WO2000004712A1 - Use of a watermark for the purpose of copy protection - Google Patents

Use of a watermark for the purpose of copy protection Download PDF

Info

Publication number
WO2000004712A1
WO2000004712A1 PCT/EP1999/004705 EP9904705W WO0004712A1 WO 2000004712 A1 WO2000004712 A1 WO 2000004712A1 EP 9904705 W EP9904705 W EP 9904705W WO 0004712 A1 WO0004712 A1 WO 0004712A1
Authority
WO
WIPO (PCT)
Prior art keywords
ticket
watermark
content
data
time
Prior art date
Application number
PCT/EP1999/004705
Other languages
French (fr)
Inventor
Michael Epstein
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to EP99934588A priority Critical patent/EP1038395A1/en
Priority to BR9906596-7A priority patent/BR9906596A/en
Priority to KR1020007002685A priority patent/KR20010023970A/en
Priority to JP2000560724A priority patent/JP2002521875A/en
Publication of WO2000004712A1 publication Critical patent/WO2000004712A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/835Generation of protective data, e.g. certificates
    • H04N21/8358Generation of protective data, e.g. certificates involving watermark
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/913Television signal processing therefor for scrambling ; for copy protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/913Television signal processing therefor for scrambling ; for copy protection
    • H04N2005/91307Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal
    • H04N2005/91328Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal the copy protection signal being a copy management signal, e.g. a copy generation management signal [CGMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/913Television signal processing therefor for scrambling ; for copy protection
    • H04N2005/91307Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal
    • H04N2005/91335Television signal processing therefor for scrambling ; for copy protection by adding a copy protection signal to the video signal the copy protection signal being a watermark

Definitions

  • This invention generally relates to a system for protecting content. Specifically, the present invention pertains to utilizing a ticket and a watermark to indicate the copy protection status of content.
  • release windows are utilized to maximize profit from content.
  • the essence of these release windows is to first release the content to a premium service such as a pay-per-view service or a video on demand service. Thereafter, the content may be released on a lower price service such as a home-box-office service. At this time, the content may also be available to a consumer through a purchased storage medium such as a Digital Video Disc (DVD).
  • DVD Digital Video Disc
  • a digital transmission such as an MPEG transport stream
  • additional data may be embedded within the transport stream to set the copy protection status of content contained within the digital transmission.
  • the desired copy protection status may be "copy-once", “no-more- copy”, “copy-never”, and "copy-freely”.
  • Content that has a status of copy-once may be played and copied. During copying, the copy-once content is altered such that the content is in the no- more-copy state.
  • Copy-never content is content that may only be played and may not be copied.
  • Copy-freely content may be played and copied without restriction.
  • the additional data may take the form of a digital watermark.
  • the watermark may be embedded directly into the content so that removal of the watermark will degrade the quality of the content.
  • the watermark may be utilized as part of the copy protection scheme.
  • the copy-freely state may be designated by the lack of a watermark within the content.
  • a transmission such as a digital transmission, is sent from a source device and received by a receiving device.
  • a source device is a device that is writing content onto a data bus, initiating a broadcast transmission, initiating a terrestrial transmission, etc.
  • a sink device is a device that reads content from the data bus, etc.
  • Fig. 1 shows a typical system for the transmission of content.
  • the source device is a broadcast initiator 101 that utilizes a transmitting antenna 102 to transmit content.
  • the sink device is a broadcast receiver, such as a set-top-box (STB) 104 that utilizes a receiving antenna 103 for receiving the transmitted content.
  • STB 104 is shown connected to a display device 105, a player 106, and a player/recorder 107, through a bus 108.
  • the term bus is utilized herein to refer to any system for connecting one device to another device.
  • the bus may be a hard wired system such as a coaxial wire, an IEEE 1553 bus, etc., or the bus may be a wireless system such as an infra-red or broadcast system.
  • the STB 104 may be a sink for the broadcast transmission and be a source for a transmission on the bus 108.
  • the player/recorder 107 may be a source/sink of a transmission to/from, respectively, the bus 108.
  • a watermark (W) is embedded within transmitted content.
  • a ticket is transmitted along with the transmitted content.
  • the embedded watermark and the ticket together are utilized to determine the copy protection status of the transmitted content.
  • the watermark may be embedded into the content by at least two known methods. One method embeds the watermark (W) in the MPEG coding of the content. Another method embeds the watermark (W) in the pixel data of the content.
  • the ticket (T) is cryptographically related to the watermark (W). Performing one or more one-way functions on the ticket (T) derives the watermark (W).
  • one-way function what is meant is that it is computationally unfeasible to compute the inverse of the function.
  • An example of a publicly known cryptographic one-way function is a hashing function, such as secure hash algorithm one (SHA-1) or RACE Integrity Primitives Evaluation Message Digest (RIPEMD).
  • SHA-1 secure hash algorithm one
  • RIPEMD RACE Integrity Primitives Evaluation Message Digest
  • the term unfeasible is intended to mean that the best method will take too long to be useful for a pirate. For instance, the time that is required for a pirate to compute the inverse of a hashing function is too long for the pirate to frustrate the intended release window for protected content.
  • the most efficient method known to find such an x 0 may be to exhaustively search all possible bit combinations of x 0 and to compute and verify F(x 0 ) for each attempt. In other cases, there may be a more efficient method than an exhaustive search to compute an inverse of a one-way function, yet these methods are still too time consuming to be feasible for the pirate.
  • the bit content of the ticket (T) is generated from a seed (U).
  • the content owner provides the seed (U).
  • a physical mark (P) is created.
  • the physical mark (P) may be embedded on a storage medium such as a Read-Only Memory (ROM) disk. Performing one or more one-way functions on the physical mark (P), produces the ticket (T).
  • the number of functions performed on the physical mark (P) to create the ticket (T) depends on the copy protection intended for the content.
  • the ticket (T) changes state during every passage of a playback device (e.g., a source device) and a recording device (e.g., a sink device).
  • the state modifications are cryptographically irreversible and reduce the remaining copy and play rights of the content that are granted by the ticket (T).
  • the ticket (T) indicates the number of sequential playback and recordings that may still be performed and acts as a cryptographic counter that can be decremented but not incremented.
  • a compliant system is any system that obeys the copy protection rules described above and hereinafter.
  • a non-compliant system may be able to play and copy material irrespective of the copy protection rules.
  • a compliant system should refuse to play copies of content illegally made on a non-compliant system.
  • a physical mark (P) (e.g., data) is stored on a storage medium and is not accessible by other user equipment.
  • the physical mark (P) data is generated at the time of manufacturing of the storage medium as described above and is attached to the storage medium in a way in which it is difficult to remove the physical mark (P) data without destroying the storage medium.
  • the application of a one-way cryptographic function, such as a hashing function, to the physical mark (P) data four times results in a watermark.
  • a watermark by itself may indicate whether or not content stored on the storage medium is copy-once or copy-never. For instance, the absence of a watermark may indicate that the content may be copied freely.
  • the presence of the watermark without a ticket on a storage medium may indicate copy-never content.
  • the physical mark (P) data is hashed twice to generate a ticket.
  • the ticket is hashed twice and matched to the watermark.
  • the content is played. In this way, a party may not substitute a false ticket along with the content to frustrate the copy protection scheme. In the case were there is a ticket but no watermark in the content, a compliant system will refuse to play the content.
  • the watermark is checked to see if the material is copy-freely, copy-once, or copy-never. When there is no watermark, the content is copy-freely and may be copied freely as discussed above. When the content contains a watermark but no ticket, the content is copy-never and a compliant recorder will refuse to copy the content however, a compliant player will play the content. When the content is copy- once, the content contains both a watermark and a ticket, the ticket is hashed twice and compared to the watermark.
  • the content may be recorded along with a once-hashed ticket and the watermark, thereby creating copy-no-more content (e.g., content with a once-hashed ticket and a watermark).
  • copy-no-more content e.g., content with a once-hashed ticket and a watermark.
  • a copy-never state may be indicated by the presence of a once-hashed ticket and a watermark.
  • Both copy-no-more stored content and copy-never broadcast content are treated by a compliant system similarly.
  • the content containing the once-hashed ticket may be played but may not be recorded in a compliant system.
  • a compliant recorder In the event that a party tries to record the content with the once-hashed ticket, a compliant recorder will first twice-hash the once-hashed ticket and compare the result (e.g., a thrice-hashed ticket) with the watermark. Since the thrice- hashed ticket will not match the watermark, the compliant recorder will refuse to record the content.
  • a compliant player that receives the once-hashed ticket will hash the once- hashed ticket and compare the result (e.g., a twice-hashed ticket) to the watermark. Since the twice-hashed ticket matches the watermark, the compliant player will play the content.
  • a non-compliant recorder receives content containing a twice-hashed ticket and a watermark.
  • the non-compliant recorder may make multiple copies of the ticket and the watermark which will play on a compliant player and which may be recorded on a compliant recorder.
  • the same problem can exist where a non- compliant recorder receives content containing a thrice-hashed ticket and a watermark indicating copy-no-more content. In this case, the non-compliant recorder may make multiple copies of the thrice-hashed ticket and the watermark that will play on the compliant player.
  • a physical mark can be embedded in the physical medium of the CD-ROM that is produced by an authorized manufacturer. The player may then check the physical mark to ensure that the content is being received from an authorized medium. In this way, if a pirate makes an unauthorized copy, the physical mark will not be present on the unauthorized copy and a compliant player will refuse to play the content.
  • this method of copy protection is unavailable. Accordingly, it is an object of the present invention to overcome the disadvantages of the prior art. It is also an object of the present invention to provide a method of transmitting copy protected copy-never content that will prevent a pirate from making copies that will play on a compliant player.
  • a copy protection system for protecting content wherein a ticket and a watermark are utilized to indicate the copy protection status of the content.
  • the invention provides a content protecting method, a copy protection system, a source device and a receiver device as defined in the independent claims.
  • the dependent claims define advantageous embodiments.
  • the ticket and watermark are created utilizing a first time reference (TD) and a one-way function.
  • the system utilizes a source device to produce the ticket and watermark.
  • the watermark is then embedded into the content in such a way that the watermark can not be removed from the content without largely degrading the content.
  • the ticket is then transmitted, along with the first time reference (TD), the embedded watermark, and the content, to a receiver device.
  • the receiver device Prior to playing, recording, etc, the receiver device verifies the ticket and watermark utilizing the first time reference, and thereby, determines the copy protection status of the content.
  • TD first time reference
  • the receiver device Prior to playing, recording, etc, the receiver device verifies the ticket and watermark utilizing the first time reference, and thereby, determines the copy protection status of the content.
  • a physical mark is placed on the CD-ROM that is not accessible by typical user equipment.
  • the data for the physical mark may be calculated by processing (e.g., performing a hashing function) seed data. Seed data is determined utilizing randomly occurring phenomena such as natural physical phenomena (e.g., the number of gamma ray emissions from the sun in a determined period of time). The methods for determining suitable seed data are known by a person of ordinary skill in the art.
  • the seed data is selected such that there is a neglig
  • a one-way function such as a hashing function, is performed on the physical mark data to produce a ticket (T).
  • the ticket (T) is combined with the first time reference (TD), utilizing for instance a concatenation function, to produce a result (T.TD).
  • a hashing function is performed on the result (T.TD) to produce a ticket (T).
  • the ticket (T) is combined with the first time reference to produce a result ( .TD).
  • the hashing function is performed on the result (T'.TD) to produce a ticket (T").
  • the ticket (T" is combined with the first time reference (TD) to produce a result (T".TD).
  • the hashing function is performed on the result (T.TD) to produce a ticket (T").
  • the ticket (T") is combined with the first time reference (TD) to produce a result (T'".TD).
  • the hashing function is performed on the result (T'.TD) to produce the watermark.
  • the ticket (T) may be utilized to indicate that the content may be copied once (e.g., a copy protection status of copy-once).
  • the ticket (T") may be utilized to indicate that the content may never be copied (e.g., a copy protection status of copy-never).
  • the source device transmits to the receiver device a data stream containing the content with the watermark embedded therein, the first time reference (TD), and the ticket (T"), for instance if the copy protection status of the content is copy-once.
  • Alternate tickets such as the tickets discussed above, may be transmitted in the data stream to indicate an alternate copy protection status for the content.
  • the time reference (TD) is concatenated with every hash, it would be sufficient in some circumstances that the time reference (TD) is only utilized in a single operation for deriving the ticket.
  • the receiver device receives the data stream, and if the first time reference (TD) is contained within a time window determined by a second time reference, the receiver device compares the ticket (T) to the watermark using the first time reference (TD) and the hashing function. Specifically, at the receiver device, the ticket (T) is combined with the first time reference, and the hashing function is performed on the result (T.TD) to produce the ticket (T").
  • the ticket (T") is combined with the first time reference, and the hashing function is performed on the result (T'.TD) to produce a result (T") that should equal the watermark (W).
  • the receiver device makes the content available for copying and/or playing.
  • the receiver device receives the data stream and the first time reference (TD) is not contained within the time window determined by the second time reference, then the receiver device will not make the content available for copying or playing.
  • the first time reference (TD) is contained within the time window determined by the second time reference
  • the result (T"" is not equal to the watermark (W)
  • the receiver device will not make the content available for copying or playing.
  • FIG. 1 shows a conventional system for the transmission of content
  • Fig. 2 shows an illustrative communication network in accordance with an embodiment of the present invention
  • Fig. 3 shows an illustrative communication network in accordance with an embodiment of the present invention wherein a source device provides content to a sink device in the form of an MPEG transport stream;
  • Fig. 4 shows an illustrative communication network in accordance with an embodiment of the present invention wherein a source device provides digital content to a sink.
  • FIG. 2 depicts an illustrative communication network in accordance with an embodiment of the present invention.
  • a source device 230 such as a Digital Video Disc (DVD), a Digital Video Cassette Recorder (DVCR), or another source of content, having a time reference, such as a clock 216, transmits content to a sink device 240 via a transmission channel 260.
  • the transmission channel 260 may be a IEEE- 1394 (firewire) bus, a telephone network, a cable television network, a computer data network, a terrestrial broadcast system, a direct broadcast satellite network, etc., or some combination thereof.
  • the transmission channel 260 may include RF transmitters, satellite transponders, optical fibers, coaxial cables, unshielded twisted pairs of wire, switches, in-line amplifiers, etc.
  • the sink device contains a time reference, such as a clock 272, that is utilized in determining the copy protection status of the received content.
  • the content is provided to a display device 265 for display thereon.
  • the content may be provided from the source device 230 in the form of a Moving Picture Experts Group (MPEG) compliant transport stream, such as an MPEG-2 compliant transport stream, or as any other data stream that is known in the art for transmitting content.
  • MPEG Moving Picture Experts Group
  • the copy protection authorization circuit 221 contains a processor 214 (232), a clock 216 (234), a memory 222 (238), and an input device 220 (236).
  • the input device 220 is utilized to input seed data to the processor 214, either directly, or through the memory 222.
  • the input device 220 may be a keyboard, a smart card reader, a floppy disk reader, a Compact Disc (CD) reader, etc.
  • the input device 220 may also receive seed data derived from an A/V signal as shown.
  • the input device 220 may also be utilized to indicate to the processor 214 the desired copy protection status of the content.
  • the processor 214 utilizes the seed data and a time reference signal (TD), received from the clock 216, to create a ticket and a watermark.
  • TD time reference signal
  • the time reference signal (TD) is a representation, such as a digital representation, of the time and date when creation of the ticket and watermark is commenced.
  • a one-way operation such as a hashing function, is performed on the seed data to derive a physical mark (P).
  • P physical mark
  • H(physical mark (P) data) T.
  • TD time reference signal
  • W watermark
  • the ticket (T) is utilized to indicate that the content may be copied once (e.g., a copy protection status of copy-once).
  • the ticket (T") is utilized to indicate that the content may never be copied (e.g., a copy protection status of copy-never).
  • the watermark, the first time reference (TD), and the ticket (T), for instance if the desired copy protection status of the content is copy-once, are then transmitted to the video encoder 252.
  • the watermark (W) is embedded into the digitized video signal in such a way that the watermark (W) may not be removed from the digitized video signal without largely degrading the digitized video contained therein.
  • Alternate tickets such as the other tickets discussed above, may be transmitted to the video encoder 252 to indicate an alternate copy protection status of the content.
  • the ticket (T), the watermark (W), and the time reference signal (TD) may also, or alternatively, be transmitted to the audio encoder 254 from the copy protection authorization circuit 231.
  • the signal output from the video encoder 252 and the audio encoder 254 may be referred to as compressed signals.
  • the compressed signals contain the ticket, the first time reference (TD), the embedded watermark, and the respective digitized video and audio signals.
  • the compressed signals output from the video encoder 252 and the audio encoder 254, respectively, are input to a transport stream multiplexer 256.
  • the video and audio signal output from the respective encoders are referred to as elementary streams.
  • the transport stream multiplexer 256 may also receive elementary streams from a number of other sources (e.g., a source 212).
  • the content contained in the elementary streams from the source 212 may also have a copy protection status that is the same or different from the copy protection status of the signals received from the video and audio encoders 252, 254.
  • the transport stream multiplexer 256 multiplexes the elementary streams of one or more programs into one or more transport streams.
  • the transport streams output by the . transport stream multiplexer 256 are input to a channel encoder 258.
  • the channel encoder 258 encapsulates the one or more transport streams into one or more channel layer streams and modulates each channel layer stream onto a carrier signal or frequency channel.
  • the channel layer streams output by the channel encoder 258 are then transmitted via the transmission channel 260.
  • the transmission channel 260 may be an IEEE 1394 firewire Bus, a telephone network, a cable television network, a computer data network, a terrestrial broadcast system, a direct broadcast satellite network, etc., or some combination thereof.
  • the transmitted channel streams are received at a channel decoder 268.
  • the channel decoder 268 demodulates the channel streams for the respective carrier signals or frequency channels and recovers the one or more transport streams from the received channel streams.
  • the recovered transport streams are then input to a transport stream demultiplexer 266.
  • the transport stream demultiplexer 266 extracts particular elementary streams from the input transport streams corresponding to one or more user selected programs.
  • An extracted video signal elementary stream is input to a video decoder 262 and a copy protection status determination circuit 270.
  • An extracted audio signal elementary stream is input to an audio decoder 264 and the copy protection status determination circuit 270.
  • the copy protection status determination circuit 270 extracts the watermark (W), the ticket (T), and the time reference signal (TD) from the video signal elementary stream and/or the audio signal elementary stream to determine the copy protection status of the video and/or audio signals.
  • the copy protection status determination circuit 270 first compares the time reference signal (TD) to a real time clock reference signal derived from a clock 272 located at the sink device 240.
  • the clock 272 and the clocks 216, 234 are synchronized (e.g., maintain real time). Synchronization may be maintained by each receiving a broadcast time reference signal, or any other synchronization method that is known in the art.
  • the clocks 272, 216, and 234 are synchronized in a secure manner that is not generally accessible to a user (e.g., a user may not reset the clocks).
  • the time reference signal (TD) is not within an acceptable window of time
  • the video decoder 262 and the audio decoder 264 do not receive enabling signals 274, 273 respectively, from the copy protection status determination circuit 270.
  • An acceptable window of time may be, for instance, +/- 20 minutes of the real time clock reference signal. Therefore, the elementary streams received from the transport stream demultiplexer 266 are not decoded.
  • the ticket is compared to the watermark to determine the copy protection status of the video and/or audio signals. Specifically, the ticket T" is combined with the time reference signal (TD), and hashed once to produce a result (T"). The result (T") is combined with the time reference signal (TD) and hashed again to produce a second result (T"). The second result (T"") is then compared to the watermark:
  • the video decoder 262 and the audio decoder 264 do not receive enabling signals 274, 273, respectively, from the copy protection status determination circuit 270. Therefore, the elementary streams received from the transport stream demultiplexer 266 are discarded and are not decoded.
  • the video decoder 262 and audio decoder 264 receive enabling signals 274,273, respectively, from the copy protection status determination circuit 270.
  • the elementary streams received from the transport stream demultiplexer 266 are decoded by the video decoder 262 and audio decoder 264, respectively, and decompressed video and audio signals are, respectively, output therefrom.
  • one or the other of the enabling signals 274, 273 may not be transmitted.
  • the result may be that only the encoder that receives the enabling signal is enabled. In this way, a different copy protection status may be designated and enforced for different portions of the content. For instance, a party may have paid to receive audio content (e.g., an announcers description of a sporting event) but may not have paid to also receive the video content (e.g., the video broadcast of the sporting event).
  • the decompressed video signal and the decompressed audio signal may be combined by a combiner circuit 269 to produce an NTSC, PAL, HDTV, etc. composite video signal.
  • the video signal may be output in SVHS, RGB, YUV, etc. form.
  • the output video signal is presented, i.e., displayed on a display monitor 265 (e.g., television set, computer monitor, etc. having a cathode ray tube (CRT), a liquid crystal display (LCD), etc.).
  • a display monitor 265 e.g., television set, computer monitor, etc. having a cathode ray tube (CRT), a liquid crystal display (LCD), etc.
  • Fig. 4 depicts an illustrative communication network 450 in accordance with an embodiment of the present invention wherein a source device 430 provides content to a sink device 440 in the form of a digital data stream.
  • a display monitor 465 is provided to display the content that operates in a similar way to the display monitor 265 shown in Fig. 3.
  • the embodiment shown in Fig. 4 operates similar to the embodiment shown in Fig. 3. For the sake of brevity, only selected portions of the operation of the embodiment shown in Fig. 4 will be described in detail below.
  • the digital data stream contains digital content, which is combined together with a ticket, a watermark, and a time reference (TD) by a copy protection authorization circuit 421.
  • TD time reference
  • the source device 430 may be a Digital Video Disc (DVD) player, a Digital Video Cassette Recorder (DVCR), or any other source of digital content that is known in the art.
  • the source device 430 may receive digital content (e.g., a digital A/V signal) in a secure way through input 410 from a content service provider as shown.
  • the source device 430 reads digital content directly from a physical medium, such as a DVD
  • the physical medium will contain a physical mark (P), as discussed above, that is embedded into the physical medium.
  • the physical mark (P) may not be removed from the physical medium without largely destroying the physical medium itself.
  • the digital content will contain physical mark (P) data.
  • the physical mark (P) data is embedded into the digital content in such a way that an attempt to separate the physical mark (P) data and the digital content would result in largely degrading the digital content.
  • the source device 430 contains the copy protection authorization circuit 421 that sets the copy protection status of the digital content.
  • the copy protection authorization circuit 421 contains a processor 414 and a clock 416.
  • the processor 414 utilizes the physical mark (P) data and a time reference signal (TD), received from the clock 416, to create a ticket and a watermark.
  • the time reference signal (TD) is a representation, such as a digital representation, of the time and date when creation of the ticket and watermark is commenced as discussed above.
  • the processor 414 may be a microprocessor or simply a fixed or reconfigurable hardware device that performs mathematical operations, such as a hashing function, a concatenation function, etc.
  • the ticket and watermark are produced utilizing the physical mark (P) data and the time reference signal
  • TD time reference signal
  • other mathematical combinations of the physical mark (P) data and the time reference signal (TD) may be utilized for producing the ticket and the watermark including additional hashing and/or concatenation operations.
  • at least the ticket should be produced through the combination of the physical mark (P) data and the time reference signal (TD).
  • the watermark should be produced by at least performing a single one-way operation on the ticket.
  • the ticket is utilized to indicate the copy protection status of the digital content (e.g., a copy protection status of copy- never).
  • the watermark is embedded into the digital content in such a way that the watermark can not be removed from the digital content without largely degrading the digital content.
  • the digital content, with the watermark embedded therein, is then transmitted along with the ticket and the time reference signal (TD) via a transmission channel 460 to the sink device 440.
  • the transmission channel 460 may be an IEEE 1394 firewire Bus, a telephone network, a cable television network, a computer data network, a terrestrial broadcast system, a direct broadcast satellite network, etc., or some combination thereof.
  • the sink device 440 contains a copy protection status determination circuit 470 that receives the signal from the transmission channel 460 and extracts the watermark (W), the ticket, and the time reference signal (TD) .
  • the copy protection status determination circuit 470 operates in a similar way to the copy protection determination circuit 270 shown in Fig. 3. First the time reference signal (TD) is compared to a real time clock reference signal derived from a clock 472 located at the sink device 440 to determine if the time reference signal (TD) is within an acceptable window of the real time clock reference signal. In the event that the time reference signal (TD) is within the acceptable window, then the ticket is processed by a processor 475 and compared to the watermark to determine the copy protection status of the digital content.
  • the processor 475 may be a microprocessor or simply a fixed or reconfigurable hardware device that may perform mathematical operations, such as a hashing function, a concatenation function, etc.
  • the operation is enabled to proceed.
  • the operation is not enabled to proceed. For instance, if the copy protection status of the digital content is determined to be copy-never and yet the selected operation is record, the sink device will not be enabled to record the digital content. Similar as discussed above, when the time reference signal is not within an acceptable window of the real time clock reference signal, the watermark is not present, the ticket does not properly compare to the watermark, or some other portion of the copy protection determination process fails, the digital content is discarded. In addition, when the copy protection determination process fails, no operation regarding the digital content is enabled at the sink device.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word "comprising” does not exclude the presence of other elements or steps than those listed in a claim.
  • the invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means can be embodied by one and the same item of hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Storage Device Security (AREA)
  • Television Signal Processing For Recording (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Television Systems (AREA)

Abstract

A copy protection system for protecting content wherein a ticket and a watermark are created, utilizing a first time reference (216) and a one-way function, to indicate the copy protection status of the content. A source device (230) produces the ticket and watermark using a first time reference and a hashing function. The source device provides a data stream containing the content, the ticket, the watermark, and the first time reference to the receiver device (240). The receiver device determines if the first time reference is contained within a time window determined by a second time reference (272). When, the first time reference is contained within the time window, the receiver compares the ticket to the watermark using the first time reference and the one-way function, and based on the comparison, produces a signal indicating the copy protection status of the content.

Description

Use of a Watermark for the Purpose of Copy Protection.
Field of the Invention
This invention generally relates to a system for protecting content. Specifically, the present invention pertains to utilizing a ticket and a watermark to indicate the copy protection status of content.
Background of the Invention
The ability to transmit digital information securely is increasingly important. Owners of content want to be able to provide the content to authorized users without having the content utilized by unauthorized users. However, one problem with digital content is that an exact copy can be made without any degradation in the quality of the copy. Therefore, the copying of digital content is very attractive to pirating operations or attackers.
Both small-scale and commercial pirates are interested in defeating copyprotected content in order to produce and sell illegal copies of the content. By avoiding payments to the rightful owner of the copy-protected content, the pirates may reap large profits. Typically, the pirate may take advantage of the difference in release windows in order access high value content and distribute it.
For instance, in the movie industry, release windows are utilized to maximize profit from content. The essence of these release windows is to first release the content to a premium service such as a pay-per-view service or a video on demand service. Thereafter, the content may be released on a lower price service such as a home-box-office service. At this time, the content may also be available to a consumer through a purchased storage medium such as a Digital Video Disc (DVD).
Pirates however, frustrate the use of these release windows by pirating the content that is available through the premium service and then releasing pirated versions of the content to the public. This may cause substantial financial losses to the rightful owners of the content. Accordingly, a successful copy protection scheme should at least frustrate a pirates attempt for a sufficient period of time till the legitimate owner of the content may reap their rightful profits. Beyond some level of attacker, the expense of defeating the attacker exceeds a reasonable limit whereby the device must be priced beyond what consumer is willing to pay. Thus, a copy protection solution must be cost effective but secure against a large number of attackers. A cost-effective method of copy protection is discussed in detail by Jean-Paul
Linnartz et al., in Philips Electronics Response to Call for Proposals Issued by the Data Hiding Subgroup Copy Protection Technical Working Group, July 1997 ("Linnartz"). Within a digital transmission, such as an MPEG transport stream, additional data may be embedded within the transport stream to set the copy protection status of content contained within the digital transmission. For instance, the desired copy protection status may be "copy-once", "no-more- copy", "copy-never", and "copy-freely". Content that has a status of copy-once may be played and copied. During copying, the copy-once content is altered such that the content is in the no- more-copy state. Copy-never content is content that may only be played and may not be copied. Copy-freely content may be played and copied without restriction. The additional data may take the form of a digital watermark. The watermark may be embedded directly into the content so that removal of the watermark will degrade the quality of the content. The watermark may be utilized as part of the copy protection scheme. As an example, the copy-freely state may be designated by the lack of a watermark within the content. In operation, a transmission, such as a digital transmission, is sent from a source device and received by a receiving device. A source device is a device that is writing content onto a data bus, initiating a broadcast transmission, initiating a terrestrial transmission, etc. A sink device is a device that reads content from the data bus, etc.
Fig. 1 shows a typical system for the transmission of content. In Fig. 1, the source device is a broadcast initiator 101 that utilizes a transmitting antenna 102 to transmit content. The sink device is a broadcast receiver, such as a set-top-box (STB) 104 that utilizes a receiving antenna 103 for receiving the transmitted content. The STB 104 is shown connected to a display device 105, a player 106, and a player/recorder 107, through a bus 108. The term bus is utilized herein to refer to any system for connecting one device to another device. The bus may be a hard wired system such as a coaxial wire, an IEEE 1553 bus, etc., or the bus may be a wireless system such as an infra-red or broadcast system. Several of the devices shown in Fig. 1 may at one time act as a source device and at another time act as a sink device. The STB 104 may be a sink for the broadcast transmission and be a source for a transmission on the bus 108. The player/recorder 107 may be a source/sink of a transmission to/from, respectively, the bus 108.
In the copy protection scheme discussed by Linnartz, a watermark (W) is embedded within transmitted content. A ticket is transmitted along with the transmitted content. The embedded watermark and the ticket together are utilized to determine the copy protection status of the transmitted content. The watermark may be embedded into the content by at least two known methods. One method embeds the watermark (W) in the MPEG coding of the content. Another method embeds the watermark (W) in the pixel data of the content. The ticket (T) is cryptographically related to the watermark (W). Performing one or more one-way functions on the ticket (T) derives the watermark (W). By use of the term one-way function, what is meant is that it is computationally unfeasible to compute the inverse of the function. An example of a publicly known cryptographic one-way function is a hashing function, such as secure hash algorithm one (SHA-1) or RACE Integrity Primitives Evaluation Message Digest (RIPEMD). Computing an inverse means finding which particular x0 leads to a given y0 with yo=F(x0). The term unfeasible is intended to mean that the best method will take too long to be useful for a pirate. For instance, the time that is required for a pirate to compute the inverse of a hashing function is too long for the pirate to frustrate the intended release window for protected content. The most efficient method known to find such an x0 may be to exhaustively search all possible bit combinations of x0 and to compute and verify F(x0) for each attempt. In other cases, there may be a more efficient method than an exhaustive search to compute an inverse of a one-way function, yet these methods are still too time consuming to be feasible for the pirate.
The bit content of the ticket (T) is generated from a seed (U). The content owner provides the seed (U). From the seed (U), a physical mark (P) is created. The physical mark (P) may be embedded on a storage medium such as a Read-Only Memory (ROM) disk. Performing one or more one-way functions on the physical mark (P), produces the ticket (T). The number of functions performed on the physical mark (P) to create the ticket (T) depends on the copy protection intended for the content. In accordance with the system, the ticket (T) changes state during every passage of a playback device (e.g., a source device) and a recording device (e.g., a sink device). As discussed above, the state modifications are cryptographically irreversible and reduce the remaining copy and play rights of the content that are granted by the ticket (T). In this way, the ticket (T) indicates the number of sequential playback and recordings that may still be performed and acts as a cryptographic counter that can be decremented but not incremented.
It should be noted that the copy protection scheme only protects content on compliant systems. A compliant system is any system that obeys the copy protection rules described above and hereinafter. A non-compliant system may be able to play and copy material irrespective of the copy protection rules. However, a compliant system should refuse to play copies of content illegally made on a non-compliant system.
In accordance with the copy protection scheme, a physical mark (P) (e.g., data) is stored on a storage medium and is not accessible by other user equipment. The physical mark (P) data is generated at the time of manufacturing of the storage medium as described above and is attached to the storage medium in a way in which it is difficult to remove the physical mark (P) data without destroying the storage medium. The application of a one-way cryptographic function, such as a hashing function, to the physical mark (P) data four times results in a watermark. A watermark by itself may indicate whether or not content stored on the storage medium is copy-once or copy-never. For instance, the absence of a watermark may indicate that the content may be copied freely. The presence of the watermark without a ticket on a storage medium may indicate copy-never content.
When the content is transmitted over a bus or other transmission medium, the physical mark (P) data is hashed twice to generate a ticket. When a compliant player receives the content, the ticket is hashed twice and matched to the watermark. In the case where the twice hashed ticket and the watermark match, the content is played. In this way, a party may not substitute a false ticket along with the content to frustrate the copy protection scheme. In the case were there is a ticket but no watermark in the content, a compliant system will refuse to play the content.
When a compliant recorder reads the content, the watermark is checked to see if the material is copy-freely, copy-once, or copy-never. When there is no watermark, the content is copy-freely and may be copied freely as discussed above. When the content contains a watermark but no ticket, the content is copy-never and a compliant recorder will refuse to copy the content however, a compliant player will play the content. When the content is copy- once, the content contains both a watermark and a ticket, the ticket is hashed twice and compared to the watermark. In the case where the watermark matches the twice hashed ticket, the content may be recorded along with a once-hashed ticket and the watermark, thereby creating copy-no-more content (e.g., content with a once-hashed ticket and a watermark). It should be noted that in a broadcast system, such as a pay-per-view system, a copy-never state may be indicated by the presence of a once-hashed ticket and a watermark.- Both copy-no-more stored content and copy-never broadcast content are treated by a compliant system similarly. The content containing the once-hashed ticket may be played but may not be recorded in a compliant system. In the event that a party tries to record the content with the once-hashed ticket, a compliant recorder will first twice-hash the once-hashed ticket and compare the result (e.g., a thrice-hashed ticket) with the watermark. Since the thrice- hashed ticket will not match the watermark, the compliant recorder will refuse to record the content. A compliant player that receives the once-hashed ticket will hash the once- hashed ticket and compare the result (e.g., a twice-hashed ticket) to the watermark. Since the twice-hashed ticket matches the watermark, the compliant player will play the content.
However, a problem exists wherein a non-compliant recorder receives content containing a twice-hashed ticket and a watermark. In the event that a non-compliant recorder does not alter the ticket upon receipt or recording, the non-compliant recorder may make multiple copies of the ticket and the watermark which will play on a compliant player and which may be recorded on a compliant recorder. The same problem can exist where a non- compliant recorder receives content containing a thrice-hashed ticket and a watermark indicating copy-no-more content. In this case, the non-compliant recorder may make multiple copies of the thrice-hashed ticket and the watermark that will play on the compliant player. In a case wherein the player receives the content directly from a read only medium, such as a Compact Disc ROM (CD-ROM), a physical mark can be embedded in the physical medium of the CD-ROM that is produced by an authorized manufacturer. The player may then check the physical mark to ensure that the content is being received from an authorized medium. In this way, if a pirate makes an unauthorized copy, the physical mark will not be present on the unauthorized copy and a compliant player will refuse to play the content. However, in the case of broadcast data for instance, wherein a player does not read content directly from the read-only medium, this method of copy protection is unavailable. Accordingly, it is an object of the present invention to overcome the disadvantages of the prior art. It is also an object of the present invention to provide a method of transmitting copy protected copy-never content that will prevent a pirate from making copies that will play on a compliant player. Summary of the Invention
These and other objects of the present invention are achieved by a copy protection system for protecting content wherein a ticket and a watermark are utilized to indicate the copy protection status of the content. To this end; the invention provides a content protecting method, a copy protection system, a source device and a receiver device as defined in the independent claims. The dependent claims define advantageous embodiments. In accordance with the present invention, the ticket and watermark are created utilizing a first time reference (TD) and a one-way function. The system utilizes a source device to produce the ticket and watermark. The watermark is then embedded into the content in such a way that the watermark can not be removed from the content without largely degrading the content. The ticket is then transmitted, along with the first time reference (TD), the embedded watermark, and the content, to a receiver device. Prior to playing, recording, etc, the receiver device verifies the ticket and watermark utilizing the first time reference, and thereby, determines the copy protection status of the content. During authorized creation of a medium such as a CD_ROM containing content, a physical mark is placed on the CD-ROM that is not accessible by typical user equipment. The data for the physical mark may be calculated by processing (e.g., performing a hashing function) seed data. Seed data is determined utilizing randomly occurring phenomena such as natural physical phenomena (e.g., the number of gamma ray emissions from the sun in a determined period of time). The methods for determining suitable seed data are known by a person of ordinary skill in the art. The seed data is selected such that there is a negligibly small chance that a party would guess the seed data.
At the source device (e.g., a broadcasting device), in a preferred embodiment, a one-way function, such as a hashing function, is performed on the physical mark data to produce a ticket (T). The ticket (T) is combined with the first time reference (TD), utilizing for instance a concatenation function, to produce a result (T.TD). A hashing function is performed on the result (T.TD) to produce a ticket (T). The ticket (T) is combined with the first time reference to produce a result ( .TD). The hashing function is performed on the result (T'.TD) to produce a ticket (T"). The ticket (T") is combined with the first time reference (TD) to produce a result (T".TD). The hashing function is performed on the result (T.TD) to produce a ticket (T"). The ticket (T") is combined with the first time reference (TD) to produce a result (T'".TD). The hashing function is performed on the result (T'.TD) to produce the watermark. The ticket (T) may be utilized to indicate that the content may be copied once (e.g., a copy protection status of copy-once). The ticket (T") may be utilized to indicate that the content may never be copied (e.g., a copy protection status of copy-never). The source device transmits to the receiver device a data stream containing the content with the watermark embedded therein, the first time reference (TD), and the ticket (T"), for instance if the copy protection status of the content is copy-once. Alternate tickets, such as the tickets discussed above, may be transmitted in the data stream to indicate an alternate copy protection status for the content.
It should be noted that although in the above-described embodiment, the time reference (TD) is concatenated with every hash, it would be sufficient in some circumstances that the time reference (TD) is only utilized in a single operation for deriving the ticket. The receiver device receives the data stream, and if the first time reference (TD) is contained within a time window determined by a second time reference, the receiver device compares the ticket (T) to the watermark using the first time reference (TD) and the hashing function. Specifically, at the receiver device, the ticket (T) is combined with the first time reference, and the hashing function is performed on the result (T.TD) to produce the ticket (T"). The ticket (T") is combined with the first time reference, and the hashing function is performed on the result (T'.TD) to produce a result (T") that should equal the watermark (W). In a case when the result (T"") equals the watermark (W), the receiver device makes the content available for copying and/or playing. However, if the receiver device receives the data stream and the first time reference (TD) is not contained within the time window determined by the second time reference, then the receiver device will not make the content available for copying or playing. In addition, even when the first time reference (TD) is contained within the time window determined by the second time reference, if the result (T"") is not equal to the watermark (W), then the receiver device will not make the content available for copying or playing.
Brief Description of the Drawings
The following are descriptions of embodiments of the present invention that when taken in conjunction with the following drawings will demonstrate the above noted features and advantages, as well as further ones. It should be expressly understood that the drawings are included for illustrative purposes and do not represent the scope of a present invention. The invention is best understood in conjunction with the accompanying drawings in which:
Fig. 1 shows a conventional system for the transmission of content; Fig. 2 shows an illustrative communication network in accordance with an embodiment of the present invention;
Fig. 3 shows an illustrative communication network in accordance with an embodiment of the present invention wherein a source device provides content to a sink device in the form of an MPEG transport stream; and
Fig. 4 shows an illustrative communication network in accordance with an embodiment of the present invention wherein a source device provides digital content to a sink.
Detailed Description of the Invention
Fig. 2 depicts an illustrative communication network in accordance with an embodiment of the present invention. A source device 230, such as a Digital Video Disc (DVD), a Digital Video Cassette Recorder (DVCR), or another source of content, having a time reference, such as a clock 216, transmits content to a sink device 240 via a transmission channel 260. The transmission channel 260 may be a IEEE- 1394 (firewire) bus, a telephone network, a cable television network, a computer data network, a terrestrial broadcast system, a direct broadcast satellite network, etc., or some combination thereof. As such, the transmission channel 260 may include RF transmitters, satellite transponders, optical fibers, coaxial cables, unshielded twisted pairs of wire, switches, in-line amplifiers, etc. The sink device contains a time reference, such as a clock 272, that is utilized in determining the copy protection status of the received content. In the event that the copy protection status of the received content is such that the content may be displayed, the content is provided to a display device 265 for display thereon. The content may be provided from the source device 230 in the form of a Moving Picture Experts Group (MPEG) compliant transport stream, such as an MPEG-2 compliant transport stream, or as any other data stream that is known in the art for transmitting content. Fig. 3 depicts an illustrative communication network 250 in accordance with an embodiment of the present invention wherein the source device 230 provides content to the sink device 240 in the form of an MPEG transport stream. An audio-video signal, such as an analog NTSC signal, a PAL signal, an HDTV signal, etc., is divided into audio and video component signals by an audio/video divider 210. The audio signal is digitized, encoded, and combined with a ticket, a watermark, and a time reference by an audio encoder 254. The video signal is converted to a standard input format, such as luminance signal Y and chrominance signals Cr and Cb, digitized, and combined with a ticket, a watermark, and a time reference by a video encoder 252, as described in more detail below. In the embodiment shown, copy protection authorization circuits 231 and 221 are, respectively, connected to the audio decoder 254 and the video encoder 252. In an alternate embodiment, either one of copy protection authorization circuits 231 and 221 may be utilized. For the sake of brevity, only copy protection authorization circuit 221 will be described herein. However, the operation of copy protection authorization circuit 221, as described herein below, also applies to copy protection authorization circuit 231.
The copy protection authorization circuit 221 (231) contains a processor 214 (232), a clock 216 (234), a memory 222 (238), and an input device 220 (236). The input device 220 is utilized to input seed data to the processor 214, either directly, or through the memory 222. The input device 220 may be a keyboard, a smart card reader, a floppy disk reader, a Compact Disc (CD) reader, etc. The input device 220 may also receive seed data derived from an A/V signal as shown. The input device 220 may also be utilized to indicate to the processor 214 the desired copy protection status of the content. The processor 214 utilizes the seed data and a time reference signal (TD), received from the clock 216, to create a ticket and a watermark. The time reference signal (TD) is a representation, such as a digital representation, of the time and date when creation of the ticket and watermark is commenced. In a preferred embodiment, a one-way operation, such as a hashing function, is performed on the seed data to derive a physical mark (P). For the sake of brevity, it can be said that computing a hash of the seed data derives the physical mark (P):
H(seed)=physical mark (P). (1)
In alternate embodiments, the processor 214 may simply be a fixed hardware device that is configured for performing the hashing function as well as other mathematical functions (e.g., a concatenation function). In addition, there may be no memory 222 and/or input device 220. The video encoder 252 may also, or alternatively, be an integral part of the copy protection authorization circuit 221. In one embodiment, data representing the physical mark (P) is transmitted along with the video signal and therefore, there is no need to derive the physical mark (P) data. In any event, a hash of the physical mark (P) data is computed to derive the ticket (T):
H(physical mark (P) data) = T. (2) The ticket (T) is then combined with the time reference signal (TD), for instance utilizing a concatenation operation, to produce a combined result (T.TD). The watermark (W) is then . created by the following sequence:
H(T.TD) = T; (3)
H(T'.TD)= T"; (4)
H(T'.TD) = T"; (5)
H(T"'.TD) = W. (6)
The ticket (T) is utilized to indicate that the content may be copied once (e.g., a copy protection status of copy-once). The ticket (T") is utilized to indicate that the content may never be copied (e.g., a copy protection status of copy-never).
The watermark, the first time reference (TD), and the ticket (T), for instance if the desired copy protection status of the content is copy-once, are then transmitted to the video encoder 252. At the video encoder 252, the watermark (W) is embedded into the digitized video signal in such a way that the watermark (W) may not be removed from the digitized video signal without largely degrading the digitized video contained therein. Alternate tickets, such as the other tickets discussed above, may be transmitted to the video encoder 252 to indicate an alternate copy protection status of the content. It should be noted that similar to the above described process for the video encoder 252, the ticket (T), the watermark (W), and the time reference signal (TD) may also, or alternatively, be transmitted to the audio encoder 254 from the copy protection authorization circuit 231.
The signal output from the video encoder 252 and the audio encoder 254 may be referred to as compressed signals. The compressed signals contain the ticket, the first time reference (TD), the embedded watermark, and the respective digitized video and audio signals.
The compressed signals output from the video encoder 252 and the audio encoder 254, respectively, are input to a transport stream multiplexer 256. The video and audio signal output from the respective encoders are referred to as elementary streams. The transport stream multiplexer 256, illustratively, may also receive elementary streams from a number of other sources (e.g., a source 212). The content contained in the elementary streams from the source 212 may also have a copy protection status that is the same or different from the copy protection status of the signals received from the video and audio encoders 252, 254. The transport stream multiplexer 256 multiplexes the elementary streams of one or more programs into one or more transport streams. The transport streams output by the . transport stream multiplexer 256 are input to a channel encoder 258. The channel encoder 258 encapsulates the one or more transport streams into one or more channel layer streams and modulates each channel layer stream onto a carrier signal or frequency channel. The channel layer streams output by the channel encoder 258 are then transmitted via the transmission channel 260. As discussed above, the transmission channel 260 may be an IEEE 1394 firewire Bus, a telephone network, a cable television network, a computer data network, a terrestrial broadcast system, a direct broadcast satellite network, etc., or some combination thereof. The transmitted channel streams are received at a channel decoder 268. The channel decoder 268 demodulates the channel streams for the respective carrier signals or frequency channels and recovers the one or more transport streams from the received channel streams. The recovered transport streams are then input to a transport stream demultiplexer 266. The transport stream demultiplexer 266 extracts particular elementary streams from the input transport streams corresponding to one or more user selected programs. An extracted video signal elementary stream is input to a video decoder 262 and a copy protection status determination circuit 270. An extracted audio signal elementary stream is input to an audio decoder 264 and the copy protection status determination circuit 270.
The copy protection status determination circuit 270 extracts the watermark (W), the ticket (T), and the time reference signal (TD) from the video signal elementary stream and/or the audio signal elementary stream to determine the copy protection status of the video and/or audio signals. The copy protection status determination circuit 270 first compares the time reference signal (TD) to a real time clock reference signal derived from a clock 272 located at the sink device 240. In accordance with the present invention, the clock 272 and the clocks 216, 234 are synchronized (e.g., maintain real time). Synchronization may be maintained by each receiving a broadcast time reference signal, or any other synchronization method that is known in the art. Preferably, the clocks 272, 216, and 234 are synchronized in a secure manner that is not generally accessible to a user (e.g., a user may not reset the clocks). In the event that the time reference signal (TD) is not within an acceptable window of time, the video decoder 262 and the audio decoder 264 do not receive enabling signals 274, 273 respectively, from the copy protection status determination circuit 270. An acceptable window of time may be, for instance, +/- 20 minutes of the real time clock reference signal. Therefore, the elementary streams received from the transport stream demultiplexer 266 are not decoded. In the event that the time reference signal (TD) is within the acceptable window, then the ticket is compared to the watermark to determine the copy protection status of the video and/or audio signals. Specifically, the ticket T" is combined with the time reference signal (TD), and hashed once to produce a result (T"). The result (T") is combined with the time reference signal (TD) and hashed again to produce a second result (T"). The second result (T"") is then compared to the watermark:
H(H(T".TD).TD) =? W. (7)
In the event that the second result (T") does not equal the watermark, then the video decoder 262 and the audio decoder 264 do not receive enabling signals 274, 273, respectively, from the copy protection status determination circuit 270. Therefore, the elementary streams received from the transport stream demultiplexer 266 are discarded and are not decoded.
However, if the second result (T"") does equal the watermark, then the video decoder 262 and audio decoder 264 receive enabling signals 274,273, respectively, from the copy protection status determination circuit 270. In response to the received enabling signals 274,273, the elementary streams received from the transport stream demultiplexer 266 are decoded by the video decoder 262 and audio decoder 264, respectively, and decompressed video and audio signals are, respectively, output therefrom. In an alternate embodiment, one or the other of the enabling signals 274, 273 may not be transmitted. In these embodiments, the result may be that only the encoder that receives the enabling signal is enabled. In this way, a different copy protection status may be designated and enforced for different portions of the content. For instance, a party may have paid to receive audio content (e.g., an announcers description of a sporting event) but may not have paid to also receive the video content (e.g., the video broadcast of the sporting event).
Illustratively, the decompressed video signal and the decompressed audio signal may be combined by a combiner circuit 269 to produce an NTSC, PAL, HDTV, etc. composite video signal. Alternatively the video signal may be output in SVHS, RGB, YUV, etc. form. In any event, the output video signal is presented, i.e., displayed on a display monitor 265 (e.g., television set, computer monitor, etc. having a cathode ray tube (CRT), a liquid crystal display (LCD), etc.).
Fig. 4 depicts an illustrative communication network 450 in accordance with an embodiment of the present invention wherein a source device 430 provides content to a sink device 440 in the form of a digital data stream. A display monitor 465 is provided to display the content that operates in a similar way to the display monitor 265 shown in Fig. 3. The embodiment shown in Fig. 4 operates similar to the embodiment shown in Fig. 3. For the sake of brevity, only selected portions of the operation of the embodiment shown in Fig. 4 will be described in detail below. The digital data stream contains digital content, which is combined together with a ticket, a watermark, and a time reference (TD) by a copy protection authorization circuit 421. The source device 430 may be a Digital Video Disc (DVD) player, a Digital Video Cassette Recorder (DVCR), or any other source of digital content that is known in the art. In addition, the source device 430 may receive digital content (e.g., a digital A/V signal) in a secure way through input 410 from a content service provider as shown.
In a case wherein the source device 430 reads digital content directly from a physical medium, such as a DVD, the physical medium will contain a physical mark (P), as discussed above, that is embedded into the physical medium. In this way, the physical mark (P) may not be removed from the physical medium without largely destroying the physical medium itself. In a case wherein the digital content is provided to the source device 430 through the input 410, the digital content will contain physical mark (P) data. Preferably, the physical mark (P) data is embedded into the digital content in such a way that an attempt to separate the physical mark (P) data and the digital content would result in largely degrading the digital content. The source device 430 contains the copy protection authorization circuit 421 that sets the copy protection status of the digital content. The copy protection authorization circuit 421 contains a processor 414 and a clock 416. The processor 414 utilizes the physical mark (P) data and a time reference signal (TD), received from the clock 416, to create a ticket and a watermark. The time reference signal (TD) is a representation, such as a digital representation, of the time and date when creation of the ticket and watermark is commenced as discussed above.
It should be noted that the processor 414 may be a microprocessor or simply a fixed or reconfigurable hardware device that performs mathematical operations, such as a hashing function, a concatenation function, etc. In a preferred embodiment, the ticket and watermark are produced utilizing the physical mark (P) data and the time reference signal
(TD) as discussed above. However, it should be noted that other mathematical combinations of the physical mark (P) data and the time reference signal (TD) may be utilized for producing the ticket and the watermark including additional hashing and/or concatenation operations. However, at least the ticket should be produced through the combination of the physical mark (P) data and the time reference signal (TD). Additionally, the watermark should be produced by at least performing a single one-way operation on the ticket. The ticket is utilized to indicate the copy protection status of the digital content (e.g., a copy protection status of copy- never). The watermark is embedded into the digital content in such a way that the watermark can not be removed from the digital content without largely degrading the digital content. The digital content, with the watermark embedded therein, is then transmitted along with the ticket and the time reference signal (TD) via a transmission channel 460 to the sink device 440. The transmission channel 460 may be an IEEE 1394 firewire Bus, a telephone network, a cable television network, a computer data network, a terrestrial broadcast system, a direct broadcast satellite network, etc., or some combination thereof.
The sink device 440 contains a copy protection status determination circuit 470 that receives the signal from the transmission channel 460 and extracts the watermark (W), the ticket, and the time reference signal (TD) . The copy protection status determination circuit 470 operates in a similar way to the copy protection determination circuit 270 shown in Fig. 3. First the time reference signal (TD) is compared to a real time clock reference signal derived from a clock 472 located at the sink device 440 to determine if the time reference signal (TD) is within an acceptable window of the real time clock reference signal. In the event that the time reference signal (TD) is within the acceptable window, then the ticket is processed by a processor 475 and compared to the watermark to determine the copy protection status of the digital content. The processor 475 may be a microprocessor or simply a fixed or reconfigurable hardware device that may perform mathematical operations, such as a hashing function, a concatenation function, etc.
When an operation being selected at the sink device 440 does not violate the determined copy protection status of the digital content, the operation is enabled to proceed. When an operation being selected at the sink device 440 does violate the determined copy protection status of the digital content, the operation is not enabled to proceed. For instance, if the copy protection status of the digital content is determined to be copy-never and yet the selected operation is record, the sink device will not be enabled to record the digital content. Similar as discussed above, when the time reference signal is not within an acceptable window of the real time clock reference signal, the watermark is not present, the ticket does not properly compare to the watermark, or some other portion of the copy protection determination process fails, the digital content is discarded. In addition, when the copy protection determination process fails, no operation regarding the digital content is enabled at the sink device.
Finally, the above-discussion is intended to be merely illustrative of the invention. Numerous alternative embodiments may be devised by those having ordinary skill in the art without departing from the scope of the following claims.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of other elements or steps than those listed in a claim. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means can be embodied by one and the same item of hardware.

Claims

CLAIMS:
1. A method of protecting content transmitted as a stream of data, the method comprising the steps of: determining time data utilizing a first clock reference (216); calculating a watermark utilizing seed data and said time data; calculating a ticket utilizing said seed data and said time data, said watermark and ticket together indicating a copy protection status of the content; transmitting said stream of data, said watermark, said ticket, and said time data to a receiving device (240); comparing said time data to a time window determined by a second clock reference (272) at said receiving device (240); and comparing, at said receiving device (240), said ticket and said watermark utilizing said time data to determine the copy protection status of the content if said time data is contained within said time window.
2. The method of claim 1, wherein said step of calculating said watermark comprises the steps of: combining said seed data and said time data, and computing at least one, one-way operation on said combined seed and time data.
3. The method of claim 1, wherein said step of calculating said ticket comprises the steps of: combining said seed data and said time data, and computing at least one, one-way operation on said combined seed and time data.
4. The method of claim 1, wherein said step of comparing said ticket and said watermark comprises the steps of: combining said ticket and said time data, computing at least one, one-way operation on said combined ticket and time data to produce a result, and comparing said result to said watermark.
5. The method of claim 1, further comprising the step of selecting said one-way function to be a hashing function.
6. A copy protection system for protecting content wherein a ticket and a watermark indicates a copy protection status of the content, the system comprising: a source device (230) configured to produce said ticket and watermark using a first time reference and a one-way function, and to provide a data stream containing said content, said ticket, said watermark, and said first time reference; and a receiver device (240) configured to receive said data stream, wherein if said first time reference is contained within a time window determined by a second time reference, said receiver (240) is further configured to compare said ticket to said watermark using said first time reference and said one-way function, and to produce a signal indicating the copy protection status of the content.
7. The system of claim 6, wherein said source device (230) is further configured to produce said ticket and watermark using seed data.
8. A source device (230) for protecting content wherein a ticket and a watermark indicate a copy protection status of the content, said source device comprising: a time reference device (216) configured to produce a time reference signal; and a processor (214) configured to receive said time reference signal, to produce said ticket and watermark using said time reference and a one-way function, and to provide digital data containing said content, said ticket, said watermark, and said time reference.
9. A receiver device (240) for receiving digital data containing content, a ticket, a watermark, and a first time reference, wherein said ticket and watermark together indicate a copy protection status of the content; said receiver comprising: a time reference device (272) configured to produce a second time reference signal; and a processor (270), wherein if said first time reference is contained within a time window determined by said second time reference, said processor (270) is configured to receive said digital data, configured to combine said ticket with said first time reference to produce a first result, configured to perform a one-way function on said first result to produce a second result, and configured to compare said second result to said watermark to determine said copy protection status of said content.
PCT/EP1999/004705 1998-07-14 1999-07-02 Use of a watermark for the purpose of copy protection WO2000004712A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99934588A EP1038395A1 (en) 1998-07-14 1999-07-02 Use of a watermark for the purpose of copy protection
BR9906596-7A BR9906596A (en) 1998-07-14 1999-07-02 Process for protecting content transmitted as a data stream, copy protection system for protecting content, and source device for protecting content, and receiving device for receiving content
KR1020007002685A KR20010023970A (en) 1998-07-14 1999-07-02 Use of a watermark for the purpose of copy protection
JP2000560724A JP2002521875A (en) 1998-07-14 1999-07-02 Using watermarks to prevent copy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US9272898P 1998-07-14 1998-07-14
US60/092,728 1998-07-14
US09/257,079 US6490355B1 (en) 1998-07-14 1999-02-24 Method and apparatus for use of a time-dependent watermark for the purpose of copy protection
US09/257,079 1999-02-24

Publications (1)

Publication Number Publication Date
WO2000004712A1 true WO2000004712A1 (en) 2000-01-27

Family

ID=26785980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/004705 WO2000004712A1 (en) 1998-07-14 1999-07-02 Use of a watermark for the purpose of copy protection

Country Status (8)

Country Link
US (2) US6490355B1 (en)
EP (1) EP1038395A1 (en)
JP (1) JP2002521875A (en)
KR (1) KR20010023970A (en)
CN (1) CN1149839C (en)
BR (1) BR9906596A (en)
MY (1) MY126472A (en)
WO (1) WO2000004712A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523023A (en) * 2000-02-07 2003-07-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Content protection from illegal duplication by proof of existence of complete data set via self-indicating part
EP1376304A2 (en) * 2002-06-17 2004-01-02 NTT DoCoMo, Inc. Communication terminal for restricting the use of content
US7017045B1 (en) 2000-08-22 2006-03-21 Koninklijke Philips Electronics N.V. Multimedia watermarking system and method

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614914B1 (en) * 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US8505108B2 (en) 1993-11-18 2013-08-06 Digimarc Corporation Authentication using a digital watermark
US7756892B2 (en) * 2000-05-02 2010-07-13 Digimarc Corporation Using embedded data with file sharing
US7644282B2 (en) 1998-05-28 2010-01-05 Verance Corporation Pre-processed information embedding system
US6865675B1 (en) * 1998-07-14 2005-03-08 Koninklijke Philips Electronics N.V. Method and apparatus for use of a watermark and a unique time dependent reference for the purpose of copy protection
US7336712B1 (en) * 1998-09-02 2008-02-26 Koninklijke Philips Electronics N.V. Video signal transmission
FR2783658B1 (en) * 1998-09-23 2000-10-13 Thomson Multimedia Sa PROTECTION AGAINST COPYING OF DIGITAL DATA STORED ON AN INFORMATION MEDIUM
US7055034B1 (en) 1998-09-25 2006-05-30 Digimarc Corporation Method and apparatus for robust embedded data
JP2000156678A (en) * 1998-11-19 2000-06-06 Sony Corp Signal processing circuit
JP4101384B2 (en) * 1998-12-28 2008-06-18 株式会社日立製作所 Digital content sales method, apparatus for implementing the same, and medium on which processing program is recorded
JP4238410B2 (en) * 1999-04-09 2009-03-18 ソニー株式会社 Information processing system
US6948069B1 (en) 1999-07-02 2005-09-20 Time Certain, Llc Method and system for determining and maintaining trust in digital image files with certifiable time
US6895507B1 (en) * 1999-07-02 2005-05-17 Time Certain, Llc Method and system for determining and maintaining trust in digital data files with certifiable time
US6898709B1 (en) 1999-07-02 2005-05-24 Time Certain Llc Personal computer system and methods for proving dates in digital data files
US8868914B2 (en) * 1999-07-02 2014-10-21 Steven W. Teppler System and methods for distributing trusted time
US7409557B2 (en) 1999-07-02 2008-08-05 Time Certain, Llc System and method for distributing trusted time
JP2001036723A (en) * 1999-07-16 2001-02-09 Sony Corp Method for protecting copyright, information signal transmission system, information signal output device, information signal receiver, and information signal recording medium
JP2001066986A (en) * 1999-08-26 2001-03-16 Sony Corp Transmitter and method, receiver and method, communication system, and program storage medium
US6766102B1 (en) * 1999-09-20 2004-07-20 Digimarc Corporation Methods for reading watermarks in unknown data types, and DVD drives with such functionality
US7356848B1 (en) * 1999-10-19 2008-04-08 Thomson Licensing System and method of verifying authorization for communicating protected content
US6792536B1 (en) 1999-10-20 2004-09-14 Timecertain Llc Smart card system and methods for proving dates in digital files
US20050160272A1 (en) * 1999-10-28 2005-07-21 Timecertain, Llc System and method for providing trusted time in content of digital data files
KR100865247B1 (en) 2000-01-13 2008-10-27 디지맥 코포레이션 Authenticating metadata and embedding metadata in watermarks of media signals
JP2001202338A (en) * 2000-01-20 2001-07-27 Sony Corp System and method for providing contents, device and method for monitoring contents providing condition and device and method for using contents
US6737957B1 (en) 2000-02-16 2004-05-18 Verance Corporation Remote control signaling using audio watermarks
US6999598B2 (en) * 2001-03-23 2006-02-14 Fuji Xerox Co., Ltd. Systems and methods for embedding data by dimensional compression and expansion
US20020169963A1 (en) * 2001-05-10 2002-11-14 Seder Phillip Andrew Digital watermarking apparatus, systems and methods
US20020169721A1 (en) * 2001-05-10 2002-11-14 Cooley William Ray Digital watermarking apparatus, systems and methods
EP1274033A1 (en) * 2001-07-05 2003-01-08 Canon Europa N.V. System, computer program, and device of handling data to be used for returning items
EP1274024A1 (en) * 2001-07-05 2003-01-08 Canon Europa N.V. Method, computer programme, and device of handling data to be used for returning items
JP4934923B2 (en) * 2001-08-09 2012-05-23 ソニー株式会社 Information recording apparatus, information reproducing apparatus, information recording method, information reproducing method, and computer program
JP3832289B2 (en) * 2001-08-20 2006-10-11 ソニー株式会社 Information recording apparatus, video signal output apparatus, stream output method, program, recording medium, and data structure
JP2003108426A (en) * 2001-09-28 2003-04-11 Canon Inc Information providing server, communication terminal, method of controlling the communication terminal, and information providing system
US7519819B2 (en) 2002-05-29 2009-04-14 Digimarc Corporatino Layered security in digital watermarking
US9349411B2 (en) * 2002-07-16 2016-05-24 Digimarc Corporation Digital watermarking and fingerprinting applications for copy protection
EP2782337A3 (en) 2002-10-15 2014-11-26 Verance Corporation Media monitoring, management and information system
US20070100473A1 (en) * 2003-07-01 2007-05-03 Freescale Semiconductor Inc. System and method for synchronization of isochronous data streams over a wireless communication link
CN1839438A (en) * 2003-09-30 2006-09-27 株式会社建伍 Digital watermark information adding device, data reproduction device and data recording device
US20060239501A1 (en) 2005-04-26 2006-10-26 Verance Corporation Security enhancements of digital watermarks for multi-media content
WO2005043797A2 (en) * 2003-10-31 2005-05-12 Warner Bros. Entertainment Inc. Method and system for limiting content diffusion to local receivers
WO2005057356A2 (en) * 2003-12-05 2005-06-23 Motion Picture Association Of America System and method for controlling display of copy-never content
US7538473B2 (en) * 2004-02-03 2009-05-26 S.C. Johnson & Son, Inc. Drive circuits and methods for ultrasonic piezoelectric actuators
US7723899B2 (en) 2004-02-03 2010-05-25 S.C. Johnson & Son, Inc. Active material and light emitting device
US20060023598A1 (en) * 2004-07-30 2006-02-02 Babinski James P Method and apparatus for protecting against copying of content recorded on optical recording media
KR100654796B1 (en) 2004-11-16 2006-12-08 삼성전자주식회사 Data Receiving Apparatus And Control Method Thereof
JP2007005941A (en) * 2005-06-21 2007-01-11 Fuji Xerox Co Ltd Copy system, image forming apparatus, server, image forming method and program
US8020004B2 (en) 2005-07-01 2011-09-13 Verance Corporation Forensic marking using a common customization function
US8781967B2 (en) 2005-07-07 2014-07-15 Verance Corporation Watermarking in an encrypted domain
US8704833B2 (en) 2007-06-06 2014-04-22 Apple Inc. Method and apparatus for displaying a video signal on a computer system
US8259938B2 (en) 2008-06-24 2012-09-04 Verance Corporation Efficient and secure forensic marking in compressed
JP5407482B2 (en) * 2009-03-27 2014-02-05 ソニー株式会社 Information processing apparatus, information processing method, and program
JP2011172156A (en) * 2010-02-22 2011-09-01 Sony Corp Content reproduction system, content receiving apparatus, audio reproduction apparatus, content reproduction method and program
US8838977B2 (en) 2010-09-16 2014-09-16 Verance Corporation Watermark extraction and content screening in a networked environment
US8615104B2 (en) 2011-11-03 2013-12-24 Verance Corporation Watermark extraction based on tentative watermarks
US8533481B2 (en) 2011-11-03 2013-09-10 Verance Corporation Extraction of embedded watermarks from a host content based on extrapolation techniques
US8682026B2 (en) 2011-11-03 2014-03-25 Verance Corporation Efficient extraction of embedded watermarks in the presence of host content distortions
US8923548B2 (en) 2011-11-03 2014-12-30 Verance Corporation Extraction of embedded watermarks from a host content using a plurality of tentative watermarks
US8745403B2 (en) 2011-11-23 2014-06-03 Verance Corporation Enhanced content management based on watermark extraction records
US9323902B2 (en) 2011-12-13 2016-04-26 Verance Corporation Conditional access using embedded watermarks
US9547753B2 (en) 2011-12-13 2017-01-17 Verance Corporation Coordinated watermarking
US9571606B2 (en) 2012-08-31 2017-02-14 Verance Corporation Social media viewing system
US8726304B2 (en) 2012-09-13 2014-05-13 Verance Corporation Time varying evaluation of multimedia content
US8869222B2 (en) 2012-09-13 2014-10-21 Verance Corporation Second screen content
US9106964B2 (en) 2012-09-13 2015-08-11 Verance Corporation Enhanced content distribution using advertisements
US9262794B2 (en) 2013-03-14 2016-02-16 Verance Corporation Transactional video marking system
US9251549B2 (en) 2013-07-23 2016-02-02 Verance Corporation Watermark extractor enhancements based on payload ranking
US9208334B2 (en) 2013-10-25 2015-12-08 Verance Corporation Content management using multiple abstraction layers
CN106170988A (en) 2014-03-13 2016-11-30 凡瑞斯公司 The interactive content using embedded code obtains
FR3063999B1 (en) * 2017-03-16 2021-04-30 Groupe Marais HYDRAULIC BINDER FOR LOW-CARBON MORTAR AND MORTAR CONTAINING SUCH A HYDRAULIC BINDER

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0715247A1 (en) * 1994-11-23 1996-06-05 Xerox Corporation System for controlling the distribution and use of digital works using digital tickets
EP0740478A2 (en) * 1995-04-27 1996-10-30 Hitachi, Ltd. Method and apparatus for receiving and/or reproducing digital signals
EP0763936A2 (en) * 1995-09-18 1997-03-19 Lg Electronics Inc. Illegal view/copy protection method and apparatus for digital broadcasting system
WO1997013248A1 (en) * 1995-10-04 1997-04-10 Philips Electronics N.V. Marking a digitally encoded video and/or audio signal
US5699370A (en) * 1994-02-17 1997-12-16 Hitachi, Ltd. Information recording and reproduction apparatus to be controlled by temporal information
WO1998033325A2 (en) * 1997-01-27 1998-07-30 Koninklijke Philips Electronics N.V. Method and system for transferring content information and supplemental information relating thereto
EP0944256A1 (en) * 1998-03-19 1999-09-22 Hitachi Europe Limited Copy protection apparatus and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997043761A2 (en) 1996-05-15 1997-11-20 Intertrust Technologies Corp. Cryptographic methods, apparatus and systems for storage media electronic rights management in closed and connected appliances
WO1997043853A1 (en) 1996-05-15 1997-11-20 Macrovision Corporation Method and apparatus for copy protection of copyrighted material on various recording media
JPH09326166A (en) 1996-06-06 1997-12-16 Mitsubishi Electric Corp Method and system for protecting copyright
US6185312B1 (en) * 1997-01-28 2001-02-06 Nippon Telegraph And Telephone Corporation Method for embedding and reading watermark-information in digital form, and apparatus thereof
EP0970411B1 (en) 1997-03-27 2002-05-15 BRITISH TELECOMMUNICATIONS public limited company Copy protection of data

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5699370A (en) * 1994-02-17 1997-12-16 Hitachi, Ltd. Information recording and reproduction apparatus to be controlled by temporal information
EP0715247A1 (en) * 1994-11-23 1996-06-05 Xerox Corporation System for controlling the distribution and use of digital works using digital tickets
EP0740478A2 (en) * 1995-04-27 1996-10-30 Hitachi, Ltd. Method and apparatus for receiving and/or reproducing digital signals
EP0763936A2 (en) * 1995-09-18 1997-03-19 Lg Electronics Inc. Illegal view/copy protection method and apparatus for digital broadcasting system
WO1997013248A1 (en) * 1995-10-04 1997-04-10 Philips Electronics N.V. Marking a digitally encoded video and/or audio signal
WO1998033325A2 (en) * 1997-01-27 1998-07-30 Koninklijke Philips Electronics N.V. Method and system for transferring content information and supplemental information relating thereto
EP0944256A1 (en) * 1998-03-19 1999-09-22 Hitachi Europe Limited Copy protection apparatus and method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLOOM J A ET AL: "Copy protection for DVD video", PROCEEDINGS OF THE IEEE, JULY 1999, IEEE, USA, vol. 87, no. 7, 1 July 1999 (1999-07-01), pages 1267 - 1276, XP000861525, ISSN: 0018-9219 *
LINNARTZ J P M G: "The "ticket" concept for copy control based on embedded signalling", COMPUTER SECURITY - ESORICS 98. 5TH EUROPEAN SYMPOSIUM ON RESEARCH IN COMPUTER SECURITY. PROCEEDINGS, COMPUTER SECURITY - ESORICS 98. 5TH EUROPEAN SYMPOSIUM ON RESEARCH IN COMPUTER SECURITY, LOUVAIN-LA-NEUVE, BELGIUM, 16-18 SEPT. 1998, 16 September 1998 (1998-09-16), 1998, Berlin, Germany, Springer-Verlag, Germany, pages 257 - 274, XP002124718, ISBN: 3-540-65004-0 *
LINNARTZ J.-P., DEPOVERE G., KALKER T.: "Philips Electronics response to call for proposals issued by the Data Hiding Subgroup copy protection technical working subgroup.", 8 October 1999, NAT.LAB WY 8, PHILIPS RESEARCH, EINDHOVEN, XP002118336 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523023A (en) * 2000-02-07 2003-07-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Content protection from illegal duplication by proof of existence of complete data set via self-indicating part
US7017045B1 (en) 2000-08-22 2006-03-21 Koninklijke Philips Electronics N.V. Multimedia watermarking system and method
EP1376304A2 (en) * 2002-06-17 2004-01-02 NTT DoCoMo, Inc. Communication terminal for restricting the use of content
EP1376304A3 (en) * 2002-06-17 2004-01-28 NTT DoCoMo, Inc. Communication terminal for restricting the use of content
US7346337B2 (en) 2002-06-17 2008-03-18 Ntt Docomo, Inc. Communication terminal for restricting the use of content

Also Published As

Publication number Publication date
MY126472A (en) 2006-10-31
EP1038395A1 (en) 2000-09-27
JP2002521875A (en) 2002-07-16
US6934851B2 (en) 2005-08-23
KR20010023970A (en) 2001-03-26
CN1149839C (en) 2004-05-12
CN1277780A (en) 2000-12-20
US20030016824A1 (en) 2003-01-23
US6490355B1 (en) 2002-12-03
BR9906596A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
US6490355B1 (en) Method and apparatus for use of a time-dependent watermark for the purpose of copy protection
US6530021B1 (en) Method and system for preventing unauthorized playback of broadcasted digital data streams
US6865675B1 (en) Method and apparatus for use of a watermark and a unique time dependent reference for the purpose of copy protection
EP0998814B1 (en) System for preventing playback of unauthorized digital video recordings
EP1155569B1 (en) Controlling copying of a video signal employing a watermark and associated data
US20030159043A1 (en) Method and apparatus for use of a watermark and a receiver dependent reference for the purpose of copy pretection
US6618484B2 (en) Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
US6865553B2 (en) Copy protection apparatus and method
EP1034648A1 (en) Method and apparatus for use of a watermark and a receiver dependent reference for the purpose of copy protection
MXPA00002473A (en) Use of a watermark for the purpose of copy protection
Furht et al. Applications of Digital Watermarking
MXPA00002472A (en) Use of a watermark for the purpose of copy protection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801571.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999934588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/002473

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020007002685

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999934588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002685

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999934588

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007002685

Country of ref document: KR