WO1999032463A1 - INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS - Google Patents

INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS Download PDF

Info

Publication number
WO1999032463A1
WO1999032463A1 PCT/US1998/027265 US9827265W WO9932463A1 WO 1999032463 A1 WO1999032463 A1 WO 1999032463A1 US 9827265 W US9827265 W US 9827265W WO 9932463 A1 WO9932463 A1 WO 9932463A1
Authority
WO
WIPO (PCT)
Prior art keywords
urea
halogen
alkyl
methoxyphenyl
phenyl
Prior art date
Application number
PCT/US1998/027265
Other languages
French (fr)
Inventor
Scott Miller
Martin Osterhout
Jacques Dumas
Uday Khire
Timothy Bruno Lowinger
Bernd Riedl
William J. Scott
Roger A. Smith
Jill E. Wood
David Gunn
Holia Hatoum-Mokdad
Mareli Rodriguez
Robert Sibley
Ming Wang
Original Assignee
Bayer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25542166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999032463(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE69830513T priority Critical patent/DE69830513T2/en
Priority to JP2000525400A priority patent/JP3887769B2/en
Priority to DE1042305T priority patent/DE1042305T1/en
Priority to SI9830784T priority patent/SI1042305T1/en
Priority to CA2315715A priority patent/CA2315715C/en
Priority to EP98964221A priority patent/EP1042305B1/en
Priority to IL13673798A priority patent/IL136737A0/en
Application filed by Bayer Corporation filed Critical Bayer Corporation
Priority to AU19399/99A priority patent/AU1939999A/en
Priority to AT98964221T priority patent/ATE297383T1/en
Priority to DK98964221T priority patent/DK1042305T3/en
Publication of WO1999032463A1 publication Critical patent/WO1999032463A1/en
Priority to IL136737A priority patent/IL136737A/en
Priority to HK01102468A priority patent/HK1032050A1/en
Priority to IL170235A priority patent/IL170235A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/272-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/17Amides, e.g. hydroxamic acids having the group >N—C(O)—N< or >N—C(S)—N<, e.g. urea, thiourea, carmustine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/4035Isoindoles, e.g. phthalimide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4402Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 2, e.g. pheniramine, bisacodyl
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4406Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 3, e.g. zimeldine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4409Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 4, e.g. isoniazid, iproniazid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4436Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/07Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • C07C205/11Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by halogen atoms having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/13Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
    • C07C205/20Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C07C205/21Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C205/22Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed six-membered aromatic ring having one nitro groups bound to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/27Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
    • C07C205/35Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/36Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
    • C07C205/37Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/27Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups
    • C07C205/35Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/36Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system
    • C07C205/38Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by etherified hydroxy groups having nitro groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton to carbon atoms of the same non-condensed six-membered aromatic ring or to carbon atoms of six-membered aromatic rings being part of the same condensed ring system the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. nitrodiphenyl ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C205/58Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton the carbon skeleton being further substituted by halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/30Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by halogen atoms, or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/32Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms
    • C07C275/34Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/32Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms
    • C07C275/34Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C275/36Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by singly-bound oxygen atoms having nitrogen atoms of urea groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with at least one of the oxygen atoms further bound to a carbon atom of a six-membered aromatic ring, e.g. N-aryloxyphenylureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/40Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/28Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C275/42Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton being further substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/86Halides of sulfonic acids having halosulfonyl groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/88Halides of sulfonic acids having halosulfonyl groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/26Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C317/32Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C317/34Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring
    • C07C317/38Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring with the nitrogen atom of at least one amino group being part of any of the groups, X being a hetero atom, Y being any atom, e.g. N-acylaminosulfones
    • C07C317/42Y being a hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/402,5-Pyrrolidine-diones
    • C07D207/4042,5-Pyrrolidine-diones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/724,7-Endo-alkylene-iso-indoles
    • C07D209/764,7-Endo-alkylene-iso-indoles with oxygen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/68One oxygen atom attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/70Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/06Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D231/08Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with oxygen or sulfur atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/20Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D233/22Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/70One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/58Benzoxazoles; Hydrogenated benzoxazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the mitogen-activated protein (MAP) kinase family is made up of a series of structurally related proline-directed serine/threonine kinases which are activated either by growth factors (such as EGF) and phorbol esters (ERK), or by IL-1, TNF ⁇ or stress ( ⁇ 38, JNK).
  • the MAP kinases are responsible for the activation of a wide variety of transcription factors and proteins involved in transcriptional control of cytokine production.
  • a pair of novel protein kinases involved in the regulation of cytokine synthesis was recently described by a group from SmithKline Beecham (Lee et al. Nature 1994, 372, 739).
  • CSAJDSs cytokine suppressive anti-inflammatory drugs
  • HIN human immunodeficiency virus
  • the compounds of formula I are of formula la
  • R 3 , R 4 , R 5 and R 6 are each independently H, halogen, C 0 - alkyl optionally substituted by halogen, up to perhalo, C,. 10 -alkoxy, optionally substituted by at least one hydroxy group or by halogen, up to perhalo; C ⁇ ,- aryl, optionally substituted by C,. 10 alkoxy or halogen, C 5 -, 2 hetaryl, optionally substitued by C,- 10 alkyl, C,. 10 alkoxy or halogen; NO 2 , SO 2 F or -SO 2 CH p X 3 .
  • Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, benzodixane, benzopyridine ⁇ pyrimidine or benzothiazole, each optionally substituted by C ⁇ _ 10 -alkyl,
  • Suitable alkyl groups and alkyl portions of groups, e.g., alkoxy, etc. throughout include methyl, ethyl, propyl, butyl, etc., including all straight-chain and branched isomers such as isopropyl, isobutyl, sec-butyl, tert-butyl, etc.
  • Suitable aryl groups include, for example, phenyl and 1- and 2-naphthyl.
  • R 3 is Cl, F, C ⁇ -branched alkyl, -SO 2 F or -SO 2 CF 3 ; and R 6 is hydroxy; C ⁇ o -alkoxy optionally substituted by at least one hydroxy group; -COOR 1 ; - OR'CONHR 1 ; -NHCOR 1 ; -SR 1 ; phenyl optionally substituted by halo or C,. I0 -alkoxy; NH 2 ; furyloxy,
  • Preferred 2-naphthyl ureas are:
  • pharmaceutically acceptable salts include acid salts of inorganic bases, such as salts containing alkaline cations (e.g., Li + Na + or K + ), alkaline earth cations (e.g., Mg +2 , Ca +2 or Ba +2 ), the ammonium cation, as well as acid salts of organic bases, including aliphatic and aromatic substituted ammonium, and quaternary ammonium cations, such as those arising from protonation or peralkylation of triethylamine, N,N-diethylamine, NN-dicyclohexylamine, pyridine, N,N- dimethylaminopyridine (DMAP), l,4-diazabiclo[2.2.2]octane (DABCO), 1,5- diazabicyclo[4.3.0]non-5-ene (DB ⁇ ) and l,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
  • H 2 / catalyst eg. Ni, Pd, Pt
  • the optimal course of treatment i.e., the mode of treatment and the daily number of doses of a compound of Formula I or a pharmaceutically acceptable salt thereof given for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatnce tests.
  • Step 3 4-tert-Butyl-2-methoxyaniline: A solution of 2-nitro-5-tert-butylanisole (3.95 g, 18.9 mmol) in MeOH (65 mL) and added to a flask containing 10% Pd/C in MeOH (0.400 g), then placed under a H 2 atmosphere (balloon).
  • Step 4.2-Amino-3-methoxynaphthalene A slurry of 2-(N-(carbobenzyloxy)amino-3- methoxynaphthalene (5.0 g, 16.3 mmol) and 10% Pd/C (0.5 g) in EtOAc (70mL) was maintained under a H 2 atmospheric (balloon) at room temp, overnight.
  • Step 1.5-te/*-Buryl-2-(trifluoromethanesulfonyI)oxy-l-nitrobenzene To an ice cold solution of 4-tert-butyl-2-nitrophenol (6.14 g, 31.5 mmol) and pyridine (10 mL, 125 mmol) in CH 2 C1 2 (50 mL) was slowly added trifluoromethanesulfonic anhydride (10 g, 35.5 mmol) via syringe. The reaction mixture was stirred for 15 min, then allowed to warm up to room temp, and diluted with CH 2 C1 2 (100 mL).
  • Step 1 4-(6-Methyl-3-pyridinyloxy)-l-nitrobenzene: To a solution of 5-hydroxy-2- methylpyridine (5.0 g, 45.8 mmol) and l-fluoro-4-nitrobenzene (6.5 g, 45.8 mmol) in anh DMF (50 mL) was added K 2 CO 3 (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp, with stirring for 18 h and then allowed to cool to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL).
  • Step 2 5-Hydroxy-2-methoxypyridine: To a stirred solution of 5-bromo-2- methoxypyridine (8.9 g, 47.9 mmol) in THF (175 mL) at -78 °C was added an n- butyllithium solution (2.5 M in hexane; 28.7 mL, 71.8 mmol) dropwise and the resulting mixture was allowed to stir at -78 °C for 45 min. Trimethyl borate (7.06 mL, 62.2 mmol) was added via syringe and the resulting mixture was stirred for an additional 2 h. The bright orange reaction mixture was warmed to 0 °C and was treated with a mixture of a 3 N NaOH solution (25 mL, 71.77 mmol) and a hydrogen peroxide solution (30%; approx.
  • Step 2 3-(4-Pyridinyl)methyIaniline: 3-(4-Nitrobenzyl)pyridine was reduced to the aniline in a manner analogous to that described in Method Bl .
  • N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N , -(4-(4-pyridinyIthio)phenyl)urea To a solution of pyridine (0.61 mL, 7.5 mmol, 3.0 equiv) and phosgene (20% in toluene; 2.65 mL, 5.0 mmol, 2.0 equiv) in CH 2 C1 2 (20 mL) was added 4-(4-pyridinylthio)aniline (0.506 g, 2.5 mmol) at 0 °C. After stirring for 3 h at room temp., the mixture was treated with anh. toluene (100 mL) then concentrated under reduced pressure.
  • N-(3-Methoxy-2-naphthyl)-N'-(4-methylphenyl)urea To a solution of 3-methoxy-2- naphthoic acid (Method A6, Step 2; 0.762 g, 3.80 mmol) and Et 3 N (0.588 mL, 4.2 mmol) in anh toluene (20 mL) at room temp, was added a solution of diphenylphosphoryl azide (1.16 g, 4.2 mmol) in toluene (5 mL). The resulting mixture was heated to 80 °C for 2 h, cooled to room temp., and p -toluidine (0.455 g, 4.1 mmol) was added.
  • the residue was purified by column chromatography (gradient form 100% CH 2 C1 2 to 5% MeOH/95% CH 2 C1 2 ) to give bis(4-chloro-3- (trifluoromethyl)phenyl)urea followed by N-(3-tert-butyl-5-isoxazolyl)-N'-(4-chloro-3- (trifluoromethyl)phenyl)urea.
  • the residue from the symmetrical urea fractions was triturated (Et,O/hexane) to give the urea as a white solid (0.110 g): TLC (3% MeOH/97% CH 2 C1 2 ) R O.55; FAB-MS m/z 417 ((M+H) + ).
  • N-(5-tert-Butyl-2-methoxyphenyl)-N'-(2-amino-4-methylphenyI)urea A solution of N-(5-tert-butyl-2-methoxyphenyl)-N'-(2-nitro-4-methylphenyl)urea (prepared in a manner analogous to Method Bla; 4.0 g, 11.2 mmol) in EtOH (100 mL) was added to a slurry of 10% Pd/C (0.40 g) in EtOH (10 mL), and the resulting mixture was stirred under an atmosphere of H 2 (balloon) at room temp, for 18 h.

Abstract

This invention relates to the use of a group of aryl ureas in treating cytokine mediated diseases and proteolytic enzyme mediated diseases, and pharmaceutical compositions for use in such therapy.

Description

Inhibition of p38 Kinase Using Symmetrical and Unsymmetrical Diphenyl Ureas
Field of the Invention
This invention relates to the use of a group of aryl ureas in treating cytokine mediated diseases and proteolytic enzyme mediated diseases, and pharmaceutical compositions for use in such therapy.
Background of the Invention
Two classes of effector molecules which are critical for the progression of rheumatoid arthritis are pro-inflammatory cytokines and tissue degrading proteases. Recently, a family of kinases was described which is instrumental in controlling the transcription and translation of the structural genes coding for these effector molecules.
The mitogen-activated protein (MAP) kinase family is made up of a series of structurally related proline-directed serine/threonine kinases which are activated either by growth factors (such as EGF) and phorbol esters (ERK), or by IL-1, TNFα or stress (ρ38, JNK). The MAP kinases are responsible for the activation of a wide variety of transcription factors and proteins involved in transcriptional control of cytokine production. A pair of novel protein kinases involved in the regulation of cytokine synthesis was recently described by a group from SmithKline Beecham (Lee et al. Nature 1994, 372, 739). These enzymes were isolated based on their affinity to bond to a class of compounds, named CSAJDSs (cytokine suppressive anti-inflammatory drugs) by SKB. The CSAIDs, bicyclic pyridinyl imidazoles, have been shown to have cytokine inhibitory activity both in vitro and in vivo. The isolated enzymes, CSBP-1 and -2 (CSAID binding protein 1 and 2) have been cloned and expressed. A murine homologue for CSBP-2, p38, has also been reported (Han et al. Science 1994, 265, 808).
Early studies suggested that CSAIDs function by interfering with m-RNA translational events during cytokine biosynthesis. Inhibition of p38 has been shown to inhibit both cytokine production (eg., TNFα, IL-1, IL-6, IL-8) and proteolytic enzyme production (eg., MMP-1, MMP-3) in vitro and/or in vivo.
Clinical studies have linked TNFα production and/or signaling to a number of diseases including rheumatoid arthritis (Maini. J. Royal Coll. Physicians London 1996, 30, 344). In addition, excessive levels of TNFα have been implicated in a wide variety of inflammatory and/or immunomodulatory diseases, including acute rheumatic fever (Yegin et al. Lancet 1997, 349, 170), bone resorption (Pacifici et al. J. Clin. Endocrinol. Metabol. 1997, 82, 29), postmenopausal osteoperosis (Pacifici et al. J. Bone Mineral Res. 1996, 11, 1043), sepsis (Blackwell et al. Br. J. Anaesth. 1996, 77, 110), gram negative sepsis (Debets et al. Prog. Clin. Biol. Res. 1989, 308, 463), septic shock (Tracey et al. Nature 1987, 330, 662; Girardin et al. New England J. Med. 1988, 319, 397), endotoxic shock (Beutler et al. Science 1985, 229, 869; Ashkenasi et al. Proc. Natl Acad. Sci. USA 1991, 88, 10535), toxic shock syndrome, (Saha et al. J. Immunol. 1996, 157, 3869; Lina et al. FEMS Immunol. Med. Microbiol. 1996, 13, 81), systemic inflammatory response syndrome (Anon. Crit. Care Med. 1992, 20, 864), inflammatory bowel diseases (Stokkers et al. J. Inflamm. 1995-6, 47, 97) including Crohn's disease (van Deventer et al. Aliment. Pharmacol. Therapeu. 1996, 10 (Suppl. 2), 107; van Dullemen et al. Gastroenterology 1995, 109, 129) and ulcerative colitis (Masuda et al. J. Clin. Lab. Immunol. 1995, 46, 111), Jarisch-Herxheimer reactions (Fekade et al. New England J. Med. 1996, 335, 311), asthma (Amrani et al. Rev. Malad. Respir. 1996, 13, 539), adult respiratory distress syndrome (Roten et al. Am. Rev. Respir. Dis. 1991, 143, 590; Suter et al. Am. Rev. Respir. Dis. 1992, 145, 1016), acute pulmonary fibrotic diseases (Pan et al. Pathol. Int. 1996, 46, 91), pulmonary sarcoidosis (Ishioka et al. Sarcoidosis Vasculitis Diffuse Lung Dis. 1996, 13, 139), allergic respiratory diseases (Casale et al. Am. J. Respir. Cell Mol. Biol. 1996, 15, 35), silicosis (Gossart et al. J. Immunol. 1996, 156, 1540; Vanhee et al. Eur. Respir. J. 1995, 8, 834), coal worker's pneumoconiosis (Bonn et al. Am. Rev. Respir. Dis. 1988, 138, 1589), alveolar injury (Horinouchi et al. Am. J. Respir. Cell Mol. Biol. 1996, 14, 1044), hepatic failure (Gantner et al. J. Pharmacol. Exp. Therap. 1997, 280, 53), liver disease during acute inflammation (Kim et al. J. Biol. Chem. 1997, 272, 1402), severe alcoholic hepatitis (Bird et al. Ann. Intern. Med. 1990, 112, 917), malaria (Grau et al. Immunol. Rev. 1989, 112, 49; Taverne et al. Parasitol. Today 1996, 12, 290) including Plasmodium falciparum malaria (Perlmann et al. Infect. Immunit. 1997, 65, 116) and cerebral malaria (Rudin et al. Am. J. Pathol. 1997, 150, 257), non-insulin-dependent diabetes mellitus (NIDDM; Stephens et al. J. Biol. Chem. 1997, 272, 971; Ofei et al. Diabetes 1996, 45, 881), congestive heart failure (Doyama et al. Int. J. Cardiol. 1996, 54, 217; McMurray et al. Br. Heart J. 1991, 66, 356), damage following heart disease (Malkiel et al. Mol. Med. Today 1996, 2, 336), atherosclerosis (Parums et al. J. Pathol. 1996, 179, A46), Alzheimer's disease (Fagarasan et al. Brain Res. 1996, 725, 231; Aisen et al. Gerontology 1997, 43, 143), acute encephalitis (Ichiyama et al. J. Neurol. 1996, 5, 457), brain injury (Cannon et al. Crit. Care Med. 1992, 20, 1414; Hansbrough et al. Surg. Clin. N. Am. 1987, 67, 69; Marano et al. Surg. Gynecol. Obstetr. 1990, 170, 32), multiple sclerosis (M.S.; Coyle. Adv. Neuroimmunol. 1996, 6, 143; Matusevicius et al. J. Neuroimmunol. 1996, 5, 115) including demyelation and oligiodendrocyte loss in multiple sclerosis (Brosnan et al. Brain Pathol. 1996, 6, 243), advanced cancer (MucWierzgon et al. J. Biol. Regulators Homeostatic Agents 1996, 10, 25), lymphoid malignancies (Levy et al. Crit. Rev. Immunol. 1996, 16, 31), pancreatitis (Exley et al. Gut 1992, 33, 1126) including systemic complications in acute pancreatitis (McKay et al. Br. J. Surg. 1996, 83, 919), impaired wound healing in infection inflammation and cancer (Buck et al. Am. J. Pathol. 1996, 149, 195), myelodysplastic syndromes (Raza et al. Int. J. Hematol. 1996, 63, 265), systemic lupus erythematosus (Maury et al. Arthritis Rheum. 1989, 32, 146), biliary cirrhosis (Miller et al. Am. J. Gasteroenterolog. 1992, 87, 465), bowel necrosis (Sim et al. J. Clin. Invest. 1988, 81, 1328), psoriasis (Christophers. Austr. J. Dermatol. 1996, 37, S4), radiation injury (Redlich et al. J. Immunol. 1996, 157, 1705), and toxicity following administration of monoclonal antibodies such as OKT3 (Brod et al. Neurology 1996, 46, 1633). TNFα levels have also been related to host-versus-graft reactions (Piguet et al. Immunol Ser. 1992, 56, 409) including ischemia reperfusion injury (Colletti et al. J. Clin. Invest. 1989, 85, 1333) and allograft rejections including those of the kidney (Maury et al. J. Exp. Med. 1987, 166, 1132), liver (Imagawa et al. Transplantation 1990, 50, 219), heart (Boiling et al. Transplantation 1992, 53, 283), and skin (Stevens et al. Transplant. Proc. 1990, 22, 1924), lung allograft rejection (Grossman et al. Immunol. Allergy Clin. N Am. 1989, 9, 153) including chronic lung allograft rejection (obliterative bronchitis; LoCicero et al. J. Thorac. Cardiovasc. Surg. 1990, 99, 1059), as well as complications due to total hip replacement (Cirino et al. Life Sci. 1996, 59, 86). TNFα has also been linked to infectious diseases (review: Beutler et al. Crit. Care Med. 1993, 21, 5423; Degre. Biotherapy 1996, 8, 219) including tuberculosis (Rook et al. Med. Malad. Infect. 1996, 26, 904), Helicobacter pylori infection during peptic ulcer disease (Beales et al. Gastroenterology 1997, 112, 136), Chaga's disease resulting from Trypanosoma cruzi infection (Chandrasekar et al. Biochem. Biophys. Res. Commun. 1996, 223, 365), effects of Shiga-like toxin resulting from E. coli infection (Harel et al. J. Clin. Invest. 1992, 56, 40), the effects of enterotoxin A resulting from Staphylococcus infection (Fischer et al. J. Immunol. 1990, 144, 4663), meningococcal infection (Waage et al. Lancet 1987, 355; Ossege et al. J. Neurolog. Sci. 1996, 144, 1), and infections from Borrelia burgdorferi (Brandt et al. Infect. Immunol. 1990, 58, 983), Treponema pallidum (Chamberlin et al. Infect. Immunol. 1989, 57, 2872), cytomegalo virus (CMV; Geist et al. Am. J. Respir. Cell Mol. Biol. 1997, 16, 31), influenza virus (Beutler et al. Clin. Res. 1986, 34, 491a), Sendai virus (Goldfield et al. Proc. Nat'l. Acad. Sci. USA 1989, 87, 1490), Theiler's encephalomyelitis virus (Sierra et al. Immunology 1993, 78, 399), and the human immunodeficiency virus (HIV; Poli. Proc. Nat'l. Acad. Sci. USA 1990, 87, 782; Vyakaram et al. AIDS 1990, 4, 21; Badley et al. J. Exp. Med. 1997, 185, 55).
Because inhibition of p38 leads to inhibition of TNFα production, p38 inhibitors will be useful in treatment of the above listed diseases.
A number of diseases are thought to be mediated by excess or undesired matrix- destroying metalloprotease (MMP) activity or by an imbalance in the ratio of the MMPs to the tissue inhibitors of metalloproteinases (TIMPs). These include osteoarthritis (Woessner et al. J. Biol. Chem. 1984, 259, 3633), rheumatoid arthritis (Mullins et al. Biochim. Biophys. Ada 1983, 695, 117; Woolley et al. Arthritis Rheum. 1977, 20, 1231; Gravallese et al. Arthritis Rheum. 1991, 34, 1076), septic arthritis (Williams et al. Arthritis Rheum. 1990, 33, 533), tumor metastasis (Reich et al. Cancer Res. 1988, 48, 3307; Matrisian et al. Proc. Nat'l Acad. Sci., USA 1986, 83, 9413), periodontal diseases (Overall et al. J. Periodontal Res. 1987, 22, 81), corneal ulceration (Burns et al. Invest. Opthalmol Vis. Sci. 1989, 30, 1569), proteinuria (Baricos et al. Biochem. J. 1988, 254, 609), coronary thrombosis from atherosclerotic plaque rupture (Henney et al. Proc. Nat'l. Acad. Sci., USA 1991, 88, 8154), aneurysmal aortic disease (Nine et al. Clin. Sci. 1991, 81, 233), birth control (Woessner et al. Steroids 1989, 54, 491), dystrophobic epidermolysis bullosa (Kronberger et al. J. //-vest. Dermatol 1982, 79, 208), degenerative cartilage loss following traumatic joint injury, osteopenias mediated by MMP activity, tempero mandibular joint disease, and demyelating diseases of the nervous system (Chantry et al. J. Neurochem. 1988, 50, 688).
Because inhibition of p38 leads to inhibition of MMP production, p38 inhibitors will be useful in treatment of the above listed diseases.
Inhibitors of p38 are active in animal models of TΝFα production, including a muirne lipopolysaccharide (LPS) model of TΝFα production. Inhibitors of p38 are active in a number of standard animal models of inflammatory diseases, including carrageenan- induced edema in the rat paw, arachadonic acid-induced edema in the rat paw, arachadonic acid-induced peritonitis in the mouse, fetal rat long bone resorption, murine type II collagen-induced arthritis, and Fruend's adjuvant-induced arthritis in the rat. Thus, inhibitors of p38 will be useful in treating diseases mediated by one or more of the above-mentioned cytokines and/or proteolytic enzymes.
The need for new therapies is especially important in the case of arthritic diseases. The primary disabling effect of osteoarthritis, rheumatoid arthritis and septic arthritis is the progressive loss of articular cartilage and thereby normal joint function. No marketed pharmaceutical agent is able to prevent or slow this cartilage loss, although nonsteroidal antiinflammatory drugs (NSAUDs) have been given to control pain and swelling. The end result of these diseases is total loss of joint function which is only treatable by joint replacement surgery. P38 inhibitors will halt or reverse the progression of cartilage loss and obviate or delay surgical intervention.
Several patents have appeared claiming polyarylimidazoles and/or compounds containing polyarylimidazoles as inhibitors of p38 (for example, Lee et al. WO 95/07922; Adams et al. WO 95/02591; Adams et al. WO 95/13067; Adams et al. WO 95/31451). It has been reported that arylimidazoles complex to the ferric form of cytochrome P450cam (Harris et al. Mol. Eng. 1995, 5, 143, and references therein), causing concern that these compounds may display structure-related toxicity (Howard-Martin et al. Toxicol Pathol. 1987, 15, 369). Therefore, there remains a need for improved p38 inhibitors.
Summary of the Invention
This invention provides compounds, generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit p38 mediated events and thus inhibit the production of cytokines (such as TNFα, IL-1 and IL-8) and proteolytic enzymes (such as MMP-1 and MMP-3). The invention also provides a method of treating a cytokine mediated disease state in humans or mammals, wherein the cytokine is one whose production is affected by p38. Examples of such cytokines include, but are not limited to TNFα, IL-1 and IL-8. The invention also provides a method of treating a protease mediated disease state in humans or mammals, wherein the protease is one whose production is affected by p38. Examples of such proteases include, but are not limited to collagenase (MMP-1) and stromelysin (MMP-3).
Accordingly, these compounds are useful therapeutic agents for such acute and chronic inflammatory and/or immunomodulatory diseases as rheumatoid arthritis, osteoarthritis, septic arthritis, rheumatic fever, bone resorption, postmenopausal osteoperosis, sepsis, gram negative sepsis, septic shock, endotoxic shock, toxic shock syndrome, systemic inflammatory response syndrome, inflammatory bowel diseases including Crohn's disease and ulcerative colitis, Jarisch-Herxheimer reactions, asthma, adult respiratory distress syndrome, acute pulmonary fibrotic diseases, pulmonary sarcoidosis, allergic respiratory diseases, silicosis, coal worker's pneumoconiosis, alveolar injury, hepatic failure, liver disease during acute inflammation, severe alcoholic hepatitis, malaria including Plasmodium falciparum malaria and cerebral malaria, non-insulin-dependent diabetes mellitus (NDDDM), congestive heart failure, damage following heart disease, atherosclerosis, Alzheimer's disease, acute encephalitis, brain injury, multiple sclerosis including demyelation and oligiodendrocyte loss in multiple sclerosis, advanced cancer, lymphoid malignancies, tumor metastasis, pancreatitis, including systemic complications in acute pancreatitis, impaired wound healing in infection, inflammation and cancer, periodontal diseases, corneal ulceration, proteinuria, myelodysplastic syndromes, systemic lupus erythematosus, biliary cirrhosis, bowel necrosis, psoriasis, radiation injury, toxicity following administration of monoclonal antibodies such as OKT3, host- versus-graft reactions including ischemia reperfusion injury and allograft rejections including kidney, liver, heart, and skin allograft rejections, lung allograft rejection including chronic lung allograft rejection (obliterative bronchitis) as well as complications due to total hip replacement, and infectious diseases including tuberculosis, Helicobacter pylori infection during peptic ulcer disease, Chaga's disease resulting from Trypanosoma cruzi infection, effects of Shiga-like toxin resulting from E. coli infection, effects of enterotoxin A resulting from Staphylococcus infection, meningococcal infection, and infections from Borrelia burgdorferi, Treponema pallidum, cytomegalovirus, influenza virus, Theiler's encephalomyelitis virus, and the human immunodeficiency virus (HIN).
The present invention, therefore, provides compounds generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit the p38 pathway. The invention also provides a method for treatment of p38-mediated disease states in humans or mammals, e.g., disease states mediated by one or more cytokines or proteolytic enzymes produced and or activated by a p38 mediated process. Thus, the invention is directed to compounds and methods for the treatment of diseases mediated by p38 kinase comprising administering a compound of Formula I
Figure imgf000009_0001
wherein A is
Figure imgf000010_0001
B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted, it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and Wn, wherein n is 0-3 and each W is independently selected from the group consisting of -CN, -CO2R7, -C(O)NR7R7, -C(O)-R7, -NO2, -OR7, -SR7, -NR7R7, -NR7C(O)OR7, -NR7C(O)R7, CrC10 alkyl, C2.10-alkenyl, C,.10-alkoxy, C3-C10 cycloalkyl, C6-C14 aryl, C7-C24 alkaryl, C3-C13 heteroaryl, -C-j alkheteroaryl, substituted C,-C10 alkyl, substituted C2.10-alkenyl, substituted C,-10-alkoxy, substituted C3-CI0 cycloalkyl, substituted C4-C23 alkheteroaryl and Q-Ar; wherein if W is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO2R7, -C(O)R7, -C(O)NR7R7, -OR7, -SR7, -NR7R7 , NO2, -NR7C(O)R7, -NR7C(O)OR7 and halogen up to per-halo; wherein each R7 is independently selected from H, CrC10 alkyl, C2.10-alkenyl, C3-C10 cycloalkyl, C6-C14 aryl, C3-C13 hetaryl, C7-C24 alkaryl, C4-C23 alkheteroaryl, up to per-halosubstituted CrC10 alkyl, up to per-halosubstituted C2.10-alkenyl, up to per- halosubstituted C3-C10 cycloalkyl, up to per-halosubstituted C6-CM aryl and up to per- halosubstituted C3-C13 hetaryl, wherein Q is - O-, -S-, -N(R7)-, -(CH,)--,,, -C(O)-, -CH(OH)-, -(CH2)mO-, -NR7C(O)NR7R7 -, -NR7C(O)-, -C(O)NR7-4.-(CH2)mS-, -(CH^NCR7)-, -O(CH2)m-, -CHXa, -CXV, -S-(CH2)m- and -N(R7)(CH2)m-, m = 1-3, and Xa is halogen; and Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Znl, wherein nl is 0 to 3 and each Z is independently selected from the group consisting of of -CN, -CO2R7, -C(O)NR7R7, -C(O)- NR\ -C(O) R7,_-NO2, -OR7, -SR7, -NR7R7, -NR7C(O)OR7, -NR7C(O)R7, C,-C10 alkyl, C3-C10 cycloalkyl, C6-C14 aryl, C3-C13 hetaryl, C7-C24 alkaryl, C4-C23 alkheteroaryl, substituted C,-Cι0 alkyl, substituted C3-C10 cycloalkyl, substituted C7-C24 alkaryl and substituted Q-C^ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -CO2R7, -C(O)NR7R7, -OR7, -SR7, -NO2, -NR7R7 , -NR7C(O)R7 , -NR7C(O)OR7,
R3 , R4' , R5' are each independently H, -jo-alkyl, optionally substituted by halogen, up to perhalo, C 0 alkoxy, optionally substituted by halogen, up to perhaloalkoxy, halogen; NO2 or NH2; R6' is H, C,.10-alkyl, C,.10 alkoxy, -NHCOR1; -NR'COR'; NO2;
Figure imgf000011_0001
one of R4' , R5' or R6' can be -X-Y, or 2 adjacent R4'-R6' can together be an aryl or hetaryl ring with 5-12 atomsΔ optionally substituted by
Figure imgf000011_0002
C,.10 alkoxy, C3.10 cycloalkyl, C2.10 alkenyl, C,.10 alkanoyl, .,2 aryl, Cj.I2 hetaryl or CM2 aralkyl;
R1 is C^^-alkyl optionally substituted by halogen, up to perhalo; X is -CH2-, -S-, -N(CH3)-, -NHC(O)-, -CH2-S-, -S-CH2-, -C(O)-, or -O-; and X is additionally a single bond where Y is pyridyl;
Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, benzodioxane, benzopyridine, pyrimidine or benzothiazole, each optionally substituted by C,-10-alkyl, C,-10-alkoxy, halogen, OH, - SCH3 or NO2 or, where Y is phenyl, by
Figure imgf000012_0001
or a pharmaceutically acceptable salt thereof.
Preferably, the compounds of formula I are of formula la
Figure imgf000012_0002
wherein
R3, R4 , R5 and R6 are each independently H, halogen, C 0- alkyl optionally substituted by halogen, up to perhalo, C,.10-alkoxy, optionally substituted by at least one hydroxy group or by halogen, up to perhalo; C^,- aryl, optionally substituted by C,.10 alkoxy or halogen, C5-,2 hetaryl, optionally substitued by C,-10 alkyl, C,.10 alkoxy or halogen; NO2 , SO2F or -SO2CHpX3.p; -COOR1; -OR'CONHR1; -NHCOR1; -SR1; phenyl optionally substituted by halo or C^o-alkoxy; NH2; -N(SO2R')2, furyloxy,
Figure imgf000012_0003
2 adjacent R3-R6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C,.10-alkyl, C,-I0-alkoxy, C3.10-cycloalkyl, C2.10-alkenyl, C,.10- alkanoyl, C^-aryl , C5.,2-hetaryl, C^-aralkyl, Cβ-π-alkaryl, halogen; -NR1; -NO2; -CF3; -COOR1; -NHCOR1; -CN; -CONR1^; -SO2R2; -SOR2; -SR2; in which R1 is H or C 1-10 alkyl and R2 is C 0-alkyl; optionally substituted by halogen, up to perhalo, with - SO2- optionally incorporated in the aryl or hetaryl ring;
one ofR4, R5 or R6 can be -X-Y,
R1 is C 0-alkyl, optionally substituted by halogen, up to perhalo; p is 0 or 1 ;
X is -CH2, -S- , N(CH3)-, -NHC(O), CH2-S-, -S-CH2-, -C(O)-, or -O-; and
Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, benzodixane, benzopyridineΛ pyrimidine or benzothiazole, each optionally substituted by Cι_10-alkyl,
C^^-alkoxy, halogen or NO2 or, where Y is phenyl, by
Figure imgf000013_0001
with the proviso that if R3 and R6 are both H , one of R4 or R5 is not H.
In formula I, suitable hetaryl groups B include, but are not limited to, 5-12 carbon-atom aromatic rings or ring systems containing 1-3 rings, at least one of which is aromatic, in which one or more, e.g., 1-4 carbon atoms in one or more of the rings can be replaced by oxygen, nitrogen or sulfur atoms. Each ring typically has 3-7 atoms. For example, B can be 2- or 3-furyl, 2- or 3-thienyl, 2- or 4-triazinyl, 1-, 2- or 3-pyrrolyl, 1-, 2-, 4- or 5- imidazolyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 4- or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4- or 5-thiazolyl, 3-, 4- or 5-isothiazolyl, 2-, 3- or 4-pyridyl, 2-, 4-, 5- or 6-pyrimidinyl, 1,2,3- triazol-1-, -4- or -5-yl, 1,2,4-triazol-l-, -3- or -5-yl, 1- or 5-tetrazolyl, l,2,3-oxadiazol-4- or -5-yl, l,2,4-oxadiazol-3- or -5-yl, l,3,4-thiadiazol-2- or -5-yl, l,2,4-oxadiazol-3- or -
5-yl, l,3,4-thiadiazol-2- or-5-yl, l,3,4-thiadiazol-3- or-5-yl, l,2,3-thiadiazol-4- or-5-yl,
2-, 3-, 4-, 5- or 6-2H-thiopyranyl, 2-, 3- or 4-4H-thiopyranyl, 3- or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6- or 7-benzofuryl, 2-, 3-, 4-, 5-, 6- or 7-benzothienyl, 1-, 2-, 3-,
4-, 5-, 6- or 7-indolyl, 1-, 2-, 4- or 5-benzimidazolyl, 1-, 3-, 4-, 5-, 6- or 7- benzopyrazolyl, 2-, 4-, 5-, 6- or 7-benzoxazolyl, 3-, 4-, 5- 6- or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6- or 7-benzothiazolyl, 2-, 4-, 5-, 6- or 7-benzisothiazolyl, 2-, 4-, 5-, 6- or 7-benz- 1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8- isoquinolinyl, 1-, 2-, 3-, 4- or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl, or 2-, 4-, 5-, 6-, 7- or 8-quinazolinyl, or additionally optionally substituted phenyl, 2- or 3-thienyl, 1,3,4- thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, etc. For example, B can be 4-methyl-phenyl, 5-methyl-2-thienyl, 4-methyl-2-thienyl, l-methyl-3-pyrryl, l-methyl-3- pyrazolyl, 5-methyl-2-thiazolyl or 5-methyl-l,2,4-thiadiazol-2-yl.
Suitable alkyl groups and alkyl portions of groups, e.g., alkoxy, etc. throughout include methyl, ethyl, propyl, butyl, etc., including all straight-chain and branched isomers such as isopropyl, isobutyl, sec-butyl, tert-butyl, etc.
Suitable aryl groups include, for example, phenyl and 1- and 2-naphthyl.
The term "cycloalkyl" , as used herein, refers to cyclic structures with or without alkyl substitutents such that, for example, "C4 cycloakyl" includes methyl substituted cyclopropyl groups as well as cyclobutyl groups. The term " cycloalkyl" also includes saturated heterocyclic groups.
Suitable halogen groups include F, Cl, Br, and/or I, from one to per-substitution (i.e. all H atoms on a group replaced by a halogen atom) being possible where an alkyl group is substituted by halogen, mixed substitution of halogen atom types also being possible on a given moiety.
Preferred compounds of formula I include those where R3 is H, halogen or C,.10-alkyl, optionally substituted by halogen, up to perhalo, NO2, -SO2F, - SO2CHF2; or -SO2CF3; R4 is H, C,-10-alkyl, C 0-alkoxy, halogen or NO2; R5 is H, Cj.ι0-alkyl optionally substituted by halogen, up to perhalo; R6 is H, hydroxy, C 0-alkoxy, optionally substituted by at least one hydroxy group; -COOR1; -OR'CONHR1; -NHCOR1; -SR1; phenyl optionally substituted by halo or
Figure imgf000014_0001
furyloxy,
Preferably, R3 is Cl, F, C^-branched alkyl, -SO2F or -SO2CF3; and R6 is hydroxy; C^o-alkoxy optionally substituted by at least one hydroxy group; -COOR1; - OR'CONHR1; -NHCOR1; -SR1; phenyl optionally substituted by halo or C,.I0-alkoxy; NH2;
Figure imgf000015_0001
furyloxy,
More preferably, R6 is t-butyl or CF3 and R6 is -OCH3. Preferably, R4' is C,.10-alkyl or halogen; R5' is H, C,.10-alkyl, halogen, CF3 , halogen, NO2 or NH2; and R6'is H, C,.ι0-alkyl, halogen, -NHCOCH3, -N(CH3)COCH3, NO2,
Figure imgf000015_0002
The invention also relates to compounds per se, of formula II
Figure imgf000015_0003
wherein
R3, R4 , R5 and R6 are each independently H, halogen, C 0- alkyl optionally substituted by halogen up to perhalo, C 0-alkoxy, optionally substituted by at least one hydroxy group or halogen, up to perhalo; NO2 , SO2F or -SO2CH-,X3.n, .^-alkoxy; -COOR1; -OR'CONHR1; -NHCOR'; -SR'; CM2 aryl, optionally substituted by C,.10-alkyl, . 10 alkoxy or halogen, C5.12 hetaryl, optionally substitued by C,.10 alkyl, C,.10 alkoxy or halogen ; NH2; -N(SO2R!)2; furyloxy;
Figure imgf000015_0004
2 adjacent R3-R6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C,.10-alkyl, C,.10-alkoxy, C3.10-cycloalkyl, C2.10-alkenyl, C,.10- alkanoyl, C6.12-aryl , C5.12-hetaryl, C^-aralkyl, Ce-^-alkaryl, halogen; -NR1; -NO2; -CF3; -COOR1; -NHCOR1; -CN; -CONR1^; -SO2R2; -SOR2; -SR2; in which R1 is H or C,.^- alkyl and R2 is C,.10-alkyl;
R3' , R4' and R5' are each independently H, C,.10-alkyl, optionally substituted by halogen, up to perhalo; NO2 or NH2; R6' is H, C 0-alkyl, halogen, -NHCOR1; -NR'COR'; NO2;
Figure imgf000016_0001
2 adjacent R4'-R6' can together be an aryl or hetaryl ring with 5-12 atoms; R1 is C^o-alkyl, optionally substituted by halogen, up to perhalo; n is 0 or 1;
with the provisos that
(a) if R3 and R6 are both H , one of R4 or R5 is not H, and
(b) that R6 is phenyl substituted by alkoxy or halogen, alkoxy substituted by hydroxy, -SO2CF2H, -OR'CONHR',
Figure imgf000016_0002
furyloxy or -N^O^ 1),; or R6' is
Figure imgf000016_0003
and (c) if R6 is phenyl substituted by alkoxy or halogen, the compounds have a pKa greater than 10, e.g., greater than 12, preferably greater than 15.
Preferred 5-tert-butylphenyl ureas are: N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-phenyloxphenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-methoxyphenyloxy)phenyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinyloxy)phenyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinylthio)phenyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-(4,7-methano-lH-isoindole-l,3(2H)- dionyl)methyl)phenyl)urea; N-(5-tert-Butyl-2-phenylphenyl)-N'-(2,3-dichlorophenyl)urea; N-(5-tert-Butyl-2-(3-thienyl)phenyl)-N'-(2,3-dichlorophenyl)urea; N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(2,3- dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(l-naphthyl)urea; N-(5-tert-Butyl-2-(N-mo holinocarbonyl)methoxyphenyl)-N'-(2,3- dichlorophenyl)urea; N-(5-tert-Butyl-2-(N-morpholinocarbonyl)methoxyphenyl)-N'-(l-naphthyl)urea; N-(5-tert-Butyl-2-(3-tetrahydrofuranyloxy)phenyl)-N'-(2,3-dichlorophenyl)urea; and N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(3-pyridinyl)methylphenyl)urea.
Preferred 5-trifuoromethylphenyl ureas are: N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N,-(4-methyl-2-fluoroρhenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-fluoro-3-chlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methyl-3-chlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N,-(4-methyl-3-fluorophenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(2,4-difluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-phenyloxy-3,5- dichlorophenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinylthio)phenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinyloxy)phenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N,-(3-(4-pyridinylthio)phenyl)urea; and
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(3-(N-methylaminocarbonyl)- phenyloxy)phenyl)-urea.
Preferred 5-sulfonylphenyl ureas are: N-(5-Fluorosulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)ureaN-(5-
(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-2- fluorophenyl)urea; N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3- fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3- chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3- chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3- methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(2,3-dimethylphenyl)urea; and N-(5-(Trifluoromethanesulfonyl)-2-methoxphenyl)-N'-(4-methylphenyl)urea.
Preferred 2-naphthyl ureas are:
N-(3-Methoxy-2-naphthyl)-N'-(2-fluorophenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(4-methylphenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(3-fluorophenyl)urea;
N-(3-Methoxy-2-naphthyl)-N'-(4-methyl-3-fluorophenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(2,3-dimethylphenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(l-naphthyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(4-(4-pyridinylthio)phenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-(4-(4-methoxyphenyloxy)phenyl)urea; and
N-(3-Methoxy-2-naphthyl)-N'-(4-(4-(4,7-methano-lH-isoindole-l,3(2H)- dionyl)methyl)phenyl)urea.
Other preferred ureas are: N-(2-Hydroxy-4-nitro-5-chlorophenyl)-N'-(phenyl)urea; and
N-(2-Hydroxy-4-nitro-5-chlorophenyl)-N'-(4-(4-pyridinylmethly)phenyl)urea.
The present invention is also directed to pharmaceutically acceptable salts of formula I. Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, sulphonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid. In addition, pharmaceutically acceptable salts include acid salts of inorganic bases, such as salts containing alkaline cations (e.g., Li+ Na+ or K+), alkaline earth cations (e.g., Mg+2 , Ca+2 or Ba+2), the ammonium cation, as well as acid salts of organic bases, including aliphatic and aromatic substituted ammonium, and quaternary ammonium cations, such as those arising from protonation or peralkylation of triethylamine, N,N-diethylamine, NN-dicyclohexylamine, pyridine, N,N- dimethylaminopyridine (DMAP), l,4-diazabiclo[2.2.2]octane (DABCO), 1,5- diazabicyclo[4.3.0]non-5-ene (DBΝ) and l,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
A number of the compounds of Formula I possess asymmetric carbons and can therefore exist in racemic and optically active forms. Methods of separation of enantiomeric and diastereomeric mixtures are well known to one skilled in the art. The present invention encompasses any isolated racemic or optically active form of compounds described in Formula I which possess p38 kinase inhibitory activity.
General Preparative Methods
The compounds of Formula I may be prepared by use of known chemical reactions and procedures, some from starting materials which are commercially available. Nevertheless, the following general preparative methods are presented to aid one of skill in the art in synthesizing these compounds, with more detailed particular examples being presented in the experimental section describing the working examples.
H2 / catalyst (eg. Ni, Pd, Pt)
\
ArN02 tϋ ► ArNH2
\ M(0) y
(eg. Fe, Sn, Ca)
Scheme I Reduction of Nitroaryls to Aryl Amines
Nitroaryls are commonly formed by electrophilic aromatic nitration using HNO3, or an alternative NO2 + source. Nitroaryls may be further elaborated prior to reduction. Thus, nitroaryls substituted with
HN03 Ar-H ► ArN02
potential leaving groups (eg. F, Cl, Br, etc.) may undergo substitution reactions on treatment with nucleophiles, such as thiolate (exemplified in Scheme ft) or phenoxide. Nitroaryls may also undergo Ullman-type coupling reactions (Scheme II).
Figure imgf000021_0001
Scheme II Selected Nucleophilic Aromatic Substitution using Nitroaryls
Nitroaryls may also undergo transition metal mediated cross coupling reactions.
For example, nitroaryl electrophiles, such as nitroaryl bromides, iodides or triflates, undergo palladium mediated cross coupling reactions with aryl nucleophiles, such as arylboronic acids (Suzuki reactions, exemplified below), aryltins (Stille reactions) or arylzincs (Negishi reaction) to afford the biaryl (5).
Figure imgf000021_0002
Either nitroaryls or anilines may be converted into the corresponding arenesulfonyl chloride (7) on treatment with chlorosulfonic acid. Reaction of the sulfonyl chloride with a fluoride source, such as KF then affords sulfonyl fluoride (8). Reaction of sulfonyl fluoride 8 with trimethylsilyl trifluoromethane in the presence of a fluoride source, such as tris(dimethylamino)sulfonium difluorotrimethylsiliconate (TASF) leads to the corresponding trifluoromethylsulfone (9). Alternatively, sulfonyl chloride 7 may be reduced to the arenethiol (10), for example with zinc amalgum. Reaction of thiol 10 with CHC1F2 in the presence of base gives the difluoromethyl mercaptam (11), which may be oxidized to the sulfone (12) with any of a variety of oxidants, including CrO3-acetic anhydride (Sedova et al. Zh. Org. Khim. 1970, 6, 568).
Figure imgf000022_0001
(Me2N)3S Me3SiF2 CHCIF2 Me3SiCF3 base
Figure imgf000022_0002
[O]
Figure imgf000022_0003
Scheme III Selected Methods of Fluorinated Aryl Sulfone Synthesis
As shown in Scheme IN, non-symmetrical urea formation may involve reaction of an aryl isocyanate (14) with an aryl amine (13). The heteroaryl isocyanate may be synthesized from a heteroaryl amine by treatment with phosgene or a phosgene equivalent, such as trichloromethyl chloroformate (diphosgene), bis(trichloromethyl) carbonate (triphosgene), or NN'-carbonyldiimidazole (CDI). The isocyanate may also be derived from a heterocyclic carboxyhc acid derivative, such as an ester, an acid halide or an anhydride by a Curtius-type rearrangement. Thus, reaction of acid derivative 16 with an azide source, followed by rearrangement affords the isocyanate. The corresponding carboxyhc acid (17) may also be subjected to Curtius-type rearrangements using diphenylphosphoryl azide (DPP A) or a similar reagent. Ar1-NH2 13
Figure imgf000023_0001
16 17
Scheme IV Selected Methods of Non-Symmetrical Urea Formation
Finally, ureas may be further manipulated using methods familiar to those skilled in the art.
The invention also includes pharmaceutical compositions including a compound of Formula I, and a physiologically acceptable carrier.
The compounds may be administered orally, topically, parenterally, by inhalation or spray, vaginally, rectally or subhngually in dosage unit formulations. The term 'administration by injection' includes intravenous, intramuscular, subcutaneous and parenteral injections, as well as use of infusion techniques. Dermal administration may include topical application or transdermal administration. One or more compounds may be present in association with one or more non-toxic pharmaceutically acceptable carriers and if desired other active ingredients.
Compositions intended for oral use may be prepared according to any suitable method known to the art for the manufacture of pharmaceutical compositions. Such compositions may contain one or more agents selected from the group consisting of diluents, sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; and binding agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. These compounds may also be prepared in solid, rapidly released form.
Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
Aqueous suspensions containing the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions may also be used. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropyl-methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl, -hydroxybenzoate, one or more coloring agents, one or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.
Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those aheady mentioned above. Additional excipients, for example, sweetening, flavoring and coloring agents, may also be present.
The compounds may also be in the form of non-aqueous liquid formulations, e.g., oily suspensions which may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or peanut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
Compounds of the invention may also be administrated transdermally using methods known to those skilled in the art (see, for example: Chien; "Transdermal Controlled Systemic Medications" ; Marcel Dekker, Inc.; 1987. Lipp et al. WO94/04157 3Mar94). For example, a solution or suspension of a compound of Formula I in a suitable volatile solvent optionally containing penetration enhancing agents can be combined with additional additives known to those skilled in the art, such as matrix materials and bacteriocides. After sterilization, the resulting mixture can be formulated following known procedures into dosage forms. In addition, on treatment with emulsifying agents and water, a solution or suspension of a compound of Formula I may be formulated into a lotion or salve.
Suitable solvents for processing transdermal delivery systems are known to those skilled in the art, and include lower alcohols such as ethanol or isopropyl alcohol, lower ketones such as acetone, lower carboxyhc acid esters such as ethyl acetate, polar ethers such as tetrahydrofuran, lower hydrocarbons such as hexane, cyclohexane or benzene, or halogenated hydrocarbons such as dichloromethane, chloroform, trichlorotrifluoroethane, or trichlorofluoroethane. Suitable solvents may also include mixtures of one or more materials selected from lower alcohols, lower ketones, lower carboxyhc acid esters, polar ethers, lower hydrocarbons, halogenated hydrocarbons.
Suitable penetration enhancing materials for transdermal delivery system are known to those skilled in the art, and include, for example, monohydroxy or polyhydroxy alcohols such as ethanol, propylene glycol or benzyl alcohol, saturated or unsaturated C8-C18 fatty alcohols such as lauryl alcohol or cetyl alcohol, saturated or unsaturated C8-C18 fatty acids such as stearic acid, saturated or unsaturated fatty esters with up to 24 carbons such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl isobutyl tertbutyl or monoglycerin esters of acetic acid, capronic acid, lauric acid, myristinic acid, stearic acid, or palmitic acid, or diesters of saturated or unsaturated dicarboxylic acids with a total of up to 24 carbons such as diisopropyl adipate, diisobutyl adipate, diisopropyl sebacate, diisopropyl maleate, or diisopropyl fumarate. Additional penetration enhancing materials include phosphatidyl derivatives such as lecithin or cephalin, terpenes, amides, ketones, ureas and their derivatives, and ethers such as dimethyl isosorbid and diethyleneglycol monoethyl ether. Suitable penetration enhancing formulations may also include mixtures of one or more materials selected from monohydroxy or polyhydroxy alcohols, saturated or unsaturated C8-C18 fatty alcohols, saturated or unsaturated C8-C18 fatty acids, saturated or unsaturated fatty esters with up to 24 carbons, diesters of saturated or unsaturated discarboxylic acids with a total of up to 24 carbons, phosphatidyl derivatives, terpenes, amides, ketones, ureas and their derivatives, and ethers.
Suitable binding materials for transdermal delivery systems are known to those skilled in the art and include polyacrylates, silicones, polyurethanes, block polymers, styrenebutadiene coploymers, and natural and synthetic rubbers. Cellulose ethers, derivatized polyethylenes, and silicates may also be used as matrix components. Additional additives, such as viscous resins or oils may be added to increase the viscosity of the matrix.
Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oil phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally- occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.
Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.
The compounds may also be administered in the form of suppositories for rectal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal or vaginal temperature and will therefore melt in the rectum or vagina to release the drug. Such materials include cocoa butter and polyethylene glycols.
For all regimens of use disclosed herein for compounds of Formula I, the daily oral dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily vaginal dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily rectal dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The transdermal concentration will preferably be that required to maintain a daily dose of from 0.01 to 200 mg/Kg. The daily topical dosage regimen will preferably be from 0.1 to 200 mg administered between one to four times daily. The daily inhalation dosage regimen will preferably be from 0.01 to 10 mg/Kg of total body weight.
It will be appreciated by those skilled in the art that the particular method of administration will depend on a variety of factors, all of which are considered routinely when administering therapeutics. It will also be understood, however, that the specific dose level for a given patient depends on a variety of factors, including specific activity of the compound administered, the age of the patient, the body weight of the patient, the general health of the patient, the gender of the patient, the diet of the patient, time of administration, route of administration, rate of excretion, drug combination, and the severity of the condition undergoing therapy, etc. It will be further appreciated by one skilled in the art that the optimal course of treatment, i.e., the mode of treatment and the daily number of doses of a compound of Formula I or a pharmaceutically acceptable salt thereof given for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatmment tests.
The compounds of Figure I are producible from known compounds (or from starting materials which, in turn, are producible from known compounds), e.g., through the general preparative methods shown above. The activity of a given compound to inhibit raf kinase can be routinely assayed, e.g., according to procedures disclosed below. The following examples are for illustrative purposes only and are not intended, nor should they be construde to limit the invention in any way.
The entire disclosure of all applications, patents and publications cited above and below are hereby incorporated by reference, including provisional application serial nunber attorney docket number Bayer 10-N1, filed on December 22, 1997 as serial number 08/995,749, and converted on December 22, 1998.
The following examples are for illustrative purposes only and are not intended, nor should they be construed to limit the invention in any way.
EXAMPLES All reactions were performed in flame-dried or oven-dried glassware under a positive pressure of dry argon or dry nitrogen, and were stirred magnetically unless otherwise indicated. Sensitive liquids and solutions were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Unless otherwise stated, the term 'concentration under reduced pressure' refers to use of a Buchi rotary evaporator at approximately 15 mmHg.
All temperatures are reported uncorrected in degrees Celsius (°C). Unless otherwise indicated, all parts and percentages are by weight.
Commercial grade reagents and solvents were used without further purification. Thin- layer chromatography (TLC) was performed using Whatman® pre-coated glass-backed silica gel 60A F-254 250 μm plates. Visualization of plates was effected by one or more of the following techniques: (a) ultraviolet illumination, (b) exposure to iodine vapor, (c) immersion of the plate in a 10% solution of phosphomolybdic acid in ethanol followed by heating, (d) immersion of the plate in a cerium sulfate solution followed by heating, and/or (e) immersion of the plate in an acidic ethanol solution of 2,4- dinitrophenylhydrazine followed by heating. Column chromatography (flash chromatography) was performed using 230-400 mesh EM Science® silica gel.
Melting points (mp) were determined using a Thomas-Hoover melting point apparatus or a Mettler FP66 automated melting point apparatus and are uncorrected. Fourier transform infrared sprectra were obtained using a Mattson 4020 Galaxy Series spectrophotometer. Proton (!H) nuclear magnetic resonance (NMR) spectra were measured with a General Electric GN-Omega 300 (300 MHz) spectrometer with either Me4Si (d 0.00) or residual protonated solvent (CHC13 δ 7.26; MeOH δ 3.30; DMSO δ 2.49) as standard. Carbon (13C) NMR spectra were measured with a General Electric GN- Omega 300 (75 MHz) spectrometer with solvent (CDC13 δ 77.0; MeOD-d3; δ 49.0; DMSO-d6 δ 39.5) as standard. Low resolution mass spectra (MS) and high resolution mass spectra (HRMS) were either obtained as electron impact (El) mass spectra or as fast atom bombardment (FAB) mass spectra. Electron impact mass spectra (EI-MS) were obtained with a Hewlett Packard 5989A mass spectrometer equipped with a Vacumetrics Desorption Chemical Ionization Probe for sample introduction. The ion source was maintained at 250 °C. Electron impact ionization was performed with electron energy of 70 eV and a trap current of 300 μA. Liquid-cesium secondary ion mass spectra (FAB- MS), an updated version of fast atom bombardment were obtained using a Kratos Concept 1-H spectrometer. Chemical ionization mass spectra (CI-MS) were obtained using a Hewlett Packard MS-Engine (5989A) with methane or ammonia as the reagent gas (lxlO"4 torr to 2.5x10"* torr). The direct insertion desorption chemical ionization (DO) probe (Vaccumetrics, Inc.) was ramped from 0-1.5 amps in 10 sec and held at 10 amps until all traces of the sample disappeared ( ~l-2 min). Spectra were scanned from 50-800 amu at 2 sec per scan. HPLC - electrospray mass spectra (HPLC ES-MS) were obtained using a Hewlett-Packard 1100 HPLC equipped with a quaternary pump, a variable wavelength detector, a C-18 column, and a Finnigan LCQ ion trap mass spectrometer with electrospray ionization. Spectra were scanned from 120-800 amu using a variable ion time according to the number of ions in the source. Gas chromatography - ion selective mass spectra (GC-MS) were obtained with a Hewlett Packard 5890 gas chromatograph equipped with an HP-1 methyl silicone column (0.33 mM coating; 25 m x 0.2 mm) and a Hewlett Packard 5971 Mass Selective Detector (ionization energy 70 eV). Elemental analyses are conducted by Robertson Microlit Labs, Madison NJ.
All compounds displayed NMR spectra, LRMS and either elemental analysis or HRMS consistant with assigned structures.
List of Abbreviations and Acronyms:
AcOH acetic acid anh anhydrous
BOC tert-butoxycarbonyl cone concentrated dec decomposition
DMPU 1 ,3-dimethyl-3 ,4,5 ,6-tetrahydro-2( 1 H)-pyrimidinone
DMF N,N-dimethylformamide
DMSO dimethylsulfoxide
DPPA diphenylphosphoryl azide
EtOAc ethyl acetate
EtOH ethanol (100%)
E^O diethyl ether
Et3N triethylamine
7M-CPBA 3-chloroperoxybenzoic acid
MeOH methanol pet. ether petroleum ether (boiling range 30-60 °C)
THF tetrahydrofuran
TFA trifluoroacetic acid
Tf trifluoromethanesulfonyl A. General Methods for Synthesis of Substituted Anilines Al. Synthesis of 2,5-Dioxopyrrolidinylanilines
Figure imgf000031_0001
Step 1. 4-tert-ButyI-l-(2,5-dioxo-l-pyrrolidinyI)-2-nitrobenzene: To a solution of 4- tert-butyl-2-nitroaniline (1.04 g, 5.35 mmol) in xylene (25 mL) was added succinic anhydride (0.0535 g, 5.35 mmol) and triethylamine (0.75 mL, 5.35 mmol). The reaction mixture was heated at the reflux temp, for 24 h, cooled to room temp, and diluted with Et2O (25 mL). The resulting mixture was sequentially washed with a 10% HC1 solution (50 mL), a saturated NH4C1 solution (50 mL) and a saturated NaCI solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was purified by flash cromatography (60% EtOAc/40% hexane) to yield the succinimide as a yellow solid (1.2 g, 86%): mp 135-138 °C; 1H NMR (CHC13) δ 1.38 (s, 9H), 2.94-2.96 (m, 4H), 7.29- 7.31 (m, 1H), 7.74-7.78 (m, 1H), 8.18-8.19 (m, 1H).
Figure imgf000031_0002
Step 2. 5-terf-ButyI-2-(2,5-dioxo-l-pyrrolidinyl)aniline: To a solution of 4-tert-butyl- l-(2,5-dioxo-l-pyrrolidinyl)-2-nitrobenzene (1.1 g, 4.2 mmol) in EtOAc (25 mL) was added a 10% Pd/C (0.1 g). The resulting slurry was placed under a H2 atmosphere using 3 cycles of an evacuate-quench protocol and was allowed to stir under a H2 atmosphere for 8 h. The reaction mixture was filtered through a pad of Celite® and the residue was washed with CHC13. The combined filtrate was concentrated under reduced pressure to yield the desired aniline as an off-white solid (0.75 g, 78%): mp 208-211 °C; H-NMR (DMSO-d6) δ 1.23 (s, 9H), 2.62-2.76 (m, 4H), 5.10 (br s, 2H), 6.52-6,56 (m, 1H), 6.67- 6.70 (m, 2H).
A2. General Method for the Synthesis of Tetrahydrofuranyloxyanilines
Figure imgf000032_0001
Step 1.4-tert-Butyl-l-(3-tetrahydrofuranyloxy)-2-nitrobenzene: To a solution of 4- tert-butyl-2-nitrophenol (1.05 g, 5.4 mmol) in anh THF (25 mL) was added 3- hydroxytetrahydrofuran (0.47 g, 5.4 mmol) and triphenylphosphine (1.55 g, 5.9 mmol) followed by diethyl azodicarboxylate (0.93 ml, 5.9 mmol) and the mixture was allowed to stir at room temp, for 4 h. The resulting mixture was diluted with Et2O (50 mL) and washed with a saturated NH4C1 solution (50 mL) and a saturated NaCI solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was purified by flash cromatography (30% EtO Ac/70% hexane) to yield the desired ether as a yellow solid (1.3 g, 91%): 1H-NMR (CHC13) δ 1.30 (s, 9H), 2.18-2.24 (m, 2H), 3.91-4.09 (m, 4H), 5.00-5.02 (m, 1H), 6.93 (d, J=8.8 Hz, 1H), 7.52 (dd, J=2.6, 8.8 Hz, 1H), 7.81 (d, J=2.6 Hz, 1H).
Figure imgf000032_0002
Step 2.5-før*-Butyl-2-(3-tetrahydrofuranyloxy)aniline: To a solution of 4-tert-butyl-l-
(3-tetrahydrofuranyloxy)-2-nitrobenzene (1.17 g, 4.4 mmol) in EtOAc (25 mL) was added 10% Pd/C (0.1). The resulting slurry was placed under a H2 atmosphere using 3 cycles of an evacuate-quench protocol and was allowed to stir under a H2 atmosphere for 8 h. The reaction mixture was filtered through a pad of Celite® and washed with CHC13. The combined filtrate was concentrated under reduced pressure to yield of the desired aniline as a yellow solid (0.89 g, 86%): mp 79-82 °C; Η-NMR (CHC13) δ 1.30 (s, 9H), 2.16-2.20 (m, 2H), 3.78 (br s, 2H), 3.85-4.10 (m, 4H),4.90 (m, 1H), 6.65-6.82 (m, 3H).
A3. General Method for the Synthesis of Trifluoromethanesulfonylanilines
Figure imgf000033_0001
Step 1. 2-Methoxy-5-(fluorosulfonyl)acetanilide: Acetic anhydride (0.90 mL, 9.6 mmol) was added to a solution of 4-methoxymetanilyl fluoride (1.0 g, 4.8 mmol) in pyridine (15 mL). After being stirred at room temp, for 4 h, the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in CH2C12 (25 mL), washed with a saturated NaHCO3 solution (25 mL), dried (Na^O^, and concentrated under reduced pressure to give a foam which was triturated with a Et2O/hexane solution to provide the title compound (0.85 g): Η-NMR (CDC13) δ 2.13 (s, 3H), 3.98 (s, 3H), 7.36 (d, J=8.5 Hz, 1H), 7.82 (dd, J=2.6, 8.8 Hz, 1H), 8.79 (d, j=2.2 Hz, 1H), 9.62 (br s, 1H).
Figure imgf000033_0002
Step 2.2-Methoxy-5-(trifluoromethanesulfonyl)acetanilide: To an ice-cooled suspension of tris(dimethylamino)sulfonium difluorotrimethylsiliconate (0.094 g, 0.34 mmol) in THF (4 mL) was added a solution of (trifluoromethyl)trimethylsilane (1.0 mL, 6.88 mmol) in THF (3 mL) followed by a solution of 2-methoxy-5- (fluorosulfonyl)acetanilide (0.85 g, 3.44 mmol) in THF (3 mL). The reaction mixture was stirred for 2 h on an ice bath, then was allowed to warm to room temp, and was then concentrated under reduced pressure. The resulting residue was dissolved in CH2C12 (25 mL), washed with water (25 mL), dried (Na^O , and concentrated under reduced pressure. The resulting material was purified by flash chromatography (3% MeOH/97% CH2C12) to provide the title compound as a white solid (0.62 g): Η-NMR (CDC13) δ 2.13 (s, 3H) 4.00 (s, 3H), 7.42 (d, J=8.8 Hz, 1H), 7.81 (dd, J=2.6, 8.8 Hz, 1H), 8.80 (d, J=2.2 Hz, 1H), 9.64 (br s, 1H); FAB-MS m/z 298 ((M+l)+).
Figure imgf000034_0001
Step 3.2-Methoxy-5-(trifluoromethanesulfonyl)aniline: A solution of 2-methoxy-5- (trifluoromethanesulfonyl)acetanilide (0.517 g, 1.74 mmol) in EtOH (5 mL) and a 1 N HC1 solution (5 mL) was heated at the reflux temp, for 4 h and the resulting mixture was concentrated under reduced pressure. The residue was dissolved in CH2C12 (30 mL), washed with water (30 mL), dried (Na^O , and concentrated under reduced pressure to afford the title compound as a gum (0.33 g): H-NMR (CDC13) δ 3.90 (s, 3H) 5.57 (br s, 2H), 7.11-7.27 (m, 3H); FAB-MS m/z 256 ((M+l)+). This material was used in urea formation without further purification.
A4. General Method for Aryl Amine Formation via Phenol Nitration Followed by Ether Formation and Reduction
Figure imgf000034_0002
Step 1.2-Nitro-5-tørt-butylphenoI : A mixture of fuming nitric acid (3.24 g, 77.1 mmol) in glacial HO Ac (10 mL) was added dropwise to a solution of m-tert-butylphenol (11.58 g, 77.1 mmol) in glacial HOAc (15 mL) at 0 °C. The mixture was allowed to stir at 0 °C for 15 min then warmed to room temp. After 1 h the mixture was poured into ice water (100 mL) and extracted with ΕXf) (2 x 50 mL). The organic layer was washed with a saturated NaCI solution (100 mL), dried (MgSO4) and concentrated in vacuo. The residue was purified by flash chromatography (30% EtOAc/70% hexane) to give the desired phenol (4.60 g, 31%): •H-NMR (DMSO-d6) δ 1.23 (s, 9H), 7.00 (dd, J=1.84, 8.83
Hz, 1H), 7.07 (d, J=1.84 Hz, 1H), 7.82 (d, J=8.83 Hz, 1H), 10.74 (s, 1H).
Figure imgf000035_0001
Step 2. 2-Nitro-5-tert-butylanisole: A slurry of 2-nitro-5-tert-butylphenol (3.68 g, 18.9 mmol) and K2CO3 (3.26 g, 23.6 mmol) in anh DMF (100 mL) was stirred at room temp with stirring for 15 min then treated with iodomethane (2.80 g, 19.8 mmol) via syringe. The reaction was allowed to stir at room temp for 18 h., then was treated with water (100 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCI solution (50 mL), dried (MgSO4) and concentrated in vacuo to give the desired ether (3.95 g, 100%): 1H-NMR (DMSO-d6) δ 1.29 (s, 9H), 3.92 (s, 3H), 7.10 (dd, J=1.84, 8.46 Hz, 1H), 7.22 (d, J=1.84 Hz, 1H), 7.79 (d, J=8.46 Hz, 1H). This material was used in the next step without further purification.
Figure imgf000035_0002
Step 3. 4-tert-Butyl-2-methoxyaniline: A solution of 2-nitro-5-tert-butylanisole (3.95 g, 18.9 mmol) in MeOH (65 mL) and added to a flask containing 10% Pd/C in MeOH (0.400 g), then placed under a H2 atmosphere (balloon). The reaction was allowed to stir for 18 h at room temp, then filtered through a pad of Celite® and concentrated in vacuo to afford the desired product as a dark sitcky solid (3.40 g, 99%): Η-NMR (DMSO-d6) δ 1.20 (s, 9H), 3.72 (s, 3H), 4.43 (br s, 2H), 6.51 (d, J=8.09 Hz, 1H), 6.64 (dd, J=2.21, 8.09 Hz, 1H), 6.76 (d, J=2.21 Hz, 1H).
A5. General Method for Aryl Amine Formation via Carboxylic Acid Esterification Followed by Reduction
Figure imgf000035_0003
Step 1. Methyl 2-Nitro-4-(trifluoromethyl)benzoate: To a solution of 2-nitro-4- (trifluoromethyl)benzoic acid (4.0 g, 17.0 mmol) in MeOH (150 mL) at room temp was added cone H2SO4 (2.5 mL). The mixture was heated at the reflux temp for 24 h., cooled to room temp and concentrated in vacuo. The residue was diluted with water (100 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCI solution, dried (MgSO4), concentrated in vacuo. The residue was purified by flash chromatography (14% EtOAc/86% hexane) to give the desired ester as a pale yellow oil (4.17 g, 98%): Η-NMR (DMSO-d6) δ 3.87 (s, 3H), 8.09 (d, J=7.72 Hz, 1H), 8.25 (dd, J=l.l l, 8.09 Hz, 1H), 8.48 (d, J=l.l l Hz, 1H).
j0
Figure imgf000036_0001
Step 2. Methyl 2-Amino-4-(trifluoromethyl)benzoate: A solution of methyl 2-nitro-4-
(trifluoromethyl)benzoate (3.90 g, 15.7 mmol) in EtOAc (100 mL) and added to a flask containing 10% Pd/C (0.400 mg) in EtOAc (10 mL), then placed under a H2 atmosphere
(balloon). The reaction was allowed to stir for 18 h at room temp, then was filtered
15 through Celite® and concentrated in vacuo to afford the desired product as a white crystalline solid (3.20 g, 93%): Η-NMR (DMSO-d6) δ 3.79 (s, 3H), 6.75 (dd, J=1.84,
8.46 Hz, 1H), 6.96 (br s, 2H), 7.11 (d, J=0.73 Hz, 1H), 7.83 (d, J=8.09 Hz, 1H).
A6. General Method for Aryl Amine Formation via Ether Formation Followed 20 Ester Saponification, Curtius Rearrangement, and Carbamate Deprotection
Figure imgf000036_0002
Step 1. Methyl 3-Methoxy-2-naphthoate: A slurry of methyl 3-hydroxy-2-naphthoate
(10.1 g, 50.1 mmol) and K2CO3 (7.96 g, 57.6 mmol) in DMF (200 mL) was stirred at room temp for 15 min, then treated with iodomethane (3.43 mL, 55.1 mmol). The mixture
25 was allowed to stir at room temp overnight, then was treated with water (200 mL). The resulting mixture was extracted with EtOAc (2 x 200 mL). The combined organic layers were washed with a saturated NaCI solution (100 mL), dried (MgSO4), concentrated in vacuo (approximately 0.4 mmHg overnight) to give the desired ether as an amber oil (10.30 g): Η-NMR (DMSO-d6) δ 2.70 (s, 3H), 2.85 (s, 3H), 7.38 (app t, J=8.09 Hz, 1H), 7.44 (s, 1H), 7.53 (app t, J=8.09 Hz, 1H), 7.84 (d, J=8.09 Hz, 1H), 7.90 (s, 1H), 8.21 (s, 1H).
Figure imgf000037_0001
Step 2. 3-Methoxy-2-naphthoic Acid: A solution of methyl 3-methoxy-2-naphthoate (6.28 g, 29.10 mmol) and water (10 mL) in MeOH (100 mL) at room temp was treated with a 1 N NaOH solution (33.4 mL, 33.4 mmol). The mixture was heated at the reflux temp for 3 h, cooling to room temp, and made acidic with a 10% citric acid solution. The resulting solution was extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCI solution, dried (MgSO4) and concentrated in vacuo. The residue was triturated with hexanes and washed several times with hexanes to give the desired carboxyhc acid as a white crystalline solid (5.40 g, 92%): Η-NMR (DMSO- d6) δ 3.88 (s, 3H), 7.34-7.41 (m, 2H), 7.49-7.54 (m, 1H), 7.83 (d, J=8.09 Hz, 1H), 7.91 (d, J=8.09 Hz, 1H), 8.19 (s, 1H), 12.83 (br s, 1H).
Figure imgf000037_0002
Step 3. 2-(N-(Carbobenzyloxy)amino-3-methoxynaphthalene: A solution of 3- methoxy-2-naphthoic acid (3.36 g, 16.6 mmol) and Et3N (2.59 mL, 18.6 mmol) in anh toluene (70 mL) was stirred at room temp, for 15 min., then treated with a solution of diphenylphosphoryl azide (5.12 g, 18.6 mmol) in toluene (10 mL) via pipette. The resulting mixture was heated at 80 °C for 2 h. After cooling the mixture to room temp, benzyl alcohol (2.06 mL, 20 mmol) was added via syringe. The mixture was then warmed to 80 °C overnight. The resulting mixture was cooled to room temp., quenched with a 10% citric acid solution, and extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCI solution, dried (MgSO4), and concentrated in vacuo. The residue was purified by flash chromatography (14% EtOAc/86% hexane) to give the benzyl carbamate as a pale yellow oil (5.1 g, 100%): Η-NMR (DMSO-d6) δ 3.89 (s, 3H), 5.17 (s, 2H), 7.27-7.44 (m, 8H), 7.72-7.75 (m, 2H), 8.20 (s, 1H), 8.76 (s, 1H).
Figure imgf000038_0001
Step 4.2-Amino-3-methoxynaphthalene: A slurry of 2-(N-(carbobenzyloxy)amino-3- methoxynaphthalene (5.0 g, 16.3 mmol) and 10% Pd/C (0.5 g) in EtOAc (70mL) was maintained under a H2 atmospheric (balloon) at room temp, overnight. The resulting mixture was filtered through Celite® and concentrated in vacuo to give the desired amine as a pale pink powder (2.40 g, 85%): ]H-ΝMR (DMSO-d6) δ 3.86 (s, 3H), 6.86 (s, 2H), 7.04-7.16 (m, 2H), 7.43 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H); EI-MS m/z 173 (M+).
A7. General Method for the Synthesis of Aryl Amines via Metal-Mediated Cross Coupling Followed by Reduction
Figure imgf000038_0002
Step 1.5-te/*-Buryl-2-(trifluoromethanesulfonyI)oxy-l-nitrobenzene: To an ice cold solution of 4-tert-butyl-2-nitrophenol (6.14 g, 31.5 mmol) and pyridine (10 mL, 125 mmol) in CH2C12 (50 mL) was slowly added trifluoromethanesulfonic anhydride (10 g, 35.5 mmol) via syringe. The reaction mixture was stirred for 15 min, then allowed to warm up to room temp, and diluted with CH2C12 (100 mL). The resulting mixture was sequentially washed with a 1M NaOH solution (3 x 100 mL), and a 1M HC1 solution (3 x 100 mL), dried (MgSO4), and concentrated under reduced pressure to afford the title compound (8.68 g, 84%): Η-NMR (CDC13) δ 1.39 (s, 9H), 7.30-8.20 (m, 3H).
Figure imgf000039_0001
Step 2.5-tert-Butyl-2-(3-fluoropheny-)-l-nitrobenzene: A mixture of 3- fluorobenzeneboronic acid (3.80 g, 27.5 mmol), KBr (2.43 g, 20.4 mmol), K3PO4 (6.1 g, 28.8 mmol), and Pd(PPh3)4 (1.0 g, 0.9 mmol) was added to a solution of 5-tert-butyl-2- (trifluoromethanesulfonyl)oxy-l -nitrobenzene (6.0 g, 18.4 mmol) in dioxane (100 mL). The reaction mixture was heated at 80 °C for 24 h, at which time TLC indicated complete reaction. The reaction mixture was treated with a saturated NH4C1 solution (50 mL) and extracted EtOAc (3 x 100 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was purified by flash chromatography (3% EtOAc/97% hexane) to give the title compound (4.07 g, 81%): 1H-NMR (CDC13) δ 1.40 (s, 9H), 6.90-7.90 (m, 7H).
Figure imgf000039_0002
Step 3.5-te/-t-Butyl-2-(3-fluorophenyl)aniline: To a solution of 5-tert-butyl-2-(3- fluorophenyl)-l -nitrobenzene (3.5 g, 12.8 mmol) and EtOH (24 mL) in EtOAc (96 mL) was added 5% Pd C (0.350 g) and the resulting slurry was stirred under a H2 atmosphere for 24 h, at which time TLC indicated complete consumption of starting material. The reaction mixture was filtered through a pad of Celite® to give the desired product (2.2 g, 72%): H-NMR (CDC13) δ 1.35 (s, 9H), 3.80 (br s, 2H), 6.90-7.50 (m, 7H).
A8. General Method for the Synthesis of Nitroanilines
Figure imgf000040_0001
Step 1.4-(4-(2-PropoxycarbonyIamino)phenyl)methylaniline: A solution of di-tert- butyl dicarbonate (2.0 g, 9.2 mmol) and 4,4'-methylenedianiline (1.8g, 9.2 mmol) in DMF (100 mL) was heated at the reflux temp, for 2 h, then cooled to room temp. This mixture was diluted with EtOAc (200 mL) sequentially washed with a saturated NH4C1 (200 mL) and a saturated NaCI solution (100 mL), and dried (MgSO4). The residue was purified by flash chromatography (30% EtO Ac/70% hexane) to give the desired carbamate (1.3 g, 48%): H-NMR (CDC13) δ 1.51 (s, 9H), 3.82 (s, 2H), 6.60-7.20 (m, 8H).
Figure imgf000040_0002
Step 2.4-(4-(2-Propoxycarbonylamino)phenyl)methyl-l -nitrobenzene: To an ice cold solution of 4-(4-(2-propoxycarbonylamino)phenyl)methylaniline (1.05 g, 3.5 mmol) in CH2C12 (15 mL) was added w-CPBA (1.2 g, 7.0 mmol). The reaction mixture was slowly allowed to warm to room temp, and was stirred for 45 min, at which time TLC indicated disappearance of starting material. The resulting mixture was diluted with EtOAc (50 mL), sequentially washed with a 1M NaOH solution (50 mL) and a saturated NaCI solution (50 mL), and dried (MgSO4). The residue was purified by flash chromatography (20% EtOAc/80% hexane) to give the desired nitrobenzene (0.920 g): FAB-MS m/z 328 (M+).
Figure imgf000040_0003
Step 3.4-(4-Nitrophenyl)methylaniline: To a solution of 4-(4-(2- propoxycarbonylamino)phenyl)methyl-l -nitrobenzene (0.920 g, 2.8 mmol) in dioxane (10 mL) was added a cone. HC1 solution (4.0 mL) and the resulting mixture was heated at 80 °C for 1 h at which time TLC indicated disappearance of starting material. The reaction mixture was cooled to room temp. The resulting mixture was diluted with EtOAc (50 mL), then washed with a 1M NaOH solution (3 x 50 mL), and dried (MgSO4) to give the desired aniline (0.570 mg, 89%): Η-NMR (CDC13) δ 3.70 (br s, 2H), 3.97 (s, 2H), 6.65 (d, J=8.5 Hz, 2H), 6.95 (d, J=8.5 Hz, 2H), 7.32 (d, J=8.8 Hz, 2H), 8.10 (d, J=8.8 Hz, 2H).
A9. General Method for Synthesis of Aryl Anilines via Alkylation of a Nitrophenol Followed by Reduction
Figure imgf000041_0001
Step 1.4-(α-Bromoacetyl)morpholine: To an ice cold solution of morpholine (2.17 g, 24.9 mmol) and diisopropylethylamine (3.21 g, 24.9 mmol) in CH2C12 (70 mL) was added a solution of bromoacetyl bromide (5.05 g, 25 mmole) in CH2C12 (8 mL) via syringe. The resulting solution was kept at 0 °C for 45 min, then was allowed to warm to room temp. The reaction mixture was diluted with EtOAc (500 mL), sequentially washed with a 1M HC1 solution (250 mL) and a saturated NaCI solution (250 mL), and dried (MgSO4) to give the desired product (3.2 g, 62%): 1H-NMR (DMSO-d6) δ 3.40-3.50 (m, 4H), 3.50-3.60 (m, 4H), 4.11 (s, 2H).
Figure imgf000041_0002
Step 2.2-(N-Morpholinylcarbonyl)methoxy-5-te/*-butyl-l-nitrobenzene: A slurry of 4-tert-butyl-2-nitrophenol (3.9 g, 20 mmol) and K2CO3 (3.31 g, 24 mmol) in DMF (75 mL) was stirred at room temp, for 15 minutes, then a solution of 4-(α- bromoacetyl)morpholine (4.16 g, 20 mmol) in DMF (10 mL) was added. The reaction was allowed to stir at room temp, overnight, then was diluted with EtOAc (500 mL) and sequentially washed with a saturated NaCI solution (4 x 200 mL) and a 1M NaOH solution (400 mL). The residue was purified by flash chromatography (75% EtOAc/25% hexane) to give the nitrobenzene (2.13 g, 33%): H-NMR (DMSO-d6) δ 1.25 (s, 9H), 3.35-3.45 (m, 4H), 3.50-3.58 (m, 4H), 5.00 (s, 2H), 7.12 (d, J=8.8 Hz, 1H), 7.50-7.80 (m, 2H).
Figure imgf000042_0001
Step 3.2-(N-MorphoIinylcarbonyl)methoxy-5-tert-butyIani-ine: To a solution of 2-(N- mo holinylcarbonyl)methoxy-5-tert-butyl-l-nitrobenzene(2.13 g, 6.6 mmol) and EtOH (10 mL) in EtOAc (40 mL) was added 5% Pd C (0.215 g). The resulting slurry was stirred under a H2 atmosphere for 6 h, at which time TLC indicated complete consumption of starting material. The reaction mixture was filtered through a pad of Celite® to give the desired product (1.9 g, 98%): !H-ΝMR (DMSO-d6) δ 1.18 (s, 9H), 3.40-3.50 (m, 4H), 3.50-3.60 (m, 4H), 4.67 (br s, 2H), 4.69 (s, 2H), 6.40-6.70 (m, 3H).
A10. General Method for Aryl Amine Formation via Nitrophenol Alkylation Followed by Reduction
Figure imgf000042_0002
Step 1.5-tørt-Butyl-2-(2-hydroxyethoxy)-l-nitrobenzene: A solution of 4-tert-butyl-2- nitrophenol (30 g, 0.15 mol) and tetra-n-butylammonium fluoride (0.771 g, 3.0 mmol) in ethylene carbonate (10.24 mL. 0.15 mol) was heated at 150 °C for 18 h, then cooled to room temp, and separated between water (50 mL) and CH2C12 (50 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (20% EtOAc/80% hexane) to afford the desired product as a brown oil (35.1 g, 90%): Η-NMR (DMSO-d6) δ 1.25 (s, 9H), 3.66-3.69 (m, 2H), 4.10-4.14 (t, J=5.0 Hz, 2H), 4.85 (t, J=5.0 Hz, IH), 7.27 (d, J=8.8 Hz, IH), 7.60- 7.64 (m, IH), 7.75 (d, J=2.6 Hz, IH).
Figure imgf000043_0001
Step 2.5-tert-Butyl-2-(2-tert-butoxycarbonyloxy)ethoxy)-l-nitrobenzene: A solution of 5-tert-butyl-2-(2-hydroxyethoxy)-l-nitrobenzene (0.401 g, 1.68 mmol), di-tert-butyl dicarbonate (0.46 mL, 2.0 mmol) and dimethylaminopyridine (0.006 g, 0.05 mmol) in CH2C12 (15 mL) was stirred at room temp, for 30 min, at which time TLC indicated consumption of starting material. The resulting mixture was washed with water (20 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (3% MeOH/97% CH2C12) to give the desired product as a yellow oil (0.291 g, 51%): Η-NMR (DMSO-d6) δ 1.25 (s, 9H), 1.38 (s, 9H), 4.31 (br s, 4H), 7.27 (d, J=9.2 Hz, IH) 7.64 (dd, J=2.6, 8.8 Hz, IH) 7.77 (d, J=2.6 Hz, IH).
Figure imgf000043_0002
Step 3.5-tert-Butyl-2-(2-tert-butoxycarbonyloxy)ethoxy)aniline: To a mixture of 5- tert-butyl-2-(2-tert-butoxycarbonyloxy)ethoxy)-l -nitrobenzene (0.290 g, 0.86 mmol) and 5% Pd C (0.058 g) in MeOH (2 mL) was ammonium formate (0.216 g, 3.42 mmol), and the resulting mixture was stirred at room temp, for 12 h, then was filtered through a pad of Celite® with the aid of EtOH. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography (2% MeOH/98% CH2C12) tp give the desired product as a pale yellow oil (0.232 g, 87%): TLC (20% EtO Ac/80% hexane) R^ O.63; Η-NMR (DMSO-d6) δ 1.17 (s, 9H), 1.39 (s, 9H), 4.03-4.06 (m, 2H), 4.30-4.31 (m, 2H), 4.54 (br s, 2H), 6.47 (dd, J=2.2, 8.1 Hz, IH) 6.64-6.67 (m, 2H).
All. General Method for Substituted Aniline Formation via Hydrogenation of a Nitroarene
Figure imgf000044_0001
4-(4-PyridinyImethyl)aniline: To a solution of 4-(4-nitrobenzyl)pyridine (7.0 g, 32.68 mmol) in EtOH (200 mL) was added 10% Pd/C (0.7 g) and the resulting slurry was shaken under a H2 atmosphere (50 psi) using a Parr shaker. After 1 h, TLC and Η-NMR of an aliquot indicated complete reaction. The mixture was filtered through a short pad of Celite®. The filtrate was concentrated in vacuo to afford a white solid (5.4 g, 90%): Η- NMR (DMSO-d6) δ 3.74 (s, 2H), 4.91 (br s, 2H), 6.48 (d, J=8.46 Hz, 2H), 6.86 (d, J=8.09 Hz, 2H), 7.16 (d, J=5.88 Hz, 2H), 8.40 (d, J=5.88 Hz, 2H); EI-MS m/z 184 (M+). This material was used in urea formation reactions without further purification.
A12. General Method for Substituted Aniline Formation via Dissolving Metal Reduction of a Nitroarene
Figure imgf000044_0002
4-(2-Pyridinylthio)aniline: To a solution of 4-(2-pyridinylthio)-l -nitrobenzene (Menai ST 3355 A; 0.220 g, 0.95 mmol) and H2O (0.5 mL) in AcOH ( 5 mL) was added iron powder (0.317 g, 5.68 mmol) and the resulting slurry stirred for 16 h at room temp. The reaction mixture was diluted with EtOAc (75 mL) and H2O (50 mL), basified to pH 10 by adding solid K2CO3 in portions (Caution: foaming). The organic layer was washed with a saturated NaCI solution, dried (MgSO4), concentrated in vacuo. The residual solid was purified by MPLC (30% EtOAc/70% hexane) to give the desired product as a thick oil (0.135 g, 70%): TLC (30% EtOAc/70% hexanes) 1^0.20.
A13a. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000044_0003
Step 1. l-Methoxy-4-(4-nitrophenoxy)benzene: To a suspension of NaH (95%, 1.50 g, 59 mmol) in DMF (100 mL) at room temp, was added dropwise a solution of 4- methoxyphenol (7.39 g, 59 mmol) in DMF (50 mL). The reaction was stirred 1 h, then a solution of l-fluoro-4-nitrobenzene (7.0 g, 49 mmol) in DMF (50 mL) was added dropwise to form a dark green solution. The reaction was heated at 95 °C overnight, then cooled to room temp., quenched with H2O, and concentrated in vacuo. The residue was partitioned between EtOAc (200 mL) and H2O (200 mL) . The organic layer was sequentially washed with H2O (2 x 200 mL), a saturated NaHCO3 solution (200 mL), and a saturated NaCI solution (200 mL), dried (NajSO,,), and concentrated in vacuo. The residue was triturated (Et2O/hexane) to afford l-methoxy-4-(4-nitrophenoxy)benzene (12.2 g, 100%): 'H-NMR (CDC13) δ 3.83 (s, 3H), 6.93-7.04 (m, 6H), 8.18 (d, J=9.2 Hz, 2H); EI-MS m/z 245 (M+).
Figure imgf000045_0001
Step 2. 4-(4-Methoxyphenoxy)aniline: To a solution of l-methoxy-4-(4- nitrophenoxy)benzene (12.0 g, 49 mmol) in EtOAc (250 mL) was added 5% Pt/C (1.5 g) and the resulting slurry was shaken under a H2 atmosphere (50 psi) for 18 h. The reaction mixture was filtered through a pad of Celite® with the aid of EtOAc and concentrated in vacuo to give an oil which slowly solidified (10.6 g, 100%): 1H-NMR (CDC13) δ 3.54 (br s, 2H), 3.78 (s, 3H), 6.65 (d, J=8.8 Hz, 2H), 6.79-6.92 (m, 6H); EI-MS m/z 215 (M+).
A13b. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000045_0002
Step 1. 3-(Trifluoromethyl)-4-(4-pyridinylthio)nitrobenzene: A solution of 4- mercaptopyridine (2.8 g, 24 mmoles), 2-fluoro-5-nitrobenzotrifluoride (5 g, 23.5 mmoles), and potassium carbonate (6.1 g, 44.3 mmoles) in anhydrous DMF (80 mL) was stirred at room temperature and under argon overnight. TLC showed complete reaction. The mixture was diluted with Et~O (100 mL) and water (100 mL) and the aqueous layer was back-extracted with Et2O (2 x 100 mL). The organic layers were washed with a saturated NaCI solution (100 mL), dried (MgSO4), and concentrated under reduced pressure. The solid residue was triturated with E^O to afford the desired product as a tan solid (3.8 g, 54%): TLC (30% EtOAc/70% hexane) R/0.06; 'H-NMR (DMSO-d6) δ 7.33 (dd, J=1.2, 4.2 Hz, 2H), 7.78 (d, J=8.7 Hz, IH), 8.46 (dd, J=2.4, 8.7Hz, IH), 8.54-8.56 (m, 3H).
Figure imgf000046_0001
Step 2. 3-(Trifluoromethyl)-4-(4-pyridinylthio)aniline: A slurry of 3 -trifluoromethyl- 4-(4-pyridinylthio)nitrobenzene (3.8 g, 12.7 mmol), iron powder (4.0 g, 71.6 mmol), acetic acid (100 mL), and water (1 mL) were stirred at room temp, for 4 h. The mixture was diluted with EtjO (100 mL) and water (100 mL). The aqueous phase was adjusted to pH 4 with a 4 N NaOH solution. The combined organic layers were washed with a saturated NaCI solution (100 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was filtered through a pad of silica (gradient from 50% EtOAc/50% hexane to 60% EtOAc/40% hexane) to afford the desired product (3.3 g): TLC (50% EtOAc/50% hexane) R^ O.10; 'H-NMR (DMSO-d6) δ 6.21 (s, 2H), 6.84-6.87 (m, 3H), 7.10 (d, J=2.4 Hz, IH), 7.39 (d, J=8.4 Hz, IH), 8.29 (d, J=6.3 Hz, 2H).
A13c. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000046_0002
Step 1. 4-(2-(4-Phenyl)thiazolyl)thio-l-nitrobenzene: A solution of 2-mercapto-4- phenylthiazole (4.0 g, 20.7 mmoles) in DMF (40 mL) was treated with l-fluoro-4- nitrobenzene (2.3 mL, 21.7 mmoles) followed by K2CO3 (3.18 g, 23 mmol), and the mixture was heated at approximately 65 °C overnight. The reaction mixture was then diluted with EtOAc (100 mL), sequentially washed with water (100 mL) and a saturated NaCI solution (100 mL), dried (MgSO4) and concentrated under reduced pressure. The solid residue was triturated with a Et2O/hexane solution to afford the desired product (6.1 g): TLC (25% EtOAc/75% hexane) I - 0.49; Η-NMR (CDC13) δ 7.35-7.47 (m, 3H), 7.58- 7.63 (m, 3H), 7.90 (d, J=6.9 Hz, 2H), 8.19 (d, J=9.0 Hz, 2H).
Figure imgf000047_0001
Step 2. 4-(2-(4-Phenyl)thiazolyl)thioaniline: 4-(2-(4-Phenyl)thiazolyl)thio-l-nitro- benzene was reduced in a manner analagous to that used in the preparation of 3- (trifluoromethyl)-4-(4-pyridinylthio)aniline: TLC (25% EtOAc/75% hexane) R,- 0.18; Η- NMR (CDC13) δ 3.89 (br s, 2H), 6.72-6.77 (m, 2H), 7.26-7.53 (m, 6H), 7.85-7.89 (m, 2H).
A13d. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000047_0002
Step 1. 4-(6-Methyl-3-pyridinyloxy)-l-nitrobenzene: To a solution of 5-hydroxy-2- methylpyridine (5.0 g, 45.8 mmol) and l-fluoro-4-nitrobenzene (6.5 g, 45.8 mmol) in anh DMF (50 mL) was added K2CO3 (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp, with stirring for 18 h and then allowed to cool to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (Na^O,), and concentrated in vacuo to afford the desired product (8.7 g, 83%). The this material was carried to the next step without further purification.
Step 2. 4-(6-Methyl-3-py „ridiynyloxy)an~iloine:. A solution of 4-(6-methyl-3- pyridinyloxy)-l -nitrobenzene (4.0 g, 17.3 mmol) in EtOAc (150 mL) was added to 10% Pd/C (0.500 g, 0.47 mmol) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated in vacuo to afford the desired product as a tan solid (3.2 g, 92%): EI-MS m/z 200 (M+).
A13e. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000048_0001
Step 1. 4-(3,4-Dimethoxyphenoxy)-l-nitrobenzene: To a solution of 3,4- dimethoxyphenol (1.0 g, 6.4 mmol) and l-fluoro-4-nitrobenzene (700 μL, 6.4 mmol) in anh DMF (20 mL) was added K2CO3 (1.8 g, 12.9 mmol) in one portion. The mixture was heated at the reflux temp with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organics were sequentially washed with water (3 x 50 mL) and a saturated NaCI solution (2 x 50 mL), dried (Na^O , and concentrated in vacuo to afford the desired product (0.8 g, 54%). The crude product was carried to the next step without further purification.
Figure imgf000048_0002
Step 2. 4-(3,4-Dimethoxyphenoxy)aniline: A solution of 4-(3,4-dimethoxy-phenoxy)- 1 -nitrobenzene (0.8 g, 3.2 mmol) in EtOAc (50 mL) was added to 10% Pd C (0.100 g) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated in vacuo to afford the desired product as a white solid (0.6 g, 75%): EI-MS m/z 245 (M+).
A13f. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000049_0001
Step 1. 3-(3-Pyridinyloxy)-l-nitrobenzene: To a solution of 3-hydroxypyridine (2.8 g, 29.0 mmol), l-bromo-3-nitrobenzene (5.9 g, 29.0 mmol) and copper(I) bromide (5.0 g, 34.8 mmol) in anh DMF (50 mL) was added K2CO3 (8.0 g, 58.1 mmol) in one portion. The resulting mixture was heated at the reflux temp, with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (Na^O , and concentrated in vacuo. The resulting oil was purified by flash chromatography (30% EtOAc/70% hexane) to afford the desired product (2.0 g, 32 %). This material was used in the next step without further purification.
Figure imgf000049_0002
Step 2. 3-(3-Pyridinyloxy)aniline: A solution of 3-(3-pyridinyloxy)-l -nitrobenzene (2.0 g, 9.2 mmol) in EtOAc (100 mL) was added to 10% Pd/C (0.200 g) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated in vacuo to afford the desired product as a red oil (1.6 g, 94%): EI-MS m/z 186 (M ).
A13g. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000050_0001
Step 1. 3-(5-Methyl-3-pyridinyloxy)-l-nitrobenzene: To a solution of 3-hydroxy-5- methylpyridine (5.0 g, 45.8 mmol), l-bromo-3 -nitrobenzene (12.0 g, 59.6 mmol) and copper(I) iodide (10.0 g, 73.3 mmol) in anh DMF (50 mL) was added K2CO3 (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp, with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (NajSO4), and concentrated in vacuo . The resulting oil was purified by flash chromatography (30% EtOAc/70% hexane) to afford the desired product (1.2 g, 13%).
Figure imgf000050_0002
Step 2. 3-(5-Methyl-3-pyridinyloxy)-l-nitrobenzene: A solution of 3-(5-methyl-3- pyridinyloxy)-l -nitrobenzene (1.2 g, 5.2 mmol) in EtOAc (50 mL) was added to 10% Pd/C (0.100 g) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite® and concentrated in vacuo to afford the desired product as a red oil (0.9 g, 86%): CI-MS m/z 201 ((M+H)+).
A13h. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by
Reduction
Figure imgf000050_0003
Step 1. 5-Nitro-2-(4-methylphenoxy)pyridine: To a solution of 2-chloro-5- nitropyridine (6.34 g, 40 mmol) in DMF (200 mL) were added of 4-methylphenol (5.4 g, 50 mmol, 1.25 equiv) and K2CO3 (8.28 g, 60 mmol, 1.5 equiv). The mixture was stirred overnight at room temp. The resulting mixture was treated with water (600 mL) to generate a precipitate. This mixture was stirred for 1 h, and the solids were separated and sequentially washed with a 1 N NaOH solution (25 mL), water (25 mL) and pet ether (25 mL) to give the desired product (7.05 g, 76%): mp 80-82 °C; TLC (30% EtOAc/70% pet ether) R, 0.79; 1H-NMR (DMSO-d6) δ 2.31 (s, 3H), 7.08 (d, J=8.46 Hz, 2H), 7.19 (d, J=9.20 Hz, IH), 7.24 (d, J=8.09 Hz, 2H), 8.58 (dd, J=2.94, 8.82 Hz, IH), 8.99 (d, J=2.95 Hz, IH); FAB-MS m/z (rel abundance) 231 ((M+H)+), 100%).
Figure imgf000051_0001
Step 2. 5-Amino-2-(4-methylphenoxy)pyridine Dihydrochloride: A solution 5-nitro- 2-(4-methylphenoxy)pyridine (6.94 g, 30 mmol, 1 eq) and EtOH (10 mL) in EtOAc (190 mL) was purged with argon then treated with 10% Pd C (0.60 g). The reaction mixture was then placed under a H2 atmosphere and was vigorously stirred for 2.5 h. The reaction mixture was filtered through a pad of Celite®. A solution of HC1 in Et2O was added to the filtrate was added dropwise. The resulting precipitate was separated and washed with EtOAc to give the desired product (7.56 g, 92%): mp 208-210 °C (dec); TLC (50% EtOAc/50% pet ether) R, 0.42; 'H-NMR (DMSO-d6) δ 2.25 (s, 3H), 6.98 (d, J=8.45 Hz, 2H), 7.04 (d, J=8.82 Hz, IH), 7.19 (d, J=8.09 Hz, 2H), 8.46 (dd, J=2.57, 8.46 Hz, IH), 8.63 (d, J=2.57 Hz, IH); EI-MS m/z (rel abundance) (M\ 100%).
A13i. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000051_0002
Step 1. 4-(3-Thienylthio)-l-nitrobenzene: To a solution of 4-nitrothiophenol (80%pure; 1.2 g, 6.1 mmol), 3-bromothiophene (1.0 g, 6.1 mmol) and copper(II) oxide (0.5 g, 3.7 mmol) in anhydrous DMF (20 mL) was added KOH (0.3 g, 6.1 mmol), and the resulting mixture was heated at 130 °C with stirring for 42 h and then allowed to cool to room temp. The reaction mixture was then poured into a mixture of ice and a 6N HC1 solution (200 mL) and the resulting aqueous mixture was extracted with EtOAc (3 x 100 mL). The combined organic layers were sequentially washed with a 1M NaOH solution (2 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (MgSO4), and concentrated in vacuo . The residual oil was purified by MPLC (silica gel; gradient from 10% EtO Ac/90% hexane to 5% EtO Ac/95% hexane) to afford of the desired product (0.5 g, 34%). GC-MS m/z 237 (M+).
Figure imgf000052_0001
Step 2. 4-(3-Thienylthio)aniline: 4-(3-Thienylthio)-l -nitrobenzene was reduced to the aniline in a manner analogous to that described in Method Bl.
A13j. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction
Figure imgf000052_0002
4-(5-Pyrimininyloxy)aniline: 4-Aminophenol (1.0 g, 9.2 mmol) was dissolved in DMF (20 mL) then 5-bromopyrimidine (1.46 g, 9.2 mmol) and K2CO3 (1.9 g, 13.7 mmol) were added. The mixture was heated to 100 °C for 18 h and at 130 °C for 48 h at which GC-MS analysis indicated some remaining starting material. The reaction mixture was cooled to room temp, and diluted with water (50 mL). The resulting solution was extracted with EtOAc (100 mL). The organic layer was washed with a saturated NaCI solution (2 x 50 mL), dried (MgSO4), and concentrated in vacuo. The residular solids were purified by MPLC (50% EtOAc/50% hexanes) to give the desired amine (0.650 g, 38%).
A13k. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction Br—/ - OMe
Step 1. 5-Bromo-2-methoxypyridine: A mixture of 2,5-dibromopyridine (5.5 g, 23.2 mmol) and NaOMe (3.76g, 69.6 mmol) in MeOH (60 mL) was heated at 70 °C in a sealed reaction vessel for 42 h, then allowed to cool to room temp. The reaction mixture was treated with water (50 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were dried (Na^O,,) and concentrated under reduced pressure to give a pale yellow, volatile oil (4.1g, 95% yield): TLC (10% EtOAc / 90% hexane) R^O.57.
Figure imgf000053_0001
Step 2. 5-Hydroxy-2-methoxypyridine: To a stirred solution of 5-bromo-2- methoxypyridine (8.9 g, 47.9 mmol) in THF (175 mL) at -78 °C was added an n- butyllithium solution (2.5 M in hexane; 28.7 mL, 71.8 mmol) dropwise and the resulting mixture was allowed to stir at -78 °C for 45 min. Trimethyl borate (7.06 mL, 62.2 mmol) was added via syringe and the resulting mixture was stirred for an additional 2 h. The bright orange reaction mixture was warmed to 0 °C and was treated with a mixture of a 3 N NaOH solution (25 mL, 71.77 mmol) and a hydrogen peroxide solution (30%; approx.
50 mL). The resulting yellow and slightly turbid reaction mixture was warmed to room temp, for 30 min and then heated to the reflux temp, for 1 h. The reaction mixture was then allowed to cool to room temp. The aqueous layer was neutralized with a IN HC1 solution then extracted with E^O (2 x 100 mL). The combined organic layers were dried (Na^O and concentrated under reduced pressure to give a viscous yellow oil (3.5g,
Figure imgf000053_0002
Step 3. 4-(5-(2-Methoxy)pyridyl)oxy-l-nitrobenzene: To a stirred slurry of NaH (97%, 1.0 g, 42 mmol) in anh DMF (100 mL) was added a solution of 5-hydroxy-2- methoxypyridine (3.5g, 28 mmol) in DMF (100 mL). The resulting mixture was allowed to stir at room temp, for 1 h, 4-fluoronitrobenzene (3 mL, 28 mmol) was added via syringe. The reaction mnixture was heated to 95 °C overnight, then treated with water (25 mL) and extracted with EtOAc (2 x 75 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure. The residual brown oil was crystalized EtOAc/hexane) to afford yellow crystals (5.23 g, 75%).
Figure imgf000054_0001
Step 4. 4-(5-(2-Methoxy)pyridyl)oxyaniline: 4-(5-(2-Methoxy)pyridyl)oxy-l- nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B3d, Step2.
A14a. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine
Figure imgf000054_0002
3-(4-Pyridinylthio)aniline: To a solution of 3-aminothiophenol (3.8 mL, 34 mmoles) in anh DMF (90mL) was added 4-chloropyridine hydrochloride (5.4 g, 35.6 mmoles) followed by K2CO3 (16.7 g, 121 mmoles). The reaction mixture was stirred at room temp, for 1.5 h, then diluted with EtOAc (100 mL) and water (lOOmL). The aqueous layer was back-extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCI solution (100 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was filtered through a pad of silica (gradient from 50% EtOAc/50% hexane to 70% EtOAc/30% hexane) and the resulting material was triturated with a Et2O/hexane solution to afford the desired product (4.6 g, 66%): TLC (100 % ethyl acetate) R^ O.29; Η-NMR (DMSO-d6) δ 5.41 (s, 2H), 6.64-6.74 (m, 3H), 7.01 (d, J=4.8, 2H), 7.14 (t, J=7.8 Hz, IH), 8.32 (d, J=4.8, 2H).
A14b. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine
Figure imgf000054_0003
4-(2-Methyl-4-pyridinyloxy)aniline: To a solution of 4-aminophenol (3.6 g, 32.8 mmol) and 4-chloropicoline (5.0 g, 39.3 mmol) in anh DMPU (50 mL) was added potassium tert-butoxide (7.4 g, 65.6 mmol) in one portion. The reaction mixture was heated at 100 °C with stirring for 18 h, then was allowed to cool to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined extracts were sequentially washed with water (3 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (N-^SO , and concentrated in vacuo. The resulting oil was purified by flash chromatography (50 % EtO Ac/50% hexane) to afford the desired product as a yellow oil (0.7 g, 9%): CI-MS m/z 201 ((M+H)+).
A14c. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine
Figure imgf000055_0001
Step 1. Methyl(4-nitrophenyl)-4-pyridylamine: To a suspension of N-methyl-4- nitroaniline (2.0 g, 13.2 mmol) and K2CO3 (7.2 g, 52.2 mmol) in DMPU (30mL) was added 4-chloropyridine hydrochloride (2.36 g, 15.77 mmol). The reaction mixture was heated at 90 °C for 20 h, then cooled to room temperature. The resulting mixture was diluted with water (100 mL) and extracted with EtOAc (100 mL). The organic layer was washed with water (100 mL), dried (Νa^O,,) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, gradient from 80% EtOAc /20% hexanes to 100% EtOAc) to afford methyl(4-nitrophenyl)-4-pyridylamine (0.42 g)
Figure imgf000055_0002
Step 2. Methyl(4-aminophenyl)-4-pyridyIamine: Methyl(4-nitrophenyl)-4- pyridylamine was reduced in a manner analogous to that described in Method Bl.
A15. General Method of Substituted Aniline Synthesis via Phenol Alkylation Followed by Reduction of a Nitroarene
Figure imgf000056_0001
Step 1. 4-(4-Butoxyphenyl)thio-l-nitrobenzene: To a solution of 4-(4-nitrophenyl- thio)phenol (1.50 g, 6.07 mmol) in anh DMF (75 ml) at 0 °C was added NaH (60% in mineral oil, 0.267 g, 6.67 mmol). The brown suspension was stirred at 0 °C until gas evolution stopped (15 min), then a solution of iodobutane (1.12 g, .690 ml, 6.07 mmol) in anh DMF (20 mL) was added dropwise over 15 min at 0 °C. The reaction was stirred at room temp, for 18 h at which time TLC indicated the presence of unreacted phenol, and additional iodobutane (56 mg, 0.035 mL, 0.303 mmol, 0.05 equiv) and NaH (13 mg, 0.334 mmol) were added. The reaction was stirred an additional 6 h room temp., then was quenched by the addition of water (400 mL). The resulting mixture was extracted with Et2O (2 x 500 mL). The combibed organics were washed with water (2 x 400 mL), dried (MgSO4), and concentrated under reduced pressure to give a clear yellow oil, which was purified by silica gel chromatography (gradient from 20% EtOAc/80% hexane to 50% EtOAc/50% hexane) to give the product as a yellow solid (1.24 g, 67%): TLC (20% EtOAc/80% hexane) R^ 0.75; Η-NMR (DMSO-d6) δ 0.92 (t, J= 7.5 Hz, 3H), 1.42 (app hex, J=7.5 Hz, 2H), 1.70 (m, 2H), 4.01 (t, J- 6.6 Hz, 2H), 7.08 (d, J=8.7 Hz, 2H), 7.17 (d, J=9 Hz, 2H), 7.51 (d, J= 8.7 Hz, 2H), 8.09 (d, J= 9 Hz, 2H).
Figure imgf000056_0002
Step 2. 4-(4-Butoxyphenyl)thioaniline: 4-(4-Butoxyphenyl)thio-l -nitrobenzene was reduced to the aniline in a manner analagous to that used in the preparation of 3- (trifluoromethyl)-4-(4-pyridinylthio)aniline (Method B3b, Step 2): TLC (33% EtO Ac/77% hexane) R^O.38.
A16. General Method for Synthesis of Substituted Anilines by the Acylation of Diaminoarenes
Figure imgf000056_0003
4-(4-tert-Butoxycarbamoylbenzyl)aniIine: To a solution of 4,4'-methylenedianiline (3.00 g, 15.1 mmol) in anh THF (50 mL) at room temp was added a solution of di-tert- butyl dicarbonate (3.30 g, 15.1 mmol) in anh THF (10 mL). The reaction mixture was heated at the reflux temp, for 3 h, at which time TLC indicated the presence of unreacted methylenedianiline. Additional di-tert-butyl dicarbonate (0.664 g, 3.03 mmol, 0.02 equiv) was added and the reaction stirred at the reflux temp, for 16 h. The resulting mixture was diluted with Et,O (200 mL), sequentially washed with a saturated NaHCO3 solution (100 ml), water (100 mL) and a saturated NaCI solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The resulting white solid was purified by silica gel chromatography (gradient from 33% EtO Ac/67% hexane to 50% EtOAc/50% hexane) to afford the desired product as a white solid ( 2.09 g, 46%): TLC (50% EtOAc/50% hexane) R^ O.45; 1H-NMR (DMSO-d6) δ 1.43 (s, 9H), 3.63 (s, 2H), 4.85 (br s, 2H), 6.44 (d, J=8.4 Hz, 2H), 6.80 (d, J=8.1 Hz, 2H), 7.00 (d, J=8.4 Hz, 2H), 7.28 (d, J=8.1 Hz, 2H), 9.18 (br s, IH); FAB-MS m/z 298 (M+).
A17. General Method for the Synthesis of Aryl Amines via Electrophilic Nitration Followed by Reduction
Figure imgf000057_0001
Step 1. 3-(4-Nitrobenzyl)pyridine: A solution of 3-benzylpyridine (4.0 g, 23.6 mmol) and 70% nitric acid (30 mL) was heated overnight at 50 °C. The resulting mixture was allowed to cool to room temp, then poured into ice water (350 mL). The aqueous mixture then made basic with a IN NaOH solution, then extracted with E^O (4 x 100 mL). The combined extracts were sequentially washed with water (3 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (NajSO , and concentrated vacuo. The residual oil was purified by MPLC (silica gel; 50 % EtOAc/50% hexane) then recrystallization (EtOAc/hexane) to afford the desired product (1.0 g, 22%): GC-MS m/z 214 (M+).
Figure imgf000057_0002
Step 2. 3-(4-Pyridinyl)methyIaniline: 3-(4-Nitrobenzyl)pyridine was reduced to the aniline in a manner analogous to that described in Method Bl .
A18. General Method for Synthesis of Aryl Amines via Substitution with Nitrobenzyl Halides Followed by Reduction
Figure imgf000058_0001
Step 1. 4-(l-Imidazolylmethyl)-l-nitrobenzene: To a solution of imidazole (0.5 g, 7.3 mmol) and 4-nitrobenzyl bromide (1.6 g, 7.3 mmol) in anh acetonitrile (30 mL) was added K2CO3 (1.0 g, 7.3 mmol). The resulting mixture was stirred at rooom temp, for 18 h and then poured into water (200 mL) and the resulting aqueous solution wasextracted with EtOAc (3 x 50 mL). The combined organic layers were sequentially washed with water (3 x 50 mL) and a saturated NaCI solution (2 x 50 mL), dried (MgSO4), and concentrated in vacuo. The residual oil was purified by MPLC (silica gel; 25% EtOAc/75% hexane) to afford the desired product (1.0 g, 91%): EI-MS m/z 203 (M+).
Figure imgf000058_0002
Step 2. 4-(l-Imidazolylmethyl)aniline: 4-(l-Imidazolylmethyl)-l -nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B2.
A19. Formation of Substituted Hydroxymethylanilines by Oxidation of Nitrobenzyl Compounds Followed by Reduction
Figure imgf000058_0003
Step 1. 4-(l-Hydroxy-l-(4-pyridyl)methyl-l-nitrobenzene: To a stirred solution of 3- (4-nitrobenzyl)pyridine (6.0 g, 28 mmol) in CH2C12 (90 mL) was added m-CPBA (5.80 g, 33.6 mmol) at 10 °C, and the mixture was stirred at room temp, overnight. The reaction mixture was successively washed with a 10% NaHSO3 solution (50 mL), a saturated K2CO3 solution (50 mL) and a saturated NaCI solution (50 mL), dried (MgSO4) and concentrated under reduced pressure. The resulting yellow solid (2.68 g) was dissolved in anh acetic anhydride (30 mL) and heated at the reflux temperature overnight. The mixture was concentrated under reduced pressure. The residue was dissolved in MeOH (25 mL) and treated with a 20% aqueous NH3 solution (30 mL). The mixture was stirred at room temp, for 1 h, then was concentrated under reduced pressure. The residue was poured into a mixture of water (50 mL) and CH2C12 (50 mL). The organic layer was dried (MgSO4), concentrated under reduced pressure, and purified by column chromatography (80% EtOAc/ 20% hexane) to afford the desired product as a white solid. (0.53 g, 8%): mp 110-118 °C; TLC (80% EtO Ac/20% hexane) R, 0.12; FAB-MS m/z 367 ((M+H)+, 100%).
Figure imgf000059_0001
Step 2. 4-(l-Hydroxy-l-(4-pyridyl)methylaniline: 4-(l -Hydroxy- l-(4-pyridy l)-methyl- 1 -nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B3d, Step2.
A20. Formation of 2-(N-methyIcarbamoyl)pyridines via the Menisci reaction
Figure imgf000059_0002
Step 1. 2-(N-methylcarbamoyl)-4-chIoropyridine. (Caution: this is a highly hazardous, potentially explosive reaction.) To a solution of 4-chloropyridine (10.0 g) in N-methylformamide (250 mL) under argon at ambient temp was added cone. H2SO4 (3.55 mL) (exotherm). To this was added H2O2 (17 mL, 30% wt in H2O) followed by FeSO47H2O (0.55 g) to produce an exotherm. The reaction was stirred in the dark at ambient temp for lh then was heated slowly over 4 h at 45 °C. When bubbling subsided,the reaction was heated at 60 °C for 16 h. The opaque brown solution was diluted with H2O (700 mL) followed by a 10% NaOH solution (250 mL). The aqueous mixture was extracted with EtOAc (3 x 500 mL) and the organic layers were washed separately with a saturated NaCI solution (3 x 150 mlL. The combined organics were dried (MgSO4) and filtered through a pad of silica gel eluting with EtOAc. The solvent was removed in vacuo and the brown residue was purified by silica gel chromatography (gradient from 50% EtOAc / 50% hexane to 80% EtOAc / 20% hexane). The resulting yellow oil crystallized at 0 °C over 72 h to give 2-(N-methylcarbamoyl)-4-chloropyridine in yield (0.61 g, 5.3%): TLC (50% EtOAc/50% hexane) 0.50; MS; Η ΝMR (CDC13): d 8.44 (d, 1 H, J = 5.1 Hz, CHΝ), 8.21 (s, IH, CHCCO), 7.96 (b s, IH, ΝH), 7.43 (dd, IH, J = 2.4, 5.4 Hz, C1CHCΝ), 3.04 (d, 3H, J = 5.1 Hz, methyl); CI-MS m/z 171 ((M+H)+).
A21. Generalmethod for the Synthesis of ω-Sulfonylphenyl Anilines
Figure imgf000060_0001
Step 1. 4-(4-Methylsulfonylphenoxy)-l-nitrobenzene: To a solution of 4-(4- methylthiophenoxy)-l-ntirobenzene (2 g, 7.66 mmol) in CH2C12 (75 mL) at 0 °C was slowly added wCPBA (57-86%, 4 g), and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was treated with a 1 N NaOH solution (25 mL). The organic layer was sequentially washed with a IN NaOH solution (25 mL), water (25 mL) and a saturated NaCI solution (25 mL), dried (MgSO4), and concentrated under reduced pressure to give 4-(4-methylsulfonylphenoxy)-l -nitrobenzene as a solid (2.1 g).
Step 2. 4-(4-MethylsuIfonylphenoxy)-l-aniline: 4-(4-Methylsulfonylphenoxy)-l- nitrobenzene was reduced to the aniline in a manner anaologous to that described in Method B3d, step 2.
A22. General Method for Synthesis of ω-Alkoxy-ω-carboxyphenyl Anilines
Figure imgf000060_0002
Step 1. 4-(3-MethoxycarbonyI-4-methoxyphenoxy)-l-nitrobenzene: To a solution of -(3 -carboxy-4-hydroxyphenoxy)-l -nitrobenzene (prepared in a manner analogous to that described in Method B3a, step 1, 12 mmol) in acetone (50 mL) was added K2CO3 (5 g) and dimethyl sulfate (3.5 mL). The resulting mixture was heated aaaaaat the reflux tempoerature overnight, then cooled to room temperature and filtered through a pad of Celite®. The resulting solution was concentrrated under reduced pressure, absorbed onto silica gel, and purified by column chromatography (50% EtOAc / 50% hexane) to give 4- (3-methoxycarbonyl-4-methoxyphenoxy)-l -nitrobenzene as a yellow powder (3 g): mp 115 118 °C.
Figure imgf000061_0001
Step 2. 4-(3-Carboxy-4-methoxyphenoxy)-l-nitrobenzene: A mixture of 4-(3- methoxycarbonyl-4-methoxyphenoxy)-l -nitrobenzene (1.2 g), KOH (0.33 g),and water (5 mL) in MeOH (45 mL) was stirred at room temperature overnight and then heated at the reflux temperature for 4 h. The resulting mixture was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in water (50 mL), and the aqueous mixture was made acidic with a IN HC1 solution. The resulting mixture was extracted with EtOAc (50 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure to give 4-(3-carboxy-4-methoxyphenoxy)-l -nitrobenzene (1.04 g)-
B. General Methods of Urea Formation
Bla. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate
Figure imgf000061_0002
N-(5-tert-Butyl-2-(3-tetrahydrofuranyIoxy)phenyl)-N'-(4-methylphenyI)urea: To a solution of 5-tert-butyl-2-(3-tetrahydrofuranyloxy)aniline (0.078 g, 0.33 mmol) in toluene (2.0 mL) was added j^-tolyl isocyanate (0.048 g, 0.36 mmol) and the resulting mixture was allowed to stir at room temp, for 8 h to produce a precipitate. The reaction mixture was filtered and the residue was sequentially washed with toluene and hexanes to give the desired urea as a white solid (0.091 g, 75%): mp 229-231 °C; •H-NMR (DMSO-d6) δ 1.30 (s, 9H), 1.99-2.03 (m, IH), 2.19-2.23 (m, 4H), 3.69-3.76 (m, IH), 3.86-3.93 (m, 3H), 4.98-5.01 (m, IH), 6.81-6.90 (m, 2H), 7.06 (d, J=8.09 Hz, 2H, 7.32 (d, J=8.09 Hz, 2H), 7.84 (s, IH), 8.22 (d, J=2.21 Hz, IH), 9.26 (s, IH).
Bib. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate
Figure imgf000062_0001
N-(2-Methoxy-5-(trifluoromethanesulfonyl)phenyI)-N'(4-methylphenyI)urea: p-
Tolyl isocyanate (0.19 mL, 1.55 mmol) was added to a solution of 2-methoxy-5- (trifluoromethanesulfonyl)aniline (0.330 g, 1.29 mmol) in EtOAc (5 mL), and the reaction mixture was stirred at room temp, for 18 h. The resulting precipitate was collected by filtration and washed with E^O to give a white solid (0.28 g). This material was then purified by HPLC (C-18 column, 50% CH3CN/50% H2O) and the resulting solids were triturated with Et2O to provide the title compound (0.198 g): ]H-NMR (CDC13) δ 7.08 (d, J=8.5 Hz, 2H), 7.33 (d, J=8.5 Hz, 2H), 7.40 (d, J=8.8 Hz, IH), 7.71 (dd, J=2.6, 8.8 Hz, IH), 8.66 (s, IH), 8.90 (d, J=2.6 Hz, IH), 9.36 (s, IH); FAB-MS m/z 389 ((M+l)+).
Blc. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate
Figure imgf000063_0001
N-(2-Methoxy-5-(difluoromethanesulfonyl)phenyl)-N,-(4-methyIphenyl)urea: p-
Tolyl isocyanate (0.058 mL, 0.46 mmol) was added to a solution of 2-methoxy-5- (difluoromethanesulfonyl)aniline (0.100 g, 0.42 mmol) in EtOAc (0.5 mL) and the resulting mixture was stirred at room temp, for 3 d. The resulting precipitate was filtered and washed with Et2O to provide the title compound as a white solid (0.092 g): 1H-NMR (CDC13) δ 2.22 (s, 3H) 4.01 (s, 3H), 7.02-7.36 (m, 6H), 7.54 (dd, J=2.4, 8.6 Hz, IH), 8.57 (s, IH), 8.79 (d, J=2.6 Hz, IH), 9.33 (s, IH); EI-MS m/z 370 (NT).
Bid. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate
Figure imgf000063_0002
N-(2,4-Dimethoxy-5-(trifluoromethyl)phenyl)-N'-(4-methylphenyl)urea: /j-Tolyl isocyanate (0.16 mL, 1.24 mmol) was added to a solution of 2,4-dimethoxy-5- (trifluoromethyl)aniline (0.25 g, 1.13 mmol) in EtOAc (3 mL) and the resulting mixture was stirred at room temp, for 18 h. A resulting precipitate was washed with Et2O to give the title compound as a white solid (0.36 g): •H-NMR (CDC13) δ 2.21 (s, 3H). 3.97 (s, 3H), 3.86 (s, 3H), 6.88 (s, IH), 7.05 (d, J=8.5 Hz, 2H), 7.29 (d, J=8.5 Hz, 2H), 8.13 (s, IH), 8.33 (s, IH), 9.09 (s, IH); FAB-MS m/z 355 ((M+l)+).
Ble. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate
Figure imgf000063_0003
N-(3-Methoxy-2-naphthyl)-N'-(l-naphthyI)urea: To a solution of 2-amino-3- methoxynaphthalene (0.253 g, 1.50 mmol) in CH2C12 (3 mL) at room temp, was added a solution of 1-naphthyl isocyanate (0.247 g, 1.50 mmol) in CH2C12 (2 mL) and the resulting mixture was allowed to stir overnight. The resulting precipitate was separated and washed with CH2C12 to give the desired urea as a white powder (0.450 g, 90%): mp 235-236 °C; 1H-NMR (DMSO-d6) δ 4.04 (s, 3H), 7.28-7.32 (m, 2H), 7.38 (s, IH), 7.44- 7.72 (m, 6H), 7.90-7.93 (m, IH), 8.05-8.08 (m, IH), 8.21-8.24 (m, IH), 8.64 (s, IH), 9.03 (s, IH), 9.44 (s, IH); FAB-MS m/z 343 ((M+H)+).
Blf. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate
Figure imgf000064_0001
N-(5-rert-Butyl-2-(2-tert-butoxycarbonyIoxy)ethoxy)phenyl)-N'-(4- methylphenyl)urea: A mixture of 5-tert-butyl-2-(2-tert- butoxycarbonyloxy)ethoxy)aniline (Method A10, 0.232 g, 0.75 mmol) and j-tolyl isocyanate (0.099 mL, 0.79 mmol) in EtOAc (1 mL) was stirred at room temp, for 3 d to produce a solid, which was separated. The filtrate was purified by column chromatography (100% CH2C12) and the residue was triturated (Et2O/hexane) to give the desired product (0.262 g, 79%): mp 155-156 °C; TLC (20% EtOAc/80% hexane) 1^0.49; H-NMR (DMSO-d6) δ 1.22 (s, 9H), 1.37 (s, 9H), 2.21 (s, 3H), 4.22-4.23 (m, 2H), 4.33- 4.35 (m, 2H), 6.89-7.00 (m, 4H), 7.06 (d, J=8.5 Hz, 2H), 7.32 (d, J=8.1 Hz, 2H), 7.96 (s, IH); 8.22 (d, J=1.5 Hz, IH), 9.22 (s, IH); FAB-MS m/z (rel abundance) 443 ((M+H)+, 6%).
B2a. General Method for Reaction of an Aryl Amine with Phosgene Followed by Addition of a Second Aryl Amine
Figure imgf000065_0001
N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N,-(3-(4-pyridinylthio)phenyI)urea: To a solution of pyridine (0.61 mL, 7.5 mmol, 3.0 equiv) and phosgene (20% in toluene; 2.65 mL, 5.0 mmol, 2.0 equiv) in CH2C12 (20 mL) was added 2-methoxy-5- (trifluoromethyl)aniline (0.48 g, 2.5 mmol) at 0 °C. The resulting mixture was allowed warm to room temp, stirred for 3 h, then treated with anh. toluene (100 mL) and concentrated under reduced pressure. The residue was suspended in a mixture of CH2C12 (10 mL) and anh. pyridine (10 mL) and treated with 3-(4-pyridinylthio)aniline (0.61 g, 2.5 mmol, 1.0 equiv). The mixture was stirred overnight at room temp., then poured into water (50 mL) and extracted with CH2C12 (3 x 25 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was dissolved in a minimal amount of CH2C12 and treated with pet. ether to give the desired product as a white precipitate (0.74 g, 70%): mp 202 °C; TLC (5% acetone/95% CH2C12) R^O.09; Η- NMR (DMSO-d6) δ 7.06 (d, J=5.5 Hz, 2H), 7.18 (dd, J=2.4, 4.6 Hz, 2H), 7.31 (dd, J= 2.2, 9.2 Hz, IH), 7.44 (d, J=5.7 Hz, IH), 7.45 (s, IH), 7.79 (d, J=2.2 Hz, IH), 8.37 (s,
2H), 8.50 (dd, J=2.2, 9.2 Hz, 2H), 9.63 (s, IH), 9.84 (s, IH); FAB-MS m/z 420 ((M+H)+, 70%).
B2b. General Method for Reaction of an Aryl Amine with Phosgene Followed by Addition of a Second Aryl Amine
Figure imgf000065_0002
N-(2-Methoxy-5-(trifluoromethyl)phenyl)-N,-(4-(4-pyridinyIthio)phenyl)urea: To a solution of pyridine (0.61 mL, 7.5 mmol, 3.0 equiv) and phosgene (20% in toluene; 2.65 mL, 5.0 mmol, 2.0 equiv) in CH2C12 (20 mL) was added 4-(4-pyridinylthio)aniline (0.506 g, 2.5 mmol) at 0 °C. After stirring for 3 h at room temp., the mixture was treated with anh. toluene (100 mL) then concentrated under reduced pressure. The residue was suspended in a mixture of CH2C12 (10 mL) and anh. pyridine (10 mL) and treated with 2- methoxy-5-(trifluoromethyl)aniline (0.50 g, 2.5 mmol, 1.0 equiv). After stirring the mixture overnight at room temp., it was poured into a 1 N NaOH solution (50 mL) and extracted with CH2C12 (3 x 25 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to give the desired urea (0.74 g, 71%): mp 215 °C; TLC (5% acetone/95% CH2C12) IC- 0.08; H-NMR (DMSO-d6) δ 3.96 (s, 3H), 6.94 (dd, J=l.l, 4.8 Hz, 2H), 7.19 (d, J=8.4 Hz, IH), 7.32 (dd, J=2.2, 9.3 Hz, IH), 7.50 (d, J=8.8 Hz, 2H), 7.62 (d, J=8.8 Hz, 2H), 8.32 (d, J=5.1 Hz, 2H), 8.53 (d, J=0.7 Hz, IH),
8.58 (s, IH), 9.70 (s, IH); FAB-MS m/z 420 ((M+H)+).
B3a. General Method for the Reaction of an Aryl Amine with Phosgene with Isolation of the Isocyanate, Followed by Reaction with a Second Aryl Amine
Figure imgf000066_0001
Step 1. 5-(Difluoromethanesulfonyl)-2-methoxyphenyl isocyanate: To a solution of phosgene (1.95 M in toluene; 3.0 mL, 5.9 mmol) in CH2C12 (40 mL) at 0 °C was added a solution of 5-(difluoromethanesulfonyl)-2-methoxyaniline (0.70 g, 2.95 mmol) and pyridine (0.44 mL, 8.85 mmol) in CH2C12 (10 mL) dropwise. After being stirred at 0 °C for 30 min and at room temp, for 3 h, the reaction mixture was concentrated under reduced pressure, then treated with toluene (50 mL). The resulting mixture was concentrated under reduced pressure, then was treated with Et-O (50 mL) to produce a precipitate (pyridinium hydrochloride). The resulting filtrate was concentrated under reduced pressure to provide the title compound as a white solid (0.33 g). This material was used in the next step without further purification.
Figure imgf000067_0001
Step 2. N-(2-Methoxy-5-(difluoromethanesulfony-)phenyI)-N'-(2-fluoro-4- methylphenyl)urea: 2-Fluoro-4-methylaniline (0.022 mL, 0.19 mmol) was added to a solution of 5-(difluoromethanesulfonyl)-2-methoxyphenyl isocyanate (0.046 g, 0.17 mmol) in EtOAc (1 mL). The reaction mixture was stirred at room temp, for 3 d. The resulting precipitate was washed with Et2O to provide the title compound as a white solid (0.055 g): 'H-ΝMR (CDC13) δ 2.24 (s, 3H), 4.01 (s, 3H), 6.93 (d, J=8.5 Hz, IH), 7.01- 7.36 (m, 3H), 7.56 (dd, J=2.4, 8.6 Hz, IH), 7.98 (app t, J=8.6 Hz, IH), 8.79 (d, J=2.2 Hz, IH), 9.07 (s, IH), 9.26 (s, IH); FAB-MS m/z 389 ((M+l)+).
B3b. General Method for the Reaction of an Aryl Amine with Phosgene with Isolation of the Isocyanate, Followed by Reaction with a Second Aryl Amine
Figure imgf000067_0002
Step 1. 2-Methoxy-5-trifluoromethylphenyl Isocyanate: To a solution of phosgene (1.93 M in toluene; 16 mL, 31.4 mmol) in CH2C12 (120 mL) at 0 °C was added a solution of 2-methoxy-5-(trifluoromethyl)aniline (3.0 g, 15.7 mmol) and pyridine (2.3 mL, 47.1 mmol) in CH2C12 (30 mL) dropwise. The resulting mixture was stirred at 0 °C for 30 min and at room temp for 3 h, then concentrated under reduced pressure. The residue was diluted with toluene (30 mL), concentrated under reduced pressure, and treated with E^O. The resulting precipitate (pyridinium hydrochloride) was removed and the filtrate was concentrated under redeuced pressure to give the title compound as a yellow oil (3.0 g) which crystallized upon standing at room temp, for a few days.
Figure imgf000067_0003
Step 2. N-(2-Methoxy-5-(trifiuoromethyl)phenyl)- N'-(4-fluorophenyI)urea: 4-
Fluoroaniline (0.24 mL, 2.53 mmol) was added to a solution of 2-methoxy-5- (trifluoromethyl)phenyl isocyanate (0.50 g, 2.30 mmol) in EtOAc (6 mL) and the reaction mixture was stirred at room temp, for 3 d. The resulting precipitate was washed with Et2O to give the title compound as a white solid (0.60 g): NMR: 3.94 (s, 3H). 7.13- 7.18 (m, 3H), 7.30 (dd, J=1.5, 8.4 Hz, IH), 7.44 (m, 2H), 8.45 (s, IH), 8.52 (d, J=2.2 Hz, IH), 9.42 (s, IH); FAB-MS m/z 329 ((M+l)+).
B4. General Method for Urea Formation via Curtius Rearrangement, Followed by Trapping with an Amine
Figure imgf000068_0001
N-(3-Methoxy-2-naphthyl)-N'-(4-methylphenyl)urea: To a solution of 3-methoxy-2- naphthoic acid (Method A6, Step 2; 0.762 g, 3.80 mmol) and Et3N (0.588 mL, 4.2 mmol) in anh toluene (20 mL) at room temp, was added a solution of diphenylphosphoryl azide (1.16 g, 4.2 mmol) in toluene (5 mL). The resulting mixture was heated to 80 °C for 2 h, cooled to room temp., and p -toluidine (0.455 g, 4.1 mmol) was added. The mixture was heated at 80 °C overnight, cooled to room temp., quenched with a 10% citric acid solution, and extracted with EtOAc (2 x 25 mL). The combined organic layers were washed with a saturated NaCI solution (25 mL), dried (MgSO4), and concentrated in vacuo. The residue was triturated with CH2C12 to give the desired urea as white powder (0.700 g, 61%): mp 171-172 °C; "H-NMR (DMSO-d6) δ 2.22 (s, 3H), 3.99 (s, 3H), 7.07 (d, J=8.49 Hz, 2H), 7.27-7.36 (m, 5H), 7.67-7.72 (m, 2H), 8.43 (s, IH), 8.57 (s, IH), 9.33 (s, IH); FAB-MS m/z 307 ((M+H)+).
B5. General Method for the Reaction of Substituted Aniline with N,N'- Carbonyldiimidazole Followed by Reaction with a Second Amine
Figure imgf000069_0001
N-(5-ChIoro-2-hydroxy-4-nitrophenyl)-N'-(4-(4-pyridinyImethyl)phenyl)urea: A solution of 4-(4-pyridinylmethyl)aniline (0.300 g, 1.63 mmol) and N,N'- carbonyldiimidazole (0.268 g, 1.65 mmol) in CH2C12 (10 mL) was stirred at room temp. for 1 h at which time TLC analysis indicated no starting aniline. The reaction mixture was then treated with 2-amino-4-chloro-5-nitrophenol (0.318 g, 1.65 mmol) and stirred at 40-45 °C for 48 h. The resulting mixture was cooled to room temp, and diluted with EtOAc (25 mL). The resulting precipitate was separated to give the desired product (0.416 g, 64%): TLC (50% acetone/50% CH2C12) R^ O.40; Η-NMR (DMSO-d6) δ 3.90 (s, 2H), 7.18 (d, J=8.4 Hz, 2H), 7.21(d, J=6 Hz, 2H), 7.38 (d, J=8.4 Hz, 2H), 7.54 (s, IH), 8.43-8.45 (m, 3H), 8.78 (s, IH), 9.56 (s, IH), 11.8 (br s, IH); FAB-MS m/z (rel abundance) 399 ((M+H)+, 10%).
B6. General Method for the Synthesis of Symmetrical Diphenyl Ureas as Side- Products of Urea Forming reactions
Figure imgf000069_0002
Bis(4-chloro-3-(trifluoromethyl)phenyl)urea: To a solution of 5-amino-3-tert- butylisoxazole (0.100 g) in anh toluene (5 mL) was added 4-chloro-3-
(trifluoromethyl)phenyl isocyanate (0.395 g). The reaction vessel was sealed, heated at 85 °C for 24 h, and cooled to room temp. The reaction mixture was added to a slurry of Dowex® 50WX2-100 resin (0.5 g) in CH2C12 (40 mL), and the resulting mixture was stirred vigorously for 72 h. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (gradient form 100% CH2C12 to 5% MeOH/95% CH2C12) to give bis(4-chloro-3- (trifluoromethyl)phenyl)urea followed by N-(3-tert-butyl-5-isoxazolyl)-N'-(4-chloro-3- (trifluoromethyl)phenyl)urea. The residue from the symmetrical urea fractions was triturated (Et,O/hexane) to give the urea as a white solid (0.110 g): TLC (3% MeOH/97% CH2C12) R O.55; FAB-MS m/z 417 ((M+H)+).
C. Urea Interconversions and Misc. Reactions
Cl. General Method for Alkylation of Hydroxyphenyl Ureas
Figure imgf000070_0001
Step l.N-(2-Hydroxy-5-(trifluoromethylthio)phenyl)-N,-(4-methyIphenyI)urea: p-
Tolyl isocyanate (0.066 mL, 0.52 mmol) was added to a solution of 2-hydroxy-5- (trifluoromethylthio)aniline (0.100 g, 0.48 mmol) in EtOAc (2 mL) and the reaction mixture was stirred at room temp, for 2 d. The resulting precipitate was washed with EtOAc to provide the title compound (0.13 g): 1H-NMR (CDC13) δ 2.24 (s, 3H). 7.44- 7.03 (m, 6H), 8.46 (s, IH), 8.60 (d, J=1.8 Hz, IH), 9.16 (s, IH), 10.41 (s, IH); FAB-MS m/z 343 ((M+l)+). This material was used in the next step without purification.
Figure imgf000070_0002
Step 2.N-(2-Methoxy-5-(trifluoromethylthio)phenyI)-N'-(4-methylphenyl)urea: A solution of N-(2-hydroxy-5-(trifluoromethylthio)phenyl)-N'-(4-methylphenyl)urea (0.125 g, 0.36 mmol), iodomethane (0.045 mL, 0.73 mmol), and K2CO3 (100 mg, 0.73 mmol) in acetone (2 mL) was heated at the reflux temp, for 6 h, then was cooled to room temp, and concentrated under reduced pressure. The residue was dissolved in a minimal amount of MeOH, absorbed onto silica gel, and then purified by flash chromatograpy (3% Et2O/97% CH2C12) to provide the title compound as a white solid (68 mg): Η-ΝMR (CDC13) δ 2.22 (s, 3H), 3.92 (s, 3H), 7.05-7.32 (m, 6H), 8.37 (s, IH), 8.52 (d, J=2.2 Hz, IH), 9.27 (s, IH); FAB-MS m/z 357 ((M+l)+). C2. General Method for the Reduction of Nitro-Containing Ureas
Figure imgf000071_0001
N-(5-tert-Butyl-2-methoxyphenyl)-N'-(2-amino-4-methylphenyI)urea: A solution of N-(5-tert-butyl-2-methoxyphenyl)-N'-(2-nitro-4-methylphenyl)urea (prepared in a manner analogous to Method Bla; 4.0 g, 11.2 mmol) in EtOH (100 mL) was added to a slurry of 10% Pd/C (0.40 g) in EtOH (10 mL), and the resulting mixture was stirred under an atmosphere of H2 (balloon) at room temp, for 18 h. The mixture was filtered through a pad of Celite® and concentrated in vacuo to afford the desired product (3.42 g, 94%) as a powder: mp 165-166 °C; 1H-ΝMR (DMSO-d6) δ 1.30 (s, 9H), 2.26 (s, 3H), 3.50 (br s, 2H), 3.71 (s, 3H), 6.39 (br s, IH), 6.62 (s, IH), 6.73 (d, J=8.46 Hz, IH), 6.99 (dd, J=2.21, 8.46 Hz, IH), 7.05 (d, J=8.46 Hz, IH), 7.29 (s, IH), 8.22 (d, J=2.57 Hz, IH); FAB-MS m/z 328 ((M+H)+).
C3. General Method of Thiourea Formation by Reaction with a Thioisocyanate
Figure imgf000071_0002
N-(5-terr-Butyl-2-methoxyphenyl)-N'-(l-naphthyl)thiourea: To a solution of 5-tert- butyl-2-methoxyaniline (0.372 g, 2.07 mmol) in toluene (5 mL) was added 1-naphthyl thioisocyanate (0.384 g, 2.07 mmol) and the resulting mixture was allowed to stir at room temp, for 8 h to produce a precipitate. The solids were separated and sequentially washed with toluene and hexane to give the desired product as an off-white pwoder (0.364 g, 48%): mp 158-160 °C; Η-NMR (DMSO-d6) δ 1.31 (s, 9H), 3.59 (s, 3H), 6.74 (d, J=8.46 Hz, IH), 7.13 (dd, J=2.21, 8.46 Hz, IH), 7.53-7.62 (m, 4H), 7.88-7.95 (m, 4H), 8.06-8.08 (m, IH), 8.09 (br s, IH); FAB-MS m/z 365 ((M+H)+). C4. General Method for Deprotection of tert-Butyl Carbonate-Containing Ureas
Figure imgf000072_0001
N-(5-tert-ButyI-2-(2-hydroxyethoxy)phenyl)-N'-(4-methylphenyl)urea: A solution of N-(5-tert-butyl-2-(2-tert-butoxycarbonyloxy)ethoxy)phenyl)-N'-(4-methylphenyl)urea (Method Blf; 0.237 g, 0.54 mmol) and TFA (0.21 mL, 2.7 mmol) in CH2C12 (2 mL) was stirred at room temp for 18 h, then was washed with a saturated ΝaHCO3 solution (2 mL). The organic layer was dried by passing through IPS filter paper (Whatman®) and concentrated under reduced pressure. The resulting white foam was triturated (Et2O/hexane), then recrystallized (Et2O) to give the desired product (3.7 mg): TLC (50% EtOAc/50% hexane) FC- 0.62; Η-NMR (DMSO-d6) δ 1.22 (s, 9H), 3.75-3.76 (m, 2H), 4.00-4.03 (m, 2H), 4.80 (t, J=5.0 Hz, IH), 6.88-6.89 (m, 4H), 7.06 (d, J=8.5 Hz, 2H), 7.33 (d, J=8.1 Hz, 2H), 7.97 (s, IH), 8.20 br s, IH), 9.14 (s, IH); FAB-MS m/z (rel abundance) 343 ((M+H)+, 100%).
The following compounds have been synthesized according to the General Methods listed above:
Table 1. 2-Substituted-5-f-.r-'-butylphenyl Ureas
Figure imgf000072_0002
Figure imgf000072_0003
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Figure imgf000078_0001
Table 2. 2-Substituted-5-(trifluoromethy-)phenyl Ureas
Figure imgf000079_0001
Figure imgf000079_0002
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
Table 3. .-.-Substituted 2-Methoxy-5-suIfonyIphenyI Ureas
Figure imgf000083_0001
Figure imgf000083_0002
Figure imgf000084_0001
Table 4. 3-Substituted-2-naphthyl Ureas
Figure imgf000085_0001
Figure imgf000085_0002
Figure imgf000086_0001
Figure imgf000087_0001
Table 5. Misc. Ureas
Figure imgf000088_0001
Figure imgf000089_0001
BIOLOGICAL EXAMPLES
P38 Kinase Assav:
The in vitro inhibitory properties of compounds were determined using a p38 kinase inhibition assay. P38 activity was detected using an in vitro kinase assay run in 96-well microtiter plates. Recombinant human p38 (0.5 μg/mL) was mixed with substrate (myelin basic protein, 5 μg/mL) in kinase buffer (25 mM Hepes, 20 mM MgCl2 and 150 mM NaCI) and compound. One μCi/well of 33P-labeled ATP (10 μM) was added to a final volume of 100 μL. The reaction was run at 32 °C for 30 min. and stopped with a 1M HC1 solution. The amount of radioactivity incorporated into the substrate was determined by trapping the labeled substrate onto negatively charged glass fiber filter paper using a 1% phosphoric acid solution and read with a scintillation counter. Negative controls include substrate plus ATP alone.
All compounds exemplified displayed p38 IC50s of between 1 nM and 10 μM.
LPS Induced TNFα Production in Mice: The in vivo inhibitory properties of selected compounds were determined using a murine LPS induced TNFα production in vivo model. BALB/c mice (Charles River Breeding Laboratories; Kingston, NY) in groups of ten were treated with either vehicle or compound by the route noted. After one hour, endotoxin (E. coli lipopolysaccharide (LPS) 100 μg) was administered intraperitoneally (i.p.). After 90 min, animals were euthanized by carbon dioxide asphyxiation and plasma was obtained from individual animals by cardiac puncture ionto heparinized tubes. The samples were clarified by centrifugation at 12,500 x g for 5 min at 4 °C. The supernatants were decanted to new tubes, which were stored as needed at -20 °C. TNFα levels in sera were measured using a commercial murine TNF ELISA kit (Genzyme).
The preceeding examples can be repeated with similar success by substituting the generically of specifically described reactants and/or operating conditions of this invention for those used in the preceeding examples
From the foregoing discussion, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.

Claims

WHAT IS CLAIMED IS:
A method of treating a disease, other than cancer, mediated by p-38, comprising administering a compound of formula I
Figure imgf000091_0001
wherein
A is
Figure imgf000091_0002
B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of mtrogen, oxygen and sulfur, wherein if B is substituted, it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and Wn, wherein n is 0-3 and each W is independently selected from the group consisting of -CN, -CO2R7, -C(O)NR7R7, -C(O)-R7, -NO2, -OR7, - SR7, - NR7R7, -NR7C(O)OR7, -NR7C(O)R7, CrC10 alkyl, C,.10-alkenyl, C 0-alkoxy, C3-C10 cycloalkyl, C6-C14 aryl, -C^ alkaryl, C3-C13 heteroaryl, -C^ alkheteroaryl, substituted CrC10 alkyl, substituted C2.,0-alkenyl, substituted C,.10-alJ oxy, substituted C3-C10 cycloalkyl, substituted C^C^ alkheteroaryl and Q-Ar; wherein if W is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO2R7, -C(O)R7, -C(O)NR7R7, -OR7, -SR7, -NR7R7 , NO2, -NR7C(O)R7 , -NR7C(O)OR7 and halogen up to per-halo; wherein each R7 is independently selected from H, CrC10 alkyl, C2.10-alkenyl,
C3-C10 cycloalkyl, C6-C14 aryl, C3-C13 hetaryl, C7-C24 alkaryl, -C^ alkheteroaryl, up to per-halosubstituted C,-C╬╣0 alkyl, up to per-halosubstituted C2.10-al enyl , up to per- halosubstituted C3-C10 cycloalkyl, up to per-halosubstituted C6-C14 aryl and up to per- halosubstituted C3-C13 hetaryl, wherein Q is -O-, -S-, -N(R7)-, -(CH2)-m, -C(O)-, -CH(OH)-, -(CH^O-,
-NR7C(O)NR7R7'-, -NR7C(O)-, -C(O)NR7-, -(CH^S-, -(CH2)mN(R7)-, -O(CH2)m-, -CHXa, -CXa 2-, -S-(CH2)m- and -N(R7)(CH2)m-, m = 1-3, and Xa is halogen; and Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Znl, wherein nl is 0 to 3 and each Z is independently selected from the group consisting of of -CN, -CO2R7, -C(O)NR7R7, - C(O)- NR7, -COR7, -NO2, -OR7, - SR7, - NR7R7, -NR7C(O)OR7, -NR7C(O)R7, C,-C10 alkyl, C3-C╬╣0 cycloalkyl, C6-CM aryl, C3-C13 hetaryl, C7-C24 alkaryl, Q-Ca alkheteroaryl, substituted -CJO alkyl, substituted C3-C╬╣0 cycloalkyl, substituted C7-C24 alkaryl and substituted C4-C23 alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -CO2R7, -C(O)NR7R7, -OR7, -SR7, -NO2, -NR7R7 , -NR7C(O)R7 , -NR7C(O)OR7,
R3 , R4' , R5' are each independently H, C 0-alkyl, optionally substituted by halogen, up to perhalo, C,.,,, alkoxy, optionally substituted by halogen, up to perhaloalkoxy, halogen; NO2 or NH2; R6' is H, C,.10-alkyl, CM0 alkoxy, -NHCOR'; -NR'COR1; NO2;
Figure imgf000093_0001
one of R4' , R5' or R6' can be -X-Y, or 2 adjacent R4'-R6' can together be an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C,.10-alkyl, CM0 alkoxy, C3.10 cycloalkyl, C2.10 alkenyl,
C,.10 alkanoyl, .,2 aryl, C5.╬╣2 hetaryl or .^ aralkyl; R1 is C^o-alkyl optionally substituted by halogen, up to perhalo; X is -CH2-, -S-, -N(CH3)-, -NHC(O)-, -CH2-S-, -S-CH2-, -C(O)-, or -O-; and X is additionally a single bond where Y is pyridyl; Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, benzodioxane, benzopyridine, pyrimidine or benzothiazole, each optionally substituted by
C,.I0-alkyl, C^^-alkoxy, halogen, OH, - SCH3 or NO2 or, where Y is phenyl, by
Figure imgf000093_0002
or a pharmaceutically acceptable salt thereof.
2. A method according to claim 1, comprising administering a compound of formula la
Figure imgf000093_0003
wherein
R3, R4, R5, and R6 are each independently H; halogen; C 0- alkyl optionally substituted by halogen up to perhalo; C 0-alkoxy optionally substituted by at least one hydroxy group or halogen up to perhalo, C^ aryl, optionally substituted by C,.10 alkoxy or halogen, C5.I2 hetaryl, optionally substitued by C╬╣_10 alkyl, C 0 alkoxy or halogen; NO2 ; SO2F; -SOjCHpX,.,,; -COOR1; -OR'CONHR1; -NHCOR1; -SR1; NH2; -N(SO2R')2; furyloxy;
Figure imgf000094_0001
2 adjacent R3-R6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C,.10-alkyl, C,.10-alkoxy, C3.10-cycloalkyl, C2.,0-alkenyl, C..10- alkanoyl, C^^-aryl , C5.12-hetaryl, C^-aralkyl, Ce-^-alkaryl, halogen; -NR'; -NO2; -CF3;
-COOR'; -NHCOR'; -CN; -CONR'R'; -SO2R2; -SOR2; -SR2; in which R' is H or Cwo- alkyl and R2 is C,.,0-alkyl optionally substituted by halogen, up to perhalo, with - SO2- optionally incorporated in the aryl or hetaryl ring; p is O or l; one of R3, R4, R5 or R6 can be -X-Y, with the proviso that if R3 and R6 are both H , one of R4 or R5 is not H, and R3' - R6' are as defined in claim 1.
3. A method according to claim 2, wherein
R3 is H; halogen; C,-,0-alkyl optionally substituted by halogen, up to perhalo, NO2, -SO2F or-SO2CF3;
R4 is H, C,.I0-alkyl, C,.10-alkoxy, halogen or NO2; R5 is H, C,.10-alkyl optionally substituted by halogen, up to perhalo;
R6 is H, hydroxy, C,.,0-alkoxy optionally substituted by at least one hydroxy group; -COOR'; -OR'CONHR'; -NHCOR'; -SR'; phenyl optionally substituted by halo or C,.10-alkoxy; NH2; -N(SO2R')2, furyloxy, thiophene, pyrole or methyl substituted pyrole,
Figure imgf000095_0001
4. A method according to claim 2, wherein R3 is Cl, F, C^-branched alkyl, - SO2F or -SO2CF3; and R6 is hydroxy; C,-10-alkoxy optionally substituted by at least one hydroxy group; -COOR1; -OR'CONHR'; -NHCOR1; -SR'; phenyl optionally substituted by halo or C,.10-alkoxy; NH2; -N(SO2R')2, furyloxy,
Figure imgf000095_0002
5. A compound according to claim 2, wherein R4 is Cj.jo-alkyl or halogen; R5'is H, C,-10-alkyl, halogen, CF3 , halogen, NO2 or NH2; and R6'is H, C,.10-alkyl, halogen, -NHCOCH3, -N(CH3)COCH3, NO2,
Figure imgf000095_0003
6. A method according to claim 2, wherein R5' is C 0-alkyl, halogen, CF3, halogen, NO2 or NH2.
7. A method according to claim 2, wherein R6 is C╬╣.,0-alkyl, halogen, -NHCOCH3, -N(CH3)COCH3, NO2,
Figure imgf000096_0001
8. A method according to claim 4, wherein R3 is t-butyl or CF3 and R6 is
-OCH3.
9. A method according to claim 2, wherein the disease is mediated by a cytokine or protease regulated by p38.
10. A method according to claim 2, wherein the disease is mediated by TNF╬▒, MMP-1, MMP-3, IL-1, IL-6 or IL-8.
11. A method according to claim 2, wherein the disease is an inflammatory or immunomodulatory disease.
12. A method according to claim 2, wherein the disease is osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, septic shock, inflammatory bowel disease, or the result of host-versus-graft reactions.
13. A method according to claim 1 , wherein the compound of formula I is N-(5-tert-Butyl-2-methoxyρhenyl)-N'-(4-phenyloxphenyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-methoxyphenyloxy)phenyl)urea; N-(5-tert-Bu-yl-2-methoxyphenyl)-N'-(4-(4-pyridinyloxy)phenyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea;
N-(5-tert-Butyl-2-methoxyphenyl)-N,-(4-(4-pyridinylthio)phenyl)urea; N-(5-tert-Butyl-2-methoxyρhenyl)-N'-(4-(4-(4,7-methano-lH-isoindole-l,3(2H)- dionyl)methyl)phenyl)urea;
N-(5-tert-Butyl-2-phenylphenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-tert-Butyl-2-(3-thienyl)phenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(2,3- dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(l-naphthyl)urea;
N-(5-tert-Butyl-2-(N-moφholinocarbonyl)methoxyphenyl)-N'-(2,3- dichlorophenyl)urea;
N-(5-tert-Butyl-2-(N-moφholinocarbonyl)methoxyphenyl)-N'-(l-naphthyl)urea; N-(5-tert-Butyl-2-methoxyphenyl)-N'-(4-(3-pyridinyl)methylphenyl)urea;
N-(5-tert-Butyl-2-(3-tetrahydrofuranyloxy)phenyl)-N'-(2,3-dichlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methyl-2-fluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-fluoro-3-chlorophenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N,-(4-methyl-3-chlorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-methyl-3-fluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(2,4-difluorophenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-phenyloxy-3,5- dichlorophenyl)urea; N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinylthio)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(4-pyridinyloxy)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N,-(3-(4-pyridinylthio)phenyl)urea;
N-(5-Trifluoromethyl-2-methoxyphenyl)-N'-(4-(3-(N-methylaminocarbonyl)- phenyloxy)phenyl)-urea;
N-(5-Fluorosulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-2- fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3- fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3- chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3- chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3- methylphenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(2,3-dimethylphenyl)urea;
N-(5-(Trifluoromethanesulfonyl)-2-methoxphenyl)-N'-(4-methylphenyl)urea; N-(3-methoxy-2-naphthyl)-N'-(2-fluorophenyl)urea);
N-(3-Methoxy-2-naphthyl)-N'-(4-methylphenyl)urea;
N-(3-Methoxy-2-naphthyl)-N,-(3-fluoroρhenyl)urea;
N-(3-Methoxy-2-naphthyl)-N'-(4-methyl-3-fluorophenyl)urea;
N-(3-Methoxy-2-naphthyl)-N'-(2,3-dimethylphenyl)urea; N-(3-Methoxy-2-naphthyl)-N'-( 1 -naphthyl)urea;
N-(3-Methoxy-2-naphthyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea;
N-(3 -Methoxy-2-naphthyl)-N' -(4-(4-pyridinylthio)phenyl)urea;
N-(3-Methoxy-2-naphthyl)-N'-(4-(4-methoxyphenyloxy)phenyl)urea; and
N-(3-Methoxy-2-naphthyl)-N'-(4-(4-(4,7-methano-lH-isoindole-l,3(2H)- dionyl)methyl)phenyl)urea.
N-(2-Hydroxy-4-nitro-5-chlorophenyl)-N'-(phenyl)urea; or
N-(2-Hydroxy-4-nitro-5-chlorophenyl)-N'-(4-(4-pyridinylmethly)phenyl)urea.
14. A compound of formula II
Figure imgf000099_0001
wherein
R\ R4, R5, and R6 are each independently H; halogen; C,.10- alkyl optionally substituted by halogen up to perhalo; C,.10-alkoxy optionally substituted by at least one hydroxy group; NO2 ; SO2F; -SO2CHnX3.n; -COOR1; -OR'CONHR'; -NHCOR1; -SR'; C^ aryl, optionally substituted by C,.10-alkyl, C,.10 alkoxy or halogen, C5.12 hetaryl, optionally substitued by C,.,,, alkyl, C,.10 alkoxy or halogen ; NH2; -N(SO2R')2; furyloxy;
Figure imgf000099_0002
2 adjacent R3-R6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C 0-alkyl, C,.10-alkoxy, C3.10-cycloalkyl, C2.10-alkenyl, C╬╣.10- alkanoyl, C6.12-aryl , C5.12-hetaryl, C^-aralkyl, C^-alkaryl, halogen; NR'R', NO2; -CF3; -COOR1; -NHCOR1; -CN; -CON^R1; -SO2R2; -SOR2; -SR2; in which R1 is H or C,.10- alkyl and R2 is C,.10-alkyl; -jQ-alkoxy, optionally substituted by halogen up to perhaloalkoxy, R3', R4' and R5' are each independently H, C,.10-alkyl, optionally substituted by halogen, up to perhalo; halogen; NO2 or NH2; R6' is H, C 0-alkyl, halogen, -NHCOR1 ; -NR'COR1 ; NO2;
Figure imgf000099_0003
or 2 adjacent R '-R6' can together be an aryl or hetaryl ring with 5-12 atoms; R1 is C,.I0-alkyl; n is 0 or 1 ;
X is -CH2-, -S-, N(CH3)-, -NHC(O), CH2-S-, -S-CH2-, -C(O)-, or -O-; and
Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, benzodixane, benzopyridine, pyrimidine or benzothiazole, each optionally substituted by C,.,0-alkyl, C,.,0-alkoxy, halogen or NO2 or, where Y is phenyl, by
Figure imgf000100_0001
or a pharmaceutically acceptable salt thereof, with the provisos that
(a) if R3 and R6 are both H, one of R4 or R5 is not H,
(c) R6 is phenyl substituted by halogen, alkoxy substituted by hydroxy,
-SO2CF2H, -OR^ONHR1,
Figure imgf000100_0002
and
(c) the compounds have a pKa greater than 10.
15. A compound according to claim 14, wherein R3 is H, halogen or Cj.10-alkyl optionally substituted by halogen, up to perhalo, NO2,
-SO2F or -SO2CF3; R4 is H, C 0-alkyl, C,.10-alkoxy, halogen or NO2; R5 is H, C,.10-alkyl optionally substituted by halogen, up to perhalo; R6 is H, hydroxy, C 0-alkoxy optionally substituted by at least one hydroxy group;
-COOR1; -OR'CONHR1; -NHCOR1; -SR1; phenyl optionally substituted by halo
or C,.10-alkoxy; NH2; -N(SO2R1)2, furyloxy,
Figure imgf000101_0001
16. A compound according to claim 14, wherein R3 is Cl, F, C4.5-branched alkyl, -SO2F or -SO2CF3; and R6 is hydroxy; C 0-alkoxy optionally substituted by at least one hydroxy group; -COOR1; -OR'CONHR1; -NHCOR'; -SR'; phenyl optionally substituted by halo or C,.10-alkoxy; NH2; -N(SO2R')2, furyloxy,
Figure imgf000101_0002
17. A compound according to claim 14, wherein R4' is C,-,0---lkyl or halogen; R5'is H, C 0-alkyl, halogen, CF3 , halogen, NO2 or NH2; and R6'is H, C╬╣.10-alkyl, halogen, -NHCOCH3, -N(CH3)COCH3, NO2,
Figure imgf000102_0001
18. A compound according to claim 14, wherein R3 is t-butyl or CF3 and R6 is -OCH3.
19. A compound according to claim 14, which is N-(5-tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-(2,3- dichlorophenyl)urea; N-(5 -tert-Butyl-2-(N-methylaminocarbonyl)methoxyphenyl)-N'-( 1 -naphthyl)urea; N-(5-tert-Butyl-2-(N-moφholinocarbonyl)methoxyphenyl)-N'-(2,3- dichlorophenyl)urea; N-(5-tert-Butyl-2-(N-moφholinocarbonyl)methoxyphenyl)-N'-(l-naphthyl)urea; N-(5-tert-Butyl-2-(3-tetrahydrofuranyloxy)phenyl)-N'-(2,3-dichlorophenyl)urea; N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methylphenyl)urea; N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-2- fluorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3- fluorophenyl)urea; N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-methyl-3- chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3- chlorophenyl)urea;
N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(4-fluoro-3- methylphenyl)urea; N-(5-(Difluromethanesulfonyl)-2-methoxyphenyl)-N'-(2,3-dimethylphenyl)urea; or
N-(5-(Trifluoromethanesulfonyl)-2-methoxphenyl)-N'-(4-methylphenyl)urea.
20. A compound of formula II
Figure imgf000103_0001
wherein
R3, R4, R5, and R6 are each independently H; halogen; C,.10- alkyl optionally substituted by halogen up to perhalo; C^^-alkoxy optionally substituted by at least one hydroxy group; NO2 ; SO2F; -SO2CHBX3-n; -COOR1; -OR'CONHR1; -NHCOR1; -SR1; phenyl optionally substituted by halogen or C,.10-alkoxy; NH2; -N(SO2R1)2; furyloxy;
Figure imgf000103_0002
2 adjacent R3-R6 can together form an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C,.10-alkyl, C,.10-alkoxy, C3.10-cycloalkyl, C2.10-alkenyl, CM0- alkanoyl, C^-aryl , C5.12-hetaryl, C^-aralkyl, C^-alkaryl, halogen; -NR1; -NO2; -CF3; -COOR1; -NHCOR1; -CN; -CONR'R1; -SO2R2; -SOR2; -SR2; in which R1 is H or CM0- alkyl and R2 is C,-10-alkyl;
R3 , R4' and R5' are each independently H, C,_,0-alkyl, optionally substituted by halogen, up to perhalo; halogen; NO2 or NH2;
Figure imgf000103_0003
R6 is H, Cjo-alkyl, halogen, -NHCOR1; -NR'COR1; NO2;
R1 is C,.10-alkyl; n is 0 or 1 ;
X is -CH2-, -S- or -O-; and
Y is phenyl, pyridyl, naphthyl or benzothiazole, each optionally substituted by C,.,0-alkyl, C,-,0-alkoxy, halogen or NO2 or, where Y is phenyl, by
Figure imgf000104_0001
or a pharmaceutically acceptable salt thereof with the provisos that (a) if R3 and R6 are both H, one of R4 or R5 is not H, and
(b) R6 is alkoxy substituted by hydroxy, -SO2CF2H, -OR1 CONHR1 ,
Figure imgf000104_0002
furyloxy or -N SOjR') or R6 is
Figure imgf000104_0003
21. A pharmaceutical composition comprising a compound of claim 14, and a physiologically acceptable carrier.
22. A pharmaceutical composition comprising a compound of claim 20, and a physiologically acceptable carrier.
PCT/US1998/027265 1997-12-22 1998-12-22 INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS WO1999032463A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
DK98964221T DK1042305T3 (en) 1997-12-22 1998-12-22 Inhibition of p38 kinase using symmetric and asymmetric diphenylureas
IL13673798A IL136737A0 (en) 1997-12-22 1998-12-22 Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
DE1042305T DE1042305T1 (en) 1997-12-22 1998-12-22 INHIBITION OF p38 KINASE USING SYMMETRIC AND ASYMMETRIC DIPHENYL UREAS
SI9830784T SI1042305T1 (en) 1997-12-22 1998-12-22 INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS
CA2315715A CA2315715C (en) 1997-12-22 1998-12-22 Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
EP98964221A EP1042305B1 (en) 1997-12-22 1998-12-22 INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS
AU19399/99A AU1939999A (en) 1997-12-22 1998-12-22 Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
DE69830513T DE69830513T2 (en) 1997-12-22 1998-12-22 INHIBITION OF THE p38 KINASE USING SYMMETRICAL AND ASYMMETRIC DIPHENYL HYDROGEN
JP2000525400A JP3887769B2 (en) 1997-12-22 1998-12-22 Inhibition of p38 kinase using symmetric and asymmetric diphenylureas
AT98964221T ATE297383T1 (en) 1997-12-22 1998-12-22 INHIBITION OF P38 KINASE USING SYMMETRIC AND ASYMMETRIC DIPHENYL UREASES
IL136737A IL136737A (en) 1997-12-22 2000-06-13 Symmetrical and unsymmetrical diphenyl ureas and pharmaceutical compositions comprising them
HK01102468A HK1032050A1 (en) 1997-12-22 2001-04-07 Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas.
IL170235A IL170235A (en) 1997-12-22 2005-08-11 Diphenyl ureas and their use for the preparation of medicaments for treating diseases, other than cancer, mediated by p38

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99574997A 1997-12-22 1997-12-22
US08/995,749 1997-12-22

Publications (1)

Publication Number Publication Date
WO1999032463A1 true WO1999032463A1 (en) 1999-07-01

Family

ID=25542166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/027265 WO1999032463A1 (en) 1997-12-22 1998-12-22 INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS

Country Status (12)

Country Link
EP (2) EP1042305B1 (en)
JP (1) JP3887769B2 (en)
AT (1) ATE297383T1 (en)
AU (1) AU1939999A (en)
CA (1) CA2315715C (en)
DE (2) DE1042305T1 (en)
DK (1) DK1042305T3 (en)
ES (1) ES2154252T3 (en)
HK (1) HK1032050A1 (en)
IL (3) IL136737A0 (en)
PT (1) PT1042305E (en)
WO (1) WO1999032463A1 (en)

Cited By (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024707A1 (en) * 1998-10-22 2000-05-04 Neurosearch A/S Substituted phenyl derivatives, their preparation and use
WO2000055152A1 (en) * 1999-03-12 2000-09-21 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as anti-inflammatory agents
WO2000061538A1 (en) * 1999-04-09 2000-10-19 Eastman Chemical Company Preparation of substituted aromatic carboxylic acid esters
WO2001005793A1 (en) * 1999-07-19 2001-01-25 Pharmacia & Upjohn Company 1,2,3,4,5,6-HEXAHYDROAZEPINO[4,5-b]INDOLES CONTAINING ARYLSULFONES AT THE 9-POSITION
WO2001035899A2 (en) * 1999-11-19 2001-05-25 Axxima Pharmaceuticals Ag Inhibitors of helicobacter pylori induced gastrointestinal diseases
WO2001036403A1 (en) * 1999-11-16 2001-05-25 Boehringer Ingelheim Pharmaceuticals, Inc. Urea derivatives as anti-inflammatory agents
US6242453B1 (en) 1999-02-22 2001-06-05 Boehringer Ingelheim Pharmaceuticals, Inc Polycyclo heterocyclic derivatives as antiinflammatory agents
EP1140840A1 (en) * 1999-01-13 2001-10-10 Bayer Corporation -g(v)-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US6319921B1 (en) 1999-01-19 2001-11-20 Boerhinger Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compound as antiinflammatory agents
EP1158985A1 (en) * 1999-01-13 2001-12-05 Bayer Corporation OMEGA-CARBOXY ARYL SUBSTITUTED DIPHENYL UREAS AS p38 KINASE INHIBITORS
US6358945B1 (en) 1999-03-12 2002-03-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2002067939A1 (en) * 2001-02-27 2002-09-06 Bristol-Myers Squibb Company Fused cyclic succinimide compounds and analogs thereof, modulators of nuclear hormone receptor function
DE10109204A1 (en) * 2001-02-26 2002-09-19 4Sc Ag Use of new and known diphenylurea compounds for the preparation of a medicament for the inhibition of intracellular protein-degradation pathway
WO2002076930A2 (en) * 2001-03-07 2002-10-03 Telik, Inc. Substituted diarylureas as stimulators for fas-mediated apoptosis
WO2002083642A1 (en) * 2001-04-13 2002-10-24 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2002085859A1 (en) * 2001-04-20 2002-10-31 Bayer Corporation HETEROARYL UREAS CONTAINING NITROGEN HETERO-ATOMS AS p38 KINASE INHIBITORS
US6525091B2 (en) * 2001-03-07 2003-02-25 Telik, Inc. Substituted diarylureas as stimulators for Fas-mediated apoptosis
US6525046B1 (en) 2000-01-18 2003-02-25 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
WO2003032986A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited 2' -methyl-5-(1,3,4-oxadiazol-2-yl)-1,1'-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2003033483A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited Biphenylcarboxylic amide derivatives as p38 kinase inhibitors
WO2003032989A1 (en) * 2001-10-18 2003-04-24 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-disubstituted benzo-fused urea compounds as cytokine inhibitors
WO2003032971A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited 5’-acylamino-1,1’-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2003032987A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited 2'-methyl-5'-(1,3,4-oxadiazol-2-yl)-1,1'-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2003056896A2 (en) * 2001-12-26 2003-07-17 Molecular Staging Inc. Use of cytokines secreted by dendritic cells
US6608052B2 (en) 2000-02-16 2003-08-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2003068228A1 (en) 2002-02-11 2003-08-21 Bayer Pharmaceuticals Corporation Aryl ureas with angiogenesis inhibiting activity
WO2003068223A1 (en) * 2002-02-11 2003-08-21 Bayer Corporation Aryl ureas with raf kinase and angiogenesis inhibiting activity
KR20030080509A (en) * 2002-04-09 2003-10-17 주식회사 엘지생명과학 Antibacterial Compositions Containing Urea, Thiourea and Sulfamide Derivatives
US6645990B2 (en) 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
WO2003099771A2 (en) 2002-05-29 2003-12-04 Novartis Ag Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases
WO2004014870A1 (en) * 2002-08-08 2004-02-19 Boehringer Ingelheim Pharmaceuticals, Inc. Fluorinated phenyl-naphthalenyl-urea compounds as inhibitors of cytokines involved in inflammatory processes
US6696475B2 (en) 1997-04-22 2004-02-24 Neurosearch A/S Substituted phenyl derivatives, their preparation and use
US6720321B2 (en) 2001-06-05 2004-04-13 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-disubstituted benzo-fused cycloalkyl urea compounds
US6743788B2 (en) 2001-05-25 2004-06-01 Boehringer Ingelheim Pharmaceuticals, Inc. Carbamate and oxamide compounds
US6753426B2 (en) 1999-07-09 2004-06-22 Boehringer Ingelheim Pharmaceuticals, Inc. Polymorph and process for preparing same
WO2004063181A1 (en) * 2003-01-03 2004-07-29 Genzyme Corporation Urea derivatives and their use as anti-inflammatory agents
WO2004078748A2 (en) 2003-02-28 2004-09-16 Bayer Pharmaceuticals Corporation Novel bicyclic urea derivatives useful in the treatment of cancer and other disorders
US6849409B2 (en) 2000-10-16 2005-02-01 Axxima Pharmaceuticals Ag Cellular kinases involved in Cytomegalovirus infection and their inhibition
US6852717B2 (en) 2001-05-16 2005-02-08 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2005016918A2 (en) * 2003-03-10 2005-02-24 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic n-aryl carboxamides as cytokine inhibitors
WO2005051366A2 (en) * 2003-11-28 2005-06-09 Novartis Ag Diaryl urea derivatives in the treatment of protein kinase dependent diseases
US6916814B2 (en) 2001-07-11 2005-07-12 Boehringer Ingelheim Pharmaceuticals, Inc. Methods of treating cytokine mediated diseases
US6949567B2 (en) 2001-02-26 2005-09-27 4Sc Ag Compounds for the treatment of protozoal diseases
WO2005092843A1 (en) * 2004-03-29 2005-10-06 Neurosearch A/S Novel urea derivatives and their medical use
US6967216B2 (en) 2000-05-05 2005-11-22 Astrazeneca Ab Amino substituted dibenzothiophene derivatives for the treatment of disorders mediated by NP Y5 receptor
WO2006021954A2 (en) 2004-08-23 2006-03-02 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Peptide inhibitors for mediating stress responses
US7030109B2 (en) 1999-07-19 2006-04-18 Pharmacia & Upjohn Company 1,2,3,4,5,6-Hexahydroazepino[4,5-b]indoles containing arylsulfones at the 9-position
WO2006042599A1 (en) * 2004-10-13 2006-04-27 Merck Patent Gmbh Phenylurea derivatives used as inhibitors of tyrosinkinase for treating tumors
US7041669B2 (en) 2002-02-25 2006-05-09 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-benzofused urea compounds useful in treating cytokine mediated diseases
US7067506B2 (en) 2001-03-02 2006-06-27 Icos Corporation Compounds useful for inhibiting Chk1
EP1676574A2 (en) 2004-12-30 2006-07-05 Johnson &amp; Johnson Vision Care, Inc. Methods for promoting survival of transplanted tissues and cells
EP1690853A1 (en) * 1999-01-13 2006-08-16 Bayer Pharmaceuticals Corporation W-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
EP1707205A2 (en) 2002-07-09 2006-10-04 Boehringer Ingelheim Pharma GmbH & Co. KG Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases
EP1709965A2 (en) 2001-07-11 2006-10-11 Boehringer Ingelheim Pharmaceuticals, Inc. Methods of treating cytokine mediate diseases
US7125898B2 (en) 2002-02-12 2006-10-24 Smithkline Beecham Corporation Nicotinamide derivatives useful as p38 inhibitors.
US7166597B2 (en) 2000-08-22 2007-01-23 Glaxo Group Limited Fused pyrazole derivatives being protein kinase inhibitors
US7183297B2 (en) 2001-10-17 2007-02-27 Glaxo Group Limited Biphenyl-derivatives as p38-kinase inhibitors
US7208629B2 (en) 2001-10-17 2007-04-24 Glaxo Group Limited 5′-Carbamoyl-1,1-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2007049820A1 (en) 2005-10-28 2007-05-03 Takeda Pharmaceutical Company Limited Heterocyclic amide compound and use thereof
US7235576B1 (en) * 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US7238813B2 (en) 2000-11-29 2007-07-03 Smithkline Beecham Corporation Chemical compounds
US7244441B2 (en) 2003-09-25 2007-07-17 Scios, Inc. Stents and intra-luminal prostheses containing map kinase inhibitors
US7268139B2 (en) 2002-08-29 2007-09-11 Scios, Inc. Methods of promoting osteogenesis
US7271289B2 (en) 2003-04-09 2007-09-18 Smithkline Beecham Corporation Biphenylcarboxylic amide derivatives as p38 kinase inhibitors
US7297709B2 (en) 2003-05-22 2007-11-20 Abbott Laboratories Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
WO2008039794A1 (en) * 2006-09-25 2008-04-03 Arete Therapeutics, Inc. Soluble epoxide hydrolase inhibitors
WO2008079972A2 (en) 2006-12-20 2008-07-03 Bayer Healthcare Llc 4-{4- [ ({3-tert-butyl-1- [3- (hydroxymethyl) phenyl] - 1h- pyrazol- 5 -yl } carbamoyl) -amin o] -3-chlorophenoxy} -n-methylpyridine-2-carboxamide as an inhibitor of the vegfr kinase for the treatment of cancer
US7396843B2 (en) 2001-10-17 2008-07-08 Glaxo Group Limited 5′-carbamoyl-1,1′-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
US7408064B2 (en) 2001-09-11 2008-08-05 Astrazeneca Ab Carbazole derivatives and their use as NPY5 receptor antagonists
WO2008142031A1 (en) 2007-05-18 2008-11-27 Institut Curie P38alpha as a therapeutic target in bladder carcinoma
US7491826B2 (en) 2003-01-14 2009-02-17 Cytokinetics, Inc. Compounds, compositions and methods
US7538223B2 (en) 2005-08-04 2009-05-26 Cytokinetics, Inc. Compounds, compositions and methods
US7550499B2 (en) 2004-05-12 2009-06-23 Bristol-Myers Squibb Company Urea antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7572790B2 (en) 2003-04-09 2009-08-11 Smithkline Beecham Corporation Biphenyl carboxylic amide p38 kinase inhibitors
US7612200B2 (en) 2004-12-07 2009-11-03 Locus Pharmaceuticals, Inc. Inhibitors of protein kinases
EP2116245A2 (en) 2004-08-07 2009-11-11 Boehringer Ingelheim International GmbH EGFR kinase inhibitor combinations for treating respiratory and gastrointestinal disorders
US7626055B2 (en) 2003-04-09 2009-12-01 Smithkline Beecham Corporation Biphenyl-carboxamide derivatives and their use as p38 kinase inhibitors
US7645778B2 (en) 2005-01-19 2010-01-12 Bristol-Myers Squibb Company Heteroaryl compounds as P2Y1 receptor inhibitors
US7700620B2 (en) 2005-06-27 2010-04-20 Bristol-Myers Squibb Company C-linked cyclic antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7714002B2 (en) 2005-06-27 2010-05-11 Bristol-Myers Squibb Company Carbocycle and heterocycle antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7718657B2 (en) 2005-12-16 2010-05-18 Cytokinetics, Inc. Certain indanyl urea modulators of the cardiac sarcomere
US7728008B2 (en) 2005-06-27 2010-06-01 Bristol-Myers Squibb Company N-linked heterocyclic antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7741479B2 (en) 2004-12-07 2010-06-22 Locus Pharmaceuticals, Inc. Urea inhibitors of MAP kinases
US7749999B2 (en) 2003-09-11 2010-07-06 Itherx Pharmaceuticals, Inc. Alpha-ketoamides and derivatives thereof
US7750160B2 (en) 2003-11-13 2010-07-06 Ambit Biosciences Corporation Isoxazolyl urea derivatives as kinase modulators
WO2010077955A1 (en) 2008-12-17 2010-07-08 The Scripps Research Institute Generation and maintenance of stem cells
US7812176B2 (en) 2004-03-23 2010-10-12 Arena Pharmaceuticals, Inc. Processes for preparing substituted N-aryl-N′-[3-(1H-pyrazol-5-YL) phenyl] ureas and intermediates thereof
US7816382B2 (en) 2005-06-27 2010-10-19 Bristol-Myers Squibb Company Linear urea mimics antagonists of P2Y1 receptor useful in the treatment of thrombotic condition
US7825120B2 (en) 2005-12-15 2010-11-02 Cytokinetics, Inc. Certain substituted ((piperazin-1-ylmethyl)benzyl)ureas
US7838540B2 (en) 2003-08-11 2010-11-23 Glaxosmithkline Llc 3-aminocarbonyl, 6-phenyl substituted pyridine-1-oxides as p38 kinase inhibitors
US7884101B2 (en) 2004-11-19 2011-02-08 Arena Pharmaceuticals, Inc. 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
EP2295427A1 (en) 2004-04-30 2011-03-16 Bayer HealthCare, LLC Substituted pyrazolyl urea derivatives useful in the treatment of cancer
US7960569B2 (en) 2006-10-17 2011-06-14 Bristol-Myers Squibb Company Indole antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
EP2338488A1 (en) 2006-05-26 2011-06-29 Bayer HealthCare, LLC Drug combinations with substituted diaryl ureas for the treatment of cancer
US7989455B2 (en) 2005-12-19 2011-08-02 Cytokinetics, Inc. Compounds, compositions and methods
EP2384751A1 (en) 2004-12-24 2011-11-09 Boehringer Ingelheim International Gmbh Medicaments for the treatment or prevention of fibrotic diseases
US8101617B2 (en) 2004-06-17 2012-01-24 Amgen, Inc. Disubstituted ureas and uses thereof in treating heart failure
WO2012012404A1 (en) 2010-07-19 2012-01-26 Bayer Healthcare Llc Drug combinations with fluoro-substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8148418B2 (en) 2006-05-18 2012-04-03 Arena Pharmaceuticals, Inc. Ethers, secondary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US8148417B2 (en) 2006-05-18 2012-04-03 Arena Pharmaceuticals, Inc. Primary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
CN102574781A (en) * 2009-09-30 2012-07-11 东丽株式会社 2,3-dihydro-1h-indene-2-ylurea derivative and pharmaceutical application of same
US8445495B2 (en) 2005-12-15 2013-05-21 Cytokinetics, Inc. Certain Chemical entities, compositions and methods
US8481535B2 (en) 2006-05-18 2013-07-09 Arena Pharmaceuticals, Inc. Crystalline forms and processes for the preparation of phenyl-pyrazoles useful as modulators of the 5-HT2A serotonin receptor
WO2013162027A1 (en) 2012-04-27 2013-10-31 学校法人 慶應義塾 Neuronal differentiation promoter
US8609656B2 (en) 2004-02-23 2013-12-17 Chugai Seiyaku Kabushiki Kaisha Heteroarylphenylurea derivative
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US8754238B2 (en) 2003-07-22 2014-06-17 Arena Pharmaceuticals, Inc. Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of disorders related thereto
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR
US8980891B2 (en) 2009-12-18 2015-03-17 Arena Pharmaceuticals, Inc. Crystalline forms of certain 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9034911B2 (en) 2008-10-28 2015-05-19 Arena Pharmaceuticals, Inc. Composition of a 5-HT2A serotonin receptor modulator useful for the treatment of disorders related thereto
US9126946B2 (en) 2008-10-28 2015-09-08 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)urea and crystalline forms related thereto
WO2015136292A1 (en) * 2014-03-12 2015-09-17 University Of Warwick Use of ddx3x inhibitors for the treatment of pneumovirus infections
US9181188B2 (en) 2002-02-11 2015-11-10 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
EP2906212A4 (en) * 2012-10-15 2016-06-08 Agios Pharmaceuticals Inc Therapeutic compounds and compositions
US9434692B2 (en) 2006-10-03 2016-09-06 Arena Pharmaceuticals, Inc. Pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9556149B2 (en) 2008-04-02 2017-01-31 Arena Pharmaceuticals, Inc. Processes for the preparation of pyrazole derivatives useful as modulators of the 5-HT2A serotonin receptor
US9567327B2 (en) 2007-08-15 2017-02-14 Arena Pharmaceuticals, Inc. Imidazo[1,2-a]pyridine derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9638690B2 (en) 2014-11-07 2017-05-02 The University Of British Columbia Compounds and compositions for use as alkylating agent sensors and methods of use thereof
US9662327B2 (en) 2011-06-17 2017-05-30 Agios Pharmaceuticals, Inc Phenyl and pyridinyl substituted piperidines and piperazines as inhibitors of IDH1 mutants and their use in treating cancer
US9737488B2 (en) 2005-03-07 2017-08-22 Bayer Healthcare Llc Pharmaceutical composition for the treatment of cancer
US9850277B2 (en) 2012-01-19 2017-12-26 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9856279B2 (en) 2011-06-17 2018-01-02 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9968595B2 (en) 2014-03-14 2018-05-15 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US9982309B2 (en) 2009-10-21 2018-05-29 Agios Pharmaceuticals, Inc. Method for treating cell proliferation related disorders
US9980961B2 (en) 2011-05-03 2018-05-29 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US10017495B2 (en) 2013-07-11 2018-07-10 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10022355B2 (en) 2015-06-12 2018-07-17 Axovant Sciences Gmbh Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of REM sleep behavior disorder
US10028961B2 (en) 2013-07-11 2018-07-24 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10029987B2 (en) 2009-06-29 2018-07-24 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US10034859B2 (en) 2015-07-15 2018-07-31 Axovant Sciences Gmbh Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of hallucinations associated with a neurodegenerative disease
US10288622B2 (en) 2011-05-23 2019-05-14 Yeda Research And Development Co. Ltd. Use of AKT phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
US10376510B2 (en) 2013-07-11 2019-08-13 Agios Pharmaceuticals, Inc. 2,4- or 4,6-diaminopyrimidine compounds as IDH2 mutants inhibitors for the treatment of cancer
US10457639B2 (en) 2008-08-15 2019-10-29 Georgetown University Fluorescent regulators of RASSF1A expression and human cancer cell proliferation
US10610125B2 (en) 2009-03-13 2020-04-07 Agios Pharmaceuticals, Inc. Methods and compositions for cell-proliferation-related disorders
US10653710B2 (en) 2015-10-15 2020-05-19 Agios Pharmaceuticals, Inc. Combination therapy for treating malignancies
US10653684B2 (en) 2002-02-11 2020-05-19 Bayer Healthcare Llc Aryl ureas with angiogenisis inhibiting activity
US10689414B2 (en) 2013-07-25 2020-06-23 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10723698B2 (en) 2013-03-15 2020-07-28 The Ohio State University Inhibitors of PRMT5 and methods of their use
US10980788B2 (en) 2018-06-08 2021-04-20 Agios Pharmaceuticals, Inc. Therapy for treating malignancies
US11053255B2 (en) 2015-06-22 2021-07-06 Georgetown University Synthesis of mahanine and related compounds
US11234976B2 (en) 2015-06-11 2022-02-01 Agios Pharmaceuticals, Inc. Methods of using pyruvate kinase activators
US11419859B2 (en) 2015-10-15 2022-08-23 Servier Pharmaceuticals Llc Combination therapy for treating malignancies
US11844758B2 (en) 2013-07-11 2023-12-19 Servier Pharmaceuticals Llc Therapeutically active compounds and their methods of use

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ301102B6 (en) * 1997-12-22 2009-11-04 Bayer Corporation Substituted aryl ureas, pharmaceutical compositions containing them and their use
AU2004200566B2 (en) * 1999-01-13 2006-08-17 Bayer Pharmaceuticals Corporation Omega-carboxy aryl substituted diphenyl ureas as p38 kinase inhibitors
US20070010529A1 (en) * 2003-05-19 2007-01-11 Kanji Takahashi Nitrogenous heterocyclic compounds and medical use thereof
CA2554878A1 (en) * 2004-01-30 2005-08-18 Merck Patent Gmbh Bisarylurea derivatives
AU2005267185A1 (en) * 2004-06-25 2006-02-02 Icos Corporation Bisarylurea derivatives useful for inhibiting CHK1
WO2006040056A1 (en) * 2004-10-13 2006-04-20 Merck Patent Gmbh Heterocyclic substituted bisarylurea derivatives as kinase inhibitors
US20120157482A1 (en) * 2009-08-28 2012-06-21 Graves Iii Alan Peterson Compounds and methods
CA3056305A1 (en) * 2017-05-12 2018-11-15 Rti International Diarylureas as cb1 allosteric modulators
CN109824560B (en) * 2019-03-11 2022-03-01 利尔化学股份有限公司 Preparation method of 1-cyclopropyl-3- (2-methylthio-4-trifluoromethylphenyl) propane-1, 3-dione

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828231A (en) * 1955-10-20 1960-02-17 Geigy Ag J R Improvements relating to insecticidal compounds and their use
US3151023A (en) * 1961-04-21 1964-09-29 Ciba Ltd Preparations for combating phytopathogenic microorganisms
US3200035A (en) * 1962-06-01 1965-08-10 Ciba Ltd Treatment of synthetic products, especially synthetic fibers
US3230141A (en) * 1959-08-14 1966-01-18 Geigy Ag J R Method for protecting fibers against attack by insects and bacteria with diphenyl urea compositions
US4405644A (en) * 1979-07-14 1983-09-20 Bayer Aktiengesellschaft Medicaments for the treatment of disorders of lipometabolism and their use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1019040E (en) * 1997-05-23 2005-01-31 Bayer Pharmaceuticals Corp INHIBITION OF THE ACTIVITY OF P38-KINASE BY MEANS OF ARILUREIAS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB828231A (en) * 1955-10-20 1960-02-17 Geigy Ag J R Improvements relating to insecticidal compounds and their use
US3230141A (en) * 1959-08-14 1966-01-18 Geigy Ag J R Method for protecting fibers against attack by insects and bacteria with diphenyl urea compositions
US3151023A (en) * 1961-04-21 1964-09-29 Ciba Ltd Preparations for combating phytopathogenic microorganisms
US3200035A (en) * 1962-06-01 1965-08-10 Ciba Ltd Treatment of synthetic products, especially synthetic fibers
US4405644A (en) * 1979-07-14 1983-09-20 Bayer Aktiengesellschaft Medicaments for the treatment of disorders of lipometabolism and their use

Cited By (274)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696475B2 (en) 1997-04-22 2004-02-24 Neurosearch A/S Substituted phenyl derivatives, their preparation and use
WO2000024707A1 (en) * 1998-10-22 2000-05-04 Neurosearch A/S Substituted phenyl derivatives, their preparation and use
US6706749B2 (en) 1998-10-22 2004-03-16 Neurosearch A/S Substituted phenyl derivatives, their preparation and use
EP1514867A3 (en) * 1998-10-22 2005-03-23 NeuroSearch A/S Substituted phenyl derivatives, their preparation and use
EP1514867A2 (en) * 1998-10-22 2005-03-16 NeuroSearch A/S Substituted phenyl derivatives, their preparation and use
EP2298311A1 (en) * 1999-01-13 2011-03-23 Bayer Healthcare Llc w-Carboxy aryl substituted diphenyl ureas as p38 kinase inhibitors
US7897623B2 (en) 1999-01-13 2011-03-01 Bayer Healthcare Llc ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors
EP1140840A4 (en) * 1999-01-13 2002-09-18 Bayer Ag -g(v)-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8124630B2 (en) 1999-01-13 2012-02-28 Bayer Healthcare Llc ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
EP1690853A1 (en) * 1999-01-13 2006-08-16 Bayer Pharmaceuticals Corporation W-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US8841330B2 (en) 1999-01-13 2014-09-23 Bayer Healthcare Llc Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
EP1158985A1 (en) * 1999-01-13 2001-12-05 Bayer Corporation OMEGA-CARBOXY ARYL SUBSTITUTED DIPHENYL UREAS AS p38 KINASE INHIBITORS
EP1158985A4 (en) * 1999-01-13 2008-03-12 Bayer Pharmaceuticals Corp OMEGA-CARBOXY ARYL SUBSTITUTED DIPHENYL UREAS AS p38 KINASE INHIBITORS
EP1140840A1 (en) * 1999-01-13 2001-10-10 Bayer Corporation -g(v)-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US6506748B2 (en) * 1999-01-19 2003-01-14 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US6372773B1 (en) 1999-01-19 2002-04-16 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US6333325B1 (en) 1999-01-19 2001-12-25 Boehringer Ingelheim Pharmaceuticals, Inc. Method of treating cytokine mediated diseases or conditions
US6329415B1 (en) 1999-01-19 2001-12-11 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US6319921B1 (en) 1999-01-19 2001-11-20 Boerhinger Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compound as antiinflammatory agents
US6242453B1 (en) 1999-02-22 2001-06-05 Boehringer Ingelheim Pharmaceuticals, Inc Polycyclo heterocyclic derivatives as antiinflammatory agents
US6358945B1 (en) 1999-03-12 2002-03-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
SG142120A1 (en) * 1999-03-12 2008-05-28 Boehringer Ingelheim Pharma Compounds useful as anti-inflammatory agents
US6476023B1 (en) 1999-03-12 2002-11-05 Boehringen Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as anti-inflammatory agents
US7019006B2 (en) 1999-03-12 2006-03-28 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
US7026476B2 (en) 1999-03-12 2006-04-11 Boehringer Ingelheim Pharmaceuticals, Inc. Intermediate arylamine compounds
US6660732B2 (en) 1999-03-12 2003-12-09 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
US6656933B2 (en) 1999-03-12 2003-12-02 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2000055152A1 (en) * 1999-03-12 2000-09-21 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as anti-inflammatory agents
US6337418B1 (en) 1999-04-09 2002-01-08 Eastman Chemical Co. Preparation of C1-C5 alkyl esters of nitro or thioether substituted aromatic carboxylic acids
US7094919B2 (en) 1999-04-09 2006-08-22 Eastman Chemical Company Preparation of substituted aromatic carboxylic acid esters
WO2000061538A1 (en) * 1999-04-09 2000-10-19 Eastman Chemical Company Preparation of substituted aromatic carboxylic acid esters
US6894173B2 (en) 1999-07-09 2005-05-17 Boehringer Ingelheim Pharmaceuticals, Inc. Intermediates useful for synthesis of heteroaryl-substituted urea compounds, and processes of making same
US6774233B2 (en) 1999-07-09 2004-08-10 Boehringer Ingelheim Pharmaceuticals, Inc. Process for synthesis of heteroaryl-substituted urea compounds useful as antiinflammatory agents
US6753426B2 (en) 1999-07-09 2004-06-22 Boehringer Ingelheim Pharmaceuticals, Inc. Polymorph and process for preparing same
US6835832B2 (en) 1999-07-09 2004-12-28 Boehringer Ingelheim Pharmaceuticals, Inc. Process for synthesis of heteroaryl-substituted urea compounds useful as antiinflammatory agents
US7030109B2 (en) 1999-07-19 2006-04-18 Pharmacia & Upjohn Company 1,2,3,4,5,6-Hexahydroazepino[4,5-b]indoles containing arylsulfones at the 9-position
WO2001005793A1 (en) * 1999-07-19 2001-01-25 Pharmacia & Upjohn Company 1,2,3,4,5,6-HEXAHYDROAZEPINO[4,5-b]INDOLES CONTAINING ARYLSULFONES AT THE 9-POSITION
US6878823B2 (en) 1999-07-19 2005-04-12 Pharmacia & Upjohn Company 1,2,3,4,5,6-hexahydroazepino[4,5-b]indoles containing arylsulfones at the 9-position
US6468999B1 (en) 1999-07-19 2002-10-22 Pharmacia & Upjohn Company 1,2,3,4,5,6,-hexahydroazepino [4,5-b]indoles containing arylsulfones at the 9-position
US6921823B2 (en) 1999-07-19 2005-07-26 Pharmacia & Upjohn Company Llc 1,2,3,4,5,6-Hexahydroazepino[4,5-b]indoles containing arylsulfones at the 9-position
US6492393B1 (en) 1999-11-16 2002-12-10 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2001036403A1 (en) * 1999-11-16 2001-05-25 Boehringer Ingelheim Pharmaceuticals, Inc. Urea derivatives as anti-inflammatory agents
US7241758B2 (en) 1999-11-16 2007-07-10 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
WO2001035899A2 (en) * 1999-11-19 2001-05-25 Axxima Pharmaceuticals Ag Inhibitors of helicobacter pylori induced gastrointestinal diseases
WO2001035899A3 (en) * 1999-11-19 2001-12-13 Axxima Pharmaceuticals Ag Inhibitors of helicobacter pylori induced gastrointestinal diseases
US6525046B1 (en) 2000-01-18 2003-02-25 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
US6608052B2 (en) 2000-02-16 2003-08-19 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
US7332492B2 (en) 2000-05-05 2008-02-19 Astrazeneca Ab Amino substituted dibenzothiophene derivatives for the treatment of disorders mediated by NP Y5 receptor
US6967216B2 (en) 2000-05-05 2005-11-22 Astrazeneca Ab Amino substituted dibenzothiophene derivatives for the treatment of disorders mediated by NP Y5 receptor
US6645990B2 (en) 2000-08-15 2003-11-11 Amgen Inc. Thiazolyl urea compounds and methods of uses
US7196104B2 (en) 2000-08-15 2007-03-27 Amgen, Inc. Thiazolyl urea compounds and methods of uses
US7166597B2 (en) 2000-08-22 2007-01-23 Glaxo Group Limited Fused pyrazole derivatives being protein kinase inhibitors
US6849409B2 (en) 2000-10-16 2005-02-01 Axxima Pharmaceuticals Ag Cellular kinases involved in Cytomegalovirus infection and their inhibition
US7238813B2 (en) 2000-11-29 2007-07-03 Smithkline Beecham Corporation Chemical compounds
US7235576B1 (en) * 2001-01-12 2007-06-26 Bayer Pharmaceuticals Corporation Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors
US6949567B2 (en) 2001-02-26 2005-09-27 4Sc Ag Compounds for the treatment of protozoal diseases
DE10109204A1 (en) * 2001-02-26 2002-09-19 4Sc Ag Use of new and known diphenylurea compounds for the preparation of a medicament for the inhibition of intracellular protein-degradation pathway
WO2002067939A1 (en) * 2001-02-27 2002-09-06 Bristol-Myers Squibb Company Fused cyclic succinimide compounds and analogs thereof, modulators of nuclear hormone receptor function
US7608618B2 (en) 2001-03-02 2009-10-27 Icos Corporation Urea or thiourea substituted 1,4-pyrazine compounds useful as anti-cancer agents and for inhibiting Chk1
US7067506B2 (en) 2001-03-02 2006-06-27 Icos Corporation Compounds useful for inhibiting Chk1
WO2002076930A2 (en) * 2001-03-07 2002-10-03 Telik, Inc. Substituted diarylureas as stimulators for fas-mediated apoptosis
WO2002076930A3 (en) * 2001-03-07 2003-01-16 Telik Inc Substituted diarylureas as stimulators for fas-mediated apoptosis
AU2002306618B2 (en) * 2001-03-07 2006-11-09 Telik, Inc. Substituted diarylureas as stimulators for Fas-mediated apoptosis
US6525091B2 (en) * 2001-03-07 2003-02-25 Telik, Inc. Substituted diarylureas as stimulators for Fas-mediated apoptosis
WO2002083642A1 (en) * 2001-04-13 2002-10-24 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
EP2386545A1 (en) * 2001-04-20 2011-11-16 Bayer Healthcare LLC Heteroaryl ureas containing nitrogen hetero-atoms as P38 kinase inhibitors
WO2002085859A1 (en) * 2001-04-20 2002-10-31 Bayer Corporation HETEROARYL UREAS CONTAINING NITROGEN HETERO-ATOMS AS p38 KINASE INHIBITORS
US6852717B2 (en) 2001-05-16 2005-02-08 Boehringer Ingelheim Pharmaceuticals, Inc. Compounds useful as anti-inflammatory agents
US6743788B2 (en) 2001-05-25 2004-06-01 Boehringer Ingelheim Pharmaceuticals, Inc. Carbamate and oxamide compounds
US6720321B2 (en) 2001-06-05 2004-04-13 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-disubstituted benzo-fused cycloalkyl urea compounds
EP1709965A2 (en) 2001-07-11 2006-10-11 Boehringer Ingelheim Pharmaceuticals, Inc. Methods of treating cytokine mediate diseases
US6916814B2 (en) 2001-07-11 2005-07-12 Boehringer Ingelheim Pharmaceuticals, Inc. Methods of treating cytokine mediated diseases
US7408064B2 (en) 2001-09-11 2008-08-05 Astrazeneca Ab Carbazole derivatives and their use as NPY5 receptor antagonists
US7396843B2 (en) 2001-10-17 2008-07-08 Glaxo Group Limited 5′-carbamoyl-1,1′-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
US7432289B2 (en) 2001-10-17 2008-10-07 Glaxo Group Limited 5-Acylamino-1,1′-biphenyl-4-carboxamide derivatives and their use as P38 kinase inhibitors
US7384963B2 (en) 2001-10-17 2008-06-10 Glaxo Group Limited 2′-Methyl-5-(1,3,4-oxadiazol-2-yl)1, 1′-biphenyl-4-carboxaide derivatives and their use as p38 kinase
US7208629B2 (en) 2001-10-17 2007-04-24 Glaxo Group Limited 5′-Carbamoyl-1,1-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2003032986A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited 2' -methyl-5-(1,3,4-oxadiazol-2-yl)-1,1'-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2003033483A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited Biphenylcarboxylic amide derivatives as p38 kinase inhibitors
WO2003032987A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited 2'-methyl-5'-(1,3,4-oxadiazol-2-yl)-1,1'-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
US7183297B2 (en) 2001-10-17 2007-02-27 Glaxo Group Limited Biphenyl-derivatives as p38-kinase inhibitors
US7166623B2 (en) 2001-10-17 2007-01-23 Glaxo Group Limited 2′-Methyl-5′-(1,3,4-oxadiazol-2-yl)-1,1′-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
WO2003032971A1 (en) * 2001-10-17 2003-04-24 Glaxo Group Limited 5’-acylamino-1,1’-biphenyl-4-carboxamide derivatives and their use as p38 kinase inhibitors
US7151118B2 (en) 2001-10-17 2006-12-19 Glaxo Group Limited Biphenylcarboxylic amide derivatives as p38-kinase inhibitors
WO2003032989A1 (en) * 2001-10-18 2003-04-24 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-disubstituted benzo-fused urea compounds as cytokine inhibitors
US6825184B2 (en) 2001-10-18 2004-11-30 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-Disubstituted benzo-fused urea compounds
WO2003056896A2 (en) * 2001-12-26 2003-07-17 Molecular Staging Inc. Use of cytokines secreted by dendritic cells
WO2003056896A3 (en) * 2001-12-26 2005-06-23 Molecular Staging Inc Use of cytokines secreted by dendritic cells
US8242147B2 (en) 2002-02-11 2012-08-14 Bayer Healthcare Llc Aryl ureas with angiogenisis inhibiting activity
US7838541B2 (en) 2002-02-11 2010-11-23 Bayer Healthcare, Llc Aryl ureas with angiogenesis inhibiting activity
WO2003068228A1 (en) 2002-02-11 2003-08-21 Bayer Pharmaceuticals Corporation Aryl ureas with angiogenesis inhibiting activity
WO2003068223A1 (en) * 2002-02-11 2003-08-21 Bayer Corporation Aryl ureas with raf kinase and angiogenesis inhibiting activity
US8618141B2 (en) 2002-02-11 2013-12-31 Bayer Healthcare Llc Aryl ureas with angiogenesis inhibiting activity
EP2324825A1 (en) 2002-02-11 2011-05-25 Bayer Healthcare LLC Aryl ureas with angiogenesis inhibiting activity
US10653684B2 (en) 2002-02-11 2020-05-19 Bayer Healthcare Llc Aryl ureas with angiogenisis inhibiting activity
US9181188B2 (en) 2002-02-11 2015-11-10 Bayer Healthcare Llc Aryl ureas as kinase inhibitors
US7125898B2 (en) 2002-02-12 2006-10-24 Smithkline Beecham Corporation Nicotinamide derivatives useful as p38 inhibitors.
US7514456B2 (en) 2002-02-12 2009-04-07 Smithkline Beecham Corporation Nicotinamide derivatives useful as p38 inhibitors
US7709506B2 (en) 2002-02-12 2010-05-04 Glaxosmithkline Llc Nicotinamide derivatives useful as p38 inhibitors
US7041669B2 (en) 2002-02-25 2006-05-09 Boehringer Ingelheim Pharmaceuticals, Inc. 1,4-benzofused urea compounds useful in treating cytokine mediated diseases
KR20030080509A (en) * 2002-04-09 2003-10-17 주식회사 엘지생명과학 Antibacterial Compositions Containing Urea, Thiourea and Sulfamide Derivatives
US7652022B2 (en) 2002-05-29 2010-01-26 Novartis Ag Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases
WO2003099771A2 (en) 2002-05-29 2003-12-04 Novartis Ag Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases
KR101036394B1 (en) * 2002-05-29 2011-05-23 노파르티스 아게 Diaryl Urea Derivatives Useful for the Treatment of Protein Kinase Dependent Diseases
WO2003099771A3 (en) * 2002-05-29 2004-04-01 Novartis Ag Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases
CN1656073B (en) * 2002-05-29 2010-05-26 诺瓦提斯公司 Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases
EP1707205A2 (en) 2002-07-09 2006-10-04 Boehringer Ingelheim Pharma GmbH & Co. KG Pharmaceutical compositions of anticholinergics and p38 kinase inhibitors in the treatment of respiratory diseases
US7279475B2 (en) 2002-08-08 2007-10-09 Boehringer Ingelheim Pharmaceuticals, Inc. Fluorinated di-aryl urea compounds
US6872726B2 (en) 2002-08-08 2005-03-29 Boehringer Ingelheim Pharmaceuticals Inc. Fluorinated di-aryl urea compounds
WO2004014870A1 (en) * 2002-08-08 2004-02-19 Boehringer Ingelheim Pharmaceuticals, Inc. Fluorinated phenyl-naphthalenyl-urea compounds as inhibitors of cytokines involved in inflammatory processes
US7268139B2 (en) 2002-08-29 2007-09-11 Scios, Inc. Methods of promoting osteogenesis
US7186725B2 (en) 2003-01-03 2007-03-06 Genzyme Corporation Anti-inflammatory compositions and methods
WO2004063181A1 (en) * 2003-01-03 2004-07-29 Genzyme Corporation Urea derivatives and their use as anti-inflammatory agents
US7491826B2 (en) 2003-01-14 2009-02-17 Cytokinetics, Inc. Compounds, compositions and methods
WO2004078748A2 (en) 2003-02-28 2004-09-16 Bayer Pharmaceuticals Corporation Novel bicyclic urea derivatives useful in the treatment of cancer and other disorders
WO2005016918A3 (en) * 2003-03-10 2005-04-07 Boehringer Ingelheim Pharma Heterocyclic n-aryl carboxamides as cytokine inhibitors
WO2005016918A2 (en) * 2003-03-10 2005-02-24 Boehringer Ingelheim Pharmaceuticals, Inc. Heterocyclic n-aryl carboxamides as cytokine inhibitors
US7626055B2 (en) 2003-04-09 2009-12-01 Smithkline Beecham Corporation Biphenyl-carboxamide derivatives and their use as p38 kinase inhibitors
US7271289B2 (en) 2003-04-09 2007-09-18 Smithkline Beecham Corporation Biphenylcarboxylic amide derivatives as p38 kinase inhibitors
US7572790B2 (en) 2003-04-09 2009-08-11 Smithkline Beecham Corporation Biphenyl carboxylic amide p38 kinase inhibitors
US8796250B2 (en) 2003-05-20 2014-08-05 Bayer Healthcare Llc Diaryl ureas for diseases mediated by PDGFR
US8063091B2 (en) 2003-05-22 2011-11-22 Abbott Laboratories Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US8299243B2 (en) 2003-05-22 2012-10-30 Abbvie Inc. Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US7598283B2 (en) 2003-05-22 2009-10-06 Abbott Laboratories, Inc. Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US8940778B2 (en) 2003-05-22 2015-01-27 Abbvie Inc. Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US7297709B2 (en) 2003-05-22 2007-11-20 Abbott Laboratories Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US8642776B2 (en) 2003-05-22 2014-02-04 Abbvie Inc. Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US9775829B2 (en) 2003-07-22 2017-10-03 Arena Pharmaceuticals, Inc. Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of disorders related thereto
US8871797B2 (en) 2003-07-22 2014-10-28 Arena Pharmaceuticals, Inc. Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of disorders related thereto
US8754238B2 (en) 2003-07-22 2014-06-17 Arena Pharmaceuticals, Inc. Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of disorders related thereto
US9273035B2 (en) 2003-07-22 2016-03-01 Arena Pharmaceuticals, Inc. Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of disorders related thereto
US8637553B2 (en) 2003-07-23 2014-01-28 Bayer Healthcare Llc Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US7838540B2 (en) 2003-08-11 2010-11-23 Glaxosmithkline Llc 3-aminocarbonyl, 6-phenyl substituted pyridine-1-oxides as p38 kinase inhibitors
US7919617B2 (en) 2003-09-11 2011-04-05 iTherX Pharmaceuticals Inc. Cytokine inhibitors
US7749999B2 (en) 2003-09-11 2010-07-06 Itherx Pharmaceuticals, Inc. Alpha-ketoamides and derivatives thereof
US7897599B2 (en) 2003-09-11 2011-03-01 iTherX Pharmaceuticals Inc. Cytokine inhibitors
US7244441B2 (en) 2003-09-25 2007-07-17 Scios, Inc. Stents and intra-luminal prostheses containing map kinase inhibitors
US7767670B2 (en) 2003-11-13 2010-08-03 Ambit Biosciences Corporation Substituted 3-carboxamido isoxazoles as kinase modulators
US7750160B2 (en) 2003-11-13 2010-07-06 Ambit Biosciences Corporation Isoxazolyl urea derivatives as kinase modulators
WO2005051366A3 (en) * 2003-11-28 2007-12-21 Novartis Ag Diaryl urea derivatives in the treatment of protein kinase dependent diseases
WO2005051366A2 (en) * 2003-11-28 2005-06-09 Novartis Ag Diaryl urea derivatives in the treatment of protein kinase dependent diseases
US8609656B2 (en) 2004-02-23 2013-12-17 Chugai Seiyaku Kabushiki Kaisha Heteroarylphenylurea derivative
US7812176B2 (en) 2004-03-23 2010-10-12 Arena Pharmaceuticals, Inc. Processes for preparing substituted N-aryl-N′-[3-(1H-pyrazol-5-YL) phenyl] ureas and intermediates thereof
WO2005092843A1 (en) * 2004-03-29 2005-10-06 Neurosearch A/S Novel urea derivatives and their medical use
EP2295427A1 (en) 2004-04-30 2011-03-16 Bayer HealthCare, LLC Substituted pyrazolyl urea derivatives useful in the treatment of cancer
EP2295426A1 (en) 2004-04-30 2011-03-16 Bayer HealthCare, LLC Substituted pyrazolyl urea derivatives useful in the treatment of cancer
US8207166B2 (en) 2004-04-30 2012-06-26 Bayer Healthcare Llc Substituted pyrazolyl urea derivatives useful in the treatment of cancer
US7550499B2 (en) 2004-05-12 2009-06-23 Bristol-Myers Squibb Company Urea antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US10385023B2 (en) 2004-06-17 2019-08-20 Cytokinetics, Inc. Compounds, compositions and methods
US10035770B2 (en) 2004-06-17 2018-07-31 Cytokinetics, Incorporated Compounds, compositions and methods
US8871769B2 (en) 2004-06-17 2014-10-28 Cytokinetics, Inc. Ureas and their use in the treatment of heart failure
US8513257B2 (en) 2004-06-17 2013-08-20 Cytokinetics, Incorporated Ureas and their use in the treatment of heart failure
US9643925B2 (en) 2004-06-17 2017-05-09 Cytokinetics, Incorporated Compounds, compositions and methods
US9150564B2 (en) 2004-06-17 2015-10-06 Cytokinetics, Inc. Compounds, compositions and methods
US8110595B2 (en) 2004-06-17 2012-02-07 Cytokinetics, Inc. Ureas and their use in the treatment of heart failure
US10975034B2 (en) 2004-06-17 2021-04-13 Cytokinetics, Inc. Compounds, compositions and methods
US8101617B2 (en) 2004-06-17 2012-01-24 Amgen, Inc. Disubstituted ureas and uses thereof in treating heart failure
EP2116245A2 (en) 2004-08-07 2009-11-11 Boehringer Ingelheim International GmbH EGFR kinase inhibitor combinations for treating respiratory and gastrointestinal disorders
EP2578226A1 (en) 2004-08-23 2013-04-10 Yeda Research And Development Co., Ltd. Peptide inhibitors for mediating stress responses
US8790653B2 (en) 2004-08-23 2014-07-29 Yeda Research And Development Co. Ltd. Peptide inhibitors for mediating stress responses
WO2006021954A2 (en) 2004-08-23 2006-03-02 Yeda Research And Development Co. Ltd. At The Weizmann Institute Of Science Peptide inhibitors for mediating stress responses
US8067008B2 (en) 2004-08-23 2011-11-29 Yeda Research And Development Co. Peptide inhibitors for mediating stress responses
WO2006042599A1 (en) * 2004-10-13 2006-04-27 Merck Patent Gmbh Phenylurea derivatives used as inhibitors of tyrosinkinase for treating tumors
US7696224B2 (en) 2004-10-13 2010-04-13 Merck Patent Gmbh Phenylurea derivatives as inhibitors of tyrosine kinases for the treatment of tumour diseases
US10781180B2 (en) 2004-11-19 2020-09-22 Arena Pharmaceuticals, Inc. 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US8785441B2 (en) 2004-11-19 2014-07-22 Arena Pharmaceuticals, Inc. 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US7884101B2 (en) 2004-11-19 2011-02-08 Arena Pharmaceuticals, Inc. 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US7612200B2 (en) 2004-12-07 2009-11-03 Locus Pharmaceuticals, Inc. Inhibitors of protein kinases
US7741479B2 (en) 2004-12-07 2010-06-22 Locus Pharmaceuticals, Inc. Urea inhibitors of MAP kinases
EP2878297A1 (en) 2004-12-24 2015-06-03 Boehringer Ingelheim International GmbH Medicaments for the treatment or prevention of fibrotic diseases
EP2384751A1 (en) 2004-12-24 2011-11-09 Boehringer Ingelheim International Gmbh Medicaments for the treatment or prevention of fibrotic diseases
EP1676574A2 (en) 2004-12-30 2006-07-05 Johnson &amp; Johnson Vision Care, Inc. Methods for promoting survival of transplanted tissues and cells
US7645778B2 (en) 2005-01-19 2010-01-12 Bristol-Myers Squibb Company Heteroaryl compounds as P2Y1 receptor inhibitors
US9737488B2 (en) 2005-03-07 2017-08-22 Bayer Healthcare Llc Pharmaceutical composition for the treatment of cancer
US7700620B2 (en) 2005-06-27 2010-04-20 Bristol-Myers Squibb Company C-linked cyclic antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US8329718B2 (en) 2005-06-27 2012-12-11 Bristol-Myers Squibb Company N-linked heterocyclic antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7816382B2 (en) 2005-06-27 2010-10-19 Bristol-Myers Squibb Company Linear urea mimics antagonists of P2Y1 receptor useful in the treatment of thrombotic condition
US7714002B2 (en) 2005-06-27 2010-05-11 Bristol-Myers Squibb Company Carbocycle and heterocycle antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7728008B2 (en) 2005-06-27 2010-06-01 Bristol-Myers Squibb Company N-linked heterocyclic antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
US7538223B2 (en) 2005-08-04 2009-05-26 Cytokinetics, Inc. Compounds, compositions and methods
WO2007049820A1 (en) 2005-10-28 2007-05-03 Takeda Pharmaceutical Company Limited Heterocyclic amide compound and use thereof
US8871768B2 (en) 2005-12-15 2014-10-28 Cytokinetics, Inc. Certain chemical entities, compositions and methods
US8445495B2 (en) 2005-12-15 2013-05-21 Cytokinetics, Inc. Certain Chemical entities, compositions and methods
US7825120B2 (en) 2005-12-15 2010-11-02 Cytokinetics, Inc. Certain substituted ((piperazin-1-ylmethyl)benzyl)ureas
US8653081B2 (en) 2005-12-16 2014-02-18 Cytokinetics, Inc. Certain chemical entities, compositions, and methods
US7718657B2 (en) 2005-12-16 2010-05-18 Cytokinetics, Inc. Certain indanyl urea modulators of the cardiac sarcomere
US8410108B2 (en) 2005-12-16 2013-04-02 Cytokinetics, Inc. Certain chemical entities, compositions and methods
US7989455B2 (en) 2005-12-19 2011-08-02 Cytokinetics, Inc. Compounds, compositions and methods
US9328107B2 (en) 2006-05-18 2016-05-03 Arena Pharmaceuticals, Inc. Primary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9199940B2 (en) 2006-05-18 2015-12-01 Arena Pharmaceuticals, Inc. Crystalline forms and processes for the preparation of phenyl-pyrazoles useful as modulators of the 5-HT2A serotonin receptor
USRE45336E1 (en) 2006-05-18 2015-01-13 Arena Pharmaceuticals, Inc. Primary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
USRE45337E1 (en) 2006-05-18 2015-01-13 Arena Pharmaceuticals, Inc. Ethers, secondary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US8680119B2 (en) 2006-05-18 2014-03-25 Arena Pharmaceuticals, Inc. Ethers, secondary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9783502B2 (en) 2006-05-18 2017-10-10 Arena Pharmaceuticals, Inc. Crystalline forms and processes for the preparation of phenyl-pyrazoles useful as modulators of the 5-HT2A serotonin receptor
US8481535B2 (en) 2006-05-18 2013-07-09 Arena Pharmaceuticals, Inc. Crystalline forms and processes for the preparation of phenyl-pyrazoles useful as modulators of the 5-HT2A serotonin receptor
US9221755B2 (en) 2006-05-18 2015-12-29 Arena Pharmaceuticals, Inc. Ethers, secondary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US10450276B2 (en) 2006-05-18 2019-10-22 Arena Pharmaceuticals, Inc. Ethers, secondary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US8148417B2 (en) 2006-05-18 2012-04-03 Arena Pharmaceuticals, Inc. Primary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US8148418B2 (en) 2006-05-18 2012-04-03 Arena Pharmaceuticals, Inc. Ethers, secondary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9987252B2 (en) 2006-05-18 2018-06-05 Arena Pharmaceuticals, Inc. Primary amines and derivitves thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US8664258B2 (en) 2006-05-18 2014-03-04 Arena Pharmaceuticals, Inc. Primary amines and derivatives thereof as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
EP2338488A1 (en) 2006-05-26 2011-06-29 Bayer HealthCare, LLC Drug combinations with substituted diaryl ureas for the treatment of cancer
WO2008039794A1 (en) * 2006-09-25 2008-04-03 Arete Therapeutics, Inc. Soluble epoxide hydrolase inhibitors
US10351531B2 (en) 2006-10-03 2019-07-16 Arena Pharmaceuticals, Inc. Pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9434692B2 (en) 2006-10-03 2016-09-06 Arena Pharmaceuticals, Inc. Pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9732039B2 (en) 2006-10-03 2017-08-15 Arena Pharmeceuticals, Inc. Pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US7960569B2 (en) 2006-10-17 2011-06-14 Bristol-Myers Squibb Company Indole antagonists of P2Y1 receptor useful in the treatment of thrombotic conditions
WO2008079972A2 (en) 2006-12-20 2008-07-03 Bayer Healthcare Llc 4-{4- [ ({3-tert-butyl-1- [3- (hydroxymethyl) phenyl] - 1h- pyrazol- 5 -yl } carbamoyl) -amin o] -3-chlorophenoxy} -n-methylpyridine-2-carboxamide as an inhibitor of the vegfr kinase for the treatment of cancer
WO2008142031A1 (en) 2007-05-18 2008-11-27 Institut Curie P38alpha as a therapeutic target in bladder carcinoma
US9567327B2 (en) 2007-08-15 2017-02-14 Arena Pharmaceuticals, Inc. Imidazo[1,2-a]pyridine derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US10058549B2 (en) 2007-08-15 2018-08-28 Arena Pharmaceuticals, Inc. Imidazo[1,2-α]pyridine derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
US9556149B2 (en) 2008-04-02 2017-01-31 Arena Pharmaceuticals, Inc. Processes for the preparation of pyrazole derivatives useful as modulators of the 5-HT2A serotonin receptor
US10787437B2 (en) 2008-04-02 2020-09-29 Arena Pharmaceuticals, Inc. Processes for the preparation of pyrazole derivatives useful as modulators of the 5-HT2A serotonin receptor
US10457639B2 (en) 2008-08-15 2019-10-29 Georgetown University Fluorescent regulators of RASSF1A expression and human cancer cell proliferation
US9034911B2 (en) 2008-10-28 2015-05-19 Arena Pharmaceuticals, Inc. Composition of a 5-HT2A serotonin receptor modulator useful for the treatment of disorders related thereto
US9126946B2 (en) 2008-10-28 2015-09-08 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)urea and crystalline forms related thereto
US9353064B2 (en) 2008-10-28 2016-05-31 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)-urea and crystalline forms related thereto
US9801856B2 (en) 2008-10-28 2017-10-31 Arena Pharmaceuticals, Inc. Composition of a 5-HT2A serotonin receptor modulator useful for the treatment of disorders related thereto
US10543193B2 (en) 2008-10-28 2020-01-28 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)-urea and crystalline forms related thereto
US10117851B2 (en) 2008-10-28 2018-11-06 Arena Pharmaceuticals, Inc. Composition of a 5-HT2A serotonin receptor modulator useful for the treatment of disorders related thereto
US10071075B2 (en) 2008-10-28 2018-09-11 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)-urea and crystalline forms related thereto
US9745270B2 (en) 2008-10-28 2017-08-29 Arena Pharmaceuticals, Inc. Processes useful for the preparation of 1-[3-(4-bromo-2-methyl-2H-pyrazol-3-yl)-4-methoxy-phenyl]-3-(2,4-difluoro-phenyl)-urea and crystalline forms related thereto
US10583122B2 (en) 2008-10-28 2020-03-10 Arena Pharmaceuticals, Inc. Composition of a 5-HT2A serotonin receptor modulator useful for the treatment of disorders related thereto
EP3312269A1 (en) 2008-12-17 2018-04-25 The Scripps Research Institute Generation and maintenance of stem cells
WO2010077955A1 (en) 2008-12-17 2010-07-08 The Scripps Research Institute Generation and maintenance of stem cells
US10610125B2 (en) 2009-03-13 2020-04-07 Agios Pharmaceuticals, Inc. Methods and compositions for cell-proliferation-related disorders
US11866411B2 (en) 2009-06-29 2024-01-09 Agios Pharmaceutical, Inc. Therapeutic compounds and compositions
US10029987B2 (en) 2009-06-29 2018-07-24 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US10988448B2 (en) 2009-06-29 2021-04-27 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
USRE49582E1 (en) 2009-06-29 2023-07-18 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
US8653304B2 (en) 2009-09-30 2014-02-18 Toray Industries, Inc. 2,3-dihydro-1H-indene-2-yl urea derivative and pharmaceutical application of same
CN102574781A (en) * 2009-09-30 2012-07-11 东丽株式会社 2,3-dihydro-1h-indene-2-ylurea derivative and pharmaceutical application of same
US10711314B2 (en) 2009-10-21 2020-07-14 Agios Pharmaceuticals, Inc. Methods for diagnosing IDH-mutant cell proliferation disorders
US9982309B2 (en) 2009-10-21 2018-05-29 Agios Pharmaceuticals, Inc. Method for treating cell proliferation related disorders
US8980891B2 (en) 2009-12-18 2015-03-17 Arena Pharmaceuticals, Inc. Crystalline forms of certain 3-phenyl-pyrazole derivatives as modulators of the 5-HT2A serotonin receptor useful for the treatment of disorders related thereto
WO2012012404A1 (en) 2010-07-19 2012-01-26 Bayer Healthcare Llc Drug combinations with fluoro-substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions
US10632114B2 (en) 2011-05-03 2020-04-28 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US9980961B2 (en) 2011-05-03 2018-05-29 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US11793806B2 (en) 2011-05-03 2023-10-24 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use in therapy
US10288622B2 (en) 2011-05-23 2019-05-14 Yeda Research And Development Co. Ltd. Use of AKT phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
US11852634B2 (en) 2011-05-23 2023-12-26 Yeda Research And Development Co. Ltd. Use of AKT phosphorylation as a biomarker for prognosing neurodegenerative diseases and treating same
US9856279B2 (en) 2011-06-17 2018-01-02 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9662327B2 (en) 2011-06-17 2017-05-30 Agios Pharmaceuticals, Inc Phenyl and pyridinyl substituted piperidines and piperazines as inhibitors of IDH1 mutants and their use in treating cancer
US10640534B2 (en) 2012-01-19 2020-05-05 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US9850277B2 (en) 2012-01-19 2017-12-26 Agios Pharmaceuticals, Inc. Therapeutically active compositions and their methods of use
US10717764B2 (en) 2012-01-19 2020-07-21 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US11667673B2 (en) 2012-01-19 2023-06-06 Servier Pharmaceuticals Llc Therapeutically active compounds and their methods of use
WO2013162027A1 (en) 2012-04-27 2013-10-31 学校法人 慶應義塾 Neuronal differentiation promoter
US10202339B2 (en) 2012-10-15 2019-02-12 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
EP2906212A4 (en) * 2012-10-15 2016-06-08 Agios Pharmaceuticals Inc Therapeutic compounds and compositions
US10723698B2 (en) 2013-03-15 2020-07-28 The Ohio State University Inhibitors of PRMT5 and methods of their use
US10376510B2 (en) 2013-07-11 2019-08-13 Agios Pharmaceuticals, Inc. 2,4- or 4,6-diaminopyrimidine compounds as IDH2 mutants inhibitors for the treatment of cancer
US10017495B2 (en) 2013-07-11 2018-07-10 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US11844758B2 (en) 2013-07-11 2023-12-19 Servier Pharmaceuticals Llc Therapeutically active compounds and their methods of use
US10028961B2 (en) 2013-07-11 2018-07-24 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10172864B2 (en) 2013-07-11 2019-01-08 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10946023B2 (en) 2013-07-11 2021-03-16 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US10689414B2 (en) 2013-07-25 2020-06-23 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US11021515B2 (en) 2013-07-25 2021-06-01 Agios Pharmaceuticals, Inc. Therapeutically active compounds and their methods of use
US9884812B2 (en) 2014-03-12 2018-02-06 University Of Warwick Use of DDX3X inhibitors for the treatment of pneumovirus infections
WO2015136292A1 (en) * 2014-03-12 2015-09-17 University Of Warwick Use of ddx3x inhibitors for the treatment of pneumovirus infections
US11504361B2 (en) 2014-03-14 2022-11-22 Servier Pharmaceuticals Llc Pharmaceutical compositions of therapeutically active compounds
US10799490B2 (en) 2014-03-14 2020-10-13 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US10449184B2 (en) 2014-03-14 2019-10-22 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US9968595B2 (en) 2014-03-14 2018-05-15 Agios Pharmaceuticals, Inc. Pharmaceutical compositions of therapeutically active compounds
US9638690B2 (en) 2014-11-07 2017-05-02 The University Of British Columbia Compounds and compositions for use as alkylating agent sensors and methods of use thereof
US11234976B2 (en) 2015-06-11 2022-02-01 Agios Pharmaceuticals, Inc. Methods of using pyruvate kinase activators
US10022355B2 (en) 2015-06-12 2018-07-17 Axovant Sciences Gmbh Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of REM sleep behavior disorder
US11053255B2 (en) 2015-06-22 2021-07-06 Georgetown University Synthesis of mahanine and related compounds
US11304932B2 (en) 2015-07-15 2022-04-19 Axovant Sciences Gmbh Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of hallucinations associated with a neurodegenerative disease
US10034859B2 (en) 2015-07-15 2018-07-31 Axovant Sciences Gmbh Diaryl and arylheteroaryl urea derivatives as modulators of the 5-HT2A serotonin receptor useful for the prophylaxis and treatment of hallucinations associated with a neurodegenerative disease
US11419859B2 (en) 2015-10-15 2022-08-23 Servier Pharmaceuticals Llc Combination therapy for treating malignancies
US10653710B2 (en) 2015-10-15 2020-05-19 Agios Pharmaceuticals, Inc. Combination therapy for treating malignancies
US10980788B2 (en) 2018-06-08 2021-04-20 Agios Pharmaceuticals, Inc. Therapy for treating malignancies

Also Published As

Publication number Publication date
AU1939999A (en) 1999-07-12
IL136737A (en) 2006-12-10
DE69830513T2 (en) 2006-03-16
EP1042305B1 (en) 2005-06-08
JP2001526276A (en) 2001-12-18
ES2154252T3 (en) 2005-12-01
EP1042305A4 (en) 2003-05-14
CA2315715C (en) 2010-06-22
IL136737A0 (en) 2001-06-14
EP1616865A1 (en) 2006-01-18
CA2315715A1 (en) 1999-07-01
IL170235A (en) 2010-04-15
ES2154252T1 (en) 2001-04-01
DE69830513D1 (en) 2005-07-14
DE1042305T1 (en) 2001-04-19
EP1042305A1 (en) 2000-10-11
ATE297383T1 (en) 2005-06-15
DK1042305T3 (en) 2005-09-19
HK1032050A1 (en) 2001-07-06
JP3887769B2 (en) 2007-02-28
PT1042305E (en) 2005-10-31

Similar Documents

Publication Publication Date Title
EP1042305B1 (en) INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS
US7517880B2 (en) Inhibition of p38 kinase using symmetrical and unsymmetrical diphenyl ureas
EP1379507B1 (en) HETEROARYL UREAS CONTAINING NITROGEN HETERO-ATOMS AS p38 KINASE INHIBITORS
EP1041982B1 (en) INHIBITION OF p38 KINASE ACTIVITY USING SUBSTITUTED HETEROCYCLIC UREAS
EP1043995B9 (en) INHIBITION OF p38 KINASE ACTIVITY USING ARYL AND HETEROARYL SUBSTITUTED HETEROCYCLIC UREAS
EP1158985B1 (en) OMEGA-CARBOXY ARYL SUBSTITUTED DIPHENYL UREAS AS p38 KINASE INHIBITORS
US20080300281A1 (en) Inhibition of p38 Kinase Activity Using Aryl and Heteroaryl Substituted Heterocyclic Ureas
AU2003213527A1 (en) Inhibition of P38 Kinase using Symmetrical and Unsymmetrical Diphenyl Ureas
MXPA00006227A (en) INHIBITION OF p38 KINASE USING SYMMETRICAL AND UNSYMMETRICAL DIPHENYL UREAS
MXPA00006232A (en) INHIBITION OF p38 KINASE ACTIVITY USING ARYL AND HETEROARYL SUBSTITUTED HETEROCYCLIC UREAS
MXPA01007120A (en) &amp;ohgr;-CARBOXY ARYL SUBSTITUTED DIPHENYL UREAS AS p38 KINASE INHIBITORS

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 136737

Country of ref document: IL

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 19399/99

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 525400

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2315715

Country of ref document: CA

Ref country code: CA

Ref document number: 2315715

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998964221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/006227

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 1998964221

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1998964221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 170235

Country of ref document: IL