WO2000001187A1 - Subscriber validation method in cellular communication system - Google Patents
Subscriber validation method in cellular communication system Download PDFInfo
- Publication number
- WO2000001187A1 WO2000001187A1 PCT/SE1999/001112 SE9901112W WO0001187A1 WO 2000001187 A1 WO2000001187 A1 WO 2000001187A1 SE 9901112 W SE9901112 W SE 9901112W WO 0001187 A1 WO0001187 A1 WO 0001187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- network
- esn
- terminal
- dual
- sim
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/06—Authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/0853—Network architectures or network communication protocols for network security for authentication of entities using an additional device, e.g. smartcard, SIM or a different communication terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/06—Authentication
- H04W12/069—Authentication using certificates or pre-shared keys
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- This invention relates to the field of communication systems, and more particulary to a method of preventing unlawful use of a mobile terminal operating in a communication system.
- subscribers with mobile terminals are identified within the network through one or more ID codes.
- a terminal-specific ID code identifies the mobile terminal
- a subscriber-specific ID code identifies a subscriber to the network.
- the mobile terminal transmits the ID codes to the network.
- the network verifies the authenticity of the IDs using one of a variety of validation procedures. Once the ID codes are verified, the network allows the call to proceed. Otherwise, the network declines the call.
- the integrity of the validation procedure may be compromised, resulting in unauthorized use of the network, for example, when the mobile terminal is stolen.
- Other instances of unauthorized use may occur by acquiring the ID codes illegally from the mobile terminal, for example, by reading the stored IDs from the terminal or intercepting them during transmission. Consequently, there is demand for preventing unauthorized use of the network.
- the validation procedure in an analog communication network known as Advanced Mobile Phone System (AMPS), which is employed in North America under EIA/TIA 553A standard, includes a registration process that relies on two ID numbers: an electronic serial number (ESN), which is a terminal specific ID and a mobile identification number (MIN), which is a subscriber specific ID.
- ESN electronic serial number
- MIN mobile identification number
- the ESN is a 32-bit hardware-based serial number composed of two parts: an 8-bit Manufacturer Code that identifies the maker of the mobile terminal, and a 24-bit Identification Number that is unique to that mobile for the given Manufacturer Code.
- the MIN corresponds to a user telephone number assigned when a subscriber account is opened.
- Both the ESN and MIN are stored in the mobile terminal, usually in a non- volatile memory such as an EEPROM (electrically erasable programmable read-only memory).
- a mobile terminal operating in the AMPS system transmits the ESN and MIN to the network for registration. In other instances, the mobile terminals transmit the ESN and MIN when placing a call or when transitioning from one network to another.
- the subscriber validation process in the early AMPS systems consists of verifying whether the transmitted ESN and MIN from the mobile te ⁇ ninal are registered in the network as corresponding to each other or not. Also verified is whether the received ESN is listed in a black list of reported stolen terminals. Upon verification of a non-black listed ESN and its correspondence with the received MIN, the network would allow the call to proceed. Not long ago, the cloning of stolen terminals, the process of reading the ESN of an authentic paying subscriber from the EEPROM, was a common practice for unauthorized use of the terminal.
- One conventional measure for preventing unlawful reading of the ID codes encrypts the codes, before writing them into the mobile terminal. The terminal then un-encrypts the codes before transmitting them to the network. Because the ID codes are transmitted un-encrypted, however, this measure does not provide any protection against unauthorized over-the-air interception of the codes during transmission to the network. Therefore, a more elaborate validation process was devised to insure against the unauthorized interception of the ID codes.
- More advanced AMPS systems use a key-based authentication procedure to validate the generated calls.
- the ESN and MIN are keyed with a hidden Authentication key (A-key), which is known to the network operator.
- A-key hidden Authentication key
- a Shared Secret Data (SSD) is used in the authentication process.
- the SSD is derived from the A-key and the ESN.
- an authentication algorithm in the terminal produces a terminal authentication result (AUTHR), which is transmitted to the network along with the ESN and MIN.
- the network registers the terminal, and based on the received MIN, produces a network generated AUTHR.
- the network determines whether the terminal generated AUTHR matches the network generated AUTHR. If so, the network allows the call to proceed.
- the key-based authentication process eliminates or substantially reduces the risk of fraudulent over-the-air interception of the IDs.
- GSM Global System for Mobile Communications
- SIM Subscriber Information Module
- IMEI International Mobile Equipment Identity
- IMSI International Mobile Subscription Identity
- the system operator Upon a subscriber application, the system operator issues a SIM-ID number and a SIM card that when inserted in the GSM mobile terminal, enables the subscriber to use the services provided by the operator. In this way, the same GSM terminal can be used with any SIM card inserted into the GSM mobile terminal.
- a GSM authentication algorithm keys the SIM ID with a hidden authentication key, known as Ki, which corresponds to AMPS A-key. Similar to the AMPS authentication process, the terminal and network generated authentication results are compared for authenticating each call. Unlike AMPS authentication process, which uses the terminal-specific ESN, the GSM authentication process uses only the SIM-based Ki, and the subscriber-specific SIM-ID. Thus, a valid SIM card may be used with any valid GSM mobile terminal, because the GSM specification does not link a terminal-specific IMEI validation process to a subscriber specific IMSI validation process.
- a removable SIM card storing the MIN allows subscribers to easily move the AMPS subscription data from one physical mobile terminal to another, without network assistance.
- the dual-mode system provides for the capability of handling changes in the ESN that may occur when the SIM card is removed from one mobile terminal and inserted into another by associating each MIN with multiple ESN's or a range of ESN's. Because the early AMPS networks do not perform a key-based authentication, the association of a single MIN with multiple ESNs increases the possibility of fraud in the non- authenticating AMPS networks.
- the SSD must be updated to accommodate the change in the ESN.
- the algorithm for updating the SSD is complicated, taking a substantial amount of time, usually in the range of 4-5 seconds, each time the SSD is to be updated. In view of the current FCC regulation, therefore, there exists a need for providing a fast authentication process that supports SIM cards in the dual-mode communication system, while reducing the risk of fraud in the early non-authenticating systems and maintaining backward compatibility with existing systems.
- the present invention is embodied in a dual-mode communication system within which a dual-mode terminal equipped with a SIM card operates.
- the dual-mode system includes a first network, such as the AMPS network, and a second network, such as the GSM network.
- the validation method of the present invention uses a terminal-based ESN for registration in the first network, a SIM-based ESN for a key-based authentication process in the first network, and a non-ESN key-based authentication process in the second network.
- the dual-mode terminal stores the terminal-based ESN
- the SIM card stores the SIM-based ESN.
- FIG. 1 is a block diagram of a dual-mode communication system that advantageously incorporates the present invention.
- FIG. 2 is a block diagram of a dual-mode terminal that operates in the system of FIG. 1.
- FIG. 3 is a diagram of a protocol for establishing a call in an AMPS network of the communication system of FIG. 1.
- FIG. 4 is a diagram of validation Words communicated during the authentication and registration processes of the AMPS network.
- FIG. 5 is a block diagram of an inter- working function block used in the dual mode communication system of FIG. 1. Detailed Description
- FIG. 1 a block diagram of a dual-mode communication system 10 that advantageously incorporates the present invention is shown.
- the dual-mode communication system 10 supports both the digital GSM-1900 and analog
- the system 10 includes a GSM network 12 and an AMPS network 14, which in the exemplary embodiment of system 10 interface with each other via an inter-working function (IWF) block 16, a detailed description of which is given in connection with FIG. 5 below.
- IWF inter-working function
- GSM and AMPS networks 12 and 14 have a similar structure, being complete telephone networks in their own right, with dedicated exchanges within an interconnected network, and with base stations connected to the exchanges.
- GSM and AMPS networks 12 and 14 have a similar structure, being complete telephone networks in their own right, with dedicated exchanges within an interconnected network, and with base stations connected to the exchanges.
- base stations connected to the exchanges.
- Both the GSM and AMPS networks 12 and 14 include fixed networks, which perform several fundamental tasks, including connecting all base stations covering corresponding cells or clusters to each other for the purpose of communicating signals and messages to and from subscribers operating in their respective network.
- the fixed network of each one of the GSM and AMPS networks 12 and 14 includes fixed networks, which perform several fundamental tasks, including connecting all base stations covering corresponding cells or clusters to each other for the purpose of communicating signals and messages to and from subscribers operating in their respective network.
- GSM and AMPS networks 12 and 14 has one or more GSM and AMPS Mobile Switching Centers (MSC) 18 and 20, respectively, that are responsible for directing traffic around their respective networks.
- the MSCs 20 and 18 are associated with corresponding home location registers (HLR) 26 and 28 and visitors location registers (VLR) 30 and 32. It would be appreciated that the VLRs and HLRs need not be physically associated with the location of their MSC, since the fixed network gives full connectivity.
- the MSCs 18 and 20 are connected to a public switching telephone network 22 (PSTN), to give connectivity between fixed landline subscribers and mobile subscribers.
- PSTN public switching telephone network 22
- the mobile subscribers of the system 10 each carry a mobile terminal, which in the preferred embodiment of the invention comprises a dual-mode terminal 24 capable of operating in the GSM and AMPS networks 12 and 14.
- the dual-mode terminal 24 includes a removable Subscriber Information Module (SIM) card, similar to the one used by an existing GSM mobile terminal, which carries subscriber identification, billing information and other information concerning the operation of the dual-mode terminals.
- SIM Subscriber Information Module
- the dual-mode system 10 performs independent validation procedures involving a key-based authentication process.
- the authentication process is performed by an authentication center (AUC) block 34, which may be a part of the GSM HLR 28.
- AUC authentication center
- the authentication process in the GSM network 12 compares a terminal generated AUTHR with a network generated AUTHR to validate the GSM call.
- EIR equipment identity register
- the validation procedure includes a registration process and a authentication process, which, similar to authentication process of the GSM network 12, is a key-based authentication process.
- the authentication process in the AMPS network 14 is performed by an AUC block, which is usually associated with the AMPS HLR of the subscriber's "home" AMPS system.
- the AUC block and the subscriber's "home" HLR are described below as part of the IWF block 16.
- the dual-mode terminal 24 stores a first ESN (hereinafter referred to as the terminal-based ESN), which is specific to the dual-mode terminal 24.
- the SIM card stores a second ESN (hereinafter referred to as the SIM-based ESN), which is specific to the SIM card.
- the SIM card also stores a MIN, which is assigned to the subscriber by the communication service provider.
- the dual-mode terminal 24 uses the terminal-based ESN and the MIN for the registration process, and it uses the SIM-based ESN for the AMPS key- based authentication process. Under this arrangement, the dual-mode terminal 24 also operates compatibly with the non-authenticating AMPS systems by using the existing registration process, while supporting the key- based authentication processes of the AMPS and GSM networks 14 and 12.
- the GSM network 12 uses a base station controller (BSC) 40 for controlling base stations, covering corresponding clusters or cells.
- BSC base station controller
- the primary function of the BSC 40 is radio resource management. For example, based on reported received signal strength at the dual-mode terminal 24, the BSC 40 determines whether to initiate a hand over.
- the BSC 40 communicates with the MSC 18 using a standard interface.
- the BSC 40 controls a group of GSM base stations, known as base transceiver stations (BTSs) 42.
- Each BTS 42 includes a number of TRXs (not shown) that use digitally encoded bursts over uplink and downlink RF channels, to serve a particular common geographical area.
- the BTSs 42 primarily provide the RF links for the transmission and reception of data bursts to and from the dual-mode terminal 24 within its designated cell.
- the dual-mode system 10 may include various other TDM A or CDMA digital networks, such as those based on the IS- 136 or IS-95 standards, as well as other analog networks, such as those based on the ETACS standard.
- An AMPS national switching network can consist of over 20 MTSOs, one of which is shown as block 44 in FIG. 1.
- Each MTSO 44 consolidates the corresponding functionalities of the AMPS MSC 20, VLR 30, HLR 26 and AUC 36, which are shown as separate blocks in FIG. 1.
- the MTSOs 44 are digital exchanges with a distributed control architecture, especially adapted for operation in the cellular environment.
- the MTSOs 44 are also linked together with digital circuits forming a fully interconnected network. The signaling between base stations and switches, and between switches, is usually proprietary in nature, and is carried in time slots on the digital circuits.
- the base station controller is a part of the AMPS MSC 20.
- base stations 46 are organized in a 7-cell or 12-cell repeat pattern with omni-directorial coverage from each base station.
- the dual-mode terminal 24 receives and transmits properly modulated radio frequency signals in a well known manner.
- an AMPS/GSM switch 50 couples the antenna 48 to either a GSM RF section 52 or an AMPS RF section 98.
- the GSM RF section 52 includes a well known GSM-1900 TX Logic block 54 and a well known GSM-1900 RX Logic block 56, which are selectively coupled to the antenna 48 via a GSM RX/TX switch 58.
- the AMPS RF section 98 includes a well known AMPS TX Logic block 60, a Power Amplifier block 62 and a well known AMPS RX Logic block 64, which are coupled to the antenna 48 via a well known duplex filter 66.
- a microcontroller 68 controls the overall operation of the dual-mode terminal 24, including the GSM and AMPS RF sections 52 and 98.
- the micro-controller 68 controls the operation of a frequency synthesizer 72 that provides the operating frequencies of the GSM and AMPS RF sections 52 and 98.
- the micro-controller 68 also interfaces with a serial I/O interface 74, a keypad 76, a display 78, as well as a speaker 80 and a microphone 82 via a DSP/audio control block 84.
- the dual-mode terminal 24 has a terminal-based ESN, which is stored in a terminal EEPROM 86.
- a terminal EEPROM 86 Through a SIM interface 88, the dual-mode terminal is equipped with a removable SIM card 90, which operates under the control of a SIM controller 92 executing a SIM operation program stored in a SIM memory 94.
- a SIM EEPROM 96 stores many subscriber related information as well as the SIM-based ESN and MIN.
- the MIN allows the calls to be accepted or received as well as for allowing the billing of the call charges to a particular subscriber.
- GSM and AMPS networks 12 and 14 Unlike the fixed public telephone network (PSTN), in the GSM and AMPS networks 12 and 14, "roaming" subscribers could be found anywhere within the network, which in the case of several systems can extend over national borders. Therefore, a very large amount of signaling overhead is required over a control channel (CC) to allow subscribers to call or be called within the network.
- CC control channel
- the AMPS network 14 sets up each dual-mode terminal on a free channel in a cell when it calls, or is called by the local base station.
- FIG. 3 shows a diagram of a signaling arrangement for granting a particular pair of voice channels to the dual-mode terminal 24, while it is operating in the AMPS network 14.
- the signaling protocol involves call request, handshake and connect procedures.
- the AMPS network 14 uses four RF channels, namely a forward control channel (FCC), a reverse control channel (RCC), a forward voice channel (FVC), and a reverse voice channel (RVC), to establish a call.
- the FCC is a globally accessible control channel used by the AMPS network 14 to continuously transmit a synchronous control data stream from the base stations 46 to the dual-mode terminal 24.
- the RCC is a control channel shared by the dual- mode terminal 24 and other terminals to asynchronously send information back to the AMPS network 14.
- FVC and RVC are dedicated voice channels to and from the dual-mode terminal 24, respectively, carrying speech and data information between the terminal 24 and network 14. While data is transmitted on these voice channels during a call, the speech path is muted to prevent what would appear
- the dual-mode terminal 24 when the dual-mode terminal 24 is operating in the AMPS network 14, its data is retrieved from the IWF 16 and stored in the VLR 30 for the MSC 20, which serves the cells in the area where the dual- mode terminal 24 is located.
- the IWF 16 notes the identity of the current VLR 30 and the fact that the dual-mode terminal 24 is active. Incoming calls for the dual-mode terminal 24 interrogate the IWF 16, based on knowledge of the terminal's MIN and where each MIN is stored. If the dual-mode terminal 24 is active, the call is routed to the appropriate VLR 30 for paging the dual-mode terminal 24. Periodically (typically every 15 minutes), the dual-mode terminal 24 re-registers itself to let the AMPS network 14 know that it is still active and allow the system to determine where within its cells the terminal is located.
- the MSC 20 In the AMPS network 14, the MSC 20 periodically issues registration commands to all dual-mode terminals, including the dual-mode terminal 24, listening to the MSCs FCC. As explained above, under the present invention, the dual-mode terminal 24, when operating in the AMPS network
- the dual-mode terminal 24 also transmits an AUTHR using an Authentication Word C, which is derived based on the SIM-based ESN and a hidden SSD.
- the format of this additional Word C is also shown in
- AUTHR is computed by sending an Authentication Data request to the SIM card 90, which executes its internal AMPS Authentication algorithm (using the SSD and SIM-based ESN) and returns the result to the dual-mode terminal 24.
- the dual-mode terminal 24 transmits the MIN, AUTHR, terminal-based ESN to the VLR 30 via the cell site 46 and AMPS
- the VLR determines which AMPS network (IS-41) node corresponds to this dual-mode terminal's home system. The VLR then passes the data to that node.
- FIG. 5 a block diagram of the IWF block 16 is shown.
- the IWF block 16 is the bridge between the AMPS IS-41 network 112 and the GSM SS7 network 110. In the exemplary embodiment of system 10, the IWF block 16 is loosely associated with the GSM network 12. Using a GSM interface 102, the IWF block 16 acts as a standard GSM VLR 114.
- the IWF block 16 acts as a standard AMPS HLR 116.
- an Interworking Function 100 is used to convert the data from the format of the supplying network into the format expected by the target network.
- the AMPS HLR 116 portion of the IWF block 16 has an associated AMPS Authentication Center Database 106, which is used for validating both the terminal and subscriber ID codes supplied by the terminal 24 during registration and authentication. This database contains records corresponding to each valid subscriber for its system.
- Each such subscriber record contains the values for the SIM-based MIN, A-Key, SSD, the terminal-based ESN, roaming information, such as in which AMPS system the terminal is currently active, and additional parameters, such as a Customer Service Profile, that defines terminal supported features.
- each subscriber record stored in the AUC database 106 contains an additional field for the SIM- based ESN.
- the home AMPS system node is the AMPS HLR 116 portion of the IWF block 16 that is also connected to the dual-mode terminal's home GSM network 12.
- the IWF block 16 verifies, via its internal database 106, that the ESN is not blacklisted.
- the AMPS HLR 116 portion of the IWF block 16 then computes its own version of AUTHR, using its copy of the SSD and SIM-ESN values fetched from the AUC database 106.
- the GSM VLR 114 portion of the IWF block 16 informs the terminal's home GSM HLR 28 that the terminal has successfully registered with the AMPS MSC 20, and passes a Authentication Registration success message back to the AMPS VLR 30.
- the VLR 30 processes the success message, validating the dual-mode terminal 24 within its database, then passes the success message along to the dual-mode terminal 24, via the MSC 20.
- the dual-mode terminal 24 accepts the success status, updates internal flags and counters, and resumes listening for pages from the AMPS MSC 20.
- the dual-mode terminal 24 uses the terminal-based ESN in the standard AMPS Serial Number Word C, for registration, but uses the SIM-based ESN to generate the AUTHR value returned in the standard AMPS Authentication Word C, for the authentication process.
- the SIM-based ESN can be safely provided to the system operators just as are today's A-Key and Ki/Ke values, thereby reducing fraud in the dual-mode communication system 10.
- the SIM-based ESN could act as a second hidden key, like the A-Key, making an authentication algorithm, deemed safe today, virtually impossible to crack.
- the SIM-based ESN includes 32 bits, resulting in 64 out of the 128 AUTHR input bits being secret data.
- the SIM-based ESN does not require any fixed sized subfields, namely the 8-bit manufacturer code and the 24-bit Identification
- the 32-bit SIM-based ESN can be generated by the operator or SIM card manufacturer by whatever method they choose.
- the SIM-based ESN does not need to be unique for each SIM card although in practice a large number of SIM-based ESN's should be used to increase randomness and reduce predictability.
- the present invention also maintains compatibility with the non- authenticating AMPS systems, for example, allowing system operators to track hardware problems by manufacturer, while complying with the FCC guidelines.
- the present invention reduces system-mobile communications when a new dual-mode terminal is used, as the dual-mode terminal ESN is no longer a part of the validation process.
- the user can immediately use a new dual-mode terminal in an authenticating AMPS system with this approach, instead of waiting up to several minutes for an SSD update procedure to finish, for example, after an authentication failure has occurred.
- the IWF block 16 simply updates its records with the new dual-mode terminal ESN after it has successfully authenticated the subscriber.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephone Function (AREA)
- Telephonic Communication Services (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU49422/99A AU758451B2 (en) | 1998-06-26 | 1999-06-18 | Subscriber validation method in cellular communication system |
BR9911546-8A BR9911546A (en) | 1998-06-26 | 1999-06-18 | Subscriber validation process in a communication system and dual-mode communication system |
EP99933355A EP1090523A1 (en) | 1998-06-26 | 1999-06-18 | Subscriber validation method in cellular communication system |
KR1020007014728A KR20010043997A (en) | 1998-06-26 | 1999-06-18 | Subscriber validation method in cellular communication system |
HK02100804.4A HK1039435B (en) | 1998-06-26 | 2002-02-01 | Dual model communication system and subscriber validation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/105,218 | 1998-06-26 | ||
US09/105,218 US6606491B1 (en) | 1998-06-26 | 1998-06-26 | Subscriber validation method in cellular communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000001187A1 true WO2000001187A1 (en) | 2000-01-06 |
Family
ID=22304658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1999/001112 WO2000001187A1 (en) | 1998-06-26 | 1999-06-18 | Subscriber validation method in cellular communication system |
Country Status (9)
Country | Link |
---|---|
US (1) | US6606491B1 (en) |
EP (1) | EP1090523A1 (en) |
KR (1) | KR20010043997A (en) |
CN (1) | CN1134204C (en) |
AU (1) | AU758451B2 (en) |
BR (1) | BR9911546A (en) |
HK (1) | HK1039435B (en) |
RU (1) | RU2226321C2 (en) |
WO (1) | WO2000001187A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1146692A2 (en) * | 2000-04-11 | 2001-10-17 | Nokia Corporation | Apparatus, and associated method, for facilitating authentication of communication stations in a mobile communication system |
WO2001091478A3 (en) * | 2000-05-26 | 2002-07-18 | Bosch Gmbh Robert | Method for the cryptographic identification of a physical unit in a wireless telecommunications network |
EP1340362A2 (en) * | 2000-11-07 | 2003-09-03 | AT & T Wireless Services, Inc. | System and method for using a temporary electronic serial number for over-the-air activation of a mobile device |
WO2004014100A1 (en) * | 2002-08-02 | 2004-02-12 | Qualcomm Incorporated | Multimode wireless device system provision validation and acquisition method and apparatus |
KR100457195B1 (en) * | 2000-12-15 | 2004-11-16 | 주식회사 케이티 | Method of the network access of a bluetooth terminal through the bluetooth access point for the interface of the network |
EP1523208A1 (en) * | 2003-09-11 | 2005-04-13 | Alcatel | Registration of a dual mode terminal in a cellular and a WLAN network |
WO2005036916A1 (en) | 2003-10-03 | 2005-04-21 | Bitfone Corporation | Network and method for registration of mobile devices and management of the mobile devices |
DE102004024648A1 (en) * | 2004-05-18 | 2005-12-22 | Siemens Ag | Method for authenticating a communication unit |
US7356145B2 (en) * | 2000-06-30 | 2008-04-08 | Nokia Corporation | Arranging data ciphering in a wireless telecommunication system |
US7386302B2 (en) | 2001-06-04 | 2008-06-10 | At&T Mobility Ii Llc | Hotline routing of pre-activated GSM subscribers using pseudo-MSISDNs |
CN100438663C (en) * | 2001-04-23 | 2008-11-26 | 华为技术有限公司 | Automatic descriminating method and system for communication terminals and their network access management |
US7583964B2 (en) | 2001-10-26 | 2009-09-01 | At&T Mobility Ii Llc | Method and apparatus to manage a resource |
US7650139B2 (en) | 2004-08-29 | 2010-01-19 | Huawei Technologies Co., Ltd. | Method for ensuring security of subscriber card |
US8140054B2 (en) | 2003-10-31 | 2012-03-20 | Electronics And Telecommunications Research Institute | Method for authenticating subscriber station, method for configuring protocol thereof, and apparatus thereof in wireless portable internet system |
US8893110B2 (en) | 2006-06-08 | 2014-11-18 | Qualcomm Incorporated | Device management in a network |
US9081638B2 (en) | 2006-07-27 | 2015-07-14 | Qualcomm Incorporated | User experience and dependency management in a mobile device |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3127958B2 (en) * | 1998-10-12 | 2001-01-29 | 日本電気株式会社 | Wireless telephone system |
FR2794595B1 (en) * | 1999-06-03 | 2002-03-15 | Gemplus Card Int | PRE-CHECKING A PROGRAM IN AN ADDITIONAL CHIP CARD OF A TERMINAL |
KR100695828B1 (en) * | 1999-11-26 | 2007-03-16 | 유티스타콤코리아 유한회사 | Method for selection cell of asynchronous mobile station in asynchronous mobile communication system |
EP1117266A1 (en) * | 2000-01-15 | 2001-07-18 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for global roaming |
JP2002073561A (en) * | 2000-09-01 | 2002-03-12 | Toyota Motor Corp | Method and system for authenticating user to perform access through communication network and information processing system utilizing the same |
US7016667B1 (en) * | 2000-09-18 | 2006-03-21 | International Business Machines Corporation | Wireless communications device and method for use with telephone network edge node providing bridging and privacy |
JP3419391B2 (en) * | 2000-10-05 | 2003-06-23 | 日本電気株式会社 | LAN that allows access to authentication denied terminals under specific conditions |
US20030096595A1 (en) * | 2001-11-21 | 2003-05-22 | Michael Green | Authentication of a mobile telephone |
US7551913B1 (en) * | 2001-12-05 | 2009-06-23 | At&T Mobility Ii Llc | Methods and apparatus for anonymous user identification and content personalization in wireless communication |
KR100444509B1 (en) * | 2002-05-09 | 2004-08-16 | 주식회사 엘지텔레콤 | Method of authenticating user on the basis of peculiar information of user and cdma system using the same in cdma network using user identity module |
US8060139B2 (en) * | 2002-06-24 | 2011-11-15 | Toshiba American Research Inc. (Tari) | Authenticating multiple devices simultaneously over a wireless link using a single subscriber identity module |
KR20040009624A (en) * | 2002-07-24 | 2004-01-31 | 에스케이 텔레콤주식회사 | MAP Treatment Method in case of ESN Disaccord |
US20040192303A1 (en) * | 2002-09-06 | 2004-09-30 | Puthenkulam Jose P. | Securing data of a mobile device after losing physical control of the mobile device |
KR100498331B1 (en) * | 2002-10-14 | 2005-07-01 | 엘지전자 주식회사 | Billing method of dual band dual mode terminal equipment |
KR100545351B1 (en) * | 2003-03-21 | 2006-01-24 | 에스케이 텔레콤주식회사 | Location Tracking Method in Dual Stack Mobile Communication Network |
FR2854303A1 (en) * | 2003-04-23 | 2004-10-29 | France Telecom | METHOD FOR SECURING A MOBILE TERMINAL AND METHOD APPLICATIONS, THE EXECUTION OF APPLICATIONS REQUIRING A HIGH SECURITY LEVEL |
US7734279B2 (en) * | 2003-10-14 | 2010-06-08 | Telecom Italia S.P.A. | Method and system for controlling resources via a mobile terminal, related network and computer program product therefor |
US20050169310A1 (en) * | 2004-01-30 | 2005-08-04 | Rob Knapp | System and method for managing data transmissions over multiple types of transport systems |
KR100664110B1 (en) * | 2004-02-04 | 2007-01-04 | 엘지전자 주식회사 | Usage restriction setting method for mobile communication device |
KR20050095257A (en) * | 2004-03-25 | 2005-09-29 | 주식회사 팬택앤큐리텔 | System and method for limitating access of the invalid mobile phone |
US20050250537A1 (en) * | 2004-05-07 | 2005-11-10 | Narea Jaime M | Wireless pay telephone system using multiple subscriber identification module (SIM) cards |
CN1297170C (en) * | 2004-06-07 | 2007-01-24 | 华为技术有限公司 | Multi-mode terminal user information management apparatus and management method |
CN100450270C (en) * | 2004-07-02 | 2009-01-07 | 华为技术有限公司 | Legality identification method of mobile terminal user and its mobile terminal |
CN101175324B (en) * | 2004-08-29 | 2010-11-10 | 华为技术有限公司 | Safety guaranteeing method of user card |
KR100713413B1 (en) * | 2004-10-30 | 2007-05-04 | 삼성전자주식회사 | Dual mode mobile terminal equipment capable of selecting communication mode by reading card information and method thereof |
KR100651953B1 (en) | 2004-11-19 | 2006-12-07 | 엘지전자 주식회사 | Method for assigning multi ESNs, and mobile communication system for the same |
US8588415B2 (en) * | 2004-11-25 | 2013-11-19 | France Telecom | Method for securing a telecommunications terminal which is connected to a terminal user identification module |
KR20060071037A (en) * | 2004-12-21 | 2006-06-26 | 삼성전자주식회사 | Method for controlling data synchronization between user equipment and user identification card thereof |
CN100364363C (en) * | 2005-05-17 | 2008-01-23 | 中国联合通信有限公司 | Starting-up registering method for mobile platform in CDMA communication system |
KR100867002B1 (en) | 2006-12-01 | 2008-11-10 | 한국전자통신연구원 | Smart card for providing convergence authentication in heterogeneous wireless networks and wireless device having the same |
CN101136801B (en) * | 2007-03-06 | 2010-07-14 | 中兴通讯股份有限公司 | Network fault detecting method |
CN101022637A (en) * | 2007-03-09 | 2007-08-22 | 华为技术有限公司 | Method and device for testing mobile device |
US9189256B2 (en) * | 2008-11-20 | 2015-11-17 | Nokia Technologies Oy | Method and apparatus for utilizing user identity |
US8768845B1 (en) * | 2009-02-16 | 2014-07-01 | Sprint Communications Company L.P. | Electronic wallet removal from mobile electronic devices |
CN101808321B (en) * | 2009-02-16 | 2014-03-12 | 中兴通讯股份有限公司 | Security authentication method |
EP2259611A1 (en) * | 2009-06-05 | 2010-12-08 | Hewlett-Packard Development Company, L.P. | Method and apparatus for associating a subscriber directory identifier to a subscriber identifier |
US9807819B1 (en) | 2009-09-04 | 2017-10-31 | Sprint Communications Company L.P. | Cross-technology session continuity |
US9313759B2 (en) | 2009-10-16 | 2016-04-12 | Tekelec, Inc. | Methods, systems, and computer readable media for providing triggerless equipment identity register (EIR) service in a diameter network |
US8903367B2 (en) | 2010-05-20 | 2014-12-02 | Qualcomm Incorporated | Methods and apparatus for enabling backward compatibility in open market handsets |
EP2418816B1 (en) * | 2010-08-12 | 2018-12-12 | Deutsche Telekom AG | Registering a user entity with a communication network via another communication network |
US8954037B2 (en) | 2013-02-28 | 2015-02-10 | Dell Products L.P. | System and method of signaling the importance of a transmission in a wireless communications network |
US9143942B2 (en) * | 2013-03-14 | 2015-09-22 | Tekelec Global, Inc. | Methods, systems, and computer readable media for providing a multi-network equipment identity register |
US9220011B1 (en) * | 2013-11-06 | 2015-12-22 | Sprint Communications Company L.P. | Electronic device theft self-detection and locking |
CN108282329B (en) * | 2017-01-06 | 2021-01-15 | 中国移动通信有限公司研究院 | Bidirectional identity authentication method and device |
CN108765925A (en) * | 2018-04-26 | 2018-11-06 | 深圳普创天信科技发展有限公司 | A kind of traffic accident alarm method, traffic accident alarm processing method and device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0532227A2 (en) * | 1991-09-13 | 1993-03-17 | AT&T Corp. | Cellular telephony authentication arrangement |
WO1995015065A1 (en) * | 1993-11-23 | 1995-06-01 | Bellsouth International, Inc. | Apparatus and method for remotely initiating operation of a cellular telephone |
US5668875A (en) * | 1994-07-29 | 1997-09-16 | Motorola, Inc. | Method and apparatus for authentication in a communication system |
WO1997042783A2 (en) * | 1996-05-06 | 1997-11-13 | Ericsson Inc. | Method and apparatus for over the air activation of a multiple mode/band radio telephone handset |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2902249B2 (en) * | 1993-01-21 | 1999-06-07 | 富士通株式会社 | How to prevent unauthorized use of mobile phone terminals |
US5551073A (en) * | 1993-02-25 | 1996-08-27 | Ericsson Inc. | Authentication key entry in cellular radio system |
US5444764A (en) * | 1993-07-01 | 1995-08-22 | Motorola, Inc. | Method of providing a subscription lock to a radiotelephone system |
JPH0735680A (en) | 1993-07-16 | 1995-02-07 | Toyota Motor Corp | Method for dirt acceleration test and artificial dirt substance for dirt acceleration test |
BR9406070A (en) * | 1993-11-24 | 1996-02-06 | Ericsson Telefon Ab L M | Process and system for authenticating the identification of a remote station in a radio communication system and respective remote and base stations |
FR2718312B1 (en) | 1994-03-29 | 1996-06-07 | Rola Nevoux | Method for the combined authentication of a telecommunications terminal and a user module. |
US5608781A (en) | 1995-04-12 | 1997-03-04 | Seiderman; Abe | Method of eliminating or reducing cloning of electronic identification numbers of cellular telephones |
US5600708A (en) | 1995-08-04 | 1997-02-04 | Nokia Mobile Phones Limited | Over the air locking of user identity modules for mobile telephones |
FI101584B (en) * | 1995-11-24 | 1998-07-15 | Nokia Telecommunications Oy | Check your mobile subscriber ID |
US5864757A (en) | 1995-12-12 | 1999-01-26 | Bellsouth Corporation | Methods and apparatus for locking communications devices |
SE506584C2 (en) | 1996-05-13 | 1998-01-19 | Ericsson Telefon Ab L M | Method and apparatus for monitoring mobile communication device |
US5884168A (en) * | 1996-08-30 | 1999-03-16 | Ericsson, Inc. | Multiple cellular systems with limited sim card information |
US6097950A (en) * | 1996-12-27 | 2000-08-01 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and system for global roaming in a cellular telecommunications system |
US5966667A (en) * | 1997-07-14 | 1999-10-12 | Motorola, Inc. | Dual mode communication device and method |
US6002929A (en) * | 1997-09-29 | 1999-12-14 | Mototrola, Inc. | Exchange which extends SIM based authentication and method therefor |
US6094487A (en) * | 1998-03-04 | 2000-07-25 | At&T Corporation | Apparatus and method for encryption key generation |
-
1998
- 1998-06-26 US US09/105,218 patent/US6606491B1/en not_active Expired - Lifetime
-
1999
- 1999-06-18 KR KR1020007014728A patent/KR20010043997A/en active IP Right Grant
- 1999-06-18 RU RU2001102498/09A patent/RU2226321C2/en not_active IP Right Cessation
- 1999-06-18 CN CNB998079197A patent/CN1134204C/en not_active Expired - Fee Related
- 1999-06-18 EP EP99933355A patent/EP1090523A1/en not_active Withdrawn
- 1999-06-18 AU AU49422/99A patent/AU758451B2/en not_active Ceased
- 1999-06-18 BR BR9911546-8A patent/BR9911546A/en not_active IP Right Cessation
- 1999-06-18 WO PCT/SE1999/001112 patent/WO2000001187A1/en active IP Right Grant
-
2002
- 2002-02-01 HK HK02100804.4A patent/HK1039435B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0532227A2 (en) * | 1991-09-13 | 1993-03-17 | AT&T Corp. | Cellular telephony authentication arrangement |
WO1995015065A1 (en) * | 1993-11-23 | 1995-06-01 | Bellsouth International, Inc. | Apparatus and method for remotely initiating operation of a cellular telephone |
US5668875A (en) * | 1994-07-29 | 1997-09-16 | Motorola, Inc. | Method and apparatus for authentication in a communication system |
WO1997042783A2 (en) * | 1996-05-06 | 1997-11-13 | Ericsson Inc. | Method and apparatus for over the air activation of a multiple mode/band radio telephone handset |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1146692A3 (en) * | 2000-04-11 | 2002-10-30 | Nokia Corporation | Apparatus, and associated method, for facilitating authentication of communication stations in a mobile communication system |
US6766160B1 (en) | 2000-04-11 | 2004-07-20 | Nokia Corporation | Apparatus, and associated method, for facilitating authentication of communication stations in a mobile communication system |
EP1146692A2 (en) * | 2000-04-11 | 2001-10-17 | Nokia Corporation | Apparatus, and associated method, for facilitating authentication of communication stations in a mobile communication system |
WO2001091478A3 (en) * | 2000-05-26 | 2002-07-18 | Bosch Gmbh Robert | Method for the cryptographic identification of a physical unit in a wireless telecommunications network |
US9100827B2 (en) | 2000-05-26 | 2015-08-04 | Ipcom Gmbh & Co. Kg | Method for cryptographically verifiable identification of a physical unit in a public, wireless telecommunications network |
US8638933B2 (en) | 2000-05-26 | 2014-01-28 | Ipcom Gmbh & Co. Kg | Method for cryptographically verifiable identification of a physical unit in a public, wireless telecommunications network |
US8271787B2 (en) | 2000-05-26 | 2012-09-18 | Ipcom Gmbh & Co. Kg | Method for cryptographically verifiable identification of a physical unit in a public, wireless telecommunications network |
US7356145B2 (en) * | 2000-06-30 | 2008-04-08 | Nokia Corporation | Arranging data ciphering in a wireless telecommunication system |
US8861730B2 (en) | 2000-06-30 | 2014-10-14 | Intellectual Ventures I Llc | Arranging data ciphering in a wireless telecommunication system |
US8259942B2 (en) | 2000-06-30 | 2012-09-04 | Intellectual Ventures I Llc | Arranging data ciphering in a wireless telecommunication system |
US7539514B2 (en) | 2000-11-07 | 2009-05-26 | At&T Mobility Ii Llc | System and method for using a temporary electronic serial number for over-the-air activation of a mobile device |
US8112118B2 (en) | 2000-11-07 | 2012-02-07 | At&T Mobility Ii Llc | System and method for using a temporary electronic serial number for over-the-air activation of a mobile device |
EP1340362A2 (en) * | 2000-11-07 | 2003-09-03 | AT & T Wireless Services, Inc. | System and method for using a temporary electronic serial number for over-the-air activation of a mobile device |
EP1340362A4 (en) * | 2000-11-07 | 2006-11-29 | Cingular Wireless Ii Llc | System and method for using a temporary electronic serial number for over-the-air activation of a mobile device |
KR100457195B1 (en) * | 2000-12-15 | 2004-11-16 | 주식회사 케이티 | Method of the network access of a bluetooth terminal through the bluetooth access point for the interface of the network |
CN100438663C (en) * | 2001-04-23 | 2008-11-26 | 华为技术有限公司 | Automatic descriminating method and system for communication terminals and their network access management |
US7386302B2 (en) | 2001-06-04 | 2008-06-10 | At&T Mobility Ii Llc | Hotline routing of pre-activated GSM subscribers using pseudo-MSISDNs |
US7583964B2 (en) | 2001-10-26 | 2009-09-01 | At&T Mobility Ii Llc | Method and apparatus to manage a resource |
US7646737B2 (en) | 2002-08-02 | 2010-01-12 | Qualcomm Incorporated | Multimode wireless device system provision validation and acquisition method and apparatus |
WO2004014100A1 (en) * | 2002-08-02 | 2004-02-12 | Qualcomm Incorporated | Multimode wireless device system provision validation and acquisition method and apparatus |
EP1523208A1 (en) * | 2003-09-11 | 2005-04-13 | Alcatel | Registration of a dual mode terminal in a cellular and a WLAN network |
KR101085987B1 (en) * | 2003-10-03 | 2011-11-22 | 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. | Network and method for registration of mobile devices and management of the mobile devices |
WO2005036916A1 (en) | 2003-10-03 | 2005-04-21 | Bitfone Corporation | Network and method for registration of mobile devices and management of the mobile devices |
US8140054B2 (en) | 2003-10-31 | 2012-03-20 | Electronics And Telecommunications Research Institute | Method for authenticating subscriber station, method for configuring protocol thereof, and apparatus thereof in wireless portable internet system |
DE102004024648A1 (en) * | 2004-05-18 | 2005-12-22 | Siemens Ag | Method for authenticating a communication unit |
US7650139B2 (en) | 2004-08-29 | 2010-01-19 | Huawei Technologies Co., Ltd. | Method for ensuring security of subscriber card |
US8893110B2 (en) | 2006-06-08 | 2014-11-18 | Qualcomm Incorporated | Device management in a network |
US9081638B2 (en) | 2006-07-27 | 2015-07-14 | Qualcomm Incorporated | User experience and dependency management in a mobile device |
Also Published As
Publication number | Publication date |
---|---|
RU2226321C2 (en) | 2004-03-27 |
US6606491B1 (en) | 2003-08-12 |
HK1039435A1 (en) | 2002-04-19 |
CN1134204C (en) | 2004-01-07 |
AU4942299A (en) | 2000-01-17 |
HK1039435B (en) | 2004-10-08 |
BR9911546A (en) | 2001-03-20 |
EP1090523A1 (en) | 2001-04-11 |
KR20010043997A (en) | 2001-05-25 |
AU758451B2 (en) | 2003-03-20 |
CN1307789A (en) | 2001-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6606491B1 (en) | Subscriber validation method in cellular communication system | |
KR100359976B1 (en) | Authentication key management for mobile stations | |
US5799084A (en) | System and method for authenticating cellular telephonic communication | |
EP3253092B1 (en) | Self provisioning of wireless terminals in wireless networks | |
US5943425A (en) | Re-authentication procedure for over-the-air activation | |
AU691802B2 (en) | Authentication key entry in cellular radio system | |
US6714799B1 (en) | Method and system for using SIM card in CDMA service area | |
EP0976278B1 (en) | Preventing misuse of a copied subscriber identity in a mobile communication system | |
FI102235B (en) | Management of authentication keys in a mobile communication system | |
US5933784A (en) | Signaling gateway system and method | |
US7043238B2 (en) | CDMA terminal for providing roaming service to GSM service subscriber in CDMA service area | |
US6038440A (en) | Processing of emergency calls in wireless communications system with fraud protection | |
US20060246949A1 (en) | Self provisioning of wireless terminals in wireless networks | |
JPH06224843A (en) | Illegal use preventing method for mobile telephone terminal | |
GB2322998A (en) | Method of Interconnecting Communication Networks | |
EP0890272B1 (en) | Use of a mobile station as a cordless telephone | |
US6487402B1 (en) | System and method for providing access to a wireless communication service to a group of subscribers who share a set of modems | |
KR19990063908A (en) | How to Install Short Code Dialing Devices and Telecommunication Links |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99807919.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999933355 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020007014728 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 49422/99 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 1999933355 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1020007014728 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 49422/99 Country of ref document: AU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999933355 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1020007014728 Country of ref document: KR |