WO1999054693A1 - Systeme de mesure des caracteristiques de luminance d'objets, notamment d'objets a luminance dependante de la direction d'emission - Google Patents

Systeme de mesure des caracteristiques de luminance d'objets, notamment d'objets a luminance dependante de la direction d'emission Download PDF

Info

Publication number
WO1999054693A1
WO1999054693A1 PCT/FR1999/000917 FR9900917W WO9954693A1 WO 1999054693 A1 WO1999054693 A1 WO 1999054693A1 FR 9900917 W FR9900917 W FR 9900917W WO 9954693 A1 WO9954693 A1 WO 9954693A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
sensor
objective
plane
optical
Prior art date
Application number
PCT/FR1999/000917
Other languages
English (en)
Inventor
Thierry Leroux
Original Assignee
Eldim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eldim filed Critical Eldim
Priority to US09/673,676 priority Critical patent/US6556284B1/en
Priority to KR1020007011680A priority patent/KR20010042895A/ko
Priority to JP2000544993A priority patent/JP2002512365A/ja
Publication of WO1999054693A1 publication Critical patent/WO1999054693A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0455Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings having a throughhole enabling the optical element to fulfil an additional optical function, e.g. a mirror or grating having a through-hole for a light collecting or light injecting optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/06Restricting the angle of incident light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters

Definitions

  • the present invention relates to a system for measuring the luminance characteristics of objects, in particular of objects with luminance dependent on the direction of emission. It applies for example to projection screens, cathode ray tubes, lighting devices and display screens such as liquid crystal screens, plasma screens, electroluminescent screens and microtip screens ("microtip screens ”).
  • FIG. 1 An electromechanical system is known which is schematically represented in FIG. 1. 2
  • This system includes:
  • a measuring instrument for example a photometer
  • This electromechanical system makes it possible to make measurements along the optical axis X of the measuring instrument (and therefore at an angle ⁇ zero with respect to this axis) but has however many drawbacks.
  • the measurements are made by sampling. Only the selected positions are measured and no information is known on the luminance in the intermediate positions. There is no certainty as to the value of the luminance apart from that of the measured points.
  • the measurements, of duration T 0 are carried out in series, one after the other. If a large number N of points are to be measured in order to have a maximum of information, the complete measurement of the object takes a time NxT 0 .
  • FIG. 2 Another measurement system is also known which is schematically represented in FIG. 2. This system comprises: - a matrix sensor 8 of CCD type or the like and
  • An image of the object to be measured is thus obtained at one time on the sensor.
  • the different points of the image correspond to the measurements relating to the different points of the object to be measured.
  • the measurement speed is increased. Indeed, the measurement, of duration Ti, does not depend (or little) on the number of points measured. All the information is available. There is no risk of a detail of the image escaping the measurement. An integration (summation) of all the values obtained gives with certainty a value of the luminous flux emitted by the object.
  • FIG. 2 has a serious drawback which is schematically illustrated by FIG. 3.
  • L 2 is the distance between the optics 10 and the sensor 8 and K is a constant.
  • the object is observed at an angle ⁇ which depends on the measured point of the object ( ⁇ is counted with respect to a straight line passing through this point and parallel to the optical axis X of optics 10) and which, for the extreme points, takes a value ⁇ M (figure 2) little different from tan ⁇ M and therefore little different from d 2 / L 2, that is to say from 1 / (2K).
  • K is in the range of 2.5 to 3
  • the object of the present invention is to remedy this drawback.
  • the invention relates to a system making it possible to correctly measure the luminance characteristics of objects, whether the luminance of these varies or not depending on the direction of emission.
  • the subject of the present invention is a system for measuring the luminance characteristics of objects, this system comprising:
  • the optical means are further provided for selecting, for each point of the object, with a view to forming the corresponding image point, those of the light rays coming from this point of the object which propagate in a manner substantially parallel to the optical axis of the optical means.
  • the optical means comprise:
  • a diaphragm placed between the first objective and the sensor and able to allow to pass, among the light rays reaching it from the object through the first objective, only those which propagate from the object in a manner substantially parallel to the optical axis of the first objective, and - auxiliary optical means placed between the diaphragm and the sensor and provided for forming, from the light rays which the diaphragm lets pass, the image of the object in an observation plane , the sensor being substantially placed in this observation plane.
  • the object is substantially placed in the object focal plane of the first objective and the diaphragm is substantially placed in the image focal plane of this first objective.
  • the auxiliary optical means comprise a second objective intended to form the image of the object in the observation plane.
  • the auxiliary optical means comprise:
  • a third objective placed between the second objective and the sensor and intended to form the image of the object in the observation plane from the intermediate image and to adapt the size of the image of the object to the size of the sensor.
  • the diaphragm opening can be variable.
  • the system which is the subject of the invention may comprise a means of optical filtering of the light coming from the object.
  • this filtering means is preferably substantially placed in the observation plane, facing the sensor. In the case of the second particular embodiment, this filtering means is preferably substantially placed in the intermediate plane.
  • the second objective is preferably provided so that the light rays which come from the object and which reach the optical filtering means are perpendicular to the plane where is find this optical filtering means.
  • the sensor is preferably of the matrix type.
  • document FR2715470A discloses a device for studying the light emission properties of a surface emitting 7
  • the present invention it is a question of measuring the luminance, point by point, of an extended object.
  • the information obtained is a set of quantities (mapping).
  • the means implemented aim to achieve observation at a constant angle.
  • FIG. 1, already described, is a schematic view of a known system for measuring the luminance characteristics of objects
  • FIG. 2, already described is a schematic view of another known system for measuring such characteristics, • FIG. 3, already described, schematically illustrates the drawbacks of this other known system,
  • FIG. 4 schematically illustrates the principle of the invention
  • Figure 5 is a schematic view of a particular embodiment of the system object of one invention.
  • FIG. 4 shows a system according to the invention, making it possible to measure the luminance characteristics of objects.
  • This system comprises an image sensor 8 connected to electronic means 12 intended to process the signals supplied by this sensor, and optical means 14 making it possible to form the image of an entire object 6 on the sensor 8, each point of the image allowing to make a measurement on a point of the object.
  • the optical means 14 also make it possible to select, for each point M of the object, with a view to forming the corresponding image point, those of the light rays coming from this point M which propagate substantially along the straight line. x passing through M and parallel to the optical axis X of the optical means 14.
  • the object 6 is for example a display screen that has been turned on (or a projection screen lit by means not shown) of which one wants to measure the luminance characteristics.
  • the sensor 8 is a matrix type sensor, for example a CCD sensor or the like, and the electronic means 12 receive the signals supplied by this sensor and process them in a known manner to determine the luminance characteristics of the object.
  • FIG. 5 is a schematic view of a particular embodiment of the system which is the subject of the invention.
  • the optical means 14 of FIG. 4 comprise a first objective 16 whose optical axis constitutes the axis X, a diaphragm 18 and auxiliary optical means which will be discussed later.
  • the objective 16 is placed between the diaphragm 18 and the object 6.
  • the diaphragm 18 is in turn placed between the objective 16 and the sensor 8 and designed to allow passage, among the light rays reaching it from the object 6 through the objective 16, that those which propagate from the object in a manner substantially parallel to the axis X, that is to say substantially along lines parallel to X such that the line x passing through the point M of the object.
  • the surface of the object 6 is substantially placed in the object focal plane PFO of the objective 16 and the diaphragm 18 is substantially placed in the image focal plane PFI of the objective 16.
  • the opening of the diaphragm 18 makes it possible to control the angular opening of the analysis beams such as the light beam 22 coming from the object.
  • the diaphragm 18 can be provided with means not shown making it possible to modify its opening in order to modify the angular opening of the analysis beams.
  • the auxiliary optical means are placed between the diaphragm and the sensor 8 and are designed to form, from the light rays which the diaphragm lets pass, the image of the object 6 in a plane 10
  • the auxiliary optical means simply comprise a lens 26 provided for forming the image of the object in a plane Pi which then constitutes the observation plane where the sensor 8 is placed substantially.
  • the auxiliary optical means comprise this objective 26 intended to form an intermediate image of the object 6 in the plane Pi, which then constitutes an intermediate plane, and in addition another objective 28 placed between the lens 26 and the sensor.
  • This other objective 28 constitutes a relay lens or transport objective which makes it possible to form, from the intermediate image, the image of the object in a plane P 2 then constituting the plane of observation where the sensor 8 is placed substantially.
  • This objective 28 is intended to "scale", in the plane P 2 , the image obtained in the plane P x, that is to say to adapt the size of this image to the size of the sensor.
  • an optical filter 30 can for example be a spectral response correction filter which selects wavelengths so as to reproduce a particular response (for example the response of the 'eye) or a polarizing filter to select a particular polarization or a filter which absorbs light in a variable way.
  • the filter 30 can be placed anywhere between the object 6 and the sensor 8 but, to have a reasonable size, it is advantageously placed at the level of the plane Pi or in a plane parallel to this plane P x 11
  • the filter 30 is placed opposite the sensor close to the latter, between this plane Pi and the objective 26.
  • the objective 26 is advantageously optimized so that the light rays which come from the object and which reach this filter 30 (after having passed through the objective 26) are perpendicular to the plane where the filter 30 is placed (and are therefore directed along a perpendicular y to the plane Pi when the filter is in this plane Pi) to avoid that the transmission of the system depends on the position observed on the object.
  • the opening of the diaphragm 18 is centered on the optical axis X common to the objectives 16, 26 and 28 (when the latter is used).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Ce système comprend un capteur d'images (8) et des moyens optiques (16, 18, 26, 28) prévus pour former l'image de la totalité d'un objet (6) sur le capteur et pour sélectionner, pour chaque point de l'objet, en vue de former le point-image correspondant, ceux des rayons lumineux issus de ce point de l'objet qui se propagent de façon sensiblement parallèle à l'axe optique (X) des moyens optiques.

Description

SYSTEME DE MESURE DES CARACTERIS IQUES DE LUMINANCE D'OBJETS, NOTAMMENT D'OBJETS À LUMINANCE DÉPENDANTE DE
LA DIRECTION D'ÉMISSION
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un système de mesure des caractéristiques de luminance d'objets, notamment d'objets à luminance dépendante de la direction d'émission. Elle s'applique par exemple aux écrans de projection, aux tubes cathodiques, aux dispositifs d'éclairage et aux écrans d'affichage tels que les écrans à cristaux liquides, les écrans à plasma, les écrans électroluminescents et les écrans à micropointes (« microtip screens ») .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
On connaît déjà plusieurs systèmes de mesure des caractéristiques de luminance d'objets en fonction d'une position géométrique afin d'en caractériser l'uniformité ou les propriétés. De tels systèmes sont utilisables avec les objets donnés ci- dessus à titre d'exemple.
On connaît en particulier un système électromécanique qui est schematiquement représenté sur la figure 1. 2
Ce système comprend :
- un instrument de mesure 2, par exemple un photomètre, et
- des moyens 4 de déplacement de cet instrument en face d'un objet à mesurer 6 (ces moyens 4 étant symbolisés par des flèches sur la figure 1) .
Ce système électromécanique permet de faire des mesures suivant l'axe optique X de l'instrument de mesure (et donc suivant un angle θ nul par rapport à cet axe) mais présente cependant de nombreux inconvénients. En particulier les mesures se font par échantillonnage. Seules les positions choisies sont mesurées et aucune information n'est connue sur la luminance dans les positions intermédiaires. Aucune certitude n'existe quant à la valeur de la luminance en dehors de celle des points mesurés. De plus, les mesures, de durée T0, se font en série, les unes après les autres. Si un grand nombre N de points sont à mesurer afin de pouvoir disposer d'un maximum d'informations, la mesure complète de l'objet prend un temps NxT0.
On connaît aussi un autre système de mesure qui est schematiquement représenté sur la figure 2. Ce système comprend : - un capteur matriciel 8 de type CCD ou analogue et
- une optique 10 qui est comprise entre ce capteur et l'objet 6 à mesurer et permet de former l'image de ce dernier sur le capteur.
On obtient ainsi, en une seule fois, une image de l'objet à mesurer sur le capteur. Les différents points de l'image correspondent aux mesures relatives aux différents points de l'objet à mesurer. 3
Les principaux avantages de ce système à capteur sont les suivants :
La vitesse de mesure est accrue. En effet la mesure, de durée Ti, ne dépend pas (ou peu) du nombre de points mesurés. Toutes les informations sont disponibles. Il n'y a pas de risque de voir un détail de l'image échapper à la mesure. Une intégration (sommation) de l'ensemble des valeurs obtenues donne avec certitude une valeur du flux lumineux émis par l'objet.
Cependant le système représenté sur la figure 2 présente un grave inconvénient qui est schematiquement illustré par la figure 3. L'optique 10, dont l'axe est noté X et qui est classiquement utilisée pour un tel système, fonctionne à taille d'image constante D2=2d2. Un objet de taille Dα=2dι doit donc se trouver à une distance Li de cette optique telle que :
Li/(2dι) = L2/(2d2) = K
où L2 est la distance entre l'optique 10 et le capteur 8 et K est une constante.
L'objet est observé selon un angle θ qui dépend du point mesuré de l'objet (θ est compté par rapport à une droite passant par ce point et parallèle à l'axe optique X de l'optique 10) et qui, pour les points extrêmes, prend une valeur ΘM (figure 2) peu différente de tan ΘM et donc peu différente de d2/L2 c'est-à-dire de 1/(2K).
Habituellement K est de l'ordre de 2,5 à 3
(ce qui nécessite de placer à 75 cm de l'optique un écran de 12" (environ 30 cm) de diagonale que l'on veut mesurer) de sorte que ΘM est de l'ordre de 12°. Les mesures se font donc à un angle variable, selon la position, entre 0° (mesure suivant l'axe X) et ± 12°.
Cela ne serait pas un inconvénient si les objets mesurés avaient une caractéristique d'émission telle que la luminance ne varie pas en fonction de la direction d'émission de lumière c'est-à-dire en fonction de l'angle θ.
Ce n'est habituellement pas le cas et il est clair qu'un système du genre de celui des figures 2 et 3 ne permet pas de mesurer l'uniformité d'émission d'un objet indépendamment de la caractéristique d'émission de cet objet.
EXPOSÉ DE L' INVENTION
La présente invention a pour but de remédier à cet inconvénient.
Elle concerne un système permettant de mesurer correctement les caractéristiques de luminance d'objets, que la luminance de ceux-ci varie ou non en fonction de la direction d'émission. L'invention combine les avantages du système de la figure 1 (avec lequel on fait des mesures à θ=0°) et ceux du système de la figure 2 (avec lequel les mesures sont faites rapidement) .
De façon précise, la présente invention a pour objet un système de mesure des caractéristiques de luminance d'objets, ce système comprenant :
- un capteur d'images et
- des moyens optiques ayant un axe optique et prévus pour former l'image de la totalité d'un objet sur le 5
capteur, chaque point de l'image permettant de faire une mesure sur un point de l'objet, ce système étant caractérisé en ce que les moyens optiques sont en outre prévus pour sélectionner, pour chaque point de l'objet, en vue de former le point- image correspondant, ceux des rayons lumineux issus de ce point de l'objet qui se propagent de façon sensiblement parallèle à l'axe optique des moyens optiques . Selon un mode de réalisation préféré du système objet de l'invention, les moyens optiques comprennent :
- un premier objectif placé en regard de l'objet,
- un diaphragme placé entre le premier objectif et le capteur et apte à ne laisser passer, parmi les rayons lumineux lui parvenant de l'objet à travers le premier objectif, que ceux qui se propagent à partir de l'objet de façon sensiblement parallèle à l'axe optique du premier objectif, et - des moyens optiques auxiliaires placés entre le diaphragme et le capteur et prévus pour former, à partir des rayons lumineux que le diaphragme laisse passer, l'image de l'objet dans un plan d'observation, le capteur étant sensiblement placé dans ce plan d'observation.
De préférence, l'objet est sensiblement placé dans le plan focal objet du premier objectif et le diaphragme est sensiblement placé dans le plan focal image de ce premier objectif. Selon un premier mode de réalisation particulier de l'invention, les moyens optiques auxiliaires comprennent un deuxième objectif prévu pour former l'image de l'objet dans le plan d'observation. Selon un deuxième mode de réalisation particulier, les moyens optiques auxiliaires comprennent :
- un deuxième objectif prévu pour former une image intermédiaire de l'objet dans un plan intermédiaire et
- un troisième objectif placé entre le deuxième objectif et le capteur et prévu pour former l'image de l'objet dans le plan d'observation à partir de l'image intermédiaire et pour adapter la taille de l'image de l'objet à la taille du capteur.
L'ouverture du diaphragme peut être variable. De plus, le système objet de l'invention peut comprendre un moyen de filtrage optique de la lumière issue de l'objet.
Dans le cas du premier mode de réalisation particulier mentionné plus haut, ce moyen de filtrage est de préférence sensiblement placé dans le plan d'observation, en regard du capteur. Dans le cas du deuxième mode de réalisation particulier, ce moyen de filtrage est de préférence sensiblement placé dans le plan intermédiaire.
Dans le cas de l'un ou l'autre de ces modes de réalisation particulier, le deuxième objectif est de préférence prévu pour que les rayons lumineux qui proviennent de l'objet et qui atteignent le moyen de filtrage optique soient perpendiculaires au plan où se trouve ce moyen de filtrage optique.
Le capteur est de préférence de type matriciel.
Certes on connaît par le document FR2715470A un dispositif d'étude des propriétés d'émission lumineuse d'une surface émettrice de 7
lumière. Cependant, dans ce document, il s'agit de mesurer l'intensité moyenne sur une surface délimitée par un diaphragme, au moyen d'un capteur unique. L'information obtenue est une grandeur unique. Les moyens mis en œuvre visent à obtenir une réponse uniforme sur une surface de taille maîtrisée.
Au contraire, dans la présente invention, il s'agit de mesurer la luminance, point par point, d'un objet étendu. L'information obtenue est un ensemble de grandeurs (cartographie) . Les moyens mis en œuvre visent à réaliser une observation à angle constant .
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
• la figure 1, déjà décrite, est une vue schématique d'un système connu de mesure des caractéristiques de luminance d'objets,
• la figure 2, déjà décrite, est une vue schématique d'un autre système connu de mesure de telles caractéristiques, • la figure 3, déjà décrite, illustre schematiquement les inconvénients de cet autre système connu,
• la figure 4 illustre schematiquement le principe de l'invention, et • la figure 5 est une vue schématique d'un mode de réalisation particulier du système objet de 1 ' invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
On voit sur la figure 4 un système conforme à l'invention, permettant de mesurer les caractéristiques de luminance d'objets. Ce système comprend un capteur d'images 8 relié à des moyens électroniques 12 destinés à traiter les signaux fournis par ce capteur, et des moyens optiques 14 permettant de former l'image de la totalité d'un objet 6 sur le capteur 8, chaque point de l'image permettant de faire une mesure sur un point de l'objet.
Conformément à l'invention les moyens optiques 14 permettent de plus de sélectionner, pour chaque point M de l'objet, en vue de former le point- image correspondant, ceux des rayons lumineux issus de ce point M qui se propagent sensiblement suivant la droite x passant par M et parallèle à l'axe optique X des moyens optiques 14.
L'objet 6 est par exemple un écran d'affichage que l'on a allumé (ou un écran de projection éclairé par des moyens non représentés) dont on veut mesurer les caractéristiques de luminance. Le capteur 8 est un capteur de type matriciel, par exemple un capteur CCD ou analogue, et les moyens électroniques 12 reçoivent les signaux fournis par ce capteur et les traitent de façon connue pour déterminer les caractéristiques de luminance de l'objet. La figure 5 est une vue schématique d'un mode de réalisation particulier du système objet de 1 ' invention.
Dans l'exemple de la figure 5, les moyens optiques 14 de la figure 4 comprennent un premier objectif 16 dont l'axe optique constitue l'axe X, un diaphragme 18 et des moyens optiques auxiliaires dont il sera question par la suite. L'objectif 16 est placé entre le diaphragme 18 et l'objet 6. Le diaphragme 18 est quant à lui placé entre l'objectif 16 et le capteur 8 et prévu pour ne laisser passer, parmi les rayons lumineux lui parvenant de l'objet 6 à travers l'objectif 16, que ceux qui se propagent à partir de l'objet de façon sensiblement parallèle à l'axe X c'est-à-dire sensiblement suivant des droites parallèles à X telles que la droite x passant par le point M de l'objet.
La surface de l'objet 6 est sensiblement placée dans le plan focal objet PFO de l'objectif 16 et le diaphragme 18 est sensiblement placé dans le plan focal image PFI de l'objectif 16.
L'ouverture du diaphragme 18 permet de maîtriser l'ouverture angulaire des faisceaux d'analyse tels que le faisceau lumineux 22 issu de l'objet. Le diaphragme 18 peut être muni de moyens non représentés permettant de modifier son ouverture afin de modifier l'ouverture angulaire des faisceaux d'analyse.
Les moyens optiques auxiliaires sont placés entre le diaphragme et le capteur 8 et sont prévus pour former, à partir des rayons lumineux que le diaphragme laisse passer, l'image de l'objet 6 dans un plan 10
d'observation où l'on place sensiblement le capteur 8 ou plus exactement la face d'entrée de ce capteur 8.
Dans un premier exemple les moyens optiques auxiliaires comprennent simplement un objectif 26 prévu pour former l'image de l'objet dans un plan Pi qui constitue alors le plan d'observation où l'on place sensiblement le capteur 8.
Dans un deuxième exemple (figure 5) les moyens optiques auxiliaires comprennent cet objectif 26 prévu pour former une image intermédiaire de l'objet 6 dans le plan Pi, qui constitue alors un plan intermédiaire, et en plus un autre objectif 28 placé entre l'objectif 26 et le capteur. Cet autre objectif 28 constitue un objectif-relais (« relay lens ») ou objectif de transport qui permet de former, à partir de l'image intermédiaire, l'image de l'objet dans un plan P2 constituant alors le plan d'observation où l'on place sensiblement le capteur 8. Cet objectif 28 est destiné à "mettre à l'échelle", dans le plan P2, l'image obtenue dans le plan Px c'est-à-dire à adapter la taille de cette image à la taille du capteur.
Dans le système de la figure 5, on peut aussi utiliser un filtre optique 30. Ce peut être par exemple un filtre de correction de réponse spectrale qui sélectionne des longueurs d'onde de manière à reproduire une réponse particulière (par exemple la réponse de l'oeil) ou un filtre polarisant pour sélectionner une polarisation particulière ou un filtre qui absorbe la lumière de façon variable. Le filtre 30 peut être placé n'importe où entre l'objet 6 et le capteur 8 mais, pour avoir une taille raisonnable, il est avantageusement placé au niveau du plan Pi ou dans un plan parallèle à ce plan Px 11
et proche de celui-ci. Bien entendu, lorsque le capteur est placé au niveau du plan Pi, on place le filtre 30 en regard du capteur à proximité de celui-ci, entre ce plan Pi et l'objectif 26. Dans le cas où l'on utilise le filtre 30, l'objectif 26 est avantageusement optimisé pour que les rayons lumineux qui proviennent de l'objet et qui atteignent ce filtre 30 (après avoir traversé l'objectif 26) soient perpendiculaires au plan où est placé le filtre 30 (et soient donc dirigés suivant une perpendiculaire y au plan Pi lorsque le filtre se trouve dans ce plan Pi) pour éviter que la transmission du système dépende de la position observée sur l'objet.
On remarquera que l'ouverture du diaphragme 18 est centrée sur l'axe optique X commun aux objectifs 16, 26 et 28 (lorsque ce dernier est utilisé) .
Un système du genre de celui de la figure 5 répond à tous les critères souhaités :
- mesures perpendiculairement à l'objet quel que soit le point mesuré de l'objet,
- rapidité de mesure (mesure collective)
- mesure exhaustive (tous les points de l'objet sont observés) .
Il convient aussi de noter qu'une facilité accrue d'utilisation est obtenue grâce à la bonne profondeur de champ d'un système conforme à l'invention, du genre de celui de la figure 5, du fait de la conception de celui-ci. Cette propriété permet d'obtenir une excellente insensibilité à tout défaut de mise au point, ce qui n'est pas le cas avec les systèmes connus .

Claims

12REVENDICATIONS
1. Système de mesure des caractéristiques de luminance d'objets, ce système comprenant :
- un capteur d'images (8) et - des moyens optiques (14) ayant un axe optique (X)et prévus pour former l'image de la totalité d'un objet (6) sur le capteur, chaque point de l'image permettant de faire une mesure sur un point de l' objet, ce système étant caractérisé en ce que les moyens optiques (14) sont en outre prévus pour sélectionner, pour chaque point de l'objet, en vue de former le point-image correspondant, ceux des rayons lumineux issus de ce point de l'objet qui se propagent de façon sensiblement parallèle à l'axe optique des moyens optiques .
2. Système selon la revendication 1, dans lequel les moyens optiques (14) comprennent :
- un premier objectif (16) placé en regard de l'objet, - un diaphragme (18) placé entre le premier objectif et le capteur et apte à ne laisser passer, parmi les rayons lumineux lui parvenant de l'objet à travers le premier objectif, que ceux qui se propagent à partir de l'objet de façon sensiblement parallèle à l'axe optique (X) du premier objectif (16), et
- des moyens optiques auxiliaires (26 ; 26-28) placés entre le diaphragme et le capteur et prévus pour former, à partir des rayons lumineux que le diaphragme laisse passer, l'image de l'objet dans un plan d'observation (Pi ; P2) , le capteur étant sensiblement placé dans ce plan d'observation.
3. Système selon la revendication 2, dans lequel l'objet (6) est sensiblement placé dans le plan 13
focal objet (PfO) du premier objectif (16) et le diaphragme (18) est sensiblement placé dans le plan focal image (PFI) de ce premier objectif (16) .
4. Système selon l'une quelconque des revendications 2 et 3, dans lequel les moyens optiques auxiliaires comprennent un deuxième objectif (26) prévu pour former cette image de l'objet dans le plan d'observation (Pi).
5. Système selon l'une quelconque des revendications 2 et 3, dans lequel les moyens optiques auxiliaires comprennent :
- un deuxième objectif (26) prévu pour former une image intermédiaire de l'objet dans un plan intermédiaire (Pi) et - un troisième objectif (28) placé entre le deuxième objectif et le capteur et prévu pour former l'image de l'objet dans le plan d'observation (P2) à partir de l'image intermédiaire et pour adapter la taille de l'image de l'objet à la taille du capteur.
6. Système selon l'une quelconque des revendications 2 à 5, dans lequel l'ouverture du diaphragme (18) est variable.
7. Système selon l'une quelconque des revendications 1 à 6, comprenant en outre un moyen de filtrage optique (30) de la lumière issue de l'objet.
8. Système selon la revendication 4, comprenant en outre un moyen de filtrage optique (30) de la lumière issue de l'objet, ce moyen de filtrage étant sensiblement placé dans le plan d'observation (Pi), en regard du capteur.
9. Système selon la revendication 5, comprenant en outre un moyen de filtrage optique (30) de la lumière issue de l'objet, ce moyen de filtrage 14
étant sensiblement placé dans le plan intermédiaire
(Pi) •
10. Système selon l'une quelconque des revendications 7 et 8, dans lequel le deuxième objectif (26) est prévu pour que les rayons lumineux qui proviennent de l'objet et qui atteignent le moyen de filtrage optique (30) soient perpendiculaires au plan où se trouve ce moyen de filtrage optique.
11. Système selon l'une quelconque des revendications 1 à 10, dans lequel le capteur (8) est de type matriciel.
PCT/FR1999/000917 1998-04-20 1999-04-19 Systeme de mesure des caracteristiques de luminance d'objets, notamment d'objets a luminance dependante de la direction d'emission WO1999054693A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/673,676 US6556284B1 (en) 1998-04-20 1999-04-19 System for measuring the luminance characteristics of objects, in particular objects with luminance dependent on emitting direction
KR1020007011680A KR20010042895A (ko) 1998-04-20 1999-04-19 물체 특히 방출 방향에 따라 휘도가 좌우되는 물체의휘도특성을 측정하기 위한 시스템
JP2000544993A JP2002512365A (ja) 1998-04-20 1999-04-19 対象物の輝度特性特に方向に依存する輝度を有する対象物の輝度特性を測定するシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9804910A FR2777653B1 (fr) 1998-04-20 1998-04-20 Systeme de mesure des caracteristiques de luminance d'objets, notamment d'objets a luminance dependante de la direction d'emission
FR98/04910 1998-04-20

Publications (1)

Publication Number Publication Date
WO1999054693A1 true WO1999054693A1 (fr) 1999-10-28

Family

ID=9525435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000917 WO1999054693A1 (fr) 1998-04-20 1999-04-19 Systeme de mesure des caracteristiques de luminance d'objets, notamment d'objets a luminance dependante de la direction d'emission

Country Status (5)

Country Link
US (1) US6556284B1 (fr)
JP (1) JP2002512365A (fr)
KR (1) KR20010042895A (fr)
FR (1) FR2777653B1 (fr)
WO (1) WO1999054693A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678046B2 (en) * 2001-08-28 2004-01-13 Therma-Wave, Inc. Detector configurations for optical metrology
JP2003294528A (ja) * 2002-03-29 2003-10-15 Fuji Photo Film Co Ltd 液晶ディスプレイの輝度測定装置
GB0318000D0 (en) * 2003-07-31 2003-09-03 Ncr Int Inc Mobile applications
FR2859781B1 (fr) 2003-09-17 2007-07-06 Commissariat Energie Atomique Utilisation de la transformee de fourier optique pour le controle dimensionnel en microelectronique
WO2006091913A1 (fr) * 2005-02-25 2006-08-31 Nanometrics Incorporated Appareil et procede de diffusiometrie amelioree pour mesurer des dimensions critiques
US7463369B2 (en) * 2006-03-29 2008-12-09 Kla-Tencor Technologies Corp. Systems and methods for measuring one or more characteristics of patterned features on a specimen
CN101625263B (zh) * 2008-07-07 2013-03-27 杭州浙大三色仪器有限公司 亮度测量装置
CN102692207B (zh) 2011-03-25 2014-07-30 财团法人工业技术研究院 量测方法与量测装置
US10872403B2 (en) 2018-08-10 2020-12-22 Micron Technology, Inc. System for predicting properties of structures, imager system, and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093384A (en) * 1976-10-04 1978-06-06 The United States Of America As Represented By The Secretary Of The Navy Narrow angle, narrow bandwidth optical receiver system
FR2715470A1 (fr) * 1994-01-27 1995-07-28 Commissariat Energie Atomique Dispositif d'étude des propriétés d'émission lumineuse d'une surface émettrice de lumière.
DE19602862C1 (de) * 1996-01-28 1997-07-17 Autronic Melchers Gmbh Meßeinrichtung zum Erfassen optischer Eigenschaften einer elektro-optischen Anzeige

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1373649A (en) * 1971-09-15 1974-11-13 Int Computers Ltd Luminance distribution photometers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093384A (en) * 1976-10-04 1978-06-06 The United States Of America As Represented By The Secretary Of The Navy Narrow angle, narrow bandwidth optical receiver system
FR2715470A1 (fr) * 1994-01-27 1995-07-28 Commissariat Energie Atomique Dispositif d'étude des propriétés d'émission lumineuse d'une surface émettrice de lumière.
DE19602862C1 (de) * 1996-01-28 1997-07-17 Autronic Melchers Gmbh Meßeinrichtung zum Erfassen optischer Eigenschaften einer elektro-optischen Anzeige

Also Published As

Publication number Publication date
KR20010042895A (ko) 2001-05-25
FR2777653A1 (fr) 1999-10-22
FR2777653B1 (fr) 2000-06-30
US6556284B1 (en) 2003-04-29
JP2002512365A (ja) 2002-04-23

Similar Documents

Publication Publication Date Title
EP2917688B1 (fr) Procede de mesure des variations d'epaisseur d'une couche d'une structure semi-conductrice multicouche
FR3017210A1 (fr) Spectrometre et systeme d'analyse de fluide
EP1580524A2 (fr) Procédé et dispositif de caractérisation d'un endommagement de structure faisant appel au moiré d'ombre
EP3069185B1 (fr) Dispositif et methode de mise au point tridimensionnelle pour microscope
EP1224444B1 (fr) Dispositif de mesure de la repartition spatiale de l'emission spectrale d'un objet
CA2880145C (fr) Procede de controle non destructif d'une preforme d'aube
FR2749388A1 (fr) Appareil de mesure des caracteristiques photometriques et colorimetriques d'un objet
WO1999054693A1 (fr) Systeme de mesure des caracteristiques de luminance d'objets, notamment d'objets a luminance dependante de la direction d'emission
EP1084379B1 (fr) Acquisition opto électrique de formes par codage chromatique avec des plans d'illumination
FR2512545A1 (fr) Procede et dispositif photometrique pour mesurer et regler l'epaisseur de couches a effet optique pendant leur formation sous vide
EP2633357B1 (fr) Methode d'observation de l'emission de lumiere d'un echantillon par microscopie optique dynamique
EP2038638B1 (fr) Dispositif d'évaluation de l'état de mouillage d'une surface, procédé d'évaluation et dispositif d'indication associé
FR2626074A1 (fr) Procede d'optimisation du contraste dans une image d'un echantillon
FR2783930A1 (fr) Appareil de mesure de distance
FR2848669A1 (fr) Procede de mesure d'une quantite de photons proportionnelle a la quantite de photons recus par l'objet et dispositif associe.
EP3775807B1 (fr) Dispositif optique permettant de mesurer simultanément l'émission angulaire et spectrale d'un objet
EP1380811A1 (fr) Dispositif optique de mesure de distances
EP0549446B1 (fr) Caméra d'observation, notamment infrarouge, à détecteur multi-éléments homogénéisé en sensibilité
EP3570730A1 (fr) Procédé et dispositif de mesure de la fluorescence émise à la surface du tissu biologique
BE1015708A3 (fr) Procede pour mesurer la hauteur de spheres ou d'hemispheres.
EP1376101A1 (fr) Dispositif de mesure de caractéristiques photométriques d'un matériau
WO2024061843A1 (fr) Microscope optique avec résonateur
FR2673794A1 (fr) Dispositif de correction de defauts pour systemes d'imagerie.
EP1431730B1 (fr) Dispositif à surface équivalente laser parfaitement connue
FR2745902A1 (fr) Systeme de photodetection et procede associe d'analyse d'un flux lumineux

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09673676

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007011680

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020007011680

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020007011680

Country of ref document: KR