WO2000000552A1 - Composition de resine thermoplastique, son procede de fabrication et feuille a orientation biaxiale renfermant cette composition - Google Patents

Composition de resine thermoplastique, son procede de fabrication et feuille a orientation biaxiale renfermant cette composition Download PDF

Info

Publication number
WO2000000552A1
WO2000000552A1 PCT/JP1999/003486 JP9903486W WO0000552A1 WO 2000000552 A1 WO2000000552 A1 WO 2000000552A1 JP 9903486 W JP9903486 W JP 9903486W WO 0000552 A1 WO0000552 A1 WO 0000552A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
particles
inorganic particles
composition according
Prior art date
Application number
PCT/JP1999/003486
Other languages
English (en)
French (fr)
Inventor
Takafumi Kudo
Masahiko Kosuge
Akira Kameoka
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/720,878 priority Critical patent/US6441063B1/en
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP19990957639 priority patent/EP1095984B1/en
Priority to DE1999624849 priority patent/DE69924849T2/de
Priority to AU42911/99A priority patent/AU4291199A/en
Publication of WO2000000552A1 publication Critical patent/WO2000000552A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro

Definitions

  • the present invention relates to a thermoplastic resin composition, a method for producing the same, and a film using the same, and more particularly, to a thermoplastic resin composition obtained by kneading a thermoplastic resin and specific inorganic particles using a vented twin-screw extruder.
  • the present invention relates to a thermoplastic resin composition, a method for producing the same, and a biaxially oriented film comprising the composition.
  • Thermoplastic resins especially aromatic polyesters, have excellent physical and chemical properties, and are therefore used in large quantities in the fields of fibers, films, resins and the like.
  • troubles such as poor workability, poor productivity, and low product value due to poor slippage occur in the molding process for obtaining such molded products or in handling the products themselves.
  • fine particles are blended in a thermoplastic resin to impart appropriate irregularities to the surface of the molded article to improve the slipperiness.
  • the fine particles include silica and titanium dioxide.
  • Inorganic particles such as calcium carbonate, talc and kaolinite are used.
  • the addition and blending of inorganic particles involves mixing of coarse particles. The presence of such coarse particles, for example, in a magnetic tape film, impairs important film quality, such as deteriorating electromagnetic conversion characteristics and causing dropout.
  • a method of removing such coarse particles generally, when the particles are added during a polymer synthesis reaction, the particles are added in a slurry state or a solution state, followed by pulverization and classification operations.
  • the particles will be too disintegrated and the particle size will be reduced, thus impairing the original purpose, such as slipperiness.
  • the inorganic particles are silicide particles
  • the surface of the silicide particles has many silanol groups, so that the particles are easily aggregated.
  • the shear stress is insufficient, the aggregated particles or coarse particles are formed. Insufficient disintegration of the particles deteriorates the dispersibility of the particles in the resin.
  • the shear stress is too high, the particles are excessively disintegrated and the particle size decreases, which is the original purpose. If the lubricity or the like is impaired, excessive clumping or crushing may cause reagglomeration and form coarse particles.
  • silica powder is treated with a gay-containing organic compound to avoid aggregation of silica particles.
  • Silica powders treated with silicon-containing organic compounds have already been produced on a commercial basis and are used in a variety of applications.
  • the proposed method is applied to silica powder treated with a silicon-containing organic substance, it is easily dispersed in a non-polar medium due to its hydrophobicity, but is extremely difficult to disperse in a polar medium. is there.
  • the present inventors have intensively studied to improve the drawbacks of the conventionally employed method of adding particles, and to obtain a thermoplastic resin film having particularly excellent lubricity and uniform film surface.
  • the present invention has been reached.
  • An object of the present invention is to easily add and mix inorganic particles to a thermoplastic resin,
  • An object of the present invention is to provide a thermoplastic resin composition having good dispersibility of particles in the obtained thermoplastic resin and a method for producing the same.
  • Another object of the present invention is to provide a biaxially oriented film comprising a thermoplastic resin composition having good dispersibility of inorganic particles produced by the above method.
  • the object of the present invention is to provide a thermoplastic resin composition containing inorganic particles, wherein (i) the inorganic particles have a pore volume of 0.1 to 3 mlZg. And (ii) the inorganic particles are characterized in that their surface is treated with 0.05 to 10 times by weight of the aqueous polyester with respect to the inorganic particles, or is treated with a gay-containing organic compound. Is achieved by a thermoplastic resin composition.
  • thermoplastic resin composition of the present invention is classified into the following compositions (a) and (b) based on the type of compound for treating the surface of the inorganic particles.
  • thermoplastic resin composition containing inorganic particles, (i) the inorganic particles have a pore volume of 0.1 to 3 ml / g, and (ii) the inorganic particles have an inorganic surface.
  • a thermoplastic resin composition characterized by being treated with 0.05 to 10 times by weight of an aqueous polyester based on particles.
  • thermoplastic resin composition containing silica particles, wherein the silica particles have a pore volume of 0.1 to 3 mlZg, and (ii) the surface thereof is treated with an organic compound containing gallium.
  • a thermoplastic resin composition comprising:
  • the thermoplastic resin composition is manufactured by kneading a thermoplastic resin and inorganic particles using a vented twin-screw kneading extruder to produce a thermoplastic resin composition.
  • the inorganic particles have a pore volume of 0.1 to 3 ml / g, and
  • the inorganic particles have an aqueous surface whose surface is 0.05 to 10 times the weight of the inorganic particles. It is treated with polyester or treated with a silicon-containing organic compound, and is supplied to a vented twin-screw extruder as a dispersion in which the inorganic particles are dispersed in water and / or an inert organic solvent. It has been found that it can be produced by a method characterized by the above.
  • thermoplastic resin constituting the composition of the present invention examples include polyethylene, polypropylene, polyamide and polyester. Among them, aromatic polyesters are preferred.
  • an aromatic polyester having an aromatic dicarboxylic acid as a main acid component and an aliphatic dalicol as a main dalicol component is particularly preferable.
  • the aromatic dicarboxylic acid include terephthalic acid, 2,6-naphthylenedicarboxylic acid, and 4,4′-diphenyldicarboxylic acid. Of these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferred.
  • the aliphatic glycol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and the like. Among them, ethylene glycol is preferred.
  • the polyester is preferably a homopolymer composed of the above-mentioned aromatic dicarboxylic acid component and aliphatic glycol component, but may be a copolymer obtained by copolymerizing the third component in a small proportion.
  • the third component for example, when the main constituent component is ethylene terephthalate, diol such as diethylene glycol, propylene glycol, neopentyl diol, polyalkylene glycol, 1,4-cyclohexanedimethanol; succinic acid And dicarboxylic acids such as adipic acid, sebacic acid, phthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid; and polyfunctional polycarboxylic acids such as trimellitic acid and pyromellitic acid.
  • the main component is ethylene-2,6-naphthalate
  • the same third component as above but 2,6-naphthalenedicarboxylic acid is terephthalic acid
  • thermoplastic resin in the present invention is not particularly limited as long as it can be efficiently produced by a conventionally known method or a method stored in the art.
  • a metal-based catalyst for example, a compound such as lithium, sodium, calcium, magnesium, manganese, zinc, antimony, germanium, or titanium, or an additive such as a phosphorus compound as a stabilizer may be contained. Good.
  • the inorganic particles constituting the composition of the present invention have a pore volume of 0.1 to 3 ml Z. c
  • D g Preferably, it is an inorganic particle having a pore volume of 0.3 to 2.5 m1Zg. If inorganic particles having a pore volume exceeding 3 ml Z g are used, the lubricity of the film becomes insufficient, and the film handling ability decreases, while the inorganic particles have a pore volume of 0.1 ml / g. The use of smaller ones is not desirable because it increases the cost of producing the particles and increases the cost of the molded article.
  • the inorganic particles in the present invention are not particularly limited, but preferred specific examples include silicic acid, titanium dioxide, calcium carbonate, talc, kaolinite and the like. Among them, silica is preferred.
  • Their average particle size is in the range of 0.05 to 5 wm, preferably 0.05 to 3 / im. If the average particle size is less than 0.03 m, the film's running properties and abrasion resistance will be insufficient.If the average particle size exceeds 5, the surface roughness of the film will be too large or the transparency will be impaired. I don't like it because I get tired.
  • the inorganic particles used in the present invention are not particularly limited in terms of the production method and shape, but, for example, they have many silanol groups on the surface, such as amorphous silica produced by a wet method. Therefore, particles which form dehydrated and condensed particles during kneading with the thermoplastic resin to form coarse particles have a particularly large effect.
  • the addition and blending amount of the inorganic particles to the thermoplastic resin is preferably from 0.01 to 10% by weight (based on the thermoplastic resin), and more preferably from 0.01 to 5% by weight. If this amount exceeds 10% by weight, sufficient dispersibility cannot be obtained. In addition, if the shear stress that promotes this dispersion is increased, the particles are crushed and the particle size is reduced.For example, when formed into a film, the coefficient of friction of the film increases, and the handling property is impaired. I will be. On the other hand, if the content is less than 0.01% by weight, the effect of adding the particles is not sufficiently exhibited.
  • the average particle diameter of the inorganic particles contained in the thermoplastic resin of the present invention is preferably in the range of 0.03 to 5 m, but those having at least two particle size distribution peaks are preferred. More preferred.
  • the particle size distribution of the inorganic particles has two peaks, the particle diameter width between the peaks is preferably at least 0.3 m, more preferably ,
  • the diameter width has the same relationship as in the case of the two peaks described above.
  • the peak of the particle size distribution of the inorganic particles is determined by, for example, a laser diffraction method and / or an observation method using an electron microscope described below. It can be obtained from the distribution.
  • the plurality of peaks according to the present invention are those having a valley having a height of 70% or less of the maximum peak between peaks in the frequency distribution and having a height of 10% or more of the maximum peak. Peak
  • the inorganic particles whose surfaces are treated with an aqueous polyester or a silicon-containing organic compound are used.
  • the amount of the aqueous polyester used for the surface treatment of the inorganic particles is required to be 0.05 to: L 0 weight times (5 to 1,000 wt%) with respect to the inorganic particles. Preferably, it is further treated at 0.3 to 8 times by weight (30 to 800% by weight), and particularly preferably at 0.5 to 6 times by weight (50 to 600% by weight). It is preferred that When the amount of the aqueous polyester is less than 0.05 times by weight of the inorganic particles, the inorganic particles are agglomerated.For example, when a thermoplastic resin containing the inorganic particles is formed into a film, the film is not included in the film. It is not preferable because coarse particles are generated.
  • the surface treatment of the inorganic particles with the aqueous polyester can be performed at any stage before the inorganic particles are kneaded with the thermoplastic resin, that is, before the inorganic particles are supplied to the vented twin-screw kneading extruder. is there.
  • the aqueous polyester used for the surface treatment of the inorganic particles may be a water-soluble or water-dispersible polyester. That is, the aqueous polyester is The aqueous polyester can be dissolved and / or finely dispersed.
  • the acid component constituting the aqueous polyester include terephthalic acid, isophthalic acid, phthalic acid, 1,4-cyclohexanedicarboxylic acid, 2, 6-naphthylenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, succinic acid, 5-sodium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, trimellitic acid And polyvalent carboxylic acids such as trimesic acid, trimellitic anhydride, phthalic anhydride, p-hydroxybenzoic acid, and trimellitic acid monocalidium salt.
  • hydroxy compound component examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentylglycol, and 1,4-cyclohexanedimethyl.
  • examples thereof include hydroxy compounds such as propionic acid, glycerin, trimethylolpropane, sodium dimethylolethyl sulfonate, and potassium dimethylolpropionate.
  • An aqueous polyester can be prepared from these compounds by a method known per se.
  • an esterification reaction between a polycarboxylic acid and a polyhydroxy compound is carried out, followed by polycondensation at a high temperature under reduced pressure, or a transesterification reaction between an ester-forming derivative of the polycarboxylic acid and the polyvalent hydroxy compound. Thereafter, it can be produced by polycondensation at high temperature under reduced pressure.
  • a compound having a sulfonic acid group in the polyester.
  • the compound having a sulfonic acid group include sulfoisophthalic acid, sulfoterephthalic acid, and sulfonaphthalene-2.
  • metal salts such as 6-dicarboxylic acid and its ester-forming derivative, and the metal of the metal salt preferably includes sodium, lithium, potassium, magnesium and the like. Among them, it is preferable to use 5-sodium sulfoisophthalic acid.
  • the content of the compound having a sulfonic acid group in the acid component is preferably in the range of 0.1 to 30 mol%, more preferably in the range of 0.1 to 15 mol%. this .
  • the solubility or dispersibility in water becomes insufficient
  • the amount is more than 30 mol%, the thermal stability in producing a thermoplastic resin is poor.
  • Such an aqueous polyester can be a self-crosslinking type having a functional group in a molecule, or can be crosslinked using a curing agent such as a melamine resin or an epoxy resin.
  • the surface treatment method of the inorganic particles with the aqueous polyester is not particularly limited.
  • a method of dissolving and dispersing the aqueous polyester in a medium and Z or finely dispersing the same, and then mixing the inorganic particles to form a slurry is preferable because of its simple power.
  • the medium of the aqueous polyester used at this time is not particularly limited, and a known medium can be used. From the viewpoint of safety, water and Z or a liquid mixture of water and an organic solvent are preferable. As the organic solvent in the mixed liquid, an organic solvent that dissolves the above-mentioned aqueous polyester is preferable, and the content of the organic solvent is based on the entire aqueous polyester liquid.
  • the method for preparing the aqueous liquid containing the aqueous polyester as a main component is not particularly limited, and a generally known method can be used. For example, a method in which an aqueous polyester is added to heated water and dissolved with stirring, or the solubility of the aqueous polyester in 20 liters of water is 20 g or more and the boiling point is 100 or less. It is dissolved in a hydrophilic organic solvent which azeotropes with water at or below 100. Examples of the organic solvent include dioxane, acetone, tetrahydrofuran, methylethylketone, and the like.
  • a small amount of a surfactant can be added to the force solution in order to promote solubilization and fine dispersion of the aqueous polyester.
  • Water is added to the solution with stirring, preferably under high-speed stirring with heating to form an aqueous body.
  • the aqueous solution can be obtained by adding the above-mentioned solution to water under stirring.
  • the organic solvent is separated and removed from the obtained aqueous body. For example, when the hydrophilic organic solvent is removed under normal pressure or reduced pressure, the desired aqueous polyester liquid is obtained.
  • surfactants can be used as the surfactant.
  • polyoxyethylene alkylphenol, polyoxyethylene fatty acid ester, sorbine fatty acid ester, glycerin fatty acid ester, fatty acid metal stone, alkyl sulfate, alkyl sulfonate, alkyl sulfosuccinate, quaternary Ammo Examples include dimethyl chloride, alkylamine hydrochloride, and sodium dodecylgen payingfonic acid salt.
  • the method of forming the inorganic particles into a slurry it may be pulverized or pulverized, and may be subjected to a classification treatment, or may be pulverized or pulverized after the classification treatment.
  • the inorganic particles may be pulverized or pulverized and / or classified by a dry method, and then slurryed with the above-mentioned aqueous polyester liquid.
  • dry and wet methods may be appropriately combined.
  • it may be pulverized by a dry method and then slurried and then subjected to a wet classification treatment, or may be subjected to a dry pulverization and / or a classification treatment followed by a wet pulverization treatment.
  • a dispersant, an antifoaming agent, and the like may be added as long as the effects of the present invention are not impaired.
  • the concentration of the slurry in the aqueous polyester liquid is preferably in the range of 5 to 50% by weight, more preferably 10 to 40% by weight. If the amount is 5% by weight or less, the amount of liquid added during the production of the thermoplastic resin increases, which is not preferable. On the other hand, if the content is more than 50% by weight, the viscosity of the slurry becomes high and the workability is reduced.
  • the above-mentioned dispersion liquid of the inorganic particles surface-treated with the aqueous polyester for example, water or an organic compound having a boiling point lower than the melting point of the thermoplastic resin must be used. . Among them, water, methanol, ethanol, ethylene glycol and the like are preferable in terms of economy and handleability. In particular, water is the most preferred medium in terms of safety.
  • a method for surface-treating inorganic particles with a silicon-containing organic compound will be described.
  • the particles to be surface-treated with the silicon-containing organic compound may be the above-mentioned inorganic particles, and are particularly preferably silica particles. Therefore, in the surface treatment of the organic compound containing gayne, the case where the silica particles are surface-treated will be described.
  • the number of silanol groups on the surface of the silicide powder after the treatment is preferably as small as possible, and the number of silanol groups ⁇ is preferably 2 // mo I Zm 2 or less, particularly Preferably it is 1.5 mo 1 Zm 2 or less.
  • the number A of silanol groups exceeds 2 nmo 1 m 2 , the silica particles are aggregated due to insufficient treatment of the silica surface, and the dispersibility in the film deteriorates.
  • the number of silanol groups A (the number of silanol groups on the surface of silica particles ol Z g) / (specific surface area of particles g / m 2 ).
  • the number of silanol groups on the surface of the silica particles is determined by titration with trimethylamine. Bulk tertiary amines, such as trimethylamine, are difficult to react with the silanol groups in the pores of the silica particles due to their bulkiness and participate in the interaction between the silica particles, and only the silanol groups on the particle surface Can be evaluated.
  • the silicon-containing organic compound that can be used for the treatment of the silicon-containing particles only needs to have a functional group capable of binding to the silanol group on the surface of the silicon-containing particles at the terminal of the silicon-containing organic compound and have a hydrophobic group. . As such a compound, an alkylsilane compound is preferable.
  • alkylsilane compound preferably used for treating the silica surface examples include halogenosilanes, alkyldisilazanes, and alkoxysilanes. More specifically, examples of halogenosilanes include monomethylchlorosilane, dimethyldichlorosilane, and trimethylchlorosilane. Hexamethyldisilazane can be exemplified as the alkyldisilazane. Examples of the alkoxysilanes include trimethylmethoxysilane, dimethyldimethoxysilane, and the like. However, trimethylmethoxysilane is particularly preferred because of its ease of handling.
  • a dispersant can be used for the surface-treated silica particles.
  • the agent can be used without any particular limitation as long as it has a polar part and a non-polar part in the same molecule and does not adversely affect the subsequent processing steps and processed products.
  • the compound having a polar portion and a non-polar portion in the same molecule include a so-called surfactant.
  • surfactant use those commonly used as dispersants and surfactants, such as sodium alkylbenzene sulfonate, sodium succinate, sodium alkyl phosphate, sodium polycarboxylate, and polyoxyethylene alkyl ether.
  • sulfonate compounds such as sodium alkylbenzenesulfonate and sodium succinate, and Z or potassium sulfonate compounds are particularly preferable.
  • the amount of the dispersant is preferably from 0.01 to 100% by weight (based on silica particles), particularly preferably from 0.1 to 50% by weight. If the amount of the dispersing agent is less than 0.01% by weight, the particles cannot be sufficiently dispersed in the polar medium. On the other hand, the use of the dispersant in an amount exceeding 100% by weight is excessive use and is not economically preferable.
  • the medium used to prepare the dispersion of the surface-treated silica particles is water and an inert organic medium having a Z or boiling point below the melting point of the thermoplastic resin.
  • water, methanol, ethanol, ethylene glycol and the like are preferable in terms of economy and handleability.
  • water is the most preferred medium in terms of safety.
  • thermoplastic resin composition according to the present invention.
  • the above-mentioned inorganic particles surface-treated with the aqueous polyester or the silicide particles surface-treated with the silicon-containing organic compound have extremely excellent dispersibility in the thermoplastic resin. Therefore, these particles can be used as a dispersion in water and Z or an inert organic medium to obtain a composition using a vented twin-screw extruder.
  • the method for supplying the dispersion containing inorganic particles to the vented twin-screw kneading extruder is not particularly limited as long as it is efficient, safe, quantitative, and does not affect the dispersibility.
  • At least one of the vent holes must be kept under reduced pressure in order to remove water, Z and organic compounds having a boiling point lower than the melting point of the thermoplastic resin. At this time, it is preferable to keep the degree of depressurization of the vent hole at 13 or 300 Pa or less.
  • melt viscosity of the thermoplastic '14 resin in the range of the shear rate during kneading is preferable.
  • the melt viscosity of the thermoplastic resin at that time is preferably from 10 to: L, 000 Pa ⁇ S, more preferably from 50 to 50 OPa ⁇ S. If the melt viscosity is less than 1 OPa ⁇ S, the dispersibility of the added inorganic particles becomes insufficient. On the other hand, if it exceeds 1, OO OPa'S, the added inorganic particles are crushed and the particle size decreases.
  • thermoplastic resin composition containing inorganic particles dispersed at a high concentration can be produced, and the composition can be used after being diluted with a thermoplastic resin containing substantially no particles.
  • the inorganic particles in the obtained thermoplastic resin composition are uniformly dispersed without agglomeration. Therefore, when the composition is formed into a stretched film, a uniform uneven surface without coarse projections is obtained. And a film having excellent slipperiness and abrasion resistance is obtained.
  • the thermoplastic resin composition of the present invention may contain two or more kinds of inorganic particles.
  • the thermoplastic resin composition obtained by the present invention can be used for the production of a single-layer or multi-layer film by a method known per se.
  • the film produced from the thermoplastic composition containing inorganic particles needs to have a coefficient of friction of 1.0 or less. If the coefficient of friction exceeds 1.0, when the film is manufactured and wound into a roll, the roll becomes wrinkled due to lack of slipperiness, making winding difficult. In that case, it loses its commercial value. Further, the film produced from the thermoplastic composition must have a film haze satisfying the following relational expression. When the film haze does not satisfy the following relational expression, the transparency is poor, and when the film haze is used for packaging and the like, it becomes unsuitable.
  • H is the film haze (%)
  • T is the film thickness ().
  • This film can be manufactured by a conventionally known method.
  • polyester is melt-extruded from a die, quenched on a cooling drum to obtain an unstretched film, and then the unstretched film is heated in the longitudinal direction (for example, Tg-10 to Tg + 70 ° C, Tg: glass transition temperature of polyester), stretched to uniaxially stretched film, then heated in the transverse direction (eg, Tg to Tg + 7o), stretched, heat set and z or It can be obtained by thermal relaxation.
  • the thickness of the biaxially oriented film is preferably 0.5 to 150 m, particularly preferably 1 to 100 wm.
  • the stretching ratio varies depending on the application, it is preferable that both the longitudinal stretching ratio and the transverse stretching ratio be in the range of 2 to 6 times.
  • Known means and conditions can be used for heat setting and Z or thermal relaxation depending on the use of the film.
  • the polyester multilayer film can be produced according to the method and conditions of the single-layer film except that two types of polyesters are coextruded to obtain an unstretched multilayer film.
  • inorganic particles can be easily added to a thermoplastic resin, a thermoplastic resin composition having good dispersibility of particles of the obtained thermoplastic resin, a method for producing the same, and a method for producing the same.
  • the used biaxially oriented film can be provided.
  • the particle size is measured by the following method.
  • Ethylene glycol or water is added to the dispersion in which the particles are dispersed in a medium to make a low-concentration solution, and the average particle diameter is measured using a Shimadzu laser analyzer SALD-200000. . 2) From particles in film
  • a small piece of the sample film was fixed on a sample stage for a scanning electron microscope, and the film surface was subjected to ion etching under the following conditions using a sputtering device (1B-2 type Ionco Ichiichi Ichiyo) manufactured by Eiko Engineering Co., Ltd. Is applied.
  • the conditions are as follows: place the sample in a cylinder jar, raise the vacuum to a vacuum of 7 Pa, and perform ion etching at a voltage of 0.90 kV and a current of 5 mA for about 5 minutes. Further, the surface of the film is sputtered with gold using the same apparatus, and observed with a scanning electron microscope at a magnification of 500 to 30,000 times, to determine the average particle size equivalent to the area circle.
  • Judgment is made based on the visual properties when water is added to the inorganic powder treated with the aqueous polyester or the organic compound containing gayne, and the difficulty of quantitative supply to the twin-screw kneading extruder.
  • X The viscosity of the slurry is so high that it is difficult to supply a fixed amount of the twin-screw extruder.
  • the diameter is measured 10 ⁇ m or more coarse particles (aggregated particles), the evaluation by the following criteria.
  • concentration of the inorganic particles in the film is set to be 0.06% by weight based on the polyester.
  • Polyester Z-465 (15% by weight aqueous polyester) was added dropwise to the wet synthetic amorphous silica particles having an average particle size of 1.7 while stirring, in an amount equivalent to 300% based on the particle weight. . Then, water was added to prepare a 5% silica particle-containing aqueous dispersion. The obtained aqueous dispersion had uniform and favorable slurry properties. Next, a non-dried polyethylene terephthalate chip containing 0.4% by weight of moisture is fed from a vibrating quantitative feeder at a rate of 20 kgZhr, and a kneading disk paddle is used as a screw component.
  • the mixture was fed to a shaft kneading extruder, and at the same time, the above aqueous dispersion was added using a Milton metering pump so that the particle concentration in the composition was 0.4% by weight.
  • the degree of vacuum at the vent port was set to 133 Pa, and the mixture was melt-kneaded at a cylinder temperature of 285 ° C and extruded.
  • the obtained silica particle-containing polyester composition and a polyester containing no particles were mixed so that the particle concentration in the polyester was 0.06% by weight.
  • the mixed polyester is melt-extruded at 290, wrapped around a casting drum with a surface temperature of 35 ° C using an electrostatic application casting method, cooled and solidified, and an unstretched film with a thickness of about 240 zm was obtained. .
  • the unstretched film was stretched 3.1 times in the machine direction at 95 ° C and 3.1 times in the transverse direction at 100 ° C. Then, it was heat-set with 205 to produce a biaxially oriented polyester film with a thickness of 25 m.
  • Table 1 shows the results.
  • the silica particles in the obtained polyester film had a good dispersibility, a high transparency, a low coefficient of friction and a good handling property could be obtained.
  • Example 4 The procedure was performed in the same manner as in Example 1 except that the pore volume of the wet synthetic amorphous silica particles was changed as shown in Table 1. The results are shown in Table 1.
  • Example 4 The procedure was performed in the same manner as in Example 1 except that the pore volume of the wet synthetic amorphous silica particles was changed as shown in Table 1. The results are shown in Table 1.
  • Example 1 The procedure was performed in the same manner as in Example 1 except that the average particle diameter and the pore volume of the wet synthetic amorphous silicon particles were changed as shown in Table 1. Table 1 shows the results.
  • Example 1 was repeated except that the thickness of the unstretched film during film formation was changed to about 2 l ⁇ m, and the thickness of the biaxially oriented polyester film after stretching was set to 2 / zm. Table 1 shows the results.
  • step 5 The polyethylene terephthalate chips supplied to the vented co-rotating twin-screw extruder were changed to polyethylene-2,6-naphtholate chips, and the cylinder temperature of the extruder and the melt extrusion temperature during film formation were reduced to 3
  • step 5 the thickness of the unstretched film during film formation was changed to about 21 m
  • the stretching temperature of the unstretched film was 13 Ot :
  • the heat-setting temperature was 22 ° C
  • Table 1 shows the results.
  • Spherical colloidal sily particles having an average particle size of 0.12 m were stirred with Polyester Z—465 (15% by weight aqueous polyester) manufactured by Yoko Kagaku Co., Ltd., equivalent to 100% of the particle weight with stirring. The amount to be added was dropped. Then, water was added to prepare a water dispersion containing 10% silica particles. The obtained aqueous dispersion had a uniform and favorable slurry property. Next, a vented co-rotating combination of undried polyethylene terephthalate chips containing 0.4% by weight of water and a binary disc paddle as a screw component at a rate of 2 O kg / hr from a vibrating quantitative feeder is used.
  • the mixture was supplied to a twin-screw kneading extruder, and at the same time, the above-mentioned aqueous dispersion was added using a Milton metering pump so that the particle concentration in the composition became 1.0% by weight. Thereafter, the master polymer containing wet synthetic amorphous silica obtained in Example 1 and the mass polymer containing spherical colloidal silica were obtained. The polymer and the polyester containing no particles were mixed so that the particle concentration in the polyester was 0.03% by weight of the wet synthetic amorphous silica force and 0.03% by weight of the spherical colloidal silicide force. Thereafter, the same procedure as in Example 1 was performed. Table 1 shows the results.
  • Polyester Z—465 (15% by weight aqueous polyester) manufactured by Ryo Kagaku Co., Ltd. was mixed with alumina (average particle size: 0.21 m) (crystal form: 6-inch type) under stirring to obtain 10% of the particle weight. An amount corresponding to 0% was added dropwise. Then, water was added to prepare an aqueous dispersion containing 10% silica particles. The obtained aqueous dispersion had uniform and favorable slurry properties. Next, a vented co-rotating assembly having a kneading disk paddle as a screw component and a dry polyethylene terephthalate chip containing 0.4% by weight of water at a rate of 20 kg Z hr from a vibrating quantitative feeder is used.
  • the mixture was supplied to a twin-screw kneading extruder, and at the same time, the above-mentioned aqueous dispersion was added using a Milton metering pump so that the particle concentration in the composition was 0.4% by weight.
  • the wet synthetic amorphous silica-containing master polymer obtained in Example 1 the alumina-containing master polymer and the polyester containing no particles were mixed, and the particle concentration in the polyester was 0.00% by wet synthetic amorphous silica. 3% by weight and 0.03% by weight of alumina.
  • Table 1 shows the results.
  • the corresponding trimethylmethoxysilane was added dropwise. Thereafter, the mixture was heated to 65 ° C., stirred at that temperature for 1 hour, and allowed to cool.
  • the reaction solution was distilled under reduced pressure, followed by vacuum drying for 2 hours to obtain a treated silica powder. When the number of silanol groups of this powder was measured, it was 110 zmolZg, and the number A of silanol groups on the powder surface was 0.36 fimo IZm 2 .
  • 1% by weight of sodium succinate (based on silica particles) and 100% by weight of methanol (based on silica particles) are added to the obtained powder, and water is added with stirring to obtain 10% by weight of silica particles.
  • a water-methanol mixed dispersion was prepared. The resulting dispersion had uniform and good slurry properties. Then, a vented co-rotating undried polyethylene terephthalate chip containing 0.4% by weight of water was carried out at a rate of 20 kg // hr from a vibratory metering feeder and a padding disk paddle was used as a screw component.
  • the mixture was supplied to a combined twin-screw kneading extruder, and at the same time, the above-mentioned aqueous dispersion was added using a Milton metering pump so that the particle concentration in the composition was 0.4% by weight.
  • the degree of vacuum at the vent port was set to 133 Pa, and the mixture was melt-kneaded at a cylinder temperature of 285 ° C and extruded.
  • the obtained silica particle-containing polyester composition and polyester containing no particles were mixed so that the particle concentration in the polyester was 0.06% by weight.
  • the polyester after mixing was melt-extruded at 290 ° C, wound around a casting drum having a surface temperature of 35 by using an electrostatic application casting method, and cooled and solidified to obtain an unstretched film having a thickness of about 13 Om.
  • This unstretched film was stretched 3.1 times in the machine direction at 95: and 3.1 times in the transverse direction at 100 ° C. Thereafter, the film was heat-set at 200 to produce a biaxially oriented polyester film having a thickness of 14 m.
  • Table 2 shows the results. Although the dispersibility of the silica powder in the obtained polyester film was good and the transparency was high, a film having a high coefficient of friction and good handleability could be obtained.
  • Example 10 Same as Example 10 except that the pore volume of the silica particles was changed as shown in Table 2. I went to. The dispersibility of the silica powder in the obtained polyester film was good, and a film having a low coefficient of friction and good handling properties could be obtained.
  • Example 10 The procedure was performed in the same manner as in Example 10, except that the treatment with the organic compound containing a gayne was not performed. Table 2 shows the results. The slurry properties were good, but the dispersibility of the silica powder in the film was poor.
  • Example 10 The procedure was performed in the same manner as in Example 10 except that the pore volume of the sily powder was changed as shown in Table 2.
  • the obtained film had good dispersibility of the silica powder in the polyester film and low friction coefficient and good handling properties as in Examples 10 to 12, but the production of silica powder The cost was high, which led to an increase in the cost of the molded product, which was undesirable in industrial production, especially in terms of cost.
  • Example 10 The procedure was performed in the same manner as in Example 10 except that the pore volume of the silica powder was changed as shown in Table 2. Table 2 shows the results. Although the dispersibility of the silica powder in the obtained polyester film was good, the friction coefficient was high and the handling property was poor.
  • Example 10 was carried out in the same manner as in Example 10 except that the silicon-containing organic compound for hydrophobizing the silica powder was changed to n-decylmethoxysilane. Table 2 shows the results. The dispersibility of the sily powder in the obtained polyester film was good, and a film having a low coefficient of friction and good handleability could be obtained.
  • Example 10 The procedure was performed in the same manner as in Example 10 except that the average particle size and the pore volume of the silica powder were changed as shown in Table 2. Table 2 shows the results. Although the dispersibility of the silica powder in the obtained polyester film was good, the coefficient of friction was extremely high and measurement was impossible.
  • Comparative Example 9 The procedure was performed in the same manner as in Example 10 except that the average particle size and the pore volume of the sily powder were changed as shown in Table 2. Table 2 shows the results. Although the dispersibility of the silica powder in the obtained polyester film was good, the film had poor transparency.
  • Example 10 was carried out in the same manner as in Example 10 except that two kinds of silica powders having different particle diameters were used, and the respective particle diameters and addition amounts were changed as shown in Table 2.
  • Table 2 shows the results. The dispersibility of the silica powder in the obtained polyester film was good, the transparency was high, the coefficient of static friction was low, and the film had excellent dring properties.
  • Pore volume Gay element particles Type Average particle size Pore volume Gay element particles Dispersive film Static friction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

明 細 書 熱可塑性樹脂組成物、 その製造方法およびその組成物よりなる二軸配向 発明の詳細な説明
発明の属する技術分野
本発明は熱可塑性樹脂組成物、 その製造方法およびそれを用いたフィルムに関 し、 さらに詳しくはベント式 2軸混練押出機にて熱可塑性樹脂と特定の無機粒子 を混練することにより得られた熱可塑性樹脂組成物、 その製造方法およびその組 成物よりなる二軸配向フィルムに関する。
従来の技術
熱可塑性樹脂、 特に芳香族ポリエステルは優れた物理的、 化学的性質を有する ことから、 繊維、 フィルム、 樹脂等の分野で大量に利用されている。 一方で、 そ のような成形品を得る成形工程あるいは製品自体を取り扱う際に滑り性不良によ る作業性、 生産性の悪化あるいは製品価値の低下といったトラブルが生じること が知られている。
このような問題に対して、 熱可塑性樹脂中に微粒子を配合せしめて成形品の表 面に適度の凹凸を付与し、 滑り性を向上させる方法が提案され、 該微粒子として 例えば、 シリカ、 二酸化チタン、 炭酸カルシウム、 タルク、 カオリナイトなどの 無機粒子が採用されている。 し力 ^しながら、 無機粒子を添加、 配合する塲合には 粗大粒子の混入が間題となる。 このような粗大粒子が存在すると、 例えば磁気テ ープ用フィルムにおいては、 電磁変換特性を低下させたりドロップアウトを引起 こす原因になったりするなど、 重要なフィルム品質を損なうことになる。 このよ うな粗大粒子を除去する方法として、 一般に、 ポリマー合成反応時に添加する場 合には、 粒子をスラリー状態あるいは溶液状態とし、 粉砕、 分級操作を経て添加 されている。 しかし、 この方法ではスラリー化、 粉碎、 分級操作に多大な費用、 作業時間がかかり、 この操作を行ったとしても、 合成反応中に添加されたのち再 擬集を起こし、粗大粒子の混入を避けきれないなどの問題が生じる。さらに近年、 一種のマスターポリマーから多品種の、 付加価値を付与したポリマーを製造する ときに、 重合反応時に粒子を添加していたのでは、 銘柄切替の際に多大なロスを 生じる。
そこで、 単軸押出機や 2軸混練押出機を用いて粉体状粒子をポリエステルに混 練する方法 (特開平 1一 1 5 7 8 0 6号公報) や、 粒子を媒体に分散させた液状 スラリーをポリエステル中に添加する方法 (特開平 6— 9 1 6 3 5号公報) など が提案された。 しかしながら、 これらの方法を無機粒子に適用した場合、 剪断応 力が不足した場合には、 凝集粒子や粗大粒子の解砕不足のため樹脂中の粒子の分 散性が悪くなつてしまい、 逆に剪断応力が高すぎた場合には、 粒子が解砕されす ぎてしまい粒子サイズが低下し、 本来の目的である滑り性等を損なってしまう。 ことに無機粒子がシリ力粒子である場合、 シリ力粒子の表面にはシラノール基 が多数存在するため凝集し易く、 前記方法を適用すると、 剪断応力が不足した場 合には、 凝集粒子や粗大粒子の解砕不足のため樹脂中の粒子の分散性が悪くなつ てしまい、 逆に剪断応力が高すぎた場合には、 粒子が解砕されすぎて粒子サイズ が低下し、 本来の目的である滑り性等を損なってしまうばカゝりか解砕がすぎると 再凝集を生じ粗大粒子を形成する問題がある。
一般に、 シリカ粒子の凝集を回避するために、 ゲイ素含有有機化合物によりシ リカ粉体の処理が行われている。 ケィ素含有有機化合物により処理されたシリカ 粉体は、 既に商業ベースで生産されていてさまざまな用途に使用されている。 しかし、 前記提案の方法をケィ素含有有機物により処理したシリカ粉体に適用 した場合、 その疎水性のために、 非極性媒体には容易に分散するが、 極性媒体に 分散させるのは極めて困難である。
発明が解決しょうとする課題
本発明者らは、このような従来採用されている粒子の添加方法の欠点を改良し、 特に易滑性とフィルム表面の均一性に優れた熱可塑性樹脂フィルムを得るために 鋭意研究した結果、 本発明に到達したものである。
本発明の目的は、無機粒子を熱可塑性樹脂に容易に添加、配合することができ、 得られた熱可塑性樹脂中の粒子の分散性が良好な熱可塑性樹脂組成物およびその 製造方法を提供することにある。
本発明の他の目的は、 上記方法で製造された、 無機粒子の分散性が良好な熱可 塑性樹脂組成物からなる二軸配向フィルムを提供することにある。
課題を解決するための手段
本発明者らの研究によれば、 前記本発明の目的は、 無機粒子を含有する熱可塑 性樹脂組成物であって、 (i) 該無機粒子は細孔容積が 0. l〜3mlZgであ り、 かつ (i i) 該無機粒子は、 その表面が無機粒子に対して 0. 05〜10重 量倍の水性ポリエステルで処理されているかまたはゲイ素含有有機化合物で処理 されていることを特徴とする熱可塑性樹脂組成物によって達成される。
前記本発明の熱可塑性樹脂組成物に、 無機粒子の表面を処理する化合物の種類 に基いて、 下記 (a) および (b) の組成物に分類される。
(a) 無機粒子を含有する熱可塑性樹脂組成物であって、 (i) 該無機粒子は、 細孔容積が 0. l〜3ml/gでありかつ (i i) 該無機粒子はその表面が無機 粒子に対して 0. 05〜10重量倍の水性ポリエステルで処理されていることを 特徵とする熱可塑性樹脂組成物。
(b) シリカ粒子を含有する熱可塑性樹脂組成物であって、 該シリカ粒子は細 孔容積が 0. l〜3mlZgであり、 かつ (i i) その表面はゲイ素含有有機化 合物で処理されていることを特徴とする熱可塑性樹脂組成物。
さらに本発明者らの研究によれば、 前記熱可塑性樹脂組成物は、 ベント式 2軸 混練押出機を用いて熱可塑性樹脂と無機粒子とを混練して熱可塑性樹脂組成物を 製造する方法において、 (i) 該無機粒子は細孔容積が 0. l〜3ml/gであ り、 かつ (i i) 該無機粒子は、 その表面が無機粒子に対して 0. 05〜10重 量倍の水性ポリエステルで処理されているかあるいはケィ素含有有機化合物で処 理されたものであり、 該無機粒子を水および/または不活性有機溶媒に分散させ た分散液としてベント式 2軸混練押出機に供給することを特徴とする方法により 製造できることが見出された。
以下本発明についてさらに詳細に説明する。 本発明の組成物を構成する熱可塑性樹脂としては、 ポリエチレン、 ポリプロピ レン、 ポリアミドおよびポリエステルなどが挙げられる。 中でも芳香族ポリエス テルが好ましい。
前記芳香族ポリエステルとしては、 芳香族ジカルボン酸を主たる酸成分とし、 脂肪族ダリコールを主たるダリコール成分とする芳香族ポリエステルが特に好ま しい。 この芳香族ジカルボン酸としては、 テレフタル酸、 2 , 6—ナフ夕レンジ カルボン酸、 4, 4 ' —ジフエニルジカルボン酸等を例示することができる。 中 でもテレフタル酸または 2, 6—ナフタレンジカルボン酸が好ましい。 また、 こ の脂肪族グリコールとしては、 エチレングリコ一ル、 プロピレングリコール、 1 , 4一ブタンジオール、 1, 4ーシクロへキサンジメタノール等を例示することが できる。 中でもエチレングリコールが好ましい。
前記ポリエステルは上記の芳香族ジカルボン酸成分と脂肪族グリコール成分か らなるホモポリマーが好ましいが、 第三成分を小割合共重合したコポリマーであ ることもできる。 この第三成分としては、 例えば主たる構成成分がエチレンテレ フタレートである場合、 ジエチレングリコール、 プロピレングリコール、 ネオべ ンチルダリコール、 ポリアルキレングリコール、 1 , 4ーシクロへキサンジメタ ノールなどのジォ一ル;コハク酸、 アジピン酸、 セパシン酸、 フ夕ル酸、 イソフ タル酸、 2, 6—ナフ夕レンジカルボン酸などのジカルボン酸; トリメリット酸、 ピロメリット酸などの多官能多価カルボン酸などが例示できる。 また、 主たる構 成成分がエチレン— 2, 6—ナフタレートである場合、 上記と同じ第三成分 (た だし 2, 6—ナフタレンジカルボン酸をテレフタル酸とする) を挙げることがで さる。
本発明における熱可塑性樹脂は、 従来から知られている方法または当業界に蓄 積されている方法で効率よく製造できる方法であれば、 特に限定はされない。 そ の際、 必要に応じ金属系触媒、 例えばリチウム、 ナトリウム、 カルシウム、 マグ ネシゥム、 マンガン、 亜鉛、 アンチモン、 ゲルマニウム、 チタンなどの化合物、 安定剤としてのリン化合物などの添加剤を含有していてもよい。
一方本発明の組成物を構成する無機粒子は、 その細孔容積が 0 . l〜3 m l Z c
D gのものである。 好ましくは 0 . 3〜2. 5 m 1 Z gの細孔容積を有する無機粒 子である。 無機粒子として細孔容積が 3 m l Z gを超えるものを使用すると、 フ イルムの易滑性が不十分となり、 フィルムのハンドリング性力低下し、 一方無機 粒子として細孔容積が 0 . l m l / gより小さいものを使用すると、 そのための 粒子の製造コストが高くなつたり、 成形品のコストの上昇にもなるので望ましく ない。
本発明における無機粒子は特に限定されないが、 好ましい具体例として、 シリ 力、 二酸化チタン、 炭酸カルシウム、 タルク、 カオリナイトなどを挙げることが できる。 中でもシリカが好適である。 また、 これらの平均粒径は 0 . 0 3〜5 w m、 好ましくは 0 . 0 5〜3 /imの範囲である。 平均粒径が 0. 0 3 m未満で はフィルムの走行性ゃ耐摩耗性が不十分であり、 また平均粒径が 5 を超える とフィルムの表面粗さが大きくなりすぎたり、 透明性を損なつたりするので好ま しくない。
本発明において使用される無機粒子はその製造方法や形状など特に制限されな いが、 例えば湿式法で製造された非晶質シリカのように、 その表面に多くのシラ ノ一ル基を持つがゆえに、 熱可塑性樹脂との混練中に脱水縮合し粗大粒子を形成 するような粒子には、 特に大きな効果をもたらす。
本発明において無機粒子の、 熱可塑性樹脂に対する添加、 配合量は 0. 0 1〜 1 0重量% (対熱可塑性樹脂)が好ましく、さらに好ましくは 0 . 0 1〜 5重量% である。 この量が 1 0重量%を超えると十分な分散性が得られない。 また、 この 分散を促すベく剪断応力を増大させると、 粒子が解砕され粒子サイズが低下して しまうために、 例えばフィルムに成形加工した場合、 フィルムの摩擦係数が上昇 し、 ハンドリング性が損なわれてしまう。 逆に 0. 0 1重量%未満であると、 粒 子添加の効果が十分に発現しない。
前述したように本発明の熱可塑性樹脂に含有される無機粒子は、平均粒径が 0. 0 3〜 5 mの範囲のものが好ましいが、 その粒度分布のピークが少なくとも 2 つ存在するものがさらに好ましい。 無機粒子の粒度分布のピークが 2つの場合、 ピークとピークの間の粒子径幅は好ましくは 0 . 3 m以上、 さらに好ましくは ,
6
0 . 5 以上である。 また該粒度分布中のピークが 3つ以上の場合、 ピーク高 さが最大のピーク (以下、 最大ピークと略す) とピーク高さ力最小のピーク (以 下、 最小ピークと略す) の間の粒子径幅を前述の 2つのピークの場合と同様の関 係にすることが好ましい。
本発明において無機粒子の粒度分布のピークは、 例えば後述のレーザ回折法お よび/または電子顕微鏡を用いた観察法により、 該無機粒子の粒子径に対する粒 子頻度を粒子の面積単位で表した頻度分布により求めることができる。 本発明に おける複数のピークとは、 頻度分布におけるピークとピークの間に最大ピークの 7 0 %以下の高さの谷部分を有し、 かつ最大ピークの 1 0 %以上の高さを有する ものをピークとする
本発明においては、 前記無機粒子は、 その表面が水性ポリエステルまたはケィ 素含有有機化合物で処理されたものを使用する。
まず初めに、 無機粒子の水性ポリエステルの表面処理について説明する。
本発明において、 無機粒子の表面処理に使用する水性ポリエステルの量は、 無 機粒子に対して、 0 . 0 5〜: L 0重量倍 (5〜 1, 0 0 0重量%) である必要が あり、 さらに 0 . 3〜8重量倍 (3 0〜8 0 0重量%) で処理されていることが 好ましく、 特に 0 . 5〜6重量倍 (5 0〜6 0 0重量%) で処理されていること が好ましい。 水性ポリエステル量が無機粒子に対し 0 . 0 5重量倍未満の場合に は、 無機粒子が凝集を起こすため、 例えば該無機粒子を含む熱可塑性樹脂をフィ ルムに成形加工した場合に、フィルム中に粗大粒子が発生するため好ましくない。 また、 1 0重量倍を超えると無機粒子の分散液の粘度が大きく上昇し、 ベント式 2軸混練押出機への定量供給が極めて困難になるばカゝり力、 フィルムヘーズが上 昇し、 透明性を損なってしまう。
水性ポリエステルによる無機粒子の表面処理の操作は、 無機粒子を熱可塑性樹 脂と混練する前つまり、 ベント式 2軸混練押出機に供給する前であれば任意の段 階で実施することが可能である。
無機粒子の表面処理に使用される水性ポリエステルは、 水溶性または水分散性 のポリエステルであればよい。 すなわち、 水性ポリエステルは、 後述する液中で 溶解およびまたは微分散化することが可能なものであり、 該水性ポリエステルを 構成する酸成分としては、 例えばテレフタル酸、 イソフタル酸、 フ夕ル酸、 1, 4—シクロへキサンジカルボン酸、 2, 6—ナフ夕レンジカルボン酸、 4, 4 ' —ジフエニルジカルボン酸、 アジピン酸、 セバシン酸、 ドデカンジカルボン酸、 コハク酸、 5—ナトリウムスルホイソフ夕ル酸、 2—カリウムスルホテレフタル 酸、 トリメリット酸、 トリメシン酸、 無水トリメリット酸、 無水フタル酸、 p— ヒドロキシ安息香酸、 トリメリット酸モノカリゥム塩等の多価カルボン酸を例示 できる。 またヒドロキシ化合物成分としては、 例えばエチレングリコール、 プロ ピレングリコール、 1, 3—プロパンジオール、 1, 4一ブタンジオール、 1, 6—へキサンジオール、 ネオペンチルグリコ一ル、 1, 4—シクロへキサンジメ 夕ノール、 P—キシリレングリコール、 ビスフエノール Aのエチレンォキシド付 加物、 ビスフエノール Aのプロピレンォキシド付加物、 ジエチレングリコール、 トリエチレングリコール、 ポリエチレンォキシドグリコール、 ポリテトラメチレ ンォキシドグリコ一ル、 ジメチロールプロピオン酸、 グリセリン、 トリメチロー ルプロパン、 ジメチロールェチルスルホン酸ナトリウム、 ジメチロールプロピオ ン酸カリウム等の «ヒドロキシ化合物を例示できる。 これらの化合物からそれ 自体公知の方法により水性ポリエステルをつくることができる。 すなわち、 多価 カルボン酸と多価ヒドロキシ化合物をエステル化反応させた後、 高温、 減圧下に て重縮合させるか、 多価カルボン酸のエステル形成性誘導体と多価ヒドロキシ化 合物をエステル交換反応後、 高温、 減圧下にて重縮合させることで製造すること ができる。 好適に水性ポリエステルをつくるには、 スルホン酸塩基を有する化合 物をポリエステル中に含有させることが好ましく、 スルホン酸塩基を有する化合 物としては、 例えばスルホイソフ夕ル酸、 スルホテレフタル酸、 スルホナフタレ ンー 2 , 6—ジカルボン酸およびそのエステル形成性誘導体などの金属塩があり、 金属塩の金属としてはナトリウム、 リチウム、 カリウム、 マグネシウムなどが好 適に挙げられる。 なかでも 5—ナトリゥムスルホイソフタル酸を用いることが好 ましい。 スルホン酸基を有する化合物の酸成分中の含有量は、 好ましくは 0 . 1 〜3 0モル%の範囲、 さらに好ましくは 0 . 1〜 1 5モル%の範囲である。 この 。 量が 0 . 1モル%より少ないと水溶解性または分散性が不十分となり、 3 0モル% より多いと熱可塑性樹脂を製造した際の熱安定性に劣る。 かかる水性ポリエステ ルは分子内に官能基を有する自己架橋型とすることができるし、 メラミン樹脂、 エポキシ樹脂のような硬化剤を用いて架橋することもできる。
本発明において無機粒子の水性ポリエステルによる表面処理方法に特に制限は ないが、 例えば水性ポリエステルを媒体に溶解および Zまたは微分散化して後、 該無機粒子を混合しスラリー化する方法力簡易で好ましい。
その際使用される水性ポリエステルの媒体としては、 特に制限はなく公知の媒 体が使用できるが、 安全性の観点より、 水および Zまたは水と有機溶媒の混合液 体が好ましい。 該混合液体での有機溶媒としては前述の水性ポリエステルを溶解 する有機溶媒が好ましく、 有機溶媒の含有量は水性ポリエステル液全体に対して
3重量%以下、 さらに好ましくは 1重量%以下が好ましい。 水性ポリエステルを 主成分とした水性液を調製する方法に、 特に制限はなく一般的に公知の方法を用 いることができる。 例えば水性ポリエステルを加温された水に添加し、 撹拌しな がら溶解させる方法、 あるいは水性ポリエステルを 2 0でで 1リットルの水に対 する溶解度が 2 0 g以上でかつ沸点が 1 0 0 以下、 または 1 0 0で以下で水と 共沸する親水性の有機溶媒に溶解する。 この有機溶媒としてはジォキサン、 ァセ トン、 テトラヒドロフラン、 メチルェチルケトン等を例示することができる。 力 力 溶液には水性ポリエステルの可溶化およびンまたは微分散ィ匕を促進するため、 さらに少量の界面活性剤を添加することができる。 該溶液に撹拌下好ましくは加 温高速撹拌下で水を添加し水性体とする。 また撹拌下の水に前述の溶液を添加す る方法においても水性体とすることができる。 得られた水性体から有機溶媒を分 離、 除去する。 例えば常圧または減圧下で親水性の有機溶媒を除去すると目的の 水性ポリエステル液が得られる。
上記の界面活性剤としては公知のものを使用することができる。 例えばポリオ キシエチレンアルキルフエ二ルェ一テル、 ポリオキシエチレン脂肪酸エステル、 ソルビ夕ン脂肪酸エステル、 グリセリン脂肪酸エステル、 脂肪酸金属石鹼、 アル キル硫酸塩、 アルキルスルホン酸塩、 アルキルスルホコハク酸塩、 第 4級アンモ ニゥムクロリド、 アルキルアミン塩酸塩、 ドデシルゲンゼンスルホン酸ソ一ダ塩 等を挙げることができる。
該無機粒子をスラリー化する手法については特に制限はないが、 粉碎または解 砕、 さらに分級処理を加えてもよいし、 分級処理後に粉砕、 解碎してもよい。 あ るいは該無機粒子を乾式にて粉砕または解砕および/または分級処理した後、 前 述の水性ポリエステル液でスラリ一化してもよい。 あるいは乾式と湿式の方法を 適時組み合わせてもよい。 例えば乾式で粉砕した後にスラリー化して、 湿式で分 級処理してもよいし、 乾式で解砕およぴンまたは分級処理した後に湿式で粉砕処 理してもよい。
また均一なスラリーを得るために、本発明の効果を損なわない範囲で、分散剤、 消泡剤などを添加してもよい。 具体的にはポリスチレンスルホン酸ナトリウム、 ポリアクリル酸ナトリウム、 カルボキシメチルセルロース、 ポリビニルアルコ一 ル、 ビニル化合物とカルボン酸系単量体との共重合の塩、 ポリアクリル酸部分ァ ルキルエステル、ポリアルキレンポリアミン、 アンモニア、各種のアンモニア塩、 カセイソ一ダ、 へキサメタリン酸ナトリウム、 ピロリン酸ナトリウムなどの各種 のナトリウム塩、 テトラエチルアンモニゥムクロライド、 テトラメチルアンモニ ゥムヒドロキサイド、 テトラメチルホスホニゥムブロマイドなどのォニゥム化合 物、 消泡性シリコーンなどを例示することができる。
水性ポリエステル液によるスラリ一濃度 (液中の水性ポリエステルと無機粒子 のトータル量) は 5〜 5 0重量%の範囲が好ましく、 1 0〜4 0重量%の範囲が さらに好ましい。 この量が 5重量%以下では、 熱可塑性樹脂製造時に添加する液 体量が多くなり好ましくない。 また 5 0重量%以上ではスラリー化に際し粘度が 高くなり作業性が低下する。
前述した水性ポリエステルで表面処理された無機粒子の分散液を調製するため に使用する媒体としては、 例えば水おょぴンまたは沸点が該熱可塑性樹脂の融点 未満の有機物化合物を使用する必要がある。 中でも、 水、 メタノール、 エタノー ル、 エチレングリコール等が経済面、 取り扱い性の上から好ましい。 特に、 水は 安全性の面から最も好ましい媒体である。 次に本発明において、 無機粒子をケィ素含有有機化合物により表面処理する方 法について説明する。 このケィ素含有有機化合物により表面処理する粒子は、 前 述した無機粒子であることができるが、 とりわけシリカ粒子であることが好適で ある。 従ってこのゲイ素含有有機化合物の表面処理においては、 シリカ粒子を表 面処理する場合について説明する。
シリ力粒子をケィ素含有有機化合物で表面処理する場合、 処理後のシリ力粉体 表面のシラノール基数は少ない程よく、 シラノール基数 Αが 2 // m o I Zm2以 下であることが好ましく、 特に好ましくは 1 . 5 m o 1 Zm2以下である。 シ ラノール基数 Aが 2 n m o 1 m2を超えるとシリカ表面の処理不足のために、 シリカ粒子が凝集を起こし、 フィルム中での分散性が悪化する。
ここで、 シラノール基数 A= (シリカ粒子表面のシラノール基数 o l Z g ) / (粒子の比表面積 g /m2) である。
シリ力粒子表面のシラノ一ル基数はトリメチルァミンを用いて滴定を行うこと により求める。 トリメチルァミンのような、 かさ高い 3級ァミンは、 そのかさ高 さゆえにシリカ粒子の細孔中のシラノール基とは反応しにくく、 シリカ粒子間の 相互作用に関与し、 粒子表面のシラノール基のみについての評価が可能である。 シリ力粒子の処理に使用できるケィ素含有有機化合物は、 シリ力表面のシラノ ール基と結合できる官能基をケィ素含有有機化合物の末端に持ち、 かつ疎水性基 を有する物であればよい。 このような化合物としては、 アルキルシラン化合物が 好ましい。 シリカ表面の処理に好ましく用いられるアルキルシラン化合物として は、 ハロゲノシラン類、 アルキルジシラザン類、 アルコキシシラン類、 などが例 示できる。 さらに具体的な例を挙げると、 ハロゲノシラン類としては、 モノメチ ルクロロシラン、 ジメチルジクロロシラン、 トリメチルクロロシラン等が例示で きる。 アルキルジシラザン類としては、 へキサメチルジシラザンが例示できる。 また、 アルコキシシラン類としては、 トリメチルメトキシシラン、 ジメチルジメ トキシシラン等が例示できる。 しかし、 取り扱い上の簡便さから、 トリメチルメ トキシシランが特に好ましい。
表面処理したシリカ粒子に対して分散剤を使用することができる。 かかる分散 剤としては、 極性部分と非極性部分を同一分子内に持ち、 その後の加工工程、 加 ェ製品に悪影響を与えるものでなければ、 特に限定されることなく使用すること ができる。 極性部分と非極性部分を同一分子内に持つ化合物としては、 いわゆる 界面活性剤などが例示できる。例えば、アルキルベンゼンスルホン酸ナトリウム、 コハク酸ナトリウム、 アルキルリン酸ナトリウム、 ポリカルボン酸ナトリウム、 ポリオキシエチレンアルキルエーテルなどの、 一般的に分散剤や界面活性剤で使 用されているものであれば使用することができるが、 特に、 アルキルベンゼンス ルホン酸ナトリウム、 コハク酸ナトリウム等の、 スルホン酸塩化合物および Zま たは力ルポン酸塩化合物が好ましい。
前記分散剤の量は、 好ましくは 0 . 0 1〜1 0 0重量% (対シリカ粒子) であ り、特に好ましくは 0 . 1〜5 0重量%である。分散剤の使用量が 0 . 0 1重量% 未満の場合には、 シリ力粒子を十分に極性媒体に分散させることができなくなつ てしまう。 一方、 分散剤を 1 0 0重量%を超える量用いるのは過剰使用であり、 経済的に好ましくない。
表面処理したシリカ粒子の分散液を調製するために使用する媒体は、 水および Zまたは沸点が該熱可塑性樹脂の融点未満の不活性有機媒体である。中でも、水、 メタノール、 エタノール、 エチレングリコール等が経済面、 取り扱い性の上から 好ましい。 特に、 水は安全性の面から最も好ましい媒体である。
次に本発明における熱可塑性樹脂組成物の製造方法について説明する。 前述し た水性ポリエステルで表面処理された無機粒子あるいはケィ素含有有機化合物で 表面処理されたシリ力粒子は、熱可塑性樹脂に対して分散性が極めて優れている。 従ってこれら粒子は、 水および Zまたは不活性有機媒体に分散させた分散液とし てベント式 2軸混練押出機を用いて組成物を得ることができる。
本発明において、 ベント式 2軸混練押出機に無機粒子を含む分散液を供給する 方法は、 効率よく、 安全で、 定量性があり、 かつ分散性に影響を与えなければ特 に限定はされないが、 水および Zまたは沸点が該熱可塑性樹脂の融点未満の有機 化合物を除去するため、 ベント孔の少なくとも一つは減圧下に保持する必要があ る。 その際のベント孔の減圧度は 1 3, 3 0 0 P a以下に保持すること力好まし ,
12 く、 6, 7 0 0 P a以下がより好ましく、 4, 0 0 0 P a以下がさらに好ましい。 本発明において、 ベント式 2軸混練押出機および混練条件については、 剪断応 力を一定の範囲に制御することが好ましく、 これは混練時の剪断速度領域におい て該熱可塑 '14樹脂の溶融粘度により制御することができる。 その際の該熱可塑性 樹脂の溶融粘度は 1 0〜: L , 0 0 0 P a · Sであることが好ましく、 5 0〜5 0 O P a · Sであることがより好ましい。溶融粘度が 1 O P a · Sに満たない場合、 添加した無機粒子の分散性が不十分となる。 一方、 1, O O O P a ' Sを超えた 場合、 添加した無機粒子が解砕され、 粒子サイズが低下してしまう。
本発明の方法によれば、 熱可塑性樹脂中に無機粒子を均一、 高濃度に含有させ ることができる。 従って、 無機粒子を高濃度に分散含有した熱可塑性樹脂組成物 を製造し、 該組成物を実質的に粒子を含まない熱可塑性樹脂で希釈して使用する こともできる。 さらに、 得られた熱可塑性樹脂組成物中の無機粒子は凝集するこ となく、均一に分散しており、従って、該組成物を延伸フィルムにした場合には、 粗大突起のない均一な凹凸表面が得られ、 易滑性、 耐摩耗性に優れたフィルムが 得られる。 さらに、 本発明の熱可塑性樹脂組成物は 2種以上の無機粒子を含んで いてもよい。 本発明により得られる熱可塑性樹脂組成物はそれ自体公知の方法に より単層、 複層いずれのフィルムの製造にも使用することができる。
本発明において、 無機粒子を含有する熱可塑性組成物により製造されるフィル ムは摩擦係数が 1 . 0以下である必要がある。 摩擦係数が 1 . 0を超えると、 フ イルムを製造しロール状に巻き取りを行う際、 滑り性不足のためにロールにしわ が入り巻き取り困難となり、 生産性が著しく低下するばかりか極端な場合にはそ の商品価値を失つてしまう。 さらに前記熱可塑性組成物により製造されるフィル ムはフィルムヘーズが下記関係式を満たしている必要がある。 フィルムヘーズが 下記関係式を満たさぬ場合には透明性に劣り、 包装用途等に用いる場合には不適 切な物となってしまう。
H< 0 . 2 T + 1 . 5
(ここで、 Hはフィルムヘーズ (%) 、 Tはフィルム厚み ( ) である。 ) このフィルムは従来公知の方法により製造することができる。 例えば、 ポリエステル単層フィルムは、 ポリエステルをダイから溶融押出し、 冷却ドラム上で急冷して未延伸フィルムを得、 ついで該未延伸フィルムを縦方向 に加熱 (例えば、 T g— 1 0〜T g + 7 0 °C、 T g:ポリエステルのガラス転移 温度) 、 延伸して一軸延伸フィルムとし、 続いて横方向に加熱 (例えば、 T g〜 T g + 7 o ) 、 延伸し、 熱固定および zまたは熱弛緩することにより得ること ができる。 この二軸配向フィルムの厚みは 0 . 5〜1 5 0 m、 特に 1〜1 0 0 wmが好ましい。 延伸倍率は、 用途により異なるが縦延伸、 横延伸倍率共に 2〜 6倍の範囲とすることが好ましい。 また、 熱固定および Zまたは熱弛緩はフィル ムの用途に合わせて、 公知の手段、 条件を用いることができる。
また、 ポリエステル複層フィルムは、 2種のポリエステルを共押出して未延伸 複層フィルムを得る以外は、 前記単層フィルムの方法、 条件に準じて製造するこ とができる。
発明の効果
本発明によれば、 無機粒子を熱可塑性樹脂に容易に添加することができ、 得ら れた熱可塑性樹脂の粒子の分散性が良好な熱可塑性樹脂組成物、 その製造法およ びそれを用いた二軸配向フィルムを提供することができる。
実施例
以下、 本発明を実施例を挙げてさらに詳細に説明する力 本発明はその要旨を 越えない限り、 以下の実施例によって限定されるものではない。 なお、 実施例に おける種々の物性および特性の測定方法、 定義は以下の通りである。
( 1 ) 粒子の細孔容積
J I S規格 1 1 5 0— 5. 2記載の方法により測定する。
( 2 ) 粒子の平均粒径
粒子の粒径の測定は、 次の手法にて行う。
1 ) 分散液よりの場合
粒子を媒体に分散させた分散液に、 エチレングリコールもしくは水を加えて低 濃度の溶液とした後、 島津製作所製レーザー解析装置 S AL D— 2 0 0 0を用い て、 平均粒子径を測定する。 2) フィルム中粒子からの場合
試料フィルム小片を走査型電子顕微鏡用試料台に固定し、 エイコ一エンジニア リング (株) 製スパッタリング装置 (1 B— 2型イオンコ一夕一装置) を用いて フィルム表面に下記条件にてイオンエッチング処理を施す。
条件は、 シリンダージャー内に試料を設置し、 7 Paの真空状態まで真空度を 上げ、電圧 0. 90 kV、電流 5mAにて約 5分間イオンエッチングを実施する。 さらに同装置にてフィルム表面に金スパッタを施し、 走査型電子顕微鏡にて 50 0〜30, 000倍で観察し、 面積円相当の平均粒径を求める。
(3) スラリー性状
水性ポリエステルまたはゲイ素含有有機化合物で処理された無機粉体に、 水を 添加した際の目視による性状、 および二軸混練押出機への定量供給の難易度によ り判断する。
〇:粉体と水が均一になったスラリー性状で二軸混練押出機への定量供給が容 易 ある。
X:スラリ一の粘度が高く二軸混練押出機の定量供給が困難である。
(4) 分散性
二軸配向フィルムを用い、 光学顕微鏡下で、 100 cm2当りの、 径が 10 ^ m以上の粗大粒子 (凝集粒子) を測定し、 下記の判定基準による評価を行う。 た だし、 フィルム中の無機粒子の濃度は、 ポリエステルに対して 0. 06重量%と なるように設定する。
判断基準
0: 100個未満
△: 100〜 1 , 000 (未満) 個
X: 1, 000個以上
(5) フィルムヘーズ
N i h o nn精密工業社製 PO I Cヘーズメーター S ET— HS— D 1型を用 いて測定する。
(6) 静摩擦係数 ASTM-D- 1894- 63に従い、 スリップテスタ一を用いて静摩擦係数 を測定する。
実施例 1
平均粒径 1. 7 の湿式合成非晶質シリカ粒子に互応化学社製ポリエステル Z-465 (15重量%水性ポリエステル) を撹拌下に、 粒子重量に対して 30 0 %に相当する量を滴下した。 ついで水を添加し 5 %のシリカ粒子含有水分散液 を調整した。 得られた水分散液は均一で良好なスラリー性状のものであった。 次 いで、 水分 0. 4重量%を含有する未乾燥ポリエチレンテレフ夕レートチップを 振動式定量フィーダより 20 kgZh rの割合で、 ニーディングディスクパドル をスクリュー構成要素として有するベント式同方向回転嚙合型 2軸混練押出機に 供給し、 同時にミルトン式定量ポンプを用い組成物中の粒子濃度が 0. 4重量% となるように前述の水分散液を添加した。 この際、 ベント口の真空度を 133 P aに設定し、 シリンダ温度 285 °Cにて溶融混練し、 押出した。 得られたシリカ 粒子含有ポリエステル組成物と粒子を含有しないポリエステルとを混合し、 ポリ エステル中の粒子濃度が 0. 06重量%となるようにした。 混合後のポリエステ ルを 290 で溶融押出しし、 静電印加キャスト法を用いて表面温度 35°Cのキ ヤスティングドラムに巻き付けて冷却固化し、 厚さ約 240 zmの未延伸フィル ムを得た。 この未延伸フィルムを 95 °Cで、 縦方向に 3. 1倍、 100 で横方 向に 3. 1倍に延伸した。 その後 205 で熱固定し、 厚さ 25 mの二軸延伸 ポリエステルフィルムを作製した。 この結果を表 1に示す。 得られたポリエステ ルフィルム中のシリカ粒子の分散性は良好で、 透明性が高く、 摩擦係数が低いハ ンドリング性良好なフィルムを得ることができた。
実施例 2〜 3および比較例 1〜 3
シリ力粒子の処理に使用するポリエステルの量を表 1に示すように変更する以 外は実施例 1と同様に行った。 この結果を併せて表 1に示す。
比較例 4
湿式合成非晶質シリ力粒子の細孔容積を表 1に示すように変更する以外は実施 例 1と同様に行った。 この結果を併せて表 1に示す。 実施例 4
湿式合成非晶質シリ力粒子の平均粒子径と細孔容積を表 1に示すように変更す る以外は実施例 1と同様に行った。 この結果を表 1に示す。
実施例 5
使用する無機粒子を力オリンとする以外は実施例 1と同様に行った。 この結果 を表 1に示す。
実施例 6
製膜時の未延伸フィルムの厚みを約 2 l ^ mに変更し、 延伸後の二軸配向ポリ エステルフィルムの厚みを 2 /z mとする以外は実施例 1と同様に行った。 この結 果を表 1に示す。
実施例 7
ベント式同方向回転嚙合型 2軸混練押出機に供給するポリエチレンテレフタレ ートチップをポリエチレン— 2, 6—ナフ夕レートチップに変更し、 同押出機の シリンダ温度および製膜時の溶融押出し温度を 3 0 5で、 製膜時の未延伸フィル ムの厚みを約 2 1 mに変更し、 未延伸フィルムの延伸時の温度を 1 3 O t:, 熱 固定温度を 2 2 5 °C, 延伸後の二軸配向ポリエステルフィルムの厚みを 2 i mへ 変更する以外は実施例 1と同様に行った。 この結果を表 1に示す。
実施例 8
平均粒径 0 . 1 2 mの球状コロイダルシリ力粒子に互応化学社製ポリエステ ル Z— 4 6 5 ( 1 5重量%水性ポリエステル) を撹拌下に、 粒子重量に対して 1 0 0 %に相当する量を滴下した。 ついで水を添加し 1 0 %のシリカ粒子含有水分 散液を調製した。得られた水分散液は均一で良好なスラリ一性状のものであった。 次いで水分 0 . 4重量%を含有する未乾燥ポリエチレンテレフ夕レートチップを 振動式定量フィーダより 2 O k g/h rの割合で、 二一ディングディスクパドル をスクリュー構成要素として有する、 ベント式同方向回転嚙合型 2軸混練押出機 に供給し、 同時にミルトン式定量ポンプを用いて、 組成物中の粒子濃度が 1 . 0 重量%となるように前述の水分散体を添加した。 その後は実施例 1で得た湿式合 成非晶質シリカ含有マスタ一ポリマーと球状コロイダルシリカ含有マス夕一ポリ マーと粒子を含有しないポリエステルとを混合し、 ポリエステル中の粒子濃度が 湿式合成非晶質シリカ力 S 0. 0 3重量%、球状コロイダルシリ力が 0 . 0 3重量% となるようにした。 その後は実施例 1と同様に行った。 この結果を表 1に示す。
実施例 9
平均粒径 0 . 2 1 mのアルミナ (結晶形態は 6»型) に互応化学社製ポリエス テル Z— 4 6 5 ( 1 5重量%水性ポリエステル) を撹拌下に、 粒子重量に対して 1 0 0 %に相当する量を滴下した。 ついで水を添加し 1 0 %のシリカ粒子含有水 分散液を調製した。 得られた水分散液は均一で良好なスラリー性状のものであつ た。 次いで水分 0. 4重量%を含有する未乾燥ポリエチレンテレフ夕レートチッ プを振動式定量フィーダより 2 0 k g Z h rの割合で、 ニーディングディスクパ ドルをスクリュー構成要素として有する、 ベント式同方向回転嚙合型 2軸混練押 出機に供給し、同時にミルトン式定量ポンプを用いて、組成物中の粒子濃度が 0 . 4重量%となるように前述の水分散体を添加した。 その後は実施例 1で得た湿式 合成非晶質シリカ含有マスターポリマーとアルミナ含有マスタ一ポリマーと粒子 を含有しないポリエステルとを混合し、 ポリエステル中の粒子濃度が湿式合成非 晶質シリカが 0 . 0 3重量%、 アルミナが 0 . 0 3重量%となるようにした。 そ の後は実施例 1と同様に行った。 この結果を表 1に示す。
Figure imgf000020_0001
(続き) フィルム品質
分散性 フィルムへ一ズ 静摩擦
(%) 係数 実施例 1 〇 3. 3 0. 45 比較例 1 X 3. 0 0. 48 実施例 2 〇 3. 2 0. 47 実 SI例 O 〇 6. 2 0. 46 比較例 2 X 3. 1 0. 48 比較例 3 〇 7. 0 0. 43 比較例 4 〇 3. 4 1. 07 実施例 4 〇 2. 5 0. 70 実施例 5 〇 3. 5 0. 40 実施例 6 〇 1. 7 0. 72 実施例 7 〇 1. 8 0. 70 実施例 8 〇 2. 8 0. 51 実施例 9 〇 2. 7 0. 52
実施例 10
平均粒径 1. 5 ^m、 細孔容積 1. 5mlZg、 比表面積 300m2/gの湿 式合成非晶質シリカ粒子を水に分散させ、 撹拌下に、 粒子重量に対して 4%に相 当するトリメチルメトキシシランを滴下した。 その後、 65°Cまで加温し、 その 温度にて 1時間保持しながら撹拌を行った後放冷した。該反応液を、減圧蒸留し、 続いて 2時間真空乾燥を行い、 処理シリカ粉体を得た。 この粉体のシラノール基 数を測定した所、 1 10 zmo lZgであり、 粉体表面上のシラノール基数 Aは 0. 36 fimo IZm2であった。得られた粉体にコハク酸ナトリウムを 1重量% (対シリカ粒子重量) 、 メタノールを 100重量% (対シリカ粒子重量)添加し、 撹拌を行いながら水を添加し、 10重量%のシリカ粒子を含む水一メタノール混 合分散液を調整した。 得られた分散液は均一で良好なスラリー性状のものであつ た。 次いで、 水分 0. 4重量%を含有する未乾燥ポリエチレンテレフ夕レートチ ップを振動式定量フィーダより 20 kg//h rの割合で、 二一ディングディスク パドルをスクリユー構成要素として有するベント式同方向回転嚙合型 2軸混練押 出機に供給し、 同時にミルトン式定量ポンプを用い組成物中の粒子濃度が 0. 4 重量%となるように前述の水分散液を添加した。 この際、 ベント口の真空度を 1 33 P aに設定し、 シリンダ温度 285°Cにて溶融混練し、 押出した。 得られた シリカ粒子含有ポリエステル組成物と粒子を含有しないポリエステルとを混合し、 ポリエステル中の粒子濃度が 0. 06重量%となるようにした。 混合後のポリェ ステルを 290°Cで溶融押出しし、 静電印加キャスト法を用いて表面温度 35 のキャスティングドラムに巻き付けて冷却固化し、 厚さ約 13 O mの未延伸フ イルムを得た。 この未延伸フィルムを 95 :で、 縦方向に 3. 1倍、 100°Cで 横方向に 3. 1倍に延伸した。 その後 200でで熱固定し、 厚さ 14 mの二軸 延伸ポリエステルフィルムを作製した。 この結果を表 2に示す。 得られたポリエ ステルフィルム中のシリカ粉体の分散性は良好で、 透明性が高いが、 摩擦係数が 高くハンドリング性の良好なフィルムを得ることができた。
実施例 1 1および 12
シリカ粒子の細孔容積を表 2に示すように変更する以外は、 実施例 10と同様 に行った。 得られたポリエステルフィルム中のシリカ粉体の分散性は良好で、 摩 擦係数が低くハンドリング性の良好なフィルムを得ることができた。
比較例 5
ゲイ素含有有機化合物による処理を行わない点以外は、 実施例 1 0と同様に行 つた。 この結果を表 2に示す。 スラリー性状は良好なるも、 フィルム中のシリカ 粉体の分散性に劣る結果となった。
比較例 6
シリ力粉体の細孔容積を表 2に示すように変更する以外は、 実施例 1 0と同様 に行った。 得られたフィルムは実施例 1 0〜1 2と同様にポリエステルフィルム 中のシリ力粉体の分散性は良好で、 摩擦係数が低くハンドリング性の良好な物で あつたが、 シリカ粉体の製造コストが高く、 生産した成型品のコストアップにつ ながってしまうため、 工業生産上、 特にコスト面で好ましくない物であった。
比較例 7
シリカ粉体の細孔容積を表 2に示すように変更する以外は、 実施例 1 0と同様 に行った。 この結果を併せて表 2に示す。 得られたポリエステルフィルム中のシ リ力粉体の分散性は良好なるも、 摩擦係数が高くハンドリング性に劣る物であつ た。
実施例 1 3
シリカ粉体を疎水化処理するケィ素含有有機化合物を n—デシルメトキシシラ ンとする以外は実施例 1 0と同様に行った。 この結果を併せて表 2に示す。 得ら れたポリエステルフィルム中のシリ力粉体の分散性は良好で、 摩擦係数が低くハ ンドリング性の良好なフィルムを得ることができた。
比較例 8
シリカ粉体の平均粒径と細孔容積を表 2に示すように変更する以外は、 実施例 1 0と同様に行った。 この結果を併せて表 2に示す。 得られたポリエステルフィ ルム中のシリカ粉体の分散性は良好であつたが、 摩擦係数が極めて高く、 測定不 可であった。
比較例 9 シリ力粉体の平均粒径と細孔容積を表 2に示すように変更する以外は、 実施例 1 0と同様に行った。 この結果を併せて表 2に示す。 得られたポリエステルフィ ルム中のシリ力粉体の分散性は良好であつたが、透明性に劣るフィルムとなった。
実施例 1 4
粒径の異なる 2種のシリカ粉体を用い、 それぞれの粒径、 添加量を表 2に示す ように変更する以外は実施例 1 0と同様に行った。 この結果を表 2に示す。 得ら れたポリエステルフィルム中のシリカ粉体の分散性は良好で、 透明性が高く、 静 摩擦係数が低くノ、ンドリング性に優れたフィルムとなった。
表 2 無機粒 無機粒子② フィ^/ム品 種類 平均粒径 もな
細孔容積 ゲイ素 粒子 種類 平均粒径 細孔容積 ゲイ素 粒子 分散性 フィルム 静摩擦
(^m) inl/g) 含有 添加量 inl/g) 含有 添加量 ヘーズ 係数 有機 有機 t¾> (%)
化合物 化合物
処理の 処理の
、、 右 ilF、ゝ
勢細 10 シリカ 1. 5 1. 5 有 0.06 〇 2. 7
1. 5 0. 13 有 0.06 〇 1. 8 0. 10 靈列 12 1. 5 2. 90 有 0.06 〇 3. 1 0. 96
1;瞧 5 1. 5 1. 5 なし 0.06 X 1. 9 卿 J6 1. 5 0. 08 有 0.06 〇 1. 7 0. 05 比侧 7 1. 5 3. 5 有 0.06 〇 3. 6 1. 12
¾5»3 1. 5 1. 5 有 0.06 〇 2. 9 0. 52 比剛 8 0. 01 0. 2 有 0.06 〇 1. 6 t翻 9 5. 5 1. 9 有 0.06 〇 5. 1 0. 87 細列 14 1. 5 1. 5 有 0.03 シリカ 0. 05 0. 3 有 0.03 〇 2. 2 0. 48

Claims

請求の範囲
1. 無機粒子を含有する熱可塑性樹脂組成物であって、 (i) 該無機粒子は細孔 容積が 0. l〜3ml/gであり、 かつ (i i) 該無機粒子は、 その表面が無機 粒子に対して 0. 05〜10重量倍の水性ポリエステルで処理されているかまた はゲイ素含有有機化合物で処理されていることを特徴とする熱可塑性樹脂組成物。
2. 該無機粒子は、 平均粒径が 0. 03〜 5 mである請求項 1記載の熱可塑性 樹脂組成物。
3. 該無機粒子は、 熱可塑性樹脂に対して 0. 01〜10重量%含有されている 請求項 1記載の熱可塑性樹脂組成物。
4. 該無機粒子は、 その粒子の粒度分布のピークが少なくとも 2つ以上存在する 請求項 1記載の熱可塑性樹脂組成物。
5. 該無機粒子は、 シリカ粒子である請求項 1記載の熱可塑性榭脂組成物。
6. 該熱可塑性樹脂は、 芳香族ポリエステルである請求項 1記載の熱可塑性樹脂 組成物。
7. 無機粒子を含有する熱可塑性樹脂組成物であって、 (i) 該無機粒子は、 細 孔容積が 0. 1〜31111ノ8でぁりかっ (1 該無機粒子はその表面が無機粒 子に対して 0. 05〜10重量倍の水性ポリエステルで処理されていることを特 徴とする熱可塑性樹脂組成物。
8. 該無機粒子は、 平均粒径が 0. 03〜 5 /imである請求項 7記載の熱可塑性 2D 樹脂組成物。
9. 該無機粒子は、 熱可塑性樹脂に対して 0. 01〜10重量%含有されている 請求項 7記載の熱可塑性樹脂組成物。
10. 該無機粒子は、 その粒子の粒度分布のピークが少なくとも 2つ以上存在す る請求項 7記載の熱可塑性樹脂組成物。
11. 該無機粒子は、 シリカ粒子またはカオリン粒子である請求項 7記載の熱可 塑性樹脂組成物。
12. 該熱可塑性樹脂は、 芳香族ポリエステルである請求項 7記載の熱可塑性榭 脂組成物。
13. 該水性ポリエステルは、 水溶性または水分散性ポリエステルである請求項 7記載の熱可塑性樹脂組成物。
14. シリカ粒子を含有する熱可塑性樹脂組成物であって、 該シリカ粒子は細孔 容積が 0. l〜3mlZgであり、 かつ (i Πその表面はゲイ素含有有機化合 物で処理されていることを特徴とする熱可塑性樹脂組成物。
15. 該シリ力粒子は、 平均粒子が 0. 03〜 5 mである請求項 14記載の熱 可塑性樹脂組成物。
16. 該シリカ粒子は、 熱可塑性樹脂に対して 0. 01〜10重量%含有されて いる請求項 14記載の熱可塑性樹脂組成物。
17. 該シリカ粒子は、 その粒子の粒度分布のピークが少なくとも 2つ以上存在 する請求項 1 4記載の熱可塑性樹脂組成物。
1 8. 該ケィ素含有有機化合物は、 アルキルシラン化合物である請求項 1 4記載 の熱可塑性樹脂組成物。
1 9. 該熱可塑性樹脂は、 芳香族ポリエステルである請求項 1 4記載の熱可塑性 樹脂組成物。
2 0. ベント式 2軸混練押出機を用いて熱可塑性樹脂と無機粒子とを混練して熱 可塑性樹脂組成物を製造する方法において、 ( i ) 該無機粒子は細孔容積が 0. l〜3 m l Zgであり、 かつ (i i ) 該無機粒子は、 その表面が無機粒子に対し て 0. 0 5〜1 0重量倍の水性ポリエステルで処理されているかあるいはケィ素 含有有機化合物で処理されたものであり、 該無機粒子を水および Zまたは不活性 有機溶媒に分散させた分散液としてベント式 2軸混練押出機に供給することを特 徵とする熱可塑性樹脂組成物の製造方法。
2 1 . 該無機粒子は、 平均粒径が 0. 0 3〜 5 mである請求項 2 0記載の熱可 塑性樹脂組成物の製造方法。
2 2. 該無機粒子は、 熱可塑性樹脂に対して 0. 0 1〜: L 0重量%含有させる請 求項 2 0記載の熱可塑性樹脂組成物の製造方法。
2 3. 該無機粒子は、 その粒子の粒度分布のピークが少なくとも 2つ以上存在す る請求項 2 0記載の熱可塑性樹脂組成物の製造方法。
2 4. 該無機粒子は、 シリカ粒子またはカオリン粒子である請求項 2 0記載の熱 可塑性樹脂組成物の製造方法。
25. 該熱可塑性樹脂は、 芳香族ポリエステルである請求項 20記載の熱可塑性 樹脂組成物の製造方法。
26. 請求項 1、 7または 14記載の熱可塑性樹脂組成物を使用して得られた、 静摩擦係数が 1. 0以下でかつヘーズが下記式を満足する二軸配向フィルム。
H<0. 2T+ 1. 5
(ここで Hはフィルムのへ一ズ (%) 、 Tはフィルム厚み ( m) を示す)
27. フィルムの厚みは、 0. 5〜150 /^mである請求項 26記載の二軸配向 フィルム。
28. 熱可塑性樹脂が芳香族ポリエステルである請求項 26記載の二軸配向フィ ルム。
PCT/JP1999/003486 1998-06-30 1999-06-29 Composition de resine thermoplastique, son procede de fabrication et feuille a orientation biaxiale renfermant cette composition WO2000000552A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/720,878 US6441063B1 (en) 1998-06-30 1999-01-29 Thermoplastic resin composition, process for production thereof, and biaxially oriented film produced from said composition
EP19990957639 EP1095984B1 (en) 1998-06-30 1999-06-29 Thermoplastic resin composition, process for producing the same, and biaxially oriented film comprising the composition
DE1999624849 DE69924849T2 (de) 1998-06-30 1999-06-29 Thermoplastische harzzusammensetzung, verfahren zu deren herstellung und biaxial orientierter film der die zusammensetzung enthält
AU42911/99A AU4291199A (en) 1998-06-30 1999-06-29 Thermoplastic resin composition, process for producing the same, and biaxially oriented film comprising the composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP18402298 1998-06-30
JP10/184022 1998-06-30
JP18628998 1998-07-01
JP10/186290 1998-07-01
JP10/186289 1998-07-01
JP18629098 1998-07-01

Publications (1)

Publication Number Publication Date
WO2000000552A1 true WO2000000552A1 (fr) 2000-01-06

Family

ID=27325365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003486 WO2000000552A1 (fr) 1998-06-30 1999-06-29 Composition de resine thermoplastique, son procede de fabrication et feuille a orientation biaxiale renfermant cette composition

Country Status (7)

Country Link
US (1) US6441063B1 (ja)
EP (1) EP1095984B1 (ja)
KR (1) KR100589890B1 (ja)
AU (1) AU4291199A (ja)
DE (1) DE69924849T2 (ja)
TW (1) TW436507B (ja)
WO (1) WO2000000552A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867254B2 (en) 2001-09-04 2005-03-15 W.R. Grace & Co., - Conn. Two-phase compositions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689823B1 (en) 1999-03-31 2004-02-10 The Brigham And Women's Hospital, Inc. Nanocomposite surgical materials and method of producing them
SG130001A1 (en) * 2001-09-14 2007-03-20 Sumitomo Chemical Co Process for producing resin composition and resin composition obtained according to said process
US20090215934A1 (en) * 2006-03-06 2009-08-27 Makoto Nakamura Thermoplastic resin composition and resin molded product
JP5168812B2 (ja) * 2006-04-13 2013-03-27 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物および樹脂成形品
JP4337898B2 (ja) * 2007-03-29 2009-09-30 セイコーエプソン株式会社 半導体装置
KR101320354B1 (ko) * 2011-06-08 2013-10-29 이창호 무기물을 함유하는 열가소성 건축내장용 복합소재 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304038A (ja) * 1987-01-14 1988-12-12 Toyobo Co Ltd 不活性無機粒子の表面処理方法及び不活性無機粒子含有配向ポリエステルフィルム
JPH04298538A (ja) * 1991-03-28 1992-10-22 Diafoil Co Ltd ポリエステルフィルム
JPH04309551A (ja) * 1991-04-08 1992-11-02 Toray Ind Inc 熱可塑性ポリエステル組成物
JPH04336227A (ja) * 1991-05-13 1992-11-24 Toray Ind Inc 二軸配向熱可塑性樹脂フィルム
JPH07502301A (ja) * 1992-10-05 1995-03-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 表面改質された酸化物粒子,及びそのポリマー物質用充填材並びに改質剤としての用途
JPH07228733A (ja) * 1993-12-22 1995-08-29 Sumitomo Chem Co Ltd ポリプロピレン組成物およびその延伸フィルム
WO1995025770A1 (fr) * 1994-03-18 1995-09-28 Mitsubishi Denki Kabushiki Kaisha Composition resineuse destinee au moulage de pieces detachees de precision, manchon et virole fabriques a partir de cette composition
JPH07286095A (ja) * 1994-04-19 1995-10-31 Toray Ind Inc 粒子分散性に優れたポリエステル組成物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157806A (ja) 1987-09-30 1989-06-21 Teijin Ltd 粉体添加剤含有ポリマーの製造方法
JPH0778134B2 (ja) * 1991-03-28 1995-08-23 ダイアホイルヘキスト株式会社 ポリエステルフィルム
JP2842078B2 (ja) 1992-09-09 1998-12-24 東レ株式会社 ポリエステル組成物の製造方法
US5718971A (en) * 1994-12-22 1998-02-17 Skc Limited Polyester film comprising alumina and silane coupling agent
DE19529169A1 (de) * 1995-08-08 1997-02-13 Hoffmann Elektrokohle Schleifstück für Stromabnehmer
JP3140373B2 (ja) * 1996-07-05 2001-03-05 帝人株式会社 ポリエステル組成物およびその製造方法
EP0882576B1 (en) * 1996-10-03 2004-04-14 Teijin Limited Release film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304038A (ja) * 1987-01-14 1988-12-12 Toyobo Co Ltd 不活性無機粒子の表面処理方法及び不活性無機粒子含有配向ポリエステルフィルム
JPH04298538A (ja) * 1991-03-28 1992-10-22 Diafoil Co Ltd ポリエステルフィルム
JPH04309551A (ja) * 1991-04-08 1992-11-02 Toray Ind Inc 熱可塑性ポリエステル組成物
JPH04336227A (ja) * 1991-05-13 1992-11-24 Toray Ind Inc 二軸配向熱可塑性樹脂フィルム
JPH07502301A (ja) * 1992-10-05 1995-03-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 表面改質された酸化物粒子,及びそのポリマー物質用充填材並びに改質剤としての用途
JPH07228733A (ja) * 1993-12-22 1995-08-29 Sumitomo Chem Co Ltd ポリプロピレン組成物およびその延伸フィルム
WO1995025770A1 (fr) * 1994-03-18 1995-09-28 Mitsubishi Denki Kabushiki Kaisha Composition resineuse destinee au moulage de pieces detachees de precision, manchon et virole fabriques a partir de cette composition
JPH07286095A (ja) * 1994-04-19 1995-10-31 Toray Ind Inc 粒子分散性に優れたポリエステル組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1095984A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867254B2 (en) 2001-09-04 2005-03-15 W.R. Grace & Co., - Conn. Two-phase compositions

Also Published As

Publication number Publication date
TW436507B (en) 2001-05-28
US6441063B1 (en) 2002-08-27
DE69924849T2 (de) 2006-03-02
EP1095984A4 (en) 2003-02-05
EP1095984B1 (en) 2005-04-20
DE69924849D1 (de) 2005-05-25
EP1095984A1 (en) 2001-05-02
AU4291199A (en) 2000-01-17
KR20010053271A (ko) 2001-06-25
KR100589890B1 (ko) 2006-06-15

Similar Documents

Publication Publication Date Title
US6162857A (en) Process for making polyester/platelet particle compositions displaying improved dispersion
JPH04298539A (ja) ポリエステルフィルム
US5023291A (en) Polyester composition
WO2000000552A1 (fr) Composition de resine thermoplastique, son procede de fabrication et feuille a orientation biaxiale renfermant cette composition
JP2000080293A (ja) 熱可塑性樹脂組成物、その製造方法およびその組成物よりなる二軸配向フィルム
JP4856388B2 (ja) 熱可塑性樹脂フィルム
JPH11216723A (ja) 熱可塑性樹脂組成物の製造方法
JPH10502682A (ja) ポリマーフィルム
JP2636436B2 (ja) ポリエステル組成物の製造方法
JP3193180B2 (ja) ポリエステル組成物の製造方法
JPH07103247B2 (ja) ポリエステル組成物および該組成物からなるフィルム
JP3244233B2 (ja) 熱可塑性ポリエステル組成物およびフィルム
JP2003155351A (ja) ポリエステル樹脂組成物の製造方法
JP2996671B2 (ja) ポリエステル組成物
JPH04298538A (ja) ポリエステルフィルム
JP2002173580A (ja) 樹脂組成物、及び該樹脂組成物を用いて成る成形物
JPH11216721A (ja) 熱可塑性樹脂組成物の製造方法
JP3309497B2 (ja) ポリエステル組成物およびそれからなるフイルム
JPH11216722A (ja) 熱可塑性樹脂組成物及びその製造方法
JPH11216724A (ja) 熱可塑性樹脂組成物及びその製造方法
JP2000017178A (ja) 熱可塑性樹脂組成物、その製造方法及びそれを用いたフィルム
JP2000017158A (ja) ポリエステル樹脂組成物およびそれを用いたフィルム
JP2692272B2 (ja) ポリエステル組成物,その製造方法およびそれからなるフィルム
JP3077245B2 (ja) ポリエステル組成物の製造方法
JPH04100854A (ja) ポリエステル組成物およびそれからなるフィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007014975

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09720878

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999957639

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999957639

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007014975

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999957639

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007014975

Country of ref document: KR