1 to 1 part by weight, per 100 parts by weight of the base oil for a lubricating oil. When the addition amount is less than this range, sufficient lubricating performance cannot be obtained. When the addition amount exceeds this range, the lubricating performance is saturated, but corrosion resistance, thermal oxidation stability and hydrolytic stability are lowered.
  • the polyalkylene polyamine is represented by formula (4a) :
  • R 10 represents an alkylene group having from 1 to 10 carbon atoms
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms, preferably from 1 to 10, and/or a hydroxy alkyl group having from 1 to 30 carbon atoms, preferably from 1 to 10, and m is an integer from 1 to 10) .
  • R 10 represents an alkylene group having from 2 to 6 carbon atoms
  • R 11 , R 12 and R 13 each independently represents a hydrogen atom and/or an alkyl group having from 1 to 10 carbon atoms.
  • polyalkylene polyamine is represented by formula (4b)
  • H 2 N-(R 10 -NH) m H (4b) (in the formula, R 10 represents an alkylene group having from 2 to 4 carbon atoms, and m is an integer from 2 to 6) include diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene heptamine, tetrapropylene pentamine and hexabutylene heptamine.
  • the carboxylic acid to be reacted with the polyalkylene polyamine can be any suitable carboxylic acid containing at least one carboxylic acid group and containing in total from 4 to 30 carbon atoms, preferably from 12 to 30 carbon atoms.
  • suitable acids containing more than one carboxylic acid group are succinic acid and adipic acid.
  • the carboxylic acid is a monocarboxylic acid.
  • the acid is a monocarboxylic acid selected from a saturated monocarboyxlic acid having from 12 to 30 carbon atoms and an unsaturated monocarboyxlic acid having from 18 to 24 carbon atoms.
  • carboxylic acid includes single use of an unsaturated fatty acid, single use of a branched saturated fatty acid, combination use of an unsaturated fatty acid and a branched saturated fatty acid, and combination use of a branched saturated fatty acid and a linear saturated fatty acid.
  • unsaturated fatty acid include a monocarboxylic acid having from 18 to 24 carbon atoms, such as oleic acid, elaidic acid, cetoleic acid, erucic acid and brassidic acid.
  • branched saturated fatty acid examples include a monocarboxylic acid having from 18 to 30 carbon atoms, such as 2-methylheptadecanoic acid, 16- methylheptadecanoic acid, 2-octadecanoic acid, 2- methyloctadecanoic acid, 10-methyloctadecanoic acid, 15- ethylheptadecanoic acid, 3-methylnonadecanoic acid, 2- butyl-2-heptylnonanoic acid, 2-ethyleicosanoic acid, 20- methylheneicosanoic acid, 3-methyltricosanoic acid, 10- methyltetracosanoic acid, 18-methyltetracosanoic acid, 13, 16-dimethyltricosanoic acid, 3,13,19- trimethyltricosanoic acid and isostearic acid.
  • a monocarboxylic acid having from 18 to 30 carbon atoms such as 2-methylh
  • linear saturated fatty acid examples include a monocarboxylic acid having from 12 to 30 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid and melissic acid.
  • an aliphatic monocarboxylic acid in which the aliphatic group thereof is a linear saturated or unsaturated alkyl group is basically a main part.
  • an aliphatic monocarboxylic acid having a branched alkyl group is partly used together, thereby adjusting the solubility.
  • combinations which can be suitably employed include (1) a combination of an aliphatic monocarboxylic acid having a linear saturated alkyl group with an aliphatic monocarboxylic acid having a branched saturated alkyl group and (2) a combination of an aliphatic monocarboxylic acid having a linear unsaturated alkyl group with an aliphatic monocarboxylic acid having a branched saturated alkyl group.
  • the ratio of the linear aliphatic monocarboxylic acid to the branched monocarboxylic acid varies depending on the properties of the base oil used, it is usually from 25:75 to 100:0 by mole.
  • the reaction of the polyalkylene polyamine and the carboxylic acid is conducted at a temperature of from 200 to 220°C for from 2 to 3 hours, to obtain the desired amide.
  • An amount of the monocarboxylic acid used is preferably less than (m+1) mole per mole of the polyalkylene polyamine.
  • 5-46878 discloses a composition obtained by reacting a polyalkylene polyamine with a fatty acid composed of from 20 to 100 mol% of an unsaturated monocarboxylic acid and from 80 to 0 mol% of a branched saturated monocarboxylic acid, and discloses that the storage stability and the sludge dispersion capability of the lubricating oil can be improved by the composition, so that the generation of an insoluble sticky substance can be suppressed.
  • this kind of amide has a function of dispersing sludge insoluble in an oil formed due to deterioration of the oil as described in Examined Published Japanese Patent Application No. 39- 3115 and No.
  • the polyamide used in the invention has high rust preventing property and a function in that friction between a rod and a seal of a hydraulic cylinder is reduced to make the operation of the cylinder smooth.
  • the addition amount of the polyamide obtained by reacting the polyalkylene polyamine and the monocarboxylic acid is from 0.01 to 1 part by weight, preferably from 0.02 to 0.5 part by weight, per 100 parts by weight of the base oil for a lubricating oil.
  • the addition amount is less than 0.01 part by weight, the rust preventing property and the function of reducing the friction between the rod and the seal of the hydraulic cylinder are not sufficient.
  • it exceed 1 part by weight it is not preferred since the lubricating performance is saturated, but emulsification resistant property is lowered.
  • auxiliary additives generally used may be used depending on necessity, in addition to the necessary components.
  • known additives for lubricating oils such as an antioxidant, a metal deactivator, an extreme- pressure agent, an oiliness agent, a defoaming agent, a viscosity index improving agent, a pour point depressing agent, a detergent dispersant, a rust preventing agent and an anti-emulsification agent.
  • amine type antioxidant examples include a dialkyldiphenylamine, such as p,p' -dioctyldiphenylamine (Nonflex OD-3 produced by Seiko chemical Co., Ltd.), p,p' -di-a-methylbenzyldiphenylamine and N-p-butylphenyl- N-p' -octylphenylamine, a monoalkyldiphenylamine, such as mono-t-butyldiphenylamine and monooctyldiphenylamine, a bis (dialkylphenyl) amine, such as di(2,4- diethylphenyl) amine and di (2-ethyl-4-nonylphenyl) amine, an alkylphenyl-1-naphthylamine, such as octylphenyl-1- naphthylamine and N-t-dodecylphenyl-1-naph
  • sulfur type antioxidant examples include a dialkylsulfide, such as didodecylsulfide and dioctadecylsulfide, a thiodipropionic ester, such as didodecyl thiodipropionate, dioctadecyl thiodipropionate, dimyristyl thiodipropionate and dodecyloctadecyl thiodipropionate, and 2- mercaptobenzoimidazole .
  • dialkylsulfide such as didodecylsulfide and dioctadecylsulfide
  • a thiodipropionic ester such as didodecyl thiodipropionate, dioctadecyl thiodipropionate, dimyristyl thiodipropionate and dodecyloctadecyl thiodi
  • phenol type antioxidant examples include 2- t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5- methylphenol, 2, -di-t-butylphenol, 2, 4-dimethyl-6-t- butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4- methoxyphenol, 2, 5-di-t-butylhydroquinone (Antage DBH produced by Kawaguchi Chemical Co.
  • Examples of the phosphorus type antioxidant include a triarylphosphite, such as triphenylphosphite and tricresylphosphite, a trialkylphosphite, such as trioctadecylphosphite and tridecylphosphite, and tridecyltrithiophosphite .
  • a triarylphosphite such as triphenylphosphite and tricresylphosphite
  • a trialkylphosphite such as trioctadecylphosphite and tridecylphosphite
  • tridecyltrithiophosphite tridecyltrithiophosphite
  • antioxidants may be used singly or in combination in an amount of from 0.01 to 2.0 parts by weight per 100 parts by weight of the base oil.
  • alkyldithio benzothiazole e.g., 2- (hexyldithio) benzothiazole and 2- (octyldithio) benzothiazole, a 2- (alkyldithio) toluthiazole, e.g., 2- (hexyldithio) toluthiazole and 2- (octyldithio) toluthiazole, a 2- (N,N-dialkyl- dithiocarbamyl) benzothiazole, e.g., 2- (N,N-diethyl- dithiocarbamyl) benzothiazole, 2- (N,N-dibutyl- dithiocarbamyl) benzothiazole and 2- (N,N-dihexyl- dithiocarbamyl) benzothiazole, and a 2-(N,N-di- alkyldithiocarbamyl) tolu
  • metal deactivators may be used singly or in combination in an amount of from 0.01 to 0.5 parts by weight per 100 parts by weight of the base oil.
  • the defoaming agent include an organosilicate, such as dimethylpolysiloxane, diethylsilicate and fluorosilicone, and a non-silicone defoaming agent, such as a polyalkylacrylate .
  • the addition amount thereof may be from 0.0001 to 0.1 part by weight per 100 parts by weight of the base oil, and they may be used singly or in combination.
  • the viscosity index improving agent examples include a non-dispersion type viscosity index improving agent, such as a polymethacrylate and an olefin copolymer, e.g, an ethylene-propylene copolymer and a styrene-diene copolymer, and a dispersion type viscosity index improving agent, such as polymers obtained by copolymerizing these polymers with a nitrogen-containing monomer.
  • the addition amount thereof may be from 0.05 to 20 parts by weight per 100 parts by weight of the base oil.
  • pour point depressing agent examples include a polymethacrylate type polymer.
  • the addition amount thereof may be from 0.01 to 5 parts by weight per 100 parts by weight of the base oil.
  • the detergent dispersant examples include a metallic detergent, such as a neutral or basic alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate, and an ashless dispersant, such as an alkenylsuccinimide, an alkenyl succinic acid ester, and a modified product with a boron compound or a sulfur compound.
  • a metallic detergent such as a neutral or basic alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate
  • an ashless dispersant such as an alkenylsuccinimide, an alkenyl succinic acid ester, and a modified product with a boron compound or a sulfur compound.
  • the addition amount thereof may be from 0.01 to 1 part by weight per 100 parts by weight of the base oil, and they may be used singly or in combination.
  • the extreme-pressure agent and the oiliness agent include a sulfur extreme-pressure agent, such as a dialkylsulfide, dibenzylsulfide, a dialkylpolysulfide, dibenzylsulfide, an alkylmercaptane, dibenzothiophene and 2, 2' -dithiobis (benzothiazole) , a phosphorus extreme-pressure agent, such as a trialkyl phosphate, a triaryl phosphate, a trialkyl phosphonate, a trialkyl phosphite, a triaryl phosphite, a dialkyl hydrogenphosphite and a trialkyl trithiophosphite, an aliphatic oiliness agent, such as a fatty acid amide and a fatty acid ester, and an amine oiliness agent, such as a primary, secondary or tertiary alkylamine and an alkyleneoxide-added alkyl
  • extreme-pressure agent and oiliness agent may be used singly or in combination in an amount of from 0.1 to 2 parts by weight per 100 parts by weight of the base oil.
  • Sufficient rust preventing performance can be obtained by using only the composition of the invention in most cases. In the case where further rust preventing performance is required depending on the use conditions, an N-alkylsarcosinic acid, an alkylate phenoxyacetic acid, an imidazoline, K-Corr 100 produced by King Industries, Ltd. and its alkaline earth metal salt or amine salt, an N-acyl-N-alkoxyalkylasparaginic acid ester described in Unexamined Published Japanese Patent Application No. 6-200268 and an alkaline earth metal salt of a phosphoric acid ester described in
  • EP0801116A1 can be used without deterioration of the filtering property on inclusion of an alkaline earth metal salt.
  • These rust preventing agents may be used singly or in combination in an amount of from 0.01 to 2 parts by weight per 100 parts by weight of the base oil.
  • the anti-emulsification agent include those generally used as an additive for a lubricating oil. The addition amount thereof may be from 0.0005 to 0.5 part by weight per 100 parts by weight of the base oil .
  • the lubricating oil composition of the invention is ideally used as an oil composition for hydraulic operation. However, it is also useful for other uses, such as an oil composition for tooth gears, an oil composition for a compressor, an oil composition for a turbine and an oil composition for a bearing.
  • EXAMPLES The oil for hydraulic operation according to the invention is further described in more detail by referring to the following examples, the invention is not construed as being limited thereto.
  • a hydrogenation refined base oil having a kinematic viscosity of 31 mm 2 /s at 40°C was used as a base oil, and the following components were added thereto, to prepare a base lubricating oil composition containing no antiwear agent or rust preventing agent.
  • the antiwear agents and the rust preventing agents shown in Table 1 for examples and those shown in Tables 2 and 3 for comparative examples were added to the base lubricating oil composition, to prepare sample oils having a kinematic viscosity of 32 mm 2 /s at 40°C.
  • the amounts of the components added to the sample oils of Examples 1 to 5 and Comparative Examples 1 to 8 are expressed in terms of part by weight.
  • Base Lubricating Oil Composition Hydrogenation refined base oil
  • Phenol antioxidant (Hitec4733 produced by Ethyl Corp.) 0.5 part by weight
  • Benzotriazole metal deactivator (Irgamet 39 produced by Ciba Specialty Chemicals, Inc.)
  • the lubricating oil compositions containing the conventional antiwear agents and rust preventing agents instead of the combination of the antiwear agent and the rust preventing agent of the invention were prepared by using the compositions shown in Table 3.
  • the various performance evaluation experiments described below were conducted for these Examples and Comparative Examples .
  • the results obtained are shown in Tables 4 to 6.
  • the same performance evaluation experiments were conducted for the commercially available zinc type antiwear oil for hydraulic operation and non-zinc type oil for hydraulic operation (Comparative Examples 9 and 10) .
  • the results obtain are also shown in Table 7.
  • various performance evaluation tests were carried out in the following manner. Filtering Property Test
  • a time (second) required for filtering 300 ml of the sample oil containing no water or overbasic metallic salt was also measured, and the ratio of the filtering time of the sample oil containing water and the overbasic metallic salt to the filtering time of the sample oil containing no water or overbasic metallic salt was obtained.
  • the ratio exceeds twice, there is a tendency that a filter is clogged in an early stage in a practical hydraulic apparatus.
  • the water-separation property of the sample oils was evaluated according to ASTM D1401. 40 ml of the sample oil and 40 ml of pure water were placed in a test tube and stirred at 54 °C for 5 minutes. Then, a time (minute) required for completely separating water and the oil was measured. In LH03-1-94 of GM (General Motors) Standard, it is required that the time for separating the oil from water is 30 minutes or less. Thermal Stability Test
  • the thermal stability of the sample oils was evaluated according to the standard for purchasing lubricating oils by Cincinnati Milacron , Inc. (U.S.) (10-SP-80160-3) .
  • An iron rod and a copper rod as catalysts were immersed in 200 ml of the sample oil, which was allowed to stand in an oven at 135°C for 168 hours, and the sample oil was filtered through a membrane filter having a pore diameter of 8 micrometer, to measure the weight of sludge formed.
  • P-68, P-69 and P-70 Standards of an oil defined by Cincinnati Milacron , Inc. it is required that the amount of sludge is 25 mg or less per 100 ml.
  • the oxidation stability of the sample oils was evaluated according to ASTM D4310.
  • a coil of iron and a coil of copper as catalysts were immersed in 300 ml of the sample oil.
  • 60 ml of water was further added, and 3 liters per minute of oxygen was blown into the sample oil at 95°C, to conduct an oxidation test for 1,000 hours.
  • the sample oil was filtered through a membrane filter having a pore diameter of 5 micrometer, to measure the weight of sludge formed.
  • the contents (mg) of copper and iron in the oil phase, the water phase and the sludge after the test were measured by an emission spectral analysis.
  • the amount of sludge formed is 200 mg or less in HF-0 and 100 mg or less in HF-1, and the amount of copper corroded and the amount of iron corroded are both 50 mg or less.
  • the hydrolytic stability of the sample oils was evaluated according to ASTM D2619.
  • a copper plate as a catalyst was immersed in a bottle containing 75 ml of the sample oil and 25 ml of water, and after sealing, the bottle was rotated at 93°C for 48 hours. After completion of the test, the weight loss of the copper plate and the acid value of the water phase were measured.
  • Standard HF-0 for an oil for hydraulic operation defined by Denison Corp. and Standard LH-03-1-94 of GM (General Motors) it is required that the weight loss of the copper plate is 0.2 mg/cm 2 or less, and the acid value of the water phase is 4 mgKOH or less .
  • the lubricating performance of the sample oils for a gear apparatus was evaluated according to ISO/WD14635- 1. Operation was conducted by using Gear A at an initial oil temperature of 90°C and a rotation number of motor of 1,450 rpm for 15 minutes for each step of load, and with increasing the step of load, the step of load, at which seizing was formed on the tooth surface of the test gear, was measured. According to the German Standard DIN51524 (part 2), it is required for an antiwear oil for hydraulic operation that the step of load, at which seizing is formed, is the tenth step or higher. Urethane Seal Friction Test
  • the friction property of the sample oils between a rod and an urethane seal of a hydraulic cylinder was evaluated by using a slip-stick testing apparatus of Cincinnati Milacron, Inc. (former ASTM D2877) .
  • the sample oil was coated between a steel test piece and an urethane test piece (U801 produced by NOK) , and the kinetic friction coefficient was measured at a sliding speed of 1.27 mm/min. and a load of 22.4 kgf.
  • a lubricating oil exhibiting a kinetic friction coefficient exceeding 0.6 friction between a seal and a rod of a practical hydraulic cylinder becomes large, and problems upon use, such as rapid deterioration of the seal and abnormal vibration, occur. Vane Pump Test
  • the wear preventing performance of the sample oils for a vane pump was evaluated by using Vickers 35VQ-25A pump.
  • the pump test was conducted at an oil temperature of 65°C, a rotation number of 2,400 rpm and a pressure of 210 kgf/cm 2 for 50 hours, the wear amounts of the vane and the ring after the test were measured. According to M-2950-S Standard defined by Vickers Corp., it is required that the wear amount is 90 mg or less.
  • Comparative Examples 1 and 2 could not exhibit sufficient performance in the FZG gear test and the vane pump test, and failed German standard DIN51524 (part 2) and Vickers Standard M-2950-S.
  • Comparative Example 1 a large amount of wear occurred in the piston pump test and had a problem in applicability to a piston pump.
  • Comparative Example 2 involved a problem in the emulsification resisting property and failed GM Standard LH-03-1-94.
  • Comparative Example 3 could not exhibit sufficient performance in the filtering property test, the rust prevention test and the urethane seal friction test.
  • a large amount of rust was formed in the oxidation stability test, and failed Denison Standards HF-0 and HF-1 for an oil for hydraulic operation and DIN51524 (part 2) .
  • Comparative Example 4 could not exhibit sufficient performance in the rust prevention test, the oxidation stability test, the hydrolytic stability test and the urethane seal friction test, and failed Denison Standards HF-0 and HF-1 for an oil for hydraulic operation and DIN51524 (part 2) .
  • Comparative Example 5 did not give sufficient performances in the filtering property test, the hydrolytic stability test, the urethane seal friction test and thermal stability test, and failed P-68 Standard for a hydraulic oil by Cincinnati Milacron,
  • Comparative Example 6 could not exhibit sufficient performance in the filtering property test and the urethane seal friction test, and failed P-68 Standard for a hydraulic oil by Cincinnati Milacron, Inc.
  • Comparative Example 7 could not exhibit sufficient performance in the FZG gear test and the vane pump test, and failed German Standard DIN51524 (part 2) and M-2950- S Standard by Vickers.
  • Comparative Example 8 could not exhibit sufficient performance in the oxidation stability test, the hydrolytic stability test and the FZG gear test, and failed HF-0 Standard and HF-1 Standard by Denison, German Standard DIN51524 (part 2) and M-2950-S Standard by Vickers.
  • Comparative Example 9 failed HF-0 Standard and HF-1 Standard by Denison and M-2950-S Standard by Vickers in the oxidation stability test and the hydrolytic stability test.
  • Comparative Example 10 involved problems in the filtering property test, the FZG gear test, the urethane seal friction test and the vane pump test and failed German Standard DIN51524 (part 2) and MS-2950-S Standard by Vickers.
  • the lubricating oil composition of the invention is excellent in rust prevention property, corrosion resisting property for copper and iron, filtering property, thermal oxidation stability, antiwear property for vane and piston pumps, wear property for hydraulic cylinder, and load capacity to gear elements, and thus exhibits performance that satisfies all the required performance as an oil for hydraulic operation.
  • the lubricating oil composition of the invention does not contain zinc dialkyldithiophosphate from the standpoint of environment and safety, and is excellent in lubricating property, water proofing property, filtering property and rust preventing property, including use in recent hydraulic apparatus that is down-sized, operated at a high speed and a high pressure, and is precise. Therefore, the composition of the invention satisfies all the various required performances for a hydraulic oil defined by the standards of Cincinnati Milacron, Inc., Denison, Vickers, GM and DIN, and also exhibits excellent performance in filtering property and urethane seal friction property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

A lubricating oil composition comprising (I) 100 pbw of a base oil, (II) an antiwear agent comprising (i) from 0.05 to 10 pbw of a phosphorothionate and from 0.01 to 1.0 pbw of an amine salt of phosphorus compound and/or (ii) from 0.05 to 10 pbw of a dithiophosphate, and (III) a rust preventing agent comprising from 0.01 to 1.0 pbw of an amide obtained by reacting a polyalkylene polyamine and a carboxylic acid having from 4 to 30 carbon atoms, and the use of such lubricating composition.

Description

LUBRICATING'OIL COMPOSITION USEFUL IN HYDRAULIC FLUIDS
The present invention relates to a lubricating oil composition having a low ash content or an ashless lubricating oil composition, and more specifically an antiwear type lubricating oil composition in which the ash content is reduced as low as possible, is excellent in thermal oxidation stability under severe conditions of a high temperature, is excellent in lubricating properties on various hydraulic apparatuses, and does not generate sludge even when a water content or a lubricating oil containing an overbasic alkaline earth metals additive, such as an engine oil, is incorporated.
With a hydraulic apparatus being down-sized and used at a high speed and a high pressure, an oil is being used at a high temperature of 100°C or higher instead of the conventional temperature range of from 50 to 70°C. Therefore, the conventional oils are not sufficient in thermal oxidation stability, and involve problems in that sludge is formed due to deterioration of the oil at a high pressure and a high temperature, the lubricating performance on a hydraulic pump is deteriorated, and friction between a seal and a rod of a hydraulic cylinder becomes large to generate rapid deterioration of the seal and abnormal vibration.
On the other hand, a conventional lubricating oil containing zinc dialkyldithiophosphate as an antiwear agent exhibits good antiwear performance on a vane pump using a sliding material mainly composed of steel. However, the zinc dialkyldithiophosphate tends to accelerate wear of a copper alloy on a piston pump using a sliding material composed of various copper alloys and steel. Thus, Denison Standard in U.S. recommends lowering the operation conditions when a zinc dialkyldithiophosphate type antiwear hydraulic oil is used in a piston pump.
With a hydraulic apparatus being advanced and precise, a filter having an extremely small pore diameter of from 3 to 10 micrometer is being used in the apparatus. Therefore, a hydraulic oil is required to have excellent filtering properties. However, the conventional oil tends to clog the filter in an early stage because sludge is formed by inclusion of a water content or an alkaline earth metal salt-containing lubricating oil, such as an engine oil, which reacts with an additive contained in the hydraulic oil.
Therefore, development of a lubricating oil composition capable of solving all the problems is demanded.
A non-zinc type antiwear oil composition for hydraulic operation containing no zinc dialkyldithiophosphate has been known, and particularly an antiwear composition combining tricresyl phosphate or a triaryl phosphorothionate described in British Patent No 1,415,964 with an acidic phosphoric ester amine salt or triaryl phosphate has been known. However, such conventional non-zinc type antiwear oil compositions for hydraulic operation involve problems in that friction between a seal and a rod of a hydraulic cylinder is large, the wear resistance becomes insufficient due to a rust preventing agent used in combination, and the filtering properties are extremely deteriorated by inclusion of a slight amount of an alkaline earth metal salt. In addition to the above-described problems, there are increasing problems of using zinc compound including the zinc dialkyldithiophosphate from the standpoint of recent environmental protection and toxicity. An object of the invention is to provide a lubricating oil composition in which the content of ashes such as zinc is reduced to as low as possible, that is excellent in thermal oxidation stability, lubricating property, water proofing property and filtering property.
As a result of investigation by the inventors to solve the problems associated with the conventional oils, it has been found that the problems are entirely solved by combining a specific antiwear agent and a specific rust preventing agent.
The invention relates to a lubricating oil composition comprising
(I) 100 parts by weight of a base oil for a lubricating oil; (II) as an antiwear agent,
(i) (a) from 0.05 to 10 parts by weight of a phosphorothionate represented by formula (1) , and (b) from 0.01 to 1.0 part by weight of an amine salt of a phosphorus compound which phosphorus compound is represented by formula (2a) , and/or
(ii) from 0.05 to 10 parts by weight of a dithiophosphate represented by formula (3a) ; (III) as a rust preventing agent, from 0.01 to 1.0 part by weight of a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine represented by formula (4a) , and (b) a carboxylic acid having from 4 to 30 carbon atoms, S=P ( -O-R^ s ( 1 )
(in the formula, R1 represents an alkyl and/or an aryl group having from 1 to 30 carbon atoms) ,
X=P(-XR2)2 XH (2a) (in the formula, X represents a sulfur atom and/or an oxygen atom and R2 represents an alkyl and/or aryl group having from 2 to 30 carbon atoms) ,
S=P(-0-R6)2(-S-A' ) (3a)
(in the formula, R6 represents an alkyl and/or aryl group having 1 to 30 carbon atoms and A' represents a hydrocarbon group optionally further containing one or more oxygen atoms) ,
Ru(R12)-N(R10-NR13)mH (4a)
(in the formula, R10 represents an alkylene group having from 1 to 10 carbon atoms, R11, R12 and R13 each independently represent a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and/or a hydroxyalkyl group having from 1 to 30 carbon atoms and m is an integer from 1 to 10) . Further, the present invention relates to the use of lubricating compositions according to the present invention in hydraulic operation, in gears, in turbines and/or in bearings.
The technical constitution of the invention is described in detail below. The base oil component constituting the lubricating oil composition of the invention is not particularly limited, if it contains petroleum base oils and/or synthetic hydrocarbon base oils. It preferably exhibits a kinematic viscosity of from 2 to 680 mm /s (40°C) , preferably from 5 to 320 mm /s (40°C), and particularly preferably from 8 to 220 2 mm /s (40°C) , a total sulfur content (% by weight) of from 0 to 1%, preferably from 0 to 0.3%, a total nitrogen content (% by weight) of from 0 to 100 ppm, preferably from 0 to 30 ppm, and an aniline point of from 80 to 130°C, preferably from 100 to 125°C.
The petroleum base oil for a lubricating oil is a sole substance or a mixture of a solvent refined base oil, a hydrogenation refined base oil and a high hydrogenation decomposed base oil. The high hydrogenation decomposed base oil is a base oil for a lubricating oil having a viscosity index of 130 or more (typically from 145 to 155) obtained by such a manner that slack wax separated by solvent dewaxing as a raw material is isomerized from a linear paraffin to a branched paraffin by hydrogenolysis (catalytic cracking) in the presence of a catalyst, or a base oil for a lubricating oil having a viscosity index of 130 or more (typically from 145 to 155) obtained by such a manner that hydrogen and carbon monoxide as raw materials obtained by a gasification process (partial oxidation) of natural gas (e.g., methane) is subjected to the Fischer-Tropsch polymerization to form a heavy linear paraffin, which is then subjected to isomerization by catalytic cracking in the same manner as above. The synthetic hydrocarbon base oil may be an olefin oligomer obtained by sole polymerization or copolymerization of a monomer selected from a linear or branched olefin hydrocarbon having from 3 to 15 carbon atoms, preferably from 4 to 12 carbon atoms. In the invention, the petroleum base oil and the synthetic hydrocarbon base oil may be used singly or in combination as a mixture thereof. The phosphorothionate is represented by formula (1) :
S=P(-0-R1)3 (1)
(in the formula, R1 represents an alkyl and/or an aryl group having from 1 to 30 carbon atoms, preferably R1 represents an alkyl group having from 1 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms. Most preferably, R1 represents a, preferably saturated, linear or branched alkyl group having from 4 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms) . Examples of R1 include a linear or branched alkyl group, such as a linear or branched butyl group, a linear or branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group, a linear or branched octyl group, a linear or branched nonyl group, a linear or branched decyl group, a linear or branched undecyl group, a linear or branched dodecyl group, a linear or branched tridecyl group, a linear or branched tetradecyl group, a linear or branched pentadecyl group, a linear or branched hexadecyl group, a linear or branched heptadecyl group and a linear or branched octadecyl group, and an aryl group, such as a phenyl group, a linear or branched alkyl-substituted phenyl group (e.g., a methylphenyl group, an ethylphenyl group, a propylphenyl group, a butylphenyl group, a pentylphenyl group, a heptylphenyl group, an octylphenyl group, a nonylphenyl group) , and a biphenyl group.
Specific examples of the compound include tributyl phosphorothionate, triisobutyl phosphorothionate, tri-2- ethylhexyl phosphorothionate, triphenyl phosphorothionate, trimethylphenyl phosphorothionate, triethylphenyl phosphorothionate, tripropylphenyl phosphorothionate, tributylphenyl phosphorothionate, trioctylphenyl phosphorothionate and trinonylphenyl phosphorothionate .
In the same molecule, both an alkyl and an aryl group can be present. Further, mixtures of trialkyl phosphorothionate and triaryl phosphorothionate can be used.
The addition amount of the phosphorothionate of formula (1) is from 0.05 to 10 parts by weight, preferably from 0.05 to 5 parts by weight, and ideally from 0.1 to 2 parts by weight, per 100 parts by weight of the base oil for a lubricating oil. When the addition amount is less than 0.05 part by weight, it is not preferred since sufficient lubricating performance cannot be obtained. When it exceeds 10 parts by weight, it is not preferred since although the lubricating performance is saturated, corrosion resistance, thermal oxidation stability and hydrolytic stability are lowered. The amine salt of a phosphorus compound is of a phosphorus compound represented by formula (2a) :
X=P(-XR2)2XH (2a) in which X represents a sulfur atom and/or an oxygen atom and R2 represents an alkyl and/or aryl group having from 2 to 30 carbon atoms.
Preferably, the amine salt of the phosphorus compound is represented by
[X=P ( -XR2) 2 XH] - [N (R3R4R5) ] (2b)
(in the formula, X represents an atom selected from a sulfur atom and an oxygen atom, in which at least from 2 to 4 atoms represented by X are oxygen atoms, and the others may be sulfur atoms, and it is particularly preferred that at least one or two of X is/are a sulfur atom; R2 represents an alkyl group having from 2 to 30 carbon atoms; R3, R4 and R5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and a group containing from 1 to 5 mole of an alkylene oxide group; preferably, R3 represents an alkyl group having from 1 to 30 carbon atoms; and preferably R4 and R5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and from 1 to 5 mole of an ethylene oxide group) . A certain amount of related compounds, such as monoalkyl compounds, can be present. However, it is essential that the required amount of compounds according to formula (2a) or (2b) is present. Preferably, the phosphorus compound is a phosphoric ester. The compounds can be prepared by the following method. A primary, secondary or tertiary aliphatic amine compound containing an alkyl group having from 1 to 30 carbon atoms, preferably from 1 to 18 carbon atoms, and/or from 1 to 5 mole of an ethylene oxide in the molecule is reacted with an acidic phosphoric ester and/or an acidic thiophosphoric ester, and the whole or a part of the residual acidic hydrogen is neutralized. Examples of a linear or branched alkyl group having from 2 to 30 carbon atoms, preferably from 4 to 18 carbon atoms, include an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a linear or branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group, a linear or branched octyl group, a linear or branched nonyl group, a linear or branched decyl group, a linear or branched undecyl group, a linear or branched dodecyl group, a linear or branched tridecyl group, a linear or branched tetradecyl group, a linear or branched pentadecyl group, a linear or branched hexadecyl group, a linear or branched heptadecyl group, a linear or branched octadecyl group, a linear or branched nonadecyl group, a linear or branched icosyl group, a linear or branched henicosyl group, a linear or branched docosyl group, a linear or branched tricosyl group, a linear or branched tetracosyl group, a linear or branched pentacosyl group, a linear or branched hexacosyl group, a linear or branched heptacosyl group, a linear or branched octacosyl group, a linear or branched nonacosyl group and a linear or branched triacontyl group. Specific examples of the preferred amine compound used in the above reaction include a primary aliphatic amine (in which the alkyl group may be linear or branched) , such as monomethy1amine, monoethy1amine, monopropylamine, monobutylamine, monopentylamine, monohexylamine, monoheptylamine, monooctylamine, monononylamine, monodecylamine, monoundecylamine, monododecylamine, monotridecylamine, monotetradecylamine, monopentadecylamine, monohexadecylamine, monoheptadecylamine, monooctadecylamine, monononadecylamine, monoicosylamine, monohenicosylamine, monotricosyla ine and monotetracosylamine, a secondary aliphatic alkylamine (in which the alkyl groups may be linear or branched) , such as dimethylamine, methylethylamine, diethylamine, methylpropylamine, ethylpropylamine, dipropylamine, methylbutylamine, ethylbutylamine, propylbutylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctyla ine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dihexadecylamine, diheptadecylamine, dioctadecylamine, dinonadecylamine, diicosylamine, dihenicosylamine, ditricosylamine and ditetracosylamine, and a tertiary aliphatic alkylamine (in which the alkyl groups may be linear or branched) , such as trimethylamine, triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, tridodecylamine, tritridecylamine, tritetradecylamine, tripentadecylamine, trihexadecylamine, triheptadecylamine, trioctadecylamine, trinonadecylamine, triicosylamine, trihenicosylamine, tritricosylamine, tritetracosylamine, dimethylbutylamine, dimethylpentylamine, dimethylhexylamine, dimethylheptylamine, di ethyloctylamine, dimethylnonylamine, dimethyldecylamine, dimethylundecylamine, di ethyldodecylamine, dimethyltridecylamine, dimethyltetradecylamine, dimethylpentadecylamine, dimethylhexadecylamin , dimethylheptadecylamine, dimethyloctadecylamine, dimethylnonadecylamine, dimethylicosylamine, dimethylhenicosylamine, dimethyltricosylamine, dimethyltetracosylamine, diethyloctylamine, diethylnonylamine, diethyldecylamine, diethylundecylamine, diethyldodecylamine, diethyltridecylamine, diethyltetradecylamine, diethylpentadecylamine, diethylhexadecyla ine, diethylheptadecylamine, diethyloctadecylamine, diethylnonadecylamine and diethylicosylamine. Furthermore, examples of an amine added with ethylene oxide include a secondary or tertiary amine as a product obtained by adding from 1 to 5 mole of ethylene oxide to monooctylamine, monononylamine, monodecylamine, monoundecylamine, monododecylamine, monotridecylamine, monotetradecylamine, monopentadecylamine, monohexadecyla ine, monoheptadecylamine, monooctadecylamine, monononadecylamine, monoicosylamine, monohenicosylamine, monotricosylamine or monotetracosylamine (in which the alkyl groups may be linear or branched) . Among these aliphatic amines, an alkylamine having from 6 to 24 carbon atoms and an alkylamine having from 6 to 24 carbon atoms added with from 1 to 2 mole of ethylene oxide are preferably used as the amine compound from the standpoint in that a lubricating oil composition excellent in wear resistance and corrosion prevention performance. When the acidic phosphoric ester and/or the acidic thiophosphoric ester contains a branched alkyl group, an alkylamine for neutralization may contain either a linear alkyl group or a branched alkyl group. When the acidic phosphoric ester and/or the acidic thiophosphoric ester contains a linear alkyl group, an alkylamine for neutralization preferably contains a branched alkyl group from the standpoint of solubility in the base oil. The addition amount of the amine salt of the acidic phosphoric ester and/or the acidic thiophosphoric ester, i.e., the neutralized product of an amine, is from 0.01 to 1 part by weight, preferably from 0.01 to 0.2 part by weight, per 100 parts by weight of the base oil for a lubricating oil. When the addition amount is less than 0.01 part by weight, sufficient lubricating property cannot be obtained. When it exceeds 1 part by weight, the lubricating performance is saturated, but corrosion resistance, thermal oxidation stability and hydrolytic stability are lowered. Particularly, in the case where
2
R is a linear alkyl group, when the addition amount exceeds 0.1 part by weight, the filtering property is extremely deteriorated on inclusion of a lubricating oil containing an alkaline earth metal salt.
The dithiophosphate is represented by formula (3a) :
S=P(-0-R6)2(-S-A' ) (3a)
(in the formula, R6 represents an alkyl and/or an aryl group having 1 to 30 carbon atoms and A' represents a hydrocarbon group optionally further containing one or more oxygen atoms) .
Preferably the dithiophosphate is represented by formula (3b) S=P(-0-R6)2(-A)
(in the formula, R6 represents an aryl group having from 6 to 12 carbon atoms or an alkyl group having from 1 to 30 carbon atoms, and A represents a group independently selected from SR7
S-CnH2nC(0)OR8 and
S-CnH2nCH [C (O) OR8] CH2C (0) OR9 and R7, R8 and R9 each represents a group independently selected from an alkyl group having from 1 to 30 carbon atoms, and n is an integer from 0 to 10. preferably, R6, R7, R8 and R9 each represents a group independently selected from an alkyl group having from 1 to 8 carbon atoms, and n is an integer from 0 to 10, preferably from 0 to 6) . Specific examples of the alkyl group having from 1 to 8 carbon atoms represented by R6, R7, R8 and R9 include an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group, a tert-butl group, a linear or branched pentyl group, a linear or branched hexyl group, a linear or branched heptyl group and a linear or branched octyl group .
Specific examples of the compound include a trialkyl dithiophosphate, such as tripropyl dithiophosphate, tributyl dithiophosphate, tripentyl dithiophosphate, trihexyl dithiophosphate and trioctyl dithiophosphate, and an 0,0-dialkyl dithiophosphoryl- alkylenealkyl carboxylate, such as Irgalube 63 (produced by Ciba Specialty Chemicals, Inc.), Vanlube 727 and Vanlube 7611 (produced by Vanderbilt Co., Ltd.). The addition amount of the trialkyl dithiophosphate used in the invention is from 0.05 to 10 parts by weight, preferably from 0.1 to 1 part by weight, per 100 parts by weight of the base oil for a lubricating oil. When the addition amount is less than this range, sufficient lubricating performance cannot be obtained. When the addition amount exceeds this range, the lubricating performance is saturated, but corrosion resistance, thermal oxidation stability and hydrolytic stability are lowered. The polyalkylene polyamine is represented by formula (4a) :
Ru(R12)-N-(R10-NR13)mH (4a)
(in the formula, R10 represents an alkylene group having from 1 to 10 carbon atoms, R11, R12 and R13 each independently represents a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms, preferably from 1 to 10, and/or a hydroxy alkyl group having from 1 to 30 carbon atoms, preferably from 1 to 10, and m is an integer from 1 to 10) .
Preferably, R10 represents an alkylene group having from 2 to 6 carbon atoms, and R11, R12 and R13 each independently represents a hydrogen atom and/or an alkyl group having from 1 to 10 carbon atoms.
Most preferably, the polyalkylene polyamine is represented by formula (4b)
H2N-(R10-NH)mH (4b) (in the formula, R10 represents an alkylene group having from 2 to 4 carbon atoms, and m is an integer from 2 to 6) include diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, hexaethylene heptamine, tetrapropylene pentamine and hexabutylene heptamine.
The carboxylic acid to be reacted with the polyalkylene polyamine can be any suitable carboxylic acid containing at least one carboxylic acid group and containing in total from 4 to 30 carbon atoms, preferably from 12 to 30 carbon atoms. Examples of suitable acids containing more than one carboxylic acid group, are succinic acid and adipic acid. Preferably, the carboxylic acid is a monocarboxylic acid. Most preferably, the acid is a monocarboxylic acid selected from a saturated monocarboyxlic acid having from 12 to 30 carbon atoms and an unsaturated monocarboyxlic acid having from 18 to 24 carbon atoms.
The use of carboxylic acid includes single use of an unsaturated fatty acid, single use of a branched saturated fatty acid, combination use of an unsaturated fatty acid and a branched saturated fatty acid, and combination use of a branched saturated fatty acid and a linear saturated fatty acid. Specific examples of the unsaturated fatty acid include a monocarboxylic acid having from 18 to 24 carbon atoms, such as oleic acid, elaidic acid, cetoleic acid, erucic acid and brassidic acid. Specific examples of the branched saturated fatty acid include a monocarboxylic acid having from 18 to 30 carbon atoms, such as 2-methylheptadecanoic acid, 16- methylheptadecanoic acid, 2-octadecanoic acid, 2- methyloctadecanoic acid, 10-methyloctadecanoic acid, 15- ethylheptadecanoic acid, 3-methylnonadecanoic acid, 2- butyl-2-heptylnonanoic acid, 2-ethyleicosanoic acid, 20- methylheneicosanoic acid, 3-methyltricosanoic acid, 10- methyltetracosanoic acid, 18-methyltetracosanoic acid, 13, 16-dimethyltricosanoic acid, 3,13,19- trimethyltricosanoic acid and isostearic acid. Specific examples of the linear saturated fatty acid include a monocarboxylic acid having from 12 to 30 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid and melissic acid.
As the aliphatic monocarboxylic acid component, an aliphatic monocarboxylic acid in which the aliphatic group thereof is a linear saturated or unsaturated alkyl group is basically a main part. However, if only this aliphatic monocarboxylic acid is used, there may be a case that it fails in solubility against the base oil. Therefore, it is preferred that an aliphatic monocarboxylic acid having a branched alkyl group is partly used together, thereby adjusting the solubility. Specific examples of combinations which can be suitably employed include (1) a combination of an aliphatic monocarboxylic acid having a linear saturated alkyl group with an aliphatic monocarboxylic acid having a branched saturated alkyl group and (2) a combination of an aliphatic monocarboxylic acid having a linear unsaturated alkyl group with an aliphatic monocarboxylic acid having a branched saturated alkyl group. In these combinations, though the ratio of the linear aliphatic monocarboxylic acid to the branched monocarboxylic acid varies depending on the properties of the base oil used, it is usually from 25:75 to 100:0 by mole.
The reaction of the polyalkylene polyamine and the carboxylic acid is conducted at a temperature of from 200 to 220°C for from 2 to 3 hours, to obtain the desired amide. An amount of the monocarboxylic acid used is preferably less than (m+1) mole per mole of the polyalkylene polyamine. Published Japanese Patent Application No. 5-46878 discloses a composition obtained by reacting a polyalkylene polyamine with a fatty acid composed of from 20 to 100 mol% of an unsaturated monocarboxylic acid and from 80 to 0 mol% of a branched saturated monocarboxylic acid, and discloses that the storage stability and the sludge dispersion capability of the lubricating oil can be improved by the composition, so that the generation of an insoluble sticky substance can be suppressed. In general, while this kind of amide has a function of dispersing sludge insoluble in an oil formed due to deterioration of the oil as described in Examined Published Japanese Patent Application No. 39- 3115 and No. 5-46878, it also has a function of dispersing water content included in the lubricating oil, and thus it tends to extremely lower the emulsification resistant property of the lubricating oil. In the invention, however, it has been found that the lowering of the emulsification resistant property can be greatly improved by the combination use of the amine salt of an acidic phosphoric ester or the amine salt of an acidic thiophosphoric ester, as a component of antiwear agent. It has also be found that the polyamide used in the invention has high rust preventing property and a function in that friction between a rod and a seal of a hydraulic cylinder is reduced to make the operation of the cylinder smooth. In the conventional rust preventing agent of a partial ester of succinic acid, which has been used in lubricating oils for industrial machines, when a lubricating oil containing an alkaline earth metal salt such as an engine oil is included, problems may occur in that sludge is formed to clog a filter, and to adversely affect the wear preventing property of an antiwear agent and the load resisting performance of an extreme-pressure agent. However, the polyamide type rust preventing agent of the invention does not bring about such generation of sludge on inclusion of an alkaline earth metal salt, and it has been found that the combination use with the antiwear agent of the invention does not adversely affect the antiwear property and the load carrying performance. The addition amount of the polyamide obtained by reacting the polyalkylene polyamine and the monocarboxylic acid is from 0.01 to 1 part by weight, preferably from 0.02 to 0.5 part by weight, per 100 parts by weight of the base oil for a lubricating oil. When the addition amount is less than 0.01 part by weight, the rust preventing property and the function of reducing the friction between the rod and the seal of the hydraulic cylinder are not sufficient. When it exceed 1 part by weight, it is not preferred since the lubricating performance is saturated, but emulsification resistant property is lowered.
In order to further improve the performance of the lubricating oil composition of the invention, various auxiliary additives generally used may be used depending on necessity, in addition to the necessary components. For example, known additives for lubricating oils, such as an antioxidant, a metal deactivator, an extreme- pressure agent, an oiliness agent, a defoaming agent, a viscosity index improving agent, a pour point depressing agent, a detergent dispersant, a rust preventing agent and an anti-emulsification agent.
Examples of the amine type antioxidant include a dialkyldiphenylamine, such as p,p' -dioctyldiphenylamine (Nonflex OD-3 produced by Seiko chemical Co., Ltd.), p,p' -di-a-methylbenzyldiphenylamine and N-p-butylphenyl- N-p' -octylphenylamine, a monoalkyldiphenylamine, such as mono-t-butyldiphenylamine and monooctyldiphenylamine, a bis (dialkylphenyl) amine, such as di(2,4- diethylphenyl) amine and di (2-ethyl-4-nonylphenyl) amine, an alkylphenyl-1-naphthylamine, such as octylphenyl-1- naphthylamine and N-t-dodecylphenyl-1-naphthylamine, an arylnaphthylamine, such as 1-naphthylamine, phenyl-1- naphthylamine, phenyl-2-naphthylamine, N-hexylphenyl-2- naphthylamine and N-octylphenyl-2-naphthylamine, a phenylenedia ine, such as N,N' -diisopropyl-p- phenylenediamine and N,N' -diphenyl-p-phenylenediamine, and a phenothiazine, such as phenothiazine (Phenothiazine produced by Hodogaya Chemical Co., Ltd.) and 3, 7-dioctylphenothiazine .
Examples of the sulfur type antioxidant include a dialkylsulfide, such as didodecylsulfide and dioctadecylsulfide, a thiodipropionic ester, such as didodecyl thiodipropionate, dioctadecyl thiodipropionate, dimyristyl thiodipropionate and dodecyloctadecyl thiodipropionate, and 2- mercaptobenzoimidazole . Examples of the phenol type antioxidant include 2- t-butylphenol, 2-t-butyl-4-methylphenol, 2-t-butyl-5- methylphenol, 2, -di-t-butylphenol, 2, 4-dimethyl-6-t- butylphenol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4- methoxyphenol, 2, 5-di-t-butylhydroquinone (Antage DBH produced by Kawaguchi Chemical Co. Ltd.), 2,6-di-t- butylphenol, a 2, 6-di-t-butyl-4-alkylphenol, such as 2, 6-di-t-butyl-4-methylphenol and 2, 6-di-t-butyl-4- ethylphenol, a 2, 6-di-t-butyl-4-alkoxyphenol, such as 2, 6-di-t-butyl-4-methoxyphenol and 2, 6-di-t-butyl-4- ethyoxyphenol, 3, 5-di-t-butyl-4-hydroxybenzylmercapto octylacetate, an alkyl-3- (3, 5-di-t-butyl-4- hydroxyphenyl) propionate, such as n-octadecyl-3- (3, 5-di- t-butyl-4-hydroxyphenyl) propionate (Yoshinox SS produced by Yoshitomi Pharmaceutical Industries, Ltd.), n- dodecyl-3- (3, 5-di-t-butyl-4-hydroxyphenyl) propionate and 2'-ethylhexyl-3-(3,5-di-t-butyl-4- hydroxyphenyl) propionate, 2, 6-di-t-butyl-a- dimethylamino-p-cresol, a 2, 2' -methylenebis (4-alkyl-6-t- butylphenol) , such as 2, 2' -methylenebis (4-methyl-6-t- butylphenol) (Antage W-400 produced by Kawaguchi
Chemical Co., Ltd.) and 2, 2' -methylenebis (4-ethyl-6-t- butylphenol) (Antage W-500 produced by Kawaguchi Chemical Co., Ltd.), a bisphenol, such as 4,4'- butylidene bis (3-methyl-6-t-butylphenol) (Antage W-300 produced by Kawaguchi Chemical Co., Ltd.), 4 , 4 ' - methylenebis (2, 6-t-butylphenol) (lonox 220AH produced by Shell Japan, Inc.), 4, 4' -bis (2, 6-di-t-butylphenol) , 2,2- (di-p-hydroxyphenyl) propane, (Bisphenol A produced by Shell Japan, Inc.), 2, 2-bis (3, 5-di-t-butyl-4- hydroxyphenyl) propane, 4 , 4 ' -cyclohexylidene bis (2, 6-t- butylphenol) , hexamethylene glyeol bis [3- (3, 5-di-t- butyl-4-hydroxyphenyl) propionate] (Irganox L109 produced by Ciba Specialty Chemicals, Inc.), triethylene glyeol bis [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionate] (Tominox 917 produced by Yoshitomi Pharmaceutical Industries, Ltd.), 2, 2' -thio- [diethyl-3- (3, 5-di-t-butyl- 4-hydroxyphenyl) propionate] (Irganox L115 produced by Ciba Specialty Chemicals, Inc.), 3, 9-bis{l, l-dimethyl-2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] - ethyl} -2, 4,8, 10-tetraoxaspiro [5,5] undecane (Sumilizer GA80 produced by Sumitomo Chemical Industries, Ltd.), 4, 4'-thiobis (3-methyl-6-t-butylphenol) (Antage RC produced by Kawaguchi Chemical Co., Ltd.) and 2,2'- thiobis (4, 6-di-t-butylresorcin) , a polyphenol, such as tetrakis [methylene-3- (3, 5-di-t-butyl-4-hydroxyphenyl) - propionate] methane (Irganox L101 produced by Ciba Specialty Chemicals, Inc.), 1, 1, 3-tris (2-methyl-4- hydroxy-5-t-butylphenyl) butane (Yoshinox 930 produced by Yoshitomi Pharmaceutical Industries, Ltd.), 1,3,5- trimethyl-2, 4, 6-tris (3, 5-di-t-butyl-4-hydroxybenzyl) - benzene (lonox 330 produced by Shell Japan, Inc.), bis [3, 3' -bis (4' -hydroxy-3' -t-butylphenyl) butylic acid] glyeol ester, 2- (3' , 5' -di-t-butyl-4-hydroxyphenyl) - methyl-4- (2' ' , ' ' -di-t-butyl-3' ' -hydroxyphenyl)methyl-6- t-butylphenol and 2, 6-bis (2' -hydroxy-3' -t-butyl-5' - methylbenzyl) -4-methylρhenol, a condensation product of p-t-butylphenol and formaldehyde, and a condensation product of p-t-butylphenol and acetaldehyde .
Examples of the phosphorus type antioxidant include a triarylphosphite, such as triphenylphosphite and tricresylphosphite, a trialkylphosphite, such as trioctadecylphosphite and tridecylphosphite, and tridecyltrithiophosphite .
These antioxidants may be used singly or in combination in an amount of from 0.01 to 2.0 parts by weight per 100 parts by weight of the base oil.
Examples of a metal deactivator that can be used with the composition of the invention include a benzotriazole derivative, such as benzotriazole, a 4- alkyl-benzotriazole, e.g., 4-mentyl-benzotriazole and 4- ethyl-benzotriazole, a 5-alkyl-benzotriazole, e.g., 5- methyl-benzotriazole and 5-ethyl-benzotraizole, a 1- alkyl-benzotriazole, e.g., l-dioctylaminomethyl-2, 3- benzotriazole, and a 1-alkyl-tolutriazole, e.g., 1- dioctylaminomethyl-2, 3-tolutriazole; a benzoimidazole derivative, such as benzoimidazole, a 2- (alkyldithio) - benzoimidazole, e.g., 2- (octyldithio) -benzoimidazole, 2- (decyldithio) -benzoimidazole and 2- (dodecyldithio) - benzoimidazole, and a 2- (alkyldithio) -toluimidazole, e.g., 2- (octyldithio) -toluimidazole, 2- (decyldithio) - toluimidazole and 2- (dodecyldithio) -toluimidazole; an indazole derivative, such as indazole, a 4-alkyl- indazole, a 5-alkyl-indazole; a benzothiazole derivative, such as benzothiazole, a 2- mercaptobenzothiazole (Thiolite B3100 produced by Chiyoda Chemical Industries, Ltd.), a 2-
(alkyldithio) benzothiazole, e.g., 2- (hexyldithio) benzothiazole and 2- (octyldithio) benzothiazole, a 2- (alkyldithio) toluthiazole, e.g., 2- (hexyldithio) toluthiazole and 2- (octyldithio) toluthiazole, a 2- (N,N-dialkyl- dithiocarbamyl) benzothiazole, e.g., 2- (N,N-diethyl- dithiocarbamyl) benzothiazole, 2- (N,N-dibutyl- dithiocarbamyl) benzothiazole and 2- (N,N-dihexyl- dithiocarbamyl) benzothiazole, and a 2-(N,N-di- alkyldithiocarbamyl) toluthiazole, e.g., 2-(N,N- diethyldithiocarbamyl) toluthiazole, 2- (N, N- dibutyldithiocarbamyl) toluthiazole and 2-(N,N- dihexyldithiocarbamyl) toluthiazole; a benzoxazole derivative, such as a 2- (alkyldithio) benzoxiazole, e.g., 2- (octyldithio) benzoxazole, 2- (decyldithio) benzoxazole and 2- (dodecyldithio) benzoxazole, and a 2- (alkyldithio) toluoxazole, e.g., 2- (octyldithio) toluoxiazole, 2- (decyldithio) toluoxazole and 2- (dodecyldithio) - toluoxazole; a thiadiazole derivative, such as a 2,5- bis (alkyldithio) -1, 3, 4-thiadiazole, e.g., 2,5-bis- (heptyldithio) -1, 3, 4-thiadiazole, 2, 5-bis (nonyldithio) - 1,3, 4-thiadiazole, 2, 5-bis (dodecyldithio) -1,3,4- thiadiazole and 2, 5-bis (octadecyldithio) -1, 3, 4- thiadiazole, a 2, 5-bis (N,N-dialkyldithiocarbamyl) -1, 3, 4- thiadiazole, e.g., 2, 5-bis (N,N-diethyldithiocarbamyl) - 1,3, 4-thiadiazole, 2, 5-bis (N,N-dibutyldithiocarbamyl) - 1, 3, 4-thiadiazole and 2, 5-bis (N,N-dioctyldithio- carbamyl) -1, 3, 4-thiadiazole, and a 2-N,N-dialkyl- dithiocarbamyl-5-mercapto-l, 3, 4-thiadiazole, e.g., 2- N,N-dibutyldithiocarbamyl-5-mercapto-l, 3, 4-thiadiazole and 2-N, N-dioctyldithiocarbamyl-5-mercapto-l, 3, 4- thiadiazole; and a triazole derivative, such as a 1- alkyl-2, 4-triazole, e.g., l-dioctylaminomethyl-2, 4- triazole.
These metal deactivators may be used singly or in combination in an amount of from 0.01 to 0.5 parts by weight per 100 parts by weight of the base oil. Examples of the defoaming agent include an organosilicate, such as dimethylpolysiloxane, diethylsilicate and fluorosilicone, and a non-silicone defoaming agent, such as a polyalkylacrylate . The addition amount thereof may be from 0.0001 to 0.1 part by weight per 100 parts by weight of the base oil, and they may be used singly or in combination.
Examples of the viscosity index improving agent include a non-dispersion type viscosity index improving agent, such as a polymethacrylate and an olefin copolymer, e.g, an ethylene-propylene copolymer and a styrene-diene copolymer, and a dispersion type viscosity index improving agent, such as polymers obtained by copolymerizing these polymers with a nitrogen-containing monomer. The addition amount thereof may be from 0.05 to 20 parts by weight per 100 parts by weight of the base oil.
Examples of the pour point depressing agent include a polymethacrylate type polymer. The addition amount thereof may be from 0.01 to 5 parts by weight per 100 parts by weight of the base oil.
Examples of the detergent dispersant include a metallic detergent, such as a neutral or basic alkaline earth metal sulfonate, alkaline earth metal phenate and alkaline earth metal salicylate, and an ashless dispersant, such as an alkenylsuccinimide, an alkenyl succinic acid ester, and a modified product with a boron compound or a sulfur compound. The addition amount thereof may be from 0.01 to 1 part by weight per 100 parts by weight of the base oil, and they may be used singly or in combination.
Examples of the extreme-pressure agent and the oiliness agent include a sulfur extreme-pressure agent, such as a dialkylsulfide, dibenzylsulfide, a dialkylpolysulfide, dibenzylsulfide, an alkylmercaptane, dibenzothiophene and 2, 2' -dithiobis (benzothiazole) , a phosphorus extreme-pressure agent, such as a trialkyl phosphate, a triaryl phosphate, a trialkyl phosphonate, a trialkyl phosphite, a triaryl phosphite, a dialkyl hydrogenphosphite and a trialkyl trithiophosphite, an aliphatic oiliness agent, such as a fatty acid amide and a fatty acid ester, and an amine oiliness agent, such as a primary, secondary or tertiary alkylamine and an alkyleneoxide-added alkylamine. These extreme-pressure agent and oiliness agent may be used singly or in combination in an amount of from 0.1 to 2 parts by weight per 100 parts by weight of the base oil. Sufficient rust preventing performance can be obtained by using only the composition of the invention in most cases. In the case where further rust preventing performance is required depending on the use conditions, an N-alkylsarcosinic acid, an alkylate phenoxyacetic acid, an imidazoline, K-Corr 100 produced by King Industries, Ltd. and its alkaline earth metal salt or amine salt, an N-acyl-N-alkoxyalkylasparaginic acid ester described in Unexamined Published Japanese Patent Application No. 6-200268 and an alkaline earth metal salt of a phosphoric acid ester described in
EP0801116A1 can be used without deterioration of the filtering property on inclusion of an alkaline earth metal salt. These rust preventing agents may be used singly or in combination in an amount of from 0.01 to 2 parts by weight per 100 parts by weight of the base oil. Examples of the anti-emulsification agent include those generally used as an additive for a lubricating oil. The addition amount thereof may be from 0.0005 to 0.5 part by weight per 100 parts by weight of the base oil .
The lubricating oil composition of the invention is ideally used as an oil composition for hydraulic operation. However, it is also useful for other uses, such as an oil composition for tooth gears, an oil composition for a compressor, an oil composition for a turbine and an oil composition for a bearing. EXAMPLES The oil for hydraulic operation according to the invention is further described in more detail by referring to the following examples, the invention is not construed as being limited thereto. A hydrogenation refined base oil having a kinematic viscosity of 31 mm2/s at 40°C was used as a base oil, and the following components were added thereto, to prepare a base lubricating oil composition containing no antiwear agent or rust preventing agent. The antiwear agents and the rust preventing agents shown in Table 1 for examples and those shown in Tables 2 and 3 for comparative examples were added to the base lubricating oil composition, to prepare sample oils having a kinematic viscosity of 32 mm2/s at 40°C. The amounts of the components added to the sample oils of Examples 1 to 5 and Comparative Examples 1 to 8 are expressed in terms of part by weight.
Base Lubricating Oil Composition: Hydrogenation refined base oil
Kinematic viscosity: 31 mm2/s at 40°C 92.27 parts by weight
Amine antioxidant (N-p-butylphenyl-N-p' -octylphenyl) - amine
0.1 part by weight Phenol antioxidant (Hitec4733 produced by Ethyl Corp.) 0.5 part by weight
Benzotriazole metal deactivator (Irgamet 39 produced by Ciba Specialty Chemicals, Inc.)
0.1 part by weight Thiadiazole metal deactivator (Elco 461 produced by Oronite Corp. )
0.05 part by weight
The lubricating oil compositions according to the invention (Examples 1 to 5) and for comparison, the lubricating oil compositions not containing Component
(A) (Comparative Example 1), not containing Component
(B) (Comparative Example 2) or not containing Component
(C) (Comparative Examples 3 and 4) were prepared by using the compositions shown in Tables 1 and 2.
Furthermore, the lubricating oil compositions containing the conventional antiwear agents and rust preventing agents instead of the combination of the antiwear agent and the rust preventing agent of the invention (Comparative Examples 5 to 8) were prepared by using the compositions shown in Table 3. The various performance evaluation experiments described below were conducted for these Examples and Comparative Examples . The results obtained are shown in Tables 4 to 6. For comparison, the same performance evaluation experiments were conducted for the commercially available zinc type antiwear oil for hydraulic operation and non-zinc type oil for hydraulic operation (Comparative Examples 9 and 10) . The results obtain are also shown in Table 7. In the Examples and Comparative Examples, various performance evaluation tests were carried out in the following manner. Filtering Property Test
The occurrence of clogging of a filter on inclusion of water or an overbasic metallic salt was evaluated. 0.15 g of calcium salicylate (calcium content: 6.0% by weight, total base number: 160 mgKOH/g) as an overbasic metallic salt and 0.3 g of water were mixed with 300 g of the sample oil at room temperature, and after sealing, it was allowed to stand in an incubator at 70°C for 96 hours and then at room temperature for 24 hours. 300 ml of the sample oil containing water and the overbasic basic metallic salt was filtered through a membrane filter having a pore diameter of 1.2 micrometer (47 mm in diameter) at a differential pressure of 660 mmHg, and a filtering time (second) required for filtering was measured. A time (second) required for filtering 300 ml of the sample oil containing no water or overbasic metallic salt was also measured, and the ratio of the filtering time of the sample oil containing water and the overbasic metallic salt to the filtering time of the sample oil containing no water or overbasic metallic salt was obtained. When the ratio exceeds twice, there is a tendency that a filter is clogged in an early stage in a practical hydraulic apparatus. Rust Prevention Test
In order to evaluate the rust preventing performance of the sample oils, a rust prevention test was conducted in an artificial sea water at 60°C for 24 hours according to ASTM D665, and a steel test piece was examined whether or not rust was formed. In German Standard DIN51524 (part 2) , it is required that no rust is formed on this test. Anti-emulsification Test
The water-separation property of the sample oils was evaluated according to ASTM D1401. 40 ml of the sample oil and 40 ml of pure water were placed in a test tube and stirred at 54 °C for 5 minutes. Then, a time (minute) required for completely separating water and the oil was measured. In LH03-1-94 of GM (General Motors) Standard, it is required that the time for separating the oil from water is 30 minutes or less. Thermal Stability Test
The thermal stability of the sample oils was evaluated according to the standard for purchasing lubricating oils by Cincinnati Milacron , Inc. (U.S.) (10-SP-80160-3) . An iron rod and a copper rod as catalysts were immersed in 200 ml of the sample oil, which was allowed to stand in an oven at 135°C for 168 hours, and the sample oil was filtered through a membrane filter having a pore diameter of 8 micrometer, to measure the weight of sludge formed. According to the P-68, P-69 and P-70 Standards of an oil defined by Cincinnati Milacron , Inc., it is required that the amount of sludge is 25 mg or less per 100 ml. Oxidation Stability Test
The oxidation stability of the sample oils was evaluated according to ASTM D4310. A coil of iron and a coil of copper as catalysts were immersed in 300 ml of the sample oil. 60 ml of water was further added, and 3 liters per minute of oxygen was blown into the sample oil at 95°C, to conduct an oxidation test for 1,000 hours. After completion of the test, the sample oil was filtered through a membrane filter having a pore diameter of 5 micrometer, to measure the weight of sludge formed. Furthermore, in order to evaluate the corrosiveness of the sample oil on copper and iron, the contents (mg) of copper and iron in the oil phase, the water phase and the sludge after the test were measured by an emission spectral analysis. According to the standard for an oil for hydraulic operation defined by Denison Corp., it is required that the amount of sludge formed is 200 mg or less in HF-0 and 100 mg or less in HF-1, and the amount of copper corroded and the amount of iron corroded are both 50 mg or less. Hydrolytic Stability Test
The hydrolytic stability of the sample oils was evaluated according to ASTM D2619. A copper plate as a catalyst was immersed in a bottle containing 75 ml of the sample oil and 25 ml of water, and after sealing, the bottle was rotated at 93°C for 48 hours. After completion of the test, the weight loss of the copper plate and the acid value of the water phase were measured. According to Standard HF-0 for an oil for hydraulic operation defined by Denison Corp. and Standard LH-03-1-94 of GM (General Motors), it is required that the weight loss of the copper plate is 0.2 mg/cm2 or less, and the acid value of the water phase is 4 mgKOH or less . FZG Gear Test
The lubricating performance of the sample oils for a gear apparatus was evaluated according to ISO/WD14635- 1. Operation was conducted by using Gear A at an initial oil temperature of 90°C and a rotation number of motor of 1,450 rpm for 15 minutes for each step of load, and with increasing the step of load, the step of load, at which seizing was formed on the tooth surface of the test gear, was measured. According to the German Standard DIN51524 (part 2), it is required for an antiwear oil for hydraulic operation that the step of load, at which seizing is formed, is the tenth step or higher. Urethane Seal Friction Test
The friction property of the sample oils between a rod and an urethane seal of a hydraulic cylinder was evaluated by using a slip-stick testing apparatus of Cincinnati Milacron, Inc. (former ASTM D2877) . The sample oil was coated between a steel test piece and an urethane test piece (U801 produced by NOK) , and the kinetic friction coefficient was measured at a sliding speed of 1.27 mm/min. and a load of 22.4 kgf. In a lubricating oil exhibiting a kinetic friction coefficient exceeding 0.6, friction between a seal and a rod of a practical hydraulic cylinder becomes large, and problems upon use, such as rapid deterioration of the seal and abnormal vibration, occur. Vane Pump Test
The wear preventing performance of the sample oils for a vane pump was evaluated by using Vickers 35VQ-25A pump. The pump test was conducted at an oil temperature of 65°C, a rotation number of 2,400 rpm and a pressure of 210 kgf/cm2 for 50 hours, the wear amounts of the vane and the ring after the test were measured. According to M-2950-S Standard defined by Vickers Corp., it is required that the wear amount is 90 mg or less. [Piston Pump Test]
While a vane and a ring as main sliding members in a vane pump are composed of steel, main sliding members in a piston pump are usually composed of steel and a copper alloy. Therefore, in a vane pump, the antiwear property of a lubricating oil is required for sliding between steel pairs, whereas in a piston pump, the antiwear property of a lubricating oil is required for sliding between steel and copper alloy materials. The antiwear performance of the sample oils was evaluated by using a swash plate type tandem piston pump (HPV35+35) produced by Komatsu Corp. An endurance test was conducted with applying a load to a pump of the rear side under the following conditions for 500 hours, and after completion of the test, the wear amounts (mg) of the pistons and the cylinder of the pump of the rear side were measured. Test Conditions: Pressure cycle:
2 seconds with no load, and 3 seconds at 320 kgf/cm2 Flow amount:
65 L/min. with no load, and 43 L/min. at 320 kgf/cm2
Rotation number: 2,100 rpm Temperature: 95°C
When the wear amount exceeds 1,500 mg in this test, the flow amount of the pump is lowered, and the pressure fluctuation and the noise become large. As a result, there is a danger of occurring problems in lubrication of a piston pump.
TABLE 1
Figure imgf000034_0001
TABLE 2
Figure imgf000035_0001
TABLE 3
Figure imgf000036_0001
TABLE 4
Figure imgf000037_0001
TABLE 5
Figure imgf000038_0001
Comparative Examples 1 and 2 could not exhibit sufficient performance in the FZG gear test and the vane pump test, and failed German standard DIN51524 (part 2) and Vickers Standard M-2950-S. In Comparative Example 1, a large amount of wear occurred in the piston pump test and had a problem in applicability to a piston pump. Comparative Example 2 involved a problem in the emulsification resisting property and failed GM Standard LH-03-1-94. Comparative Example 3 could not exhibit sufficient performance in the filtering property test, the rust prevention test and the urethane seal friction test. In Comparative Example 3, a large amount of rust was formed in the oxidation stability test, and failed Denison Standards HF-0 and HF-1 for an oil for hydraulic operation and DIN51524 (part 2) .
Comparative Example 4 could not exhibit sufficient performance in the rust prevention test, the oxidation stability test, the hydrolytic stability test and the urethane seal friction test, and failed Denison Standards HF-0 and HF-1 for an oil for hydraulic operation and DIN51524 (part 2) .
TABLE 6
Figure imgf000040_0001
TABLE 7
Figure imgf000041_0001
Comparative Example 5 did not give sufficient performances in the filtering property test, the hydrolytic stability test, the urethane seal friction test and thermal stability test, and failed P-68 Standard for a hydraulic oil by Cincinnati Milacron,
Inc. and HF-0 Standard by Denison. Also, a large amount of wear was formed in the piston pump test.
Comparative Example 6 could not exhibit sufficient performance in the filtering property test and the urethane seal friction test, and failed P-68 Standard for a hydraulic oil by Cincinnati Milacron, Inc.
Comparative Example 7 could not exhibit sufficient performance in the FZG gear test and the vane pump test, and failed German Standard DIN51524 (part 2) and M-2950- S Standard by Vickers.
Comparative Example 8 could not exhibit sufficient performance in the oxidation stability test, the hydrolytic stability test and the FZG gear test, and failed HF-0 Standard and HF-1 Standard by Denison, German Standard DIN51524 (part 2) and M-2950-S Standard by Vickers.
Comparative Example 9 failed HF-0 Standard and HF-1 Standard by Denison and M-2950-S Standard by Vickers in the oxidation stability test and the hydrolytic stability test.
Comparative Example 10 involved problems in the filtering property test, the FZG gear test, the urethane seal friction test and the vane pump test and failed German Standard DIN51524 (part 2) and MS-2950-S Standard by Vickers.
It is clear from the compositions shown in Table 1 and the results shown in Table 4 that the lubricating oil composition of the invention is excellent in rust prevention property, corrosion resisting property for copper and iron, filtering property, thermal oxidation stability, antiwear property for vane and piston pumps, wear property for hydraulic cylinder, and load capacity to gear elements, and thus exhibits performance that satisfies all the required performance as an oil for hydraulic operation. On the other hand, in the case where the necessary component in the invention is lacking (Comparative Examples) , and in the case of the commercially available zinc type oil and non-zinc type oil, at least one of required performance as an antiwear hydraulic oil is greatly deteriorated, and therefore gives problems for use as a lubricating oil for recent hydraulic apparatus that is down-sized, operated at a high speed and a high pressure, and is precise. Effect of the Invention
The lubricating oil composition of the invention does not contain zinc dialkyldithiophosphate from the standpoint of environment and safety, and is excellent in lubricating property, water proofing property, filtering property and rust preventing property, including use in recent hydraulic apparatus that is down-sized, operated at a high speed and a high pressure, and is precise. Therefore, the composition of the invention satisfies all the various required performances for a hydraulic oil defined by the standards of Cincinnati Milacron, Inc., Denison, Vickers, GM and DIN, and also exhibits excellent performance in filtering property and urethane seal friction property.

Claims

C L A I M S
1 A lubricating oil composition comprising
(I) 100 parts by weight of a base oil for a lubricating oil;
(II) as an antiwear agent, (i) (a) from 0.05 to 10 parts by weight of a phosphorothionate represented by formula (1), and (b) from 0.01 to 1.0 part by weight of an amine salt of a phosphorus compound which phosphorus compound is represented by formula (2a) , and/or (ii) from 0.05 to 10 parts by weight of a dithiophosphate represented by formula (3a) ;
(III) as a rust preventing agent, from 0.01 to 1.0 part by weight of a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine represented by formula (4a) , and (b) a carboxylic acid having from 4 to 30 carbon atoms,
S=P(-0-R1)3 (1)
(in the formula, R1 represents an alkyl and/or an aryl group having from 1 to 30 carbon atoms) , X=P(-XR2)2 XH (2a)
(in the formula, X represents a sulfur atom and/or an oxygen atom and R2 represents an alkyl and/or aryl group having from 2 to 30 carbon atoms) ,
S=P(-0-R6)2(-S-A') (3a) (in the formula, R6 represents an alkyl and/or aryl group having 1 to 30 carbon atoms and A' represents a hydrocarbon group optionally further containing one or more oxygen atoms),
Ru(R12)-N(R10-NR13)mH (4a)
(in the formula, R10 represents an alkylene group having from 1 to 10 carbon atoms, R11, R12and R13 each independently represent a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and/or a hydroxyalkyl group having from 1 to 30 carbon atoms, and m is an integer from 1 to 10) .
2. A lubricating oil composition according to claim 1, in which
(II) the antiwear agent is,
(i) (a) from 0.05 to 10 parts by weight of a a phosphorothionate represented by formula (1), and (b) from 0.01 to 1.0 part by weight of at least one kind of an amine salt of a phosphorus compound represented by formula (2b) , and/or
(ii) from 0.05 to 10 parts by weight of a dithiophosphate represented by formula (3b) ; and (III) in which the rust preventing agent is a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine represented by formula (4a), and
(b) a carboxylic acid having from 4 to 30 carbon atoms,
S=P(-0-R1)3 (1) (in the formula, R1 represents an alkyl group having from 1 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms) ,
[X=P(-XR2)2XHΓ [N(R3R4R5) ] (2b)
(in the formula, X represents a sulfur atom or an oxygen atom, in which at least from 2 to 4 atoms represented by X are oxygen atoms, and the others may be sulfur atoms; R2 represents an alkyl group having from 2 to 30 carbon atoms; R3 , R4 and R5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and from 1 to 5 mole of an alkylene oxide group) ,
S=P(-0-R6)2(-A) (3b)
(in the formula, R6 represents an aryl group having from 6 to 12 carbon atoms or an alkyl group having from 1 to 30 carbon atoms, and A represents a group independently selected from
SR7
S-CnH2nC(0)OR8 and
S-CnH2nCH [C (0) OR8] CH2C (0) OR9 and R7, R8 and R9 each represents a group independently selected from an alkyl group having from 1 to 30 carbon atoms, and n is an integer from 0 to 10),
R (R12)-N(R10-NR13)_H (4a)
(in the formula, R10 represents an alkylene group having from 1 to 10 carbon atoms, R11, R12and R13 each independently represents a hydrogen atom, an alkyl group having from 1 to 10 carbon atoms and/or a hydroxyalkyl group having from 1 to 10 carbon atoms, and m is an integer from 1 to 10) .
3. A lubricating oil composition according to claim 2, in which
(II) the antiwear agent is,
(i) (a) from 0.05 to 10 parts by weight of a a phosphorothionate represented by formula (1), and (b) from 0.01 to 1.0 part by weight of at least one kind of an amine salt selected from an amine salt of an acidic phosphoric ester and an amine salt of an acidic thiophosphoric ester represented by formula (2b) , and/or
(ii) from 0.05 to 10 parts by weight of a dithiophosphate represented by formula (3b) ; and (III) in which the rust preventing agent is a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine represented by formula (4a) , and (b) a carboxylic acid having from 12 to 30 carbon atoms,
S=P(-0-R1)3 (1) (in the formula, R1 represents an alkyl group having from 4 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms) ,
[X=P(-XR2)2XH] ΓÇó [N(R3RR5) ] (2b)
(in the formula, X represents a sulfur atom or an oxygen atom, in which at least from 2 to 4 atoms represented by X are oxygen atoms, and the others may be sulfur atoms; R2 represents an alkyl group having from 2 to 30 carbon atoms; R3 , R4 and R5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and from 1 to 5 mole of an alkylene oxide group) ,
S=P(-0-R6)2(-A) (3b)
(in the formula, R6 represents an alkyl group having from 1 to 8 carbon atoms, and A represents a group independently selected from
SR7
S-CnH2nC(0)OR8 and
S -CnH2nCH [ C ( 0 ) OR8 ] CH2C ( 0 ) OR9 and R7, R8 and R9 each represents a group independently selected from an alkyl group having from 1 to 8 carbon atoms, and n is an integer from 0 to 10) ,
Rn(R12)-N(R10-NR13)mH (4a) (in the formula, R10 represents an alkylene group having from 2 to 6 carbon atoms, R11, R12 and R13 each independently represent a hydrogen atom and/or an alkyl group having from 1 to 10 carbon atoms, and m is an integer from 1 to 10) .
4. A lubricating oil composition according to claim 3, in which
(II) the antiwear agent is a phosphorothionate selected from a phosphorothionate represented by formula (1), and (b) from 0.01 to 1.0 part by weight of at least one kind of an amine salt selected from an amine salt of an acidic phosphoric ester and an amine salt of an acidic thiophosphoric ester represented by formula (2b) , and/or
(ii) from 0.05 to 10 parts by weight of a trialkyl dithiophosphate represented by formula (3) ;
(III) the rust preventing agent is a polyalkylene polyamide obtained by reacting (a) a polyalkylene polyamine represented by formula (4b) , and (b) at least one kind of a monocarboxylic acid selected from a saturated monocarboxylic acid having from 12 to 30 carbon atoms and an unsaturated monocarboxylic acid having from 18 to 24 carbon atoms,
S=P(-0-Rx)3 (1)
(in the formula, R1 represents a saturated alkyl group having from 4 to 18 carbon atoms and/or an aryl group having from 6 to 15 carbon atoms) , [ X=P ( -XR2 ) 2XH ] - [ N ( R3R4R5 ) ] ( 2b )
(in the formula, X represents an atom selected from a sulfur atom and an oxygen atom, in which at least from 2 to 4 atoms represented by X are oxygen atoms, and the others may be sulfur atoms; R2 represents an alkyl group having from 2 to 30 carbon atoms; R3 represents an alkyl group having from 1 to 30 carbon atoms; and R4 and R5 each represents a group independently selected from a hydrogen atom, an alkyl group having from 1 to 30 carbon atoms and from 1 to 5 mole of an ethylene oxide group) ,
S=P(-0-R6)2 (-A) (3b)
(in the formula, A represents a group independently selected from
SR7 S-CnH2nC(0)OR8 and
S-CnH2nCH [C (0) OR8] CH2C (0) OR9 and R6, R7, R8 and R9 each represents a group independently selected from an alkyl group having from 1 to 8 carbon atoms, and n is an integer from 0 to 6) ,
H2N-(R10-NH)I-.H (4b)
(in the formula, R10 represents an alkylene group having from 2 to 4 carbon atoms, and m is an integer from 2 to 6) .
5. A lubricating oil composition as claimed in any one of claims 1 to 4, wherein in said amine salt of acidic phosphoric ester and said amine salt of acidic thiophosphoric ester represented by formula (2b) , R2 represents an alkyl group having from 4 to 18 carbon atoms; R3 represents an alkyl group having from 4 to 18 carbon atoms; and R4 and R5 each represents a group independently selected from the group consisting of a hydrogen atom, an alkyl group having from 1 to 18 carbon atoms and from 1 to 5 mole of an ethylene oxide group.
6. A lubricating oil composition as claimed in claim 5, wherein in said amine salt of acidic phosphoric ester and said amine salt of acidic thiophosphoric ester represented by formula (2b) , R2 represents a branched alkyl group.
7. A lubricating oil composition as claimed in one of claims 1 to 6, wherein said monocarboxylic acid to be reacted with said polyalkylene polyamine represented by formula (4a) or (4b) is a mixture of aliphatic monocarboxylic acids, and said mixture is independently selected from the group consisting of a mixture of an aliphatic monocarboxylic acid in which the aliphatic group thereof is a linear saturated alkyl group having from 12 to 24 carbon atoms and an aliphatic monocarboxylic acid in which the aliphatic group thereof is a branched saturated alkyl group having from 12 to 30 carbon atoms and a mixture of an aliphatic monocarboxylic acid in which the aliphatic group thereof is a linear unsaturated alkyl group having from 18 to 24 carbon atoms and an aliphatic monocarboxylic acid in which the aliphatic group thereof is a branched saturated alkyl group having from 12 to 30 carbon atoms.
8. A lubricating oil composition as claimed in one of claims 1 to 7, wherein said lubricating oil composition does not generate rust on a rust preventing test; exhibit performance in that sludge formed on a thermal stability test is 25 mg/100 ml or less, sludge formed on an oxidation stability test is 100 mg or less, a corrosion amount of copper on an oxidation stability test is 50 mg or less, a weight loss of a copper plate on a hydrolytic stability test is 0.2 mg/cm2 or less, an acid value of a water phase on a hydrolytic stability test is 4 mgKOH or less, a grade of a seizing formation load on an FZG gear test is grade 10 or more, and a wear amount on a Vickers 35VQ25A vane pump test is 90 mg or less; has excellent lubricating performance on a piston pump; has performance passing HF-0 and HF-1 of Denison Standard, P-68, P-69 and P-70 of Cincinnati Milacron Standard, German Standard DIN51524 (part 2), and LH03-1- 94 of GM (General Motors) Standard; has a kinetic friction coefficient on an urethane seal friction test of 0.6 or less; and exhibits excellent filtering properties on inclusion of water and an alkaline earth metal salt-containing lubricating oil.
9. Use of a lubricating composition according to any one of claims 1 to 8 in hydraulic operations, in gears, in turbines and/or in bearings.
PCT/EP1999/006094 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids WO2000011122A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE69902181T DE69902181T2 (en) 1998-08-20 1999-08-18 LUBRICATING OIL COMPOSITIONS AS HYDRAULIC LIQUIDS
AU57377/99A AU746879B2 (en) 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids
EP99944447A EP1109882B1 (en) 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids
US09/763,278 US6756346B1 (en) 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids
NZ509838A NZ509838A (en) 1998-08-20 1999-08-18 Lubricating oil compositions containing rust preventing agent and an antiwear agent
AT99944447T ATE220712T1 (en) 1998-08-20 1999-08-18 LUBRICANT OIL COMPOSITIONS AS HYDRAULIC FLUIDS
DK99944447T DK1109882T3 (en) 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids
CA002340737A CA2340737C (en) 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids
BRPI9913469-1A BR9913469B1 (en) 1998-08-20 1999-08-18 composition of low-ash or ash-free anti-wear lubricating oil and use thereof.
HK01105113A HK1034738A1 (en) 1998-08-20 2001-07-20 Lubricating oil composition useful in hydraulic fluids

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP23475898A JP4836298B2 (en) 1998-08-20 1998-08-20 Lubricating oil composition
JP10/234758 1998-08-20
EP98307320 1998-09-10
EP98307320.6 1998-09-10

Publications (1)

Publication Number Publication Date
WO2000011122A1 true WO2000011122A1 (en) 2000-03-02

Family

ID=26151430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006094 WO2000011122A1 (en) 1998-08-20 1999-08-18 Lubricating oil composition useful in hydraulic fluids

Country Status (17)

Country Link
US (1) US6756346B1 (en)
EP (1) EP1109882B1 (en)
KR (1) KR100625558B1 (en)
CN (1) CN1222593C (en)
AR (1) AR020212A1 (en)
AT (1) ATE220712T1 (en)
AU (1) AU746879B2 (en)
BR (1) BR9913469B1 (en)
CA (1) CA2340737C (en)
DE (1) DE69902181T2 (en)
DK (1) DK1109882T3 (en)
ES (1) ES2181471T3 (en)
HK (1) HK1034738A1 (en)
MY (1) MY125825A (en)
NZ (1) NZ509838A (en)
SA (1) SA99200536B1 (en)
WO (1) WO2000011122A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053687A2 (en) * 2001-01-04 2002-07-11 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2002079358A2 (en) * 2001-03-29 2002-10-10 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2002092735A1 (en) * 2001-05-11 2002-11-21 Shell International Research Maatschappij B.V. Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent
WO2002102945A1 (en) * 2001-06-14 2002-12-27 Ciba Specialty Chemicals Holding Inc. Improved antiwear performance of engine oils with $g(b)-dithiophosphorylated propionic acids
WO2003076557A1 (en) * 2002-03-04 2003-09-18 The Lubrizol Corporation Lubricating compositions with good thermal stability and demulsibility properties
WO2004113479A1 (en) * 2003-06-18 2004-12-29 The Lubrizol Corporation Lubricating oil composition with antiwear performance
EP1529830A1 (en) * 2003-11-04 2005-05-11 Chevron Oronite S.A. Ashless additive formulations suitable for hydraulic oil applications
EP1746148A1 (en) * 2005-07-20 2007-01-24 Chevron Oronite Company LLC Crankcase lubricating oil composition for protection of silver bearings in locomotive diesel engines.
EP1985688A1 (en) 2007-04-26 2008-10-29 The Lubrizol Corporation Antiwear polymer and lubricating composition thereof
EP2147967A1 (en) * 2008-07-14 2010-01-27 Afton Chemical Corporation Thermally stable zinc-free antiwear agent
WO2011035865A1 (en) * 2009-09-23 2011-03-31 Cognis Ip Management Gmbh Lubricant compositions
WO2012076896A1 (en) * 2010-12-09 2012-06-14 Innospec Limited Improvements in or relating to additives for fuels and lubricants

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185307B2 (en) * 2001-09-20 2008-11-26 新日本石油株式会社 Lubricating oil composition for internal combustion engines
KR100742921B1 (en) * 2001-11-30 2007-07-25 주식회사 포스코 Zinc-free hydraulic oil composition
WO2005085399A1 (en) 2004-03-04 2005-09-15 Nippon Oil Corporation Refrigerating machine oil
JP4659373B2 (en) * 2004-03-04 2011-03-30 Jx日鉱日石エネルギー株式会社 Refrigeration oil
US20050282713A1 (en) * 2004-03-31 2005-12-22 Matsushita Electric Industrial Co., Ltd. Hydrodynamic bearing device and spindle motor using the same
CA2600587A1 (en) * 2005-03-21 2006-09-28 Ciba Specialty Chemicals Holding Inc. Antiwear lubricant compositions for use in combustion engines
JP4885533B2 (en) * 2005-12-20 2012-02-29 出光興産株式会社 Refrigerator oil composition, compressor for refrigeration machine and refrigeration apparatus using the same
JP5207599B2 (en) * 2006-06-08 2013-06-12 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
US20100160191A1 (en) * 2006-09-01 2010-06-24 The Lubrizol Corporation Lubricating Composition
US8026199B2 (en) * 2006-11-10 2011-09-27 Nippon Oil Corporation Lubricating oil composition
US20080125338A1 (en) * 2006-11-29 2008-05-29 Corbett Patricia M Food grade lubricant compositions
JP5237562B2 (en) * 2007-01-23 2013-07-17 昭和シェル石油株式会社 Lubricating oil composition for ceramic ball rolling bearing
US20090005277A1 (en) * 2007-06-29 2009-01-01 Watts Raymond F Lubricating Oils Having Improved Friction Stability
US8623797B2 (en) * 2007-06-29 2014-01-07 Infineum International Limited Boron-containing lubricating oils having improved friction stability
JP5225696B2 (en) * 2008-01-18 2013-07-03 出光興産株式会社 Lubricating oil composition and continuously variable transmission
JP5288861B2 (en) * 2008-04-07 2013-09-11 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
US8183188B2 (en) * 2008-10-07 2012-05-22 Jax Inc. Food grade Compressor/Vacuum pump oil
US20100093572A1 (en) * 2008-10-07 2010-04-15 Paquette Troy F Food Grade Rotary Screw Compressor Lubricant
US8357641B2 (en) * 2008-10-07 2013-01-22 Jax Inc. Food grade compressor/vacuum pump cleaner
IT1394617B1 (en) * 2008-12-16 2012-07-05 Sea Marconi Technologies Di Vander Tumiatti S A S INTEGRATED METHODS FOR DETERMINING CORROSIVITY, AGING, FINGERPRINT, AS WELL AS DIAGNOSIS, DECONTAMINATION, DEPOLARIZATION AND OIL DETOXIFICATION
US7632900B1 (en) 2008-12-18 2009-12-15 Equistar Chemicals, Lp Lubricating oil
US20110046029A1 (en) 2009-08-20 2011-02-24 Milner Jeffrey L Combinations of Phosphorus-Containing Compounds For Use As Anti-Wear Additives In Lubricant Compositions
RU2451061C2 (en) * 2010-07-05 2012-05-20 Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа имени И.М. Губкина Composition of turbine oil additive
RU2458109C2 (en) * 2010-07-05 2012-08-10 Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа имени И.М. Губкина Turbine oil
RU2451060C2 (en) * 2010-07-05 2012-05-20 Государственное образовательное учреждение высшего профессионального образования Российский государственный университет нефти и газа имени И.М. Губкина Turbine oil
PE20190557A1 (en) 2011-10-18 2019-04-17 Cytec Tech Corp FOAM FLOATING PROCESS
AU2012326311B2 (en) 2011-10-18 2016-09-01 Cytec Technology Corp. Collector compositions and methods of using the same
WO2013059259A2 (en) 2011-10-18 2013-04-25 Cytec Technology Corp. Froth flotation processes
CN104145010B (en) * 2012-03-12 2016-08-31 出光兴产株式会社 Lubricating oil composition
EP2749630B8 (en) * 2012-12-28 2018-01-10 Afton Chemical Corporation Lubricant Composition
US10563148B2 (en) 2013-03-29 2020-02-18 Idemitsu Kosan Co., Ltd. Lubricant oil composition
JP6422260B2 (en) * 2014-08-06 2018-11-14 出光興産株式会社 Lubricating oil composition
US20160281020A1 (en) 2015-03-23 2016-09-29 Chevron Japan Ltd. Lubricating oil compositions for construstion machines
US9499765B2 (en) 2015-03-23 2016-11-22 Chevron Japan Ltd. Lubricating oil compositions for construction machines
CN105861132A (en) * 2016-04-07 2016-08-17 湖北爱国石化有限公司 Special multifunctional hydraulic transmission oil for large- and medium-wheel tractors
US11384308B2 (en) 2016-07-20 2022-07-12 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
WO2020171133A1 (en) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 Refrigerator oil and refrigerator working fluid composition
CN113403121B (en) * 2021-04-26 2022-06-21 中国科学院兰州化学物理研究所 Ionic liquid antirust and antiwear additive for polyether lubricating oil
CN114657012B (en) * 2022-04-20 2023-01-03 卡松科技股份有限公司 High-cleanness high-pressure ashless anti-wear hydraulic oil composition and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1415964A (en) * 1973-01-25 1975-12-03 Exxon Research Engineering Co Anti-wear lubricating composition
WO1993006198A1 (en) * 1991-09-16 1993-04-01 The Lubrizol Corporation Oil compositions
WO1994024233A1 (en) * 1993-04-09 1994-10-27 Ethyl Corporation Gear oil additive concentrates and lubricants containing them

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816171A (en) * 1983-10-13 1989-03-28 Mobil Oil Corporation Lubricant compositions containing reaction products of formic acid and dialkylenetriamines
US5561104A (en) * 1992-10-15 1996-10-01 Nippon Oil Co., Ltd. Hydraulic working oil composition for buffers
US5552068A (en) * 1993-08-27 1996-09-03 Exxon Research And Engineering Company Lubricant composition containing amine phosphate
JPH07224293A (en) * 1994-02-14 1995-08-22 Nippon Oil Co Ltd Hydraulic oil composition for shock absorber
GB2301113A (en) * 1995-05-22 1996-11-27 Ethyl Petroleum Additives Ltd Extreme pressure gear lubricant
JP3935982B2 (en) * 1995-10-19 2007-06-27 出光興産株式会社 Hydraulic fluid composition
JP4334623B2 (en) * 1996-06-12 2009-09-30 出光興産株式会社 Lubricating oil composition for automatic transmission
DE19710160A1 (en) * 1997-03-12 1998-09-17 Clariant Gmbh Phosphoric acid esters as high pressure additives
US5792733A (en) * 1997-08-14 1998-08-11 The Lubrizol Corporation Antiwear compositions containing phosphorus compounds and olefins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1415964A (en) * 1973-01-25 1975-12-03 Exxon Research Engineering Co Anti-wear lubricating composition
WO1993006198A1 (en) * 1991-09-16 1993-04-01 The Lubrizol Corporation Oil compositions
US5773393A (en) * 1991-09-16 1998-06-30 The Lubrizol Corporation Oil compositions useful in hydraulic fluids
WO1994024233A1 (en) * 1993-04-09 1994-10-27 Ethyl Corporation Gear oil additive concentrates and lubricants containing them

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002053687A2 (en) * 2001-01-04 2002-07-11 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2002053687A3 (en) * 2001-01-04 2002-09-19 Shell Int Research Lubricating oil composition
KR100850654B1 (en) * 2001-01-04 2008-08-07 쉘 인터내셔날 리서치 마챠피즈 비.브이. Lubricating oil composition
AU2002224973B2 (en) * 2001-01-04 2006-08-31 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2002079358A2 (en) * 2001-03-29 2002-10-10 Shell Internationale Research Maatschappij B.V. Lubricating oil composition
WO2002079358A3 (en) * 2001-03-29 2007-10-25 Shell Int Research Lubricating oil composition
WO2002092735A1 (en) * 2001-05-11 2002-11-21 Shell International Research Maatschappij B.V. Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as ant-rust agent
KR100866811B1 (en) * 2001-05-11 2008-11-04 쉘 인터내셔날 리서치 마챠피즈 비.브이. Lubricating oil composition comprising an additive combination of a carboxylic acid and an amine as anti-rust agent
WO2002102945A1 (en) * 2001-06-14 2002-12-27 Ciba Specialty Chemicals Holding Inc. Improved antiwear performance of engine oils with $g(b)-dithiophosphorylated propionic acids
CN100334188C (en) * 2002-03-04 2007-08-29 卢布里佐尔公司 Lubricating compositions with good thermal stability and demulsibility properties
WO2003076557A1 (en) * 2002-03-04 2003-09-18 The Lubrizol Corporation Lubricating compositions with good thermal stability and demulsibility properties
WO2004113479A1 (en) * 2003-06-18 2004-12-29 The Lubrizol Corporation Lubricating oil composition with antiwear performance
EP1529830A1 (en) * 2003-11-04 2005-05-11 Chevron Oronite S.A. Ashless additive formulations suitable for hydraulic oil applications
EP1746148A1 (en) * 2005-07-20 2007-01-24 Chevron Oronite Company LLC Crankcase lubricating oil composition for protection of silver bearings in locomotive diesel engines.
AU2006202834B2 (en) * 2005-07-20 2010-07-08 Chevron Oronite Company Llc Crankcase lubricating oil composition for protection of silver bearings in locomotive diesel engines
US8084404B2 (en) 2005-07-20 2011-12-27 Chevron Oronite Company Llc Crankcase lubricating oil composition for protection of silver bearings in locomotive diesel engines
EP1985688A1 (en) 2007-04-26 2008-10-29 The Lubrizol Corporation Antiwear polymer and lubricating composition thereof
EP2147967A1 (en) * 2008-07-14 2010-01-27 Afton Chemical Corporation Thermally stable zinc-free antiwear agent
WO2011035865A1 (en) * 2009-09-23 2011-03-31 Cognis Ip Management Gmbh Lubricant compositions
EP2305782A1 (en) * 2009-09-23 2011-04-06 Cognis IP Management GmbH Lubricant compositions
US8969267B2 (en) 2009-09-23 2015-03-03 Cognis Ip Management Gmbh Lubricant compositions
WO2012076896A1 (en) * 2010-12-09 2012-06-14 Innospec Limited Improvements in or relating to additives for fuels and lubricants

Also Published As

Publication number Publication date
KR100625558B1 (en) 2006-09-20
KR20010099626A (en) 2001-11-09
SA99200536B1 (en) 2006-05-30
US6756346B1 (en) 2004-06-29
DE69902181D1 (en) 2002-08-22
CA2340737A1 (en) 2000-03-02
DE69902181T2 (en) 2003-03-06
CN1319126A (en) 2001-10-24
HK1034738A1 (en) 2001-11-02
EP1109882A1 (en) 2001-06-27
BR9913469B1 (en) 2011-09-06
ATE220712T1 (en) 2002-08-15
ES2181471T3 (en) 2003-02-16
DK1109882T3 (en) 2002-11-11
AU5737799A (en) 2000-03-14
CA2340737C (en) 2009-04-07
EP1109882B1 (en) 2002-07-17
BR9913469A (en) 2001-06-05
CN1222593C (en) 2005-10-12
MY125825A (en) 2006-08-30
AU746879B2 (en) 2002-05-02
AR020212A1 (en) 2002-05-02
NZ509838A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
EP1109882B1 (en) Lubricating oil composition useful in hydraulic fluids
JP4836298B2 (en) Lubricating oil composition
EP3072948B1 (en) Lubricating oil compositions for construction machines
US20190177651A1 (en) Lubricant compositions comprising olefin copolymer dispersants in combination with additives
CN107406786B (en) Aromatic tetrahedral borate compounds for lubricating compositions
JP2002265971A (en) Wear-resistant lubricating oil composition
CA2921910C (en) Zinc-free transmission oil compositions for construction machines
US20050096236A1 (en) Ashless additive formulations suitable for hydraulic oil applications
CN109715767B (en) Aliphatic tetrahedral borate compounds for fully formulated lubricating compositions
WO2019117992A1 (en) Polyolefin-derived dispersants
WO2019162744A1 (en) Lubricating oils for automatic transmissions
KR20160132100A (en) Method of lubricating an internal combustion engine
EP3858954B1 (en) Lubricant formulations with silicon-containing compounds
US11059924B2 (en) Polymers and lubricating compositions containing polymers
JP5561880B2 (en) Internal combustion engine lubricant
WO2024220394A1 (en) Friction modifier for automatic transmission fluid
WO2024220396A1 (en) Friction modifier for wet clutch
WO2023144721A1 (en) Lubricating oil composition
EP2513270A1 (en) Lubricating composition containing a nitrile compound

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99811128.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999944447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 509838

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2001/01214

Country of ref document: ZA

Ref document number: 200101214

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2340737

Country of ref document: CA

Ref document number: 2340737

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/225/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 57377/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020017002196

Country of ref document: KR

Ref document number: 09763278

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1999944447

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017002196

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999944447

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWG Wipo information: grant in national office

Ref document number: 1020017002196

Country of ref document: KR