WO1999023421A1 - Rotary oxidizer systems for control of restaurant emissions - Google Patents

Rotary oxidizer systems for control of restaurant emissions Download PDF

Info

Publication number
WO1999023421A1
WO1999023421A1 PCT/US1998/020145 US9820145W WO9923421A1 WO 1999023421 A1 WO1999023421 A1 WO 1999023421A1 US 9820145 W US9820145 W US 9820145W WO 9923421 A1 WO9923421 A1 WO 9923421A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
rotor
heat exchange
rotary
rotary device
Prior art date
Application number
PCT/US1998/020145
Other languages
French (fr)
Inventor
James C. Fu
James M. Chen
Original Assignee
Engelhard Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Corporation filed Critical Engelhard Corporation
Priority to DE69824753T priority Critical patent/DE69824753D1/en
Priority to AU95830/98A priority patent/AU9583098A/en
Priority to JP2000519246A priority patent/JP2001522027A/en
Priority to EP98949526A priority patent/EP1029200B1/en
Priority to AT98949526T priority patent/ATE269960T1/en
Publication of WO1999023421A1 publication Critical patent/WO1999023421A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/28Moving reactors, e.g. rotary drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2042Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft
    • F24C15/205Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft with means for oxidation of cooking fumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00716Means for reactor start-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00243Mathematical modelling

Definitions

  • This invention relates to a system for abating the smoke containing particulate matter (P ) (i.e., liquid droplets of grease or fat) and volatile organic compounds (VOCs) generated from the burning of fats, greases, proteins, and/or carbohydrates, during food preparation. More particularly, this invention is concerned with restaurant emissions smoke abatement using a rotary regenerative thermal or catalytic oxidizer.
  • P particulate matter
  • VOCs volatile organic compounds
  • restaurant catalysts are normally installed inside the exhaust duct of a cooking ventilation system at a position close to the exhaust hood outlet. Due to the mixing with cool room air, the hot exhaust generated from the cooking process is significantly cooled before it reaches the exhaust hood. To initiate thermal or catalytic oxidation, the exhaust gas stream is needed to be reheated back to higher temperatures more conducive to either thermal or catalytic oxidation of the cooking exhaust contaminants. The additional heat is applied either directly on the catalyst support or to the exhaust gas stream. In addition to the preheating, the exotherm generated by the catalytic oxidation reaction also elevates the temperature of the exhaust gas.
  • U.S. Patent No. 4,138,220 describes an apparatus for catalytic oxidation of grease and fats in low temperature fumes .
  • the apparatus recovers at least some of the heat energy of the treated, exiting stream as heat from this stream is transferred to the entering stream prior to passage over the catalyst .
  • the heat exchange device describes is a countercurrent heat exchanger, separate and apart from the catalyst.
  • this patent is silent with regard to a heat exchange device for recovering heat exiting the apparatus which rotates and is an integral part of the catalyst system, i.e., the catalyst in the '220 patent is not deposited in or on the heat exchange device.
  • Applicants provide an advance over the prior art in the treatment of restaurant emissions by providing a rotary heat exchange device for thermally or catalytically destroying restaurant emissions.
  • the advantages of which are herein below described.
  • the present invention provides a smoke abatement system for removal of particulate matter (PM) and volatile organic compounds (VOCs) from a cooking emissions stream comprising: an inlet duct for receiving the cooking emissions stream and directing the stream to a rotary, heat regenerative device; the rotary device comprising means to recover heat from the emissions stream after thermal or catalytic oxidation and before the oxidized emission stream is returned to the atmosphere; and an outlet duct for directing the oxidized emission stream from the rotary device to the atmosphere .
  • PM particulate matter
  • VOCs volatile organic compounds
  • the term atmosphere is intended to include both the ambient “outside” atmosphere and the ambient “inside” atmosphere of enclosed structures such as buildings. Therefore, the present invention contemplates treating emissions from an indoor kiosk-type cooking device, wherein the treated cooking emissions exiting from the rotary device of the present invention is exhausted or vented to the atmosphere ("indoor") of the building.
  • the method of the present invention provides directing the cooking emissions stream from an inlet duct to the rotary regenerative oxidizer, for heating and oxidation therein.
  • the emissions stream then flows through a transfer chamber, which, if desired, thermally oxidizes any remaining particulates or VOCs, in the stream, and thereafter flows through an output portion of the rotary oxidizer for venting to the atmosphere or other use .
  • a second embodiment also operates in steady state and comprises a stationary catalyzed or uncatalyzed heat regenerative bed, and, a one-piece rotary element that continuously rotates the air flow entering and exiting the bed, thereby alternating the various gas flows through the system.
  • the present invention may accommodate a purge stream which redirects cleansed exhaust air or other air back through the regenerative bed, thereby removing trapped contaminants.
  • the aspects of the present invention also correspond to embodiments containing an uncatalyzed thermal oxidizer of the same rotary heat regenerative design.
  • a further advantage of the invention provides simplified, in-situ cleaning of the rotary oxidizer as the speed of rotation of the oxidizer may be conveniently lowered or stopped to allow for flow of a hot, cleaning stream to oxidize any greases or fats that may accumulate on the "cold" spots of the rotary oxidizer.
  • This advantage circumscribes the inconvenience associated with current restaurant catalysts which typically have to be removed from the apparatus to be cleaned.
  • Yet another advantage of the present invention is the inherent removal of odors while oxidizing with the smoke generated by cooking emissions. That is to say, oxidation of cooking emission contaminants will desirably destroy the organic compounds responsible for the odors emitted during cooking. Thus, an added benefit of this invention is removal of undesirable odors emanating from cooking emissions .
  • FIG. 1 schematically illustrates the smoke abatement system of the present invention.
  • Figure 2 schematically illustrates a first embodiment of the rotary regenerative catalytic oxidizer, having a rotatable heat regenerative bed.
  • Figure 3 schematically illustrates a first embodiment of the rotary regenerative catalytic oxidizer having a purge stream.
  • Figure 4 schematically illustrates a second embodiment of the rotary regenerative catalytic oxidizer, having a rotary element and a stationary heat regenerative bed.
  • Figure 5 schematically illustrates an expanded view of the rotary element of the second embodiment .
  • Figure 6 is a graph illustrating the effect of reduced length and reduced period on thermal efficiency.
  • Figure 7 illustrates a third embodiment of a rotary regenerative catalytic oxidizer having two in-line rotatable heat regenerative beds.
  • Figure 8 illustrates a fourth embodiment of a rotary regenerative catalytic oxidizer, having a rotary element and two in-line stationary heat regenerative beds.
  • the rotary oxidizers of the present invention may be horizontally, vertically, or otherwise orientated and that the cooking emissions can pass through the rotary oxidizer perpendicularly or axially relative to the axis of rotation of the rotary oxidizer.
  • This invention applies the concept of a rotary regenerative thermal or catalytic oxidizer for control of restaurant emissions .
  • This new design uses a round metal or ceramic honeycomb wheel and optionally is at least partially coated with a catalyst capable of oxidizing restaurant emissions.
  • the wheel is equally divided into two sections at an inlet face.
  • the cooking exhaust from the hood passes through one side of the honeycomb wheel, and then flows into a transfer chamber at the opposite end, in which a gas-fired burner or an electrical heater may be installed.
  • the heater may be used to raise the gas temperature to a level at which catalytic oxidation is initiated.
  • the gas exits to the exhaust duct through the other side of the wheel.
  • the gas phase VOC and particulate matter are oxidized to
  • the wheel is designed to rotate at speeds of about 5 to 10 rpm between the inlet (cold) and outlet (hot) gas streams working as a heat exchanger, transferring heat from the hot gas at outlet side to the cold gas at inlet side. This assures that gas leaving the unit is cooled and prevents the downstream exhaust fan from being exposed to the higher temperatures of thermal or catalytic oxidation. Also, due to its high thermal efficiency (capable of recovery of upwards of 90-95% of the heat extracted from the outlet stream to the inlet stream) , the unit needs little or no energy to keep the cooking exhaust at temperatures for efficient catalytic reaction after it reaches steady state. This provides great savings in operating cost for the restaurant owners .
  • the present invention also provides a simplified method in which to clean the rotary thermal or catalytic oxidizer.
  • restaurant catalysts have to be cleaned periodically to remove the grease and other volatile organic compound build-up which will accumulate on the cold spots of the oxidizer.
  • the normal cleaning routine which is labor intensive and time consuming, involves removing the catalyst module from the duct, rinsing it with water and light detergent, drying it, and putting it back.
  • This invention offers a simple and fast in-situ self-cleaning method. By lowering the rotation speed ( ⁇ 1 rpm) or stopping rotation completely, heat transfer efficiency of the wheel can be reduced significantly.
  • Cooking emissions 100 are generated from cooking food 110 on a cooking device 130.
  • the cooking emissions 100 are drawn into exhaust hood 200 and further drawn through inlet duct 210 leading to the rotary oxidizer 300.
  • the rotary oxidizer 300 while depicted in a preferred embodiment further described herein below, transfers heat from the exiting oxidized cooking emissions stream 320 to the incoming unoxidized cooking emissions stream 310.
  • the smoke abatement system uses a rotary regenerative catalytic oxidizer 10 (hereinafter "RCO"), as shown in Figure 2 and contains a cylindrical housing 12.
  • RCO rotary regenerative catalytic oxidizer 10
  • a cylindrical catalytic regenerator rotor 14 is disposed within housing 12.
  • a transfer chamber 16 is sealed and connected to housing 12 at a second end of rotor 14.
  • a heater device 18 is disposed within chamber 16.
  • the heater device 18 may comprise a burner, an electric heater, or other heat generating means and may be utilized either externally or internally of chamber 16.
  • a first sealing endplate 20 is stationary and adjoins a first end of the rotor 14, thereby dividing the rotor 14 into an inlet compartment 22 and an outlet compartment 24.
  • endplate 20 may be modified in accordance with a second embodiment of the present invention to further include a purge compartment
  • Endplate 20 may be sealed to the rotor 14 either physically, pneumatically, hydraulically, or by any other method known in the art .
  • a longitudinal axis 30 is centrally disposed within RCO 10, about which the rotor 14 rotates.
  • Rotor 14 is preferably constructed from a plurality of discrete and axially parallel, longitudinally disposed surfaces forming channels 15, each having a first and a second end.
  • Each channel is constructed from heat exchange media such as ceramic, cordierite for example, or metal, stainless steel for example. Other metals that may be used include aluminum, carbon steel, and stainless steel .
  • the preferred design is not limited to any geometric shape, and round, square, hexagonal, or other cross-sectional configurations may be utilized. More importantly, the heat exchange channels 15 form a monolith that is free from independent internal partitions that divide the heat exchange area into different flow regimes.
  • the axially parallel heat exchange surfaces may be either completely or partially washcoated with a catalyst such as Pt/Ti0 2 , manganese, chromium oxide, or combinations thereof.
  • a catalyst such as Pt/Ti0 2 , manganese, chromium oxide, or combinations thereof.
  • Suitable catalysts for use in this invention are those adapted for use in treatment of restaurant emissions such as disclosed in U.S. Patent Nos . 5,580,535; 4,900,712; and 4,138,220 the disclosures of which are incorporated by reference.
  • longitudinally disposed channels reduce pressure fluctuations, and, due to impermeable walls, prevent the exchange of gases in the adjacent channels and eliminate the need for a separate sealing means between the ingoing and outgoing process gases.
  • the heat exchange media should have a cell density ranging from at least 25 CPSI (cells per square inch), but more preferably 64 CPSI, to 1000 CPSI or higher, to have sufficient area to enhance both heat and mass transfer and reduce the size of the rotor 14.
  • process gases enter through inlet 22 and pass through the rotor 14 and channels 15 for catalytic oxidation of the contaminants therein.
  • the process gases then pass through transfer chamber 16, and may be thermally oxidized therein, if desired.
  • the heater device 18 may be simply used to control the fuel and supply the heat necessary for startup of the catalytic process, or it may be used on a continuous basis, thereby facilitating thermal oxidation within chamber 16.
  • Fuel for example natural gas, is supplied to the transfer chamber 16, through the heater device 18.
  • the purified gases are then directed back through channels within outlet compartment 24 and exhausted. As seen in Figure 3, a fraction of the purified outlet stream or other clean air may be diverted back into the RCO through an optional purge compartment 26.
  • Other purge methods by vacuum for example, may also be incorporated.
  • each of the channels 15 periodically passes through inlet compartment 22 through which process gases enter the RCO 10. If the purge option is desired, as the same channels continue to revolve, they next pass through purge compartment 26, wherein purified air forces any unreacted process gases into chamber 16. As shown in Figure 3, purge compartment 26 is located between inlet and outlet compartments 22 and 24, respectively. When the channels 15 function as inlet channels, a spike of contaminated air may become trapped therein. The purge feature prevents the contaminated air from being released as the channels subsequently rotate into the output compartment and function as exhaust channels.
  • rotor 14 comprises a plurality of grouped channels that are segregated into either an inlet, purge, or outlet function. As shown in Figures 2 and 3, the function of a given channel will vary as it revolves through the different flow regimes defined by endplate 20.
  • a flame arrestor functions to prevent cooking flames from reaching the rotary oxidizer as well as to aid in more uniform distribution of the cooking emissions.
  • Suitable flame arrestors and benefits associated with positioning of the flame arrestor within a smoke abatement system are described for example in U.S. Patent Nos. 5,431,887 and 5,622,100 the disclosures of which are incorporated by reference .
  • a second embodiment is shown in Figures 4 and 5.
  • the second embodiment is better suited for handling large gas flows that require a large size of heat sink material .
  • the heat exchange channels 15, having a first and a second end, are stationary.
  • a transfer chamber 16 is sealed and connected to housing 12 at a second end of rotor 14.
  • a heater device 18 is disposed within chamber 16.
  • the heater device 18 may comprise a burner, an electric heater, or other heat generating means and may be utilized either externally or internally of chamber 16.
  • a plurality of layered sections are located at a first end of RCO 10.
  • Section 32 comprises an input chamber
  • section 34 comprises an optional purge chamber
  • section 36 comprises an output chamber.
  • Section 38 comprises a dividing chamber that lies adjacent to, and in fluid communication with, the first ends of the channels 15.
  • a one-piece rotating element 40 having a first and a second end, rotatably extends through the input, purge, output, and dividing chambers.
  • Element 40 is internally divided into three separate passages, each passage forming a separate flow path and communicating with either the input, purge, or output chamber.
  • Dividing plates 44 rotatably engaged within chamber 38, comprise the second end of element 40, and divide chamber 38 into alternating input, purge, and output zones. As shown in Figure 5, element 40, comprising plates 44, rotates as a one-piece flow distributor, providing alternating gaseous flow to the several zones.
  • Dividing plates 44 are sealed against the first end of the channels 15, thereby creating input, purge, and output sections within the plurality of heat exchange channels .
  • Plates 44 may be sealed either pneumatically, hydraulically, physically, or by other methods known in the art.
  • an input stream flows into chamber 32, through rotating element 40, into the inlet zone of chamber 38, and through the input section of heat exchange channels 15 for catalytic treatment.
  • the gas then flows into transfer chamber 16 for further thermal oxidation if desired.
  • the heater device 18 may be simply used to supply the heat necessary for startup of the catalytic process, or it may be used on a continuous basis, thereby facilitating thermal oxidation within chamber.
  • the gases are forced through the transfer chamber 16 back through the outlet section of channels 15, thence through the outlet zone of chamber 38, through element 40, into chamber 36, and out of the RCO 10.
  • a fraction of the output stream, or other air may be directed into the purge stream flowing into chamber 34, through element 40, into the purge zone of chamber 38, through the purge section of channels 15, through the transfer chamber 16 and into the exhaust gas. Any other known purge method, by vacuum for example, may also be utilized.
  • the stationary heat exchange channels 15 alternate in function, whereby one channel will serve an input, purge, and output function upon one complete rotation of the element 40.
  • the load required to turn the rotating element 40 in contrast to turning the rotor 14 in the first embodiment, is substantially reduced.
  • purge options are included for high VOC contaminated process gases .
  • purification of high-VOC gases may be enhanced by utilizing a combination of two or more in-line rotary heat exchange beds.
  • the in-line rotors function essentially as that described in the first embodiment above.
  • the unit comprises a downstream and upstream rotor, 48 and 50 respectively, in close proximity to each other and rotating at the same speed.
  • the upstream rotor may rotate and the downstream rotor may be fixed in place wherein the upstream rotor actually functions as an RCO and as a flow distributor for the downstream rotor.
  • a fourth embodiment may comprise two in-line stationary heat regenerative beds that incorporate a flow distributor as described in the second embodiment above .
  • the unit comprises a downstream and upstream heat regenerative bed, 52 and 54 respectively, in close proximity to each other.
  • the process gases first pass through the upstream rotor and are then directed through the downstream rotor.
  • the upstream rotor 50 or 54 is preferably formed from heat exchange channels of relatively thick walls and low cell density, and has an approximate 40-50% void volume existing between the walls.
  • the downstream rotor 48 or 52 is formed from heat exchange channels of relatively thin walls and high cell density, and has an approximate 60-80% void volume.
  • the downstream rotor 48 or 52 is equipped with a transfer chamber 49 or 53, as in the first and second embodiments described above.
  • the thick wall/low cell density rotor within the upstream rotor increases heat storage, reduces VOC carryover from the colder zone, and also reduces the pressure drop through the unit.
  • each of the in-line rotors may be comprised of honeycombed channels formed from different materials.
  • the upstream rotor may comprise a honeycombed metallic bed
  • the downstream rotor may comprise a honeycombed catalyzed ceramic bed.
  • other combinations of catalyzed or uncatalyzed metallic and ceramic rotors may be used and such combinations are within the scope of this invention.
  • the rotor 14 rotates at 0.5 to 10 revolutions per minute, depending on the thermal efficiency desired. For example, if high-VOC process gases are directed into the RCO 10, then the cycles per minute can be decreased to lower the thermal efficiency and operate under a self- sustaining mode. On the other hand, if low-VOC process gases are directed into the RCO 10, the cycles per minute can then be increased to raise the thermal efficiency and lower the energy consumption.
  • the rotating element 40 of the second embodiment may be similarly adjusted to modify the thermal efficiency.
  • Thermal efficiency can be expressed by the following formula:
  • T temperature
  • Thermal efficiency depends on a number of complex factors. For a given gas flow, thermal efficiency increases with increasing heat transfer rate between gas and solids, increasing the solid thermal mass, and decreasing the cycle time. Mathematically, thermal efficiency can be expressed as a function of two parameters: reduced length and reduced period.
  • thermal efficiency f (reduced length, reduced period) where ,
  • h is the heat transfer coefficient
  • A is the heat transfer area
  • mf and cf are gas flow and gas specific heat, respectively.
  • Ms and Cs are solid mass and solid specific heat, respectively.
  • P is the period of a regenerator zone before switching.
  • Figure 6 illustrates the relationship of thermal efficiency with regard to reduced length, L, and reduced period, Rp .
  • the heat transfer area, A can be varied by using different shapes and sizes of heat transfer material .
  • a smaller size regenerator packed with high geometric area material and a large regenerator packed with a lower geometric area material may have the same heat transfer zone, or reduced length. Nevertheless, the thermal efficiency of the smaller regenerator would be less than that of the large regenerator if the cycle period was the same for both.
  • the smaller thermal mass of the small regenerator results in a larger number of the reduced period.
  • the thermal efficiency decreases as the reduced period is increased and as the reduced length is decreased.
  • the cycle time typically operates at 60-180 seconds, and then the gas flow is reversed. Any further reduction in the cycle period, created by switching the flow valves at time intervals of less than 60 seconds, is limited by consequential pressure pulses resulting in unsteady operation.
  • the rotary design of the present invention does not have flow reversal problems.
  • the cycle time can be reduced with no adverse effect on unit stability, or on upstream process conditions.
  • a rotary regenerative oxidizer in accordance with the present invention, can take full advantage of a high geometric area packing system, thereby reducing the volume of the oxidizer while maintaining an equivalent thermal efficiency.
  • Table 1 shows, when using a honeycomb of 200 CPSI, the bed of a rotary regenerator can be as small as 1/10 the size of a typical conventional fixed-bed regenerative system.
  • Table 1 RRCO compared to a fixed-bed RCO, each having a constant heat capacity and a thermal efficiency of 92%.
  • continuous rotation of the rotor facilitates steady state treatment of the process gases.
  • the thermal efficiency can be decreased from 92% to 87% simply by reducing the rotational speed from 10 rpm to 1 rpm.
  • the simple method of adjusting thermal efficiency represents a significant improvement when handling streams that contain varied solvent loading. As the solvent loading becomes relatively high, the thermal efficiency must be lowered to maintain a thermal balance.
  • Certain known rotary designs incorporate a rotational feature that indexes the rotor. Continuous rotation, in contrast to indexing, permits simplified tailoring of the cycle period and thus, a corresponding decrease or an increase in the thermal efficiency if desired.
  • the present invention accommodates flow rates of 100 - 2,000 SCFM in a regenerative heat exchanger at a reasonable capital cost.
  • larger flow rates may be accommodated by an increase in the size of the rotary RCO.
  • the rotary RCO 10 features parallel channels 15 that revolve as rotor 14 rotates, or a rotatable flow distributor 40, each of which operate in steady state.
  • the rotary RCO is generally operated in flow rates normally found with recuperative heat exchangers .
  • a rotary regenerative heat exchanger provides a more uniform axial temperature, and therefore more uniform surface temperatures.
  • recuperative heat exchanger concerns such as corrosion caused by "cold spots", condensation, and poor thermal efficiency are eliminated.
  • the preferred embodiment of the present invention combines the thermal and catalytic components into one bed.
  • the input and output flow efficiency is enhanced by directing the flow through axially parallel channels.
  • the only independent sealing means required is the sealing plate 44 located at the "cold" or input/output end of the system. The inherent seals of the heat exchange channels ensures simplified flow separation.
  • related art systems require sealing mechanisms that must be heat resilient due to the elevated heat exposure of their particular designs. This complicates the system, and increases manufacturing costs.
  • the various embodiments function with a reduction in parts normally found in known oxidizers.
  • many known rotary valve regenerative oxidizers use metallic partitions contained within the heat exchange beds. This design results in maintenance concerns due to leakage and stress cracks, and is more costly to construct. No metallic partitions are utilized in the present invention and as such, leakage is reduced, manufacturing costs are minimized, and treatment efficiency is enhanced.
  • Other known designs incorporate multi-component flow distributors.
  • the rotary distributor comprises a unified or one-piece structure, thereby eliminating the multiple parts found in known distributors, and reducing manufacturing costs.
  • Transfer chamber 16 may utilize a heat generating means, either internally or externally thereof, to ensure sufficient thermal oxidation of the process gases.
  • gases containing elevated levels of VOCS for example, may only need startup heat to maintain self- sustaining thermal and/or catalytic oxidation.
  • cleaning of the restaurant smoke abatement system of the present invention is conveniently accomplished in-situ, i.e., without having to remove the rotary device from smoke abatement system.
  • the method associated with cleaning of the rotary device entails lowering the speed of rotation of the rotary device to allow a heated cleansing stream to thoroughly oxidize any grease or fat contaminants which may have accumulated on the "cold spots" of the rotary device.
  • the rotation of the device may be stopped completely to permit complete removal of the contaminants.
  • the uncleaned section is rotated into the cleaning stream to remove the unwanted contaminants. After cleaning, the cleaning stream is exhausted to the atmosphere.
  • the cleansing stream may be air and should be introduced to the rotary device at a temperature sufficient to oxidize the accumulated contaminants, typically a temperature ranging from 600 to 1000°F.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

A restaurant emissions abatement system is disclosed which employs a rotary heat regenerative thermal or catalytic oxidizer (10). Thus, heat which normally would be exhausted into the atmosphere, is recovered by being transferred to incoming unoxidized restaurant emissions. The rotary oxidizers may be of a variety of designs including orientations which allow for perpendicular or axial flow of the emissions stream through the rotary oxidizer relative to the axis of rotation. The rotary design of the oxidizers also provides an advantage of permitting in-situ cleaning of the oxidizer (i.e., not having to remove oxidizer from abatement system) by simply lowering the speed of the oxidizer's rotation or stopping rotation altogether to permit hot gases to thoroughly oxidize accumulations of such contaminants as greases and fats.

Description

ROTARY OXIDIZER SYSTEMS FOR CONTROL OF RESTAURANT EMISSIONS
Related Application
This is a continuation-in-part application of U.S. Serial No. 08/831,108 filed April 1, 1997 and which is herein incorporated by reference.
BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates to a system for abating the smoke containing particulate matter (P ) (i.e., liquid droplets of grease or fat) and volatile organic compounds (VOCs) generated from the burning of fats, greases, proteins, and/or carbohydrates, during food preparation. More particularly, this invention is concerned with restaurant emissions smoke abatement using a rotary regenerative thermal or catalytic oxidizer.
Related Art
In the treatment of restaurant emissions except for chain-driven charbroilers, restaurant catalysts are normally installed inside the exhaust duct of a cooking ventilation system at a position close to the exhaust hood outlet. Due to the mixing with cool room air, the hot exhaust generated from the cooking process is significantly cooled before it reaches the exhaust hood. To initiate thermal or catalytic oxidation, the exhaust gas stream is needed to be reheated back to higher temperatures more conducive to either thermal or catalytic oxidation of the cooking exhaust contaminants. The additional heat is applied either directly on the catalyst support or to the exhaust gas stream. In addition to the preheating, the exotherm generated by the catalytic oxidation reaction also elevates the temperature of the exhaust gas. This often makes the temperature of the gas coming out of the catalytic reactor exceed the temperature operation limitation of the exhaust fan located at the end of the ductwork. To resolve this problem, outside makeup air is typically introduced into the duct before the fan to lower the exhaust temperature. Therefore, the capacity of the exhaust fan is undesirably increased to handle the extra load of air flow. The high costs of additional heating and oversized exhaust fans often hinder the use of catalytic systems for restaurant emission control.
U.S. Patent No. 4,138,220 describes an apparatus for catalytic oxidation of grease and fats in low temperature fumes . The apparatus recovers at least some of the heat energy of the treated, exiting stream as heat from this stream is transferred to the entering stream prior to passage over the catalyst . The heat exchange device describes is a countercurrent heat exchanger, separate and apart from the catalyst. However, this patent is silent with regard to a heat exchange device for recovering heat exiting the apparatus which rotates and is an integral part of the catalyst system, i.e., the catalyst in the '220 patent is not deposited in or on the heat exchange device.
Applicants provide an advance over the prior art in the treatment of restaurant emissions by providing a rotary heat exchange device for thermally or catalytically destroying restaurant emissions. The advantages of which are herein below described.
SUMMARY OF THE INVENTION
The present invention provides a smoke abatement system for removal of particulate matter (PM) and volatile organic compounds (VOCs) from a cooking emissions stream comprising: an inlet duct for receiving the cooking emissions stream and directing the stream to a rotary, heat regenerative device; the rotary device comprising means to recover heat from the emissions stream after thermal or catalytic oxidation and before the oxidized emission stream is returned to the atmosphere; and an outlet duct for directing the oxidized emission stream from the rotary device to the atmosphere .
As used herein, the term atmosphere is intended to include both the ambient "outside" atmosphere and the ambient "inside" atmosphere of enclosed structures such as buildings. Therefore, the present invention contemplates treating emissions from an indoor kiosk-type cooking device, wherein the treated cooking emissions exiting from the rotary device of the present invention is exhausted or vented to the atmosphere ("indoor") of the building.
The method of the present invention provides directing the cooking emissions stream from an inlet duct to the rotary regenerative oxidizer, for heating and oxidation therein. The emissions stream then flows through a transfer chamber, which, if desired, thermally oxidizes any remaining particulates or VOCs, in the stream, and thereafter flows through an output portion of the rotary oxidizer for venting to the atmosphere or other use . A second embodiment also operates in steady state and comprises a stationary catalyzed or uncatalyzed heat regenerative bed, and, a one-piece rotary element that continuously rotates the air flow entering and exiting the bed, thereby alternating the various gas flows through the system.
If desired, the present invention may accommodate a purge stream which redirects cleansed exhaust air or other air back through the regenerative bed, thereby removing trapped contaminants. Furthermore, the aspects of the present invention also correspond to embodiments containing an uncatalyzed thermal oxidizer of the same rotary heat regenerative design.
A further advantage of the invention provides simplified, in-situ cleaning of the rotary oxidizer as the speed of rotation of the oxidizer may be conveniently lowered or stopped to allow for flow of a hot, cleaning stream to oxidize any greases or fats that may accumulate on the "cold" spots of the rotary oxidizer. This advantage circumscribes the inconvenience associated with current restaurant catalysts which typically have to be removed from the apparatus to be cleaned.
Yet another advantage of the present invention, as would be understood by one skilled in the art, is the inherent removal of odors while oxidizing with the smoke generated by cooking emissions. That is to say, oxidation of cooking emission contaminants will desirably destroy the organic compounds responsible for the odors emitted during cooking. Thus, an added benefit of this invention is removal of undesirable odors emanating from cooking emissions .
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 schematically illustrates the smoke abatement system of the present invention.
Figure 2 schematically illustrates a first embodiment of the rotary regenerative catalytic oxidizer, having a rotatable heat regenerative bed.
Figure 3 schematically illustrates a first embodiment of the rotary regenerative catalytic oxidizer having a purge stream.
Figure 4 schematically illustrates a second embodiment of the rotary regenerative catalytic oxidizer, having a rotary element and a stationary heat regenerative bed.
Figure 5 schematically illustrates an expanded view of the rotary element of the second embodiment .
Figure 6 is a graph illustrating the effect of reduced length and reduced period on thermal efficiency.
Figure 7 illustrates a third embodiment of a rotary regenerative catalytic oxidizer having two in-line rotatable heat regenerative beds.
Figure 8 illustrates a fourth embodiment of a rotary regenerative catalytic oxidizer, having a rotary element and two in-line stationary heat regenerative beds.
Although the embodiments may be illustrated in certain spatial orientations, one skilled in the art will readily appreciate that the rotary oxidizers of the present invention may be horizontally, vertically, or otherwise orientated and that the cooking emissions can pass through the rotary oxidizer perpendicularly or axially relative to the axis of rotation of the rotary oxidizer.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT (S) This invention applies the concept of a rotary regenerative thermal or catalytic oxidizer for control of restaurant emissions . This new design uses a round metal or ceramic honeycomb wheel and optionally is at least partially coated with a catalyst capable of oxidizing restaurant emissions. In a preferred embodiment, more fully described herein, the wheel is equally divided into two sections at an inlet face. The cooking exhaust from the hood passes through one side of the honeycomb wheel, and then flows into a transfer chamber at the opposite end, in which a gas-fired burner or an electrical heater may be installed. The heater may be used to raise the gas temperature to a level at which catalytic oxidation is initiated. After the transfer chamber, the gas exits to the exhaust duct through the other side of the wheel. The gas phase VOC and particulate matter are oxidized to
C02 and water by thermal or catalytic reaction as the gas stream flows through the wheel.
The wheel is designed to rotate at speeds of about 5 to 10 rpm between the inlet (cold) and outlet (hot) gas streams working as a heat exchanger, transferring heat from the hot gas at outlet side to the cold gas at inlet side. This assures that gas leaving the unit is cooled and prevents the downstream exhaust fan from being exposed to the higher temperatures of thermal or catalytic oxidation. Also, due to its high thermal efficiency (capable of recovery of upwards of 90-95% of the heat extracted from the outlet stream to the inlet stream) , the unit needs little or no energy to keep the cooking exhaust at temperatures for efficient catalytic reaction after it reaches steady state. This provides great savings in operating cost for the restaurant owners .
The present invention also provides a simplified method in which to clean the rotary thermal or catalytic oxidizer. To prevent fires, restaurant catalysts have to be cleaned periodically to remove the grease and other volatile organic compound build-up which will accumulate on the cold spots of the oxidizer. The normal cleaning routine, which is labor intensive and time consuming, involves removing the catalyst module from the duct, rinsing it with water and light detergent, drying it, and putting it back. This invention offers a simple and fast in-situ self-cleaning method. By lowering the rotation speed (< 1 rpm) or stopping rotation completely, heat transfer efficiency of the wheel can be reduced significantly. Therefore, the whole outlet section of the wheel can be heated up close to combustion chamber temperature which is normally hot enough to burn out all the residue grease with the help of catalyst if present. Referring to Figure 1, one see a schematic of the restaurant cooking ventilation system of the present invention. Cooking emissions 100 are generated from cooking food 110 on a cooking device 130. The cooking emissions 100 are drawn into exhaust hood 200 and further drawn through inlet duct 210 leading to the rotary oxidizer 300. The rotary oxidizer 300, while depicted in a preferred embodiment further described herein below, transfers heat from the exiting oxidized cooking emissions stream 320 to the incoming unoxidized cooking emissions stream 310. Thus, the oxidized stream exits the rotary oxidizer 300 through outlet duct 330 at a temperature that is lower than the oxidation temperature and which is more favorable to the operation of exhaust fan 400 located in or at the end of outlet duct 330. In accordance with a preferred embodiment of the present invention the smoke abatement system uses a rotary regenerative catalytic oxidizer 10 (hereinafter "RCO"), as shown in Figure 2 and contains a cylindrical housing 12. A cylindrical catalytic regenerator rotor 14 is disposed within housing 12. A transfer chamber 16 is sealed and connected to housing 12 at a second end of rotor 14. A heater device 18 is disposed within chamber 16. The heater device 18 may comprise a burner, an electric heater, or other heat generating means and may be utilized either externally or internally of chamber 16. A first sealing endplate 20 is stationary and adjoins a first end of the rotor 14, thereby dividing the rotor 14 into an inlet compartment 22 and an outlet compartment 24. As seen in Figure 3, endplate 20 may be modified in accordance with a second embodiment of the present invention to further include a purge compartment
26 within the rotor 14. Endplate 20 may be sealed to the rotor 14 either physically, pneumatically, hydraulically, or by any other method known in the art . A longitudinal axis 30 is centrally disposed within RCO 10, about which the rotor 14 rotates.
Rotor 14 is preferably constructed from a plurality of discrete and axially parallel, longitudinally disposed surfaces forming channels 15, each having a first and a second end. Each channel is constructed from heat exchange media such as ceramic, cordierite for example, or metal, stainless steel for example. Other metals that may be used include aluminum, carbon steel, and stainless steel . The preferred design is not limited to any geometric shape, and round, square, hexagonal, or other cross-sectional configurations may be utilized. More importantly, the heat exchange channels 15 form a monolith that is free from independent internal partitions that divide the heat exchange area into different flow regimes.
Depending on design criteria, the axially parallel heat exchange surfaces may be either completely or partially washcoated with a catalyst such as Pt/Ti02, manganese, chromium oxide, or combinations thereof. Suitable catalysts for use in this invention are those adapted for use in treatment of restaurant emissions such as disclosed in U.S. Patent Nos . 5,580,535; 4,900,712; and 4,138,220 the disclosures of which are incorporated by reference. In accordance with the present invention, longitudinally disposed channels reduce pressure fluctuations, and, due to impermeable walls, prevent the exchange of gases in the adjacent channels and eliminate the need for a separate sealing means between the ingoing and outgoing process gases. The heat exchange media should have a cell density ranging from at least 25 CPSI (cells per square inch), but more preferably 64 CPSI, to 1000 CPSI or higher, to have sufficient area to enhance both heat and mass transfer and reduce the size of the rotor 14. However, one of ordinary skill in the art will readily appreciate that such a design factor should not be construed as limiting the scope of the present invention. In operation and during rotation of the RCO, process gases enter through inlet 22 and pass through the rotor 14 and channels 15 for catalytic oxidation of the contaminants therein. The process gases then pass through transfer chamber 16, and may be thermally oxidized therein, if desired. The heater device 18 may be simply used to control the fuel and supply the heat necessary for startup of the catalytic process, or it may be used on a continuous basis, thereby facilitating thermal oxidation within chamber 16. Fuel, for example natural gas, is supplied to the transfer chamber 16, through the heater device 18. The purified gases are then directed back through channels within outlet compartment 24 and exhausted. As seen in Figure 3, a fraction of the purified outlet stream or other clean air may be diverted back into the RCO through an optional purge compartment 26. Other purge methods, by vacuum for example, may also be incorporated.
As rotor 14 rotates, each of the channels 15 periodically passes through inlet compartment 22 through which process gases enter the RCO 10. If the purge option is desired, as the same channels continue to revolve, they next pass through purge compartment 26, wherein purified air forces any unreacted process gases into chamber 16. As shown in Figure 3, purge compartment 26 is located between inlet and outlet compartments 22 and 24, respectively. When the channels 15 function as inlet channels, a spike of contaminated air may become trapped therein. The purge feature prevents the contaminated air from being released as the channels subsequently rotate into the output compartment and function as exhaust channels.
Upon further rotation, the channels 15 then pass through outlet compartment 24 from which purified air from transfer chamber 16 is exhausted. At the same time, the regenerative channels retain the heat of combustion thereby maximizing fuel efficiency and providing the catalytic heat necessary during the input function. At any given moment, rotor 14 comprises a plurality of grouped channels that are segregated into either an inlet, purge, or outlet function. As shown in Figures 2 and 3, the function of a given channel will vary as it revolves through the different flow regimes defined by endplate 20.
It may also be desirable to utilize a flame arrestor in conjunction with the present invention. A flame arrestor functions to prevent cooking flames from reaching the rotary oxidizer as well as to aid in more uniform distribution of the cooking emissions. Suitable flame arrestors and benefits associated with positioning of the flame arrestor within a smoke abatement system are described for example in U.S. Patent Nos. 5,431,887 and 5,622,100 the disclosures of which are incorporated by reference .
In accordance with the present invention, a second embodiment is shown in Figures 4 and 5. The second embodiment is better suited for handling large gas flows that require a large size of heat sink material . The heat exchange channels 15, having a first and a second end, are stationary. As in the first embodiment, a transfer chamber 16 is sealed and connected to housing 12 at a second end of rotor 14. A heater device 18 is disposed within chamber 16. The heater device 18 may comprise a burner, an electric heater, or other heat generating means and may be utilized either externally or internally of chamber 16. A plurality of layered sections are located at a first end of RCO 10. Section 32 comprises an input chamber, section 34 comprises an optional purge chamber, and section 36 comprises an output chamber. Section 38 comprises a dividing chamber that lies adjacent to, and in fluid communication with, the first ends of the channels 15. A one-piece rotating element 40, having a first and a second end, rotatably extends through the input, purge, output, and dividing chambers. Element 40 is internally divided into three separate passages, each passage forming a separate flow path and communicating with either the input, purge, or output chamber. Dividing plates 44, rotatably engaged within chamber 38, comprise the second end of element 40, and divide chamber 38 into alternating input, purge, and output zones. As shown in Figure 5, element 40, comprising plates 44, rotates as a one-piece flow distributor, providing alternating gaseous flow to the several zones. Dividing plates 44, radially spanning the RCO 10, are sealed against the first end of the channels 15, thereby creating input, purge, and output sections within the plurality of heat exchange channels . Plates 44 may be sealed either pneumatically, hydraulically, physically, or by other methods known in the art. In operation, an input stream flows into chamber 32, through rotating element 40, into the inlet zone of chamber 38, and through the input section of heat exchange channels 15 for catalytic treatment. The gas then flows into transfer chamber 16 for further thermal oxidation if desired. The heater device 18 may be simply used to supply the heat necessary for startup of the catalytic process, or it may be used on a continuous basis, thereby facilitating thermal oxidation within chamber. The gases are forced through the transfer chamber 16 back through the outlet section of channels 15, thence through the outlet zone of chamber 38, through element 40, into chamber 36, and out of the RCO 10. A fraction of the output stream, or other air, may be directed into the purge stream flowing into chamber 34, through element 40, into the purge zone of chamber 38, through the purge section of channels 15, through the transfer chamber 16 and into the exhaust gas. Any other known purge method, by vacuum for example, may also be utilized. As the rotating element 40 and the dividing plates 44 continue to rotate, the stationary heat exchange channels 15 alternate in function, whereby one channel will serve an input, purge, and output function upon one complete rotation of the element 40. The load required to turn the rotating element 40, in contrast to turning the rotor 14 in the first embodiment, is substantially reduced.
Generally, purge options are included for high VOC contaminated process gases . In accordance with yet another aspect of the present invention, purification of high-VOC gases may be enhanced by utilizing a combination of two or more in-line rotary heat exchange beds. The in-line rotors function essentially as that described in the first embodiment above. As shown in Figure 7, the unit comprises a downstream and upstream rotor, 48 and 50 respectively, in close proximity to each other and rotating at the same speed. Alternatively, the upstream rotor may rotate and the downstream rotor may be fixed in place wherein the upstream rotor actually functions as an RCO and as a flow distributor for the downstream rotor. Furthermore, as shown in Figure 8, a fourth embodiment may comprise two in-line stationary heat regenerative beds that incorporate a flow distributor as described in the second embodiment above . As shown in Figure 8 , the unit comprises a downstream and upstream heat regenerative bed, 52 and 54 respectively, in close proximity to each other.
In operation, and in accordance with Figures 7 and 8, the process gases first pass through the upstream rotor and are then directed through the downstream rotor. The upstream rotor 50 or 54, is preferably formed from heat exchange channels of relatively thick walls and low cell density, and has an approximate 40-50% void volume existing between the walls. The downstream rotor 48 or 52, is formed from heat exchange channels of relatively thin walls and high cell density, and has an approximate 60-80% void volume. The downstream rotor 48 or 52 is equipped with a transfer chamber 49 or 53, as in the first and second embodiments described above. The thick wall/low cell density rotor within the upstream rotor increases heat storage, reduces VOC carryover from the colder zone, and also reduces the pressure drop through the unit. After first being heated by the upstream rotor 50 or 54, the process gases increase in temperature and create a hotter temperature zone within the downstream rotor 48 or 52. Because of the higher temperature, a relatively higher cell density can be used within the downstream rotor 48 or 52 to increase gas/solid contact area, and thereby increase the destruction efficiency. Depending on design expedients, each of the in-line rotors may be comprised of honeycombed channels formed from different materials. For example, the upstream rotor may comprise a honeycombed metallic bed, while the downstream rotor may comprise a honeycombed catalyzed ceramic bed. As would be appreciated by one skilled in the art, other combinations of catalyzed or uncatalyzed metallic and ceramic rotors may be used and such combinations are within the scope of this invention.
With regard to the first and third embodiments, the rotor 14 rotates at 0.5 to 10 revolutions per minute, depending on the thermal efficiency desired. For example, if high-VOC process gases are directed into the RCO 10, then the cycles per minute can be decreased to lower the thermal efficiency and operate under a self- sustaining mode. On the other hand, if low-VOC process gases are directed into the RCO 10, the cycles per minute can then be increased to raise the thermal efficiency and lower the energy consumption. The rotating element 40 of the second embodiment may be similarly adjusted to modify the thermal efficiency.
The RCO 10 is significantly smaller than an RCO of fixed-bed design, and yet has an equivalent thermal efficiency. Thermal efficiency, or A, can be expressed by the following formula:
* — s J-max ~~ J. out ' / V J-max ~~ * in '
where T represents temperature.
Thermal efficiency depends on a number of complex factors. For a given gas flow, thermal efficiency increases with increasing heat transfer rate between gas and solids, increasing the solid thermal mass, and decreasing the cycle time. Mathematically, thermal efficiency can be expressed as a function of two parameters: reduced length and reduced period.
(1) thermal efficiency = f (reduced length, reduced period) where ,
(2) L = reduced length = hA/mfcf and,
(3) Rp = reduced period = (hA/MsCs) *P
As given in the equations, h is the heat transfer coefficient, A is the heat transfer area, and mf and cf are gas flow and gas specific heat, respectively. Ms and Cs are solid mass and solid specific heat, respectively. P is the period of a regenerator zone before switching. Figure 6 illustrates the relationship of thermal efficiency with regard to reduced length, L, and reduced period, Rp . The heat transfer area, A, can be varied by using different shapes and sizes of heat transfer material . A smaller size regenerator packed with high geometric area material and a large regenerator packed with a lower geometric area material may have the same heat transfer zone, or reduced length. Nevertheless, the thermal efficiency of the smaller regenerator would be less than that of the large regenerator if the cycle period was the same for both. The smaller thermal mass of the small regenerator results in a larger number of the reduced period. As shown in Figure 6, the thermal efficiency decreases as the reduced period is increased and as the reduced length is decreased. For a fixed-bed RTO/RCO, the cycle time typically operates at 60-180 seconds, and then the gas flow is reversed. Any further reduction in the cycle period, created by switching the flow valves at time intervals of less than 60 seconds, is limited by consequential pressure pulses resulting in unsteady operation. Unlike the fixed-bed system, the rotary design of the present invention does not have flow reversal problems. The cycle time can be reduced with no adverse effect on unit stability, or on upstream process conditions. As such, a rotary regenerative oxidizer, in accordance with the present invention, can take full advantage of a high geometric area packing system, thereby reducing the volume of the oxidizer while maintaining an equivalent thermal efficiency. As Table 1 below shows, when using a honeycomb of 200 CPSI, the bed of a rotary regenerator can be as small as 1/10 the size of a typical conventional fixed-bed regenerative system.
Figure imgf000020_0001
Table 1: RRCO compared to a fixed-bed RCO, each having a constant heat capacity and a thermal efficiency of 92%.
In accordance with the present invention, continuous rotation of the rotor facilitates steady state treatment of the process gases. The thermal efficiency can be decreased from 92% to 87% simply by reducing the rotational speed from 10 rpm to 1 rpm. The simple method of adjusting thermal efficiency represents a significant improvement when handling streams that contain varied solvent loading. As the solvent loading becomes relatively high, the thermal efficiency must be lowered to maintain a thermal balance. Certain known rotary designs incorporate a rotational feature that indexes the rotor. Continuous rotation, in contrast to indexing, permits simplified tailoring of the cycle period and thus, a corresponding decrease or an increase in the thermal efficiency if desired. On the other hand, fixed- bed, non-rotary recuperative systems are even less flexible and often require a unit shut down that effectively blocks off some of the heat exchange surface. In accordance with the restaurant applications of the present invention involving flow rates of 100 to 2,000 SCFM, the rotary heat exchange designs of the present invention reduce the pressure drops, and the associated energy costs, by more than half when compared to fixed-bed designs. Possible applications include purification methods involving groundwater treatment, indoor air clean up, paint spray booths, paper and pulp gases, and manufacturing of electronic components.
Unlike known fixed-bed RCOs, the present invention accommodates flow rates of 100 - 2,000 SCFM in a regenerative heat exchanger at a reasonable capital cost. Of course, larger flow rates may be accommodated by an increase in the size of the rotary RCO. Unlike conventional fixed-bed RCOs that have periodic flow reversal as a heat recovery means, the rotary RCO 10 features parallel channels 15 that revolve as rotor 14 rotates, or a rotatable flow distributor 40, each of which operate in steady state. Thus, pressure fluctuations associated with fixed-bed RCO designs are eliminated. The rotary RCO is generally operated in flow rates normally found with recuperative heat exchangers . In contrast to a recuperative heat exchanger, a rotary regenerative heat exchanger provides a more uniform axial temperature, and therefore more uniform surface temperatures. As such, recuperative heat exchanger concerns such as corrosion caused by "cold spots", condensation, and poor thermal efficiency are eliminated. Unlike many rotary treatment systems of the related art, the preferred embodiment of the present invention combines the thermal and catalytic components into one bed. In contrast to gaseous flow perpendicular to the axis of rotation, the input and output flow efficiency is enhanced by directing the flow through axially parallel channels. Furthermore, the only independent sealing means required is the sealing plate 44 located at the "cold" or input/output end of the system. The inherent seals of the heat exchange channels ensures simplified flow separation. In contrast, related art systems require sealing mechanisms that must be heat resilient due to the elevated heat exposure of their particular designs. This complicates the system, and increases manufacturing costs.
Yet another benefit is that the various embodiments function with a reduction in parts normally found in known oxidizers. For example, many known rotary valve regenerative oxidizers use metallic partitions contained within the heat exchange beds. This design results in maintenance concerns due to leakage and stress cracks, and is more costly to construct. No metallic partitions are utilized in the present invention and as such, leakage is reduced, manufacturing costs are minimized, and treatment efficiency is enhanced. Other known designs incorporate multi-component flow distributors. In accordance with the present invention, the rotary distributor comprises a unified or one-piece structure, thereby eliminating the multiple parts found in known distributors, and reducing manufacturing costs.
The embodiments shown may also be tailored to accommodate rotary thermal oxidizer by simply incorporating uncatalyzed heat exchange channels therein. Transfer chamber 16 may utilize a heat generating means, either internally or externally thereof, to ensure sufficient thermal oxidation of the process gases. On the other hand, gases containing elevated levels of VOCS, for example, may only need startup heat to maintain self- sustaining thermal and/or catalytic oxidation. As noted previously, cleaning of the restaurant smoke abatement system of the present invention is conveniently accomplished in-situ, i.e., without having to remove the rotary device from smoke abatement system. Thus, the method associated with cleaning of the rotary device entails lowering the speed of rotation of the rotary device to allow a heated cleansing stream to thoroughly oxidize any grease or fat contaminants which may have accumulated on the "cold spots" of the rotary device. In cases where the contaminant accumulation is severe, the rotation of the device may be stopped completely to permit complete removal of the contaminants. Whether cleaning lightly or severely contaminated sections of the rotary device, as the section of the rotary device is cleaned, the uncleaned section is rotated into the cleaning stream to remove the unwanted contaminants. After cleaning, the cleaning stream is exhausted to the atmosphere.
The cleansing stream may be air and should be introduced to the rotary device at a temperature sufficient to oxidize the accumulated contaminants, typically a temperature ranging from 600 to 1000°F.
While the preferred embodiments of the invention have been disclosed, it should be appreciated that the invention is susceptible of modification without departing from the scope of the following claims. Thus, one skilled in the art would appreciate that other rotary oxidative devices may be used in conjunction with this invention such as those disclosed in U.S. Patent No. 5,362,449; international patent application PCT/FR95/ 01692; and European patent application publication EP 684,427 the disclosures of which are incorporated by reference .

Claims

What is claimed is:
1. A smoke abatement system for removal of particulate matter and volatile organic compounds from a cooking emissions stream comprising: an inlet duct for receiving the cooking emissions stream and directing the stream to a rotary, heat regenerative device; the rotary device comprising means to recover heat from the emissions stream after thermal or catalytic oxidation and before the oxidized emission stream is returned to the atmosphere; and an outlet duct for directing the oxidized emission stream from the rotary device to the atmosphere .
2. The smoke abatement system of claim 1 further comprising a exhaust fan in the outlet duct.
3. The smoke abatement system of claim 1, wherein the flow of the emission stream through the rotary device is perpendicular or axial with reference to the axis of rotation of the rotary device.
4. The smoke abatement system of claim 1, further comprising a flame arrestor positioned before or in the inlet duct to the rotary device.
5. The smoke abatement system of claim 1, wherein the rotary device comprises: one or more rotors, wherein a first rotor comprises a plurality of discrete heat exchange surfaces arranged in an axially parallel and longitudinal array, said rotor having a first and a second end, wherein the surfaces form a plurality of heat exchange channels; a transfer chamber connected to the second end of the rotor; a sealing endplate adjoining the first end of the rotor, wherein the endplate divides the rotor into inlet and outlet compartments; and an adjustable means for rotating the rotor about a longitudinal axis .
6. The abatement system of claim 5, further comprising a means for purging unreacted process gases from the first rotor.
7. The abatement system of claim 5, wherein the transfer chamber comprises a heat generating means for heating the emission stream to a predetermined abatement temperature .
8. The abatement system of claim 5, wherein the surfaces are catalytically coated.
9. The abatement system of claim 7, wherein the surfaces are catalytically coated.
10. The abatement system of claim 5, wherein the first rotor has a cell density of at least 25 cells per square inch.
11. The abatement system of claim 10, wherein the surfaces are formed in a honeycomb monolith comprising a metallic or ceramic substrate.
12. The smoke abatement system of claim 5, further comprising a stationary or rotating second rotor, positioned between said first rotor and said transfer chamber, wherein said second rotor comprises a plurality of heat exchange surfaces arranged in an axially parallel and longitudinal array, said surfaces forming a plurality of heat exchange channels in fluid communication with said first rotor and said transfer chamber, said second rotor having a cell density greater than that of said first rotor.
13. A smoke abatement system for removal of particulate matter and volatile organic compounds from a cooking emissions stream comprising: a first heat exchange bed comprising a plurality of heat exchange surfaces, arranged in an axially parallel and longitudinal array, each of said surfaces having a first and a second end, wherein said surfaces form a plurality of heat exchange channels; a transfer chamber communicating with the second end of said surfaces; a sealing endplate adjoining the first end of said surfaces, wherein said endplate divides said channels into inlet and outlet zones; a distribution plenum, fluidly communicating with said heat exchange surfaces; a gas inlet plenum, fluidly communicating with said distribution plenum; a gas outlet plenum, fluidly communicating with said distribution plenum; and a one-piece, rotatable flow distributor, wherein said distributor fluidly communicates with said distribution, inlet, and outlet plenums.
14. The smoke abatement system of claim 13, further comprising: a second heat exchange bed, positioned between said first heat exchange bed and said transfer chamber, said second heat exchange bed comprising a plurality of heat exchange surfaces arranged in an axially parallel and longitudinal array, wherein said surfaces form a plurality of heat exchange channels in fluid communication with said first heat exchange bed and said transfer chamber, said second bed having a cell density greater than that of said first heat exchange bed.
15. A method for smoke abatement by removal of particulate matter and volatile organic compounds from a cooking emission stream comprising the steps of: receiving a cooking emissions stream containing paticulate matter and volatile organic compounds; directing the stream to a rotary, heat regenerative device and thermally or catalytically oxidizing the particulate matter and volatile organic compounds to produce a cleaned stream and transferring the heat from the cleaned stream to the incoming unoxidized cooking emission stream containing particulate matter and volatile organic compounds; and directing the cleaned stream from the rotary device to the atmosphere .
16. A method for in-situ cleaning of a rotary device useful for smoke abatement of restaurant emissions comprising the steps of:
(a) lowering the speed of rotation of the rotary device as compared to the speed of rotation during smoke abatement use or stopping the rotation of the rotary device completely;
(b) providing a heated cleansing stream into a section of the rotary device, wherein the stream has a temperature sufficient to oxidize contaminants that have accumulated within the section of the rotary device;
(c) oxidizing the contaminants; and
(d) directing the oxidized contaminants out of the rotary device thereby providing a cleaned section of the rotary device.
17. The method according to claim 16, further comprising repeating steps (a) to (d) until the entire rotary device is cleaned.
PCT/US1998/020145 1997-11-05 1998-09-25 Rotary oxidizer systems for control of restaurant emissions WO1999023421A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69824753T DE69824753D1 (en) 1997-11-05 1998-09-25 CIRCULAR OXIDATION DEVICE FOR CONTROLLING EXHAUST GAS FROM RESTAURANTS
AU95830/98A AU9583098A (en) 1997-11-05 1998-09-25 Rotary oxidizer systems for control of restaurant emissions
JP2000519246A JP2001522027A (en) 1997-11-05 1998-09-25 Rotary oxidizer for restaurant exhaust control
EP98949526A EP1029200B1 (en) 1997-11-05 1998-09-25 Rotary oxidizer systems for control of restaurant emissions
AT98949526T ATE269960T1 (en) 1997-11-05 1998-09-25 CIRCULATION OXIDATION DEVICE FOR CONTROLLING EXHAUST GASES FROM RESTAURANTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/964,736 1997-11-05
US08/964,736 US6235249B1 (en) 1997-04-01 1997-11-05 Rotary oxidizer systems for control of restaurant emissions

Publications (1)

Publication Number Publication Date
WO1999023421A1 true WO1999023421A1 (en) 1999-05-14

Family

ID=25508911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/020145 WO1999023421A1 (en) 1997-11-05 1998-09-25 Rotary oxidizer systems for control of restaurant emissions

Country Status (8)

Country Link
US (1) US6235249B1 (en)
EP (1) EP1029200B1 (en)
JP (1) JP2001522027A (en)
AT (1) ATE269960T1 (en)
AU (1) AU9583098A (en)
DE (1) DE69824753D1 (en)
TW (2) TW200300003A (en)
WO (1) WO1999023421A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2594852A1 (en) * 2011-11-17 2013-05-22 Samsung Electronics Co., Ltd Cooking system comprising a ventilation apparatus
WO2014082392A1 (en) * 2012-11-30 2014-06-05 He Weibin Air suction exhaust apparatus and integrated kitchen stove using same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041159B2 (en) * 2003-08-04 2006-05-09 Phillips Plastics Corporation Separation apparatus
JP2004528160A (en) * 2001-03-01 2004-09-16 フィリップス・プラスチックス・コーポレーション Filtration media for porous inorganic particles
US7017592B2 (en) * 2002-12-10 2006-03-28 Pro-Environmental Inc. Regenerative fume-incinerator with on-line burn-out and wash-down system
US7166140B2 (en) * 2003-10-22 2007-01-23 Phillips Plastics Corporation High capture efficiency baffle
US8141624B2 (en) 2006-06-28 2012-03-27 Martin Jeffrey R Apparatus for heating a restaurant kitchen, dining room, and hot water supply
WO2008136217A1 (en) * 2007-05-02 2008-11-13 Kanken Techno Co., Ltd. Heat exchanger and gas treatment device using the same
WO2008139651A1 (en) * 2007-05-02 2008-11-20 Kanken Techno Co., Ltd. Heat exchanger and gas treatment device using the same
US8142727B2 (en) * 2008-12-09 2012-03-27 Eisenmann Corporation Valveless regenerative thermal oxidizer for treating closed loop dryer
DE102012216407A1 (en) * 2012-09-14 2014-05-28 E.G.O. Elektro-Gerätebau GmbH Cleaning device for an oven and oven
KR101754758B1 (en) * 2017-01-12 2017-07-10 주식회사 이엠솔루션 Regenerative Thermal Oxidizer
WO2019144037A1 (en) 2018-01-22 2019-07-25 Transient Plasma Systems, Inc. Resonant pulsed voltage multiplier and capacitor charger
WO2019143992A1 (en) 2018-01-22 2019-07-25 Transient Plasma Systems, Inc. Inductively coupled pulsed rf voltage multiplier
EP3824223B1 (en) 2018-07-17 2024-03-06 Transient Plasma Systems, Inc. Method and system for treating cooking smoke emissions using a transient pulsed plasma
US11629860B2 (en) 2018-07-17 2023-04-18 Transient Plasma Systems, Inc. Method and system for treating emissions using a transient pulsed plasma
WO2020226977A1 (en) 2019-05-07 2020-11-12 Transient Plasma Systems, Inc. Pulsed non-thermal atmospheric pressure plasma processing system
EP4302403A1 (en) 2021-03-03 2024-01-10 Transient Plasma Systems, Inc. Apparatus and methods of detecting transient discharge modes and/or closed loop control of pulsed systems employing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3012518A1 (en) * 1979-04-04 1980-10-23 Daikin Ind Ltd DEVICE FOR CATALYTIC OXIDATION
JPS61157332A (en) * 1984-12-28 1986-07-17 Gadelius Kk Apparatus for oxidizing carbon monoxide in exhaust gas
EP0193511A2 (en) * 1985-03-01 1986-09-03 Eka Nobel Aktiebolag A catalytic reactor and a method of carrying out a catalysed reaction
EP0354197A2 (en) * 1988-08-02 1990-02-07 Abb Fläkt Ab An apparatus for purification of gases
EP0571161A2 (en) * 1992-05-19 1993-11-24 Prototech Inc. Filter screen
US5362449A (en) * 1991-02-26 1994-11-08 Applied Regenerative Tech. Co., Inc. Regenerative gas treatment
US5584916A (en) * 1993-09-08 1996-12-17 Nichias Corporation Organic-solvent vapor adsorbing apparatus

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138220A (en) 1978-02-13 1979-02-06 Colonial Metals, Inc. Apparatus for catalytic oxidation of grease and fats in low temperature fumes
US4350504A (en) 1980-01-28 1982-09-21 Century 21 Pollution Control, Inc. Air cleaning system
DE3406657A1 (en) 1984-02-24 1985-08-29 Kraftanlagen Ag, 6900 Heidelberg METHOD AND DEVICE FOR CATALYTICALLY PURIFYING THE EXHAUST GASES FROM COMBUSTION PLANTS
DE3508553A1 (en) 1985-03-11 1986-09-11 Hüls AG, 4370 Marl METHOD AND DEVICE FOR CATALYTICALLY CONVERTING GASES
DE3624143A1 (en) 1986-07-17 1988-01-21 Standard Elektrik Lorenz Ag DEVICE FOR FRIEND-ENEMY IDENTIFICATION
US4900712A (en) 1988-09-30 1990-02-13 Prototech Company Catalytic washcoat and method of preparation of the same
US5016547A (en) 1990-05-04 1991-05-21 Salem Industries, Inc. Regenerative incinerator
US5169414A (en) 1990-07-03 1992-12-08 Flakt, Inc. Rotary adsorption assembly
US5460789A (en) 1991-12-20 1995-10-24 Eisenmann Maschinenbau Kg Apparatus for purifying pollutant-containing outgoing air from industrial installations by regenerative afterburning
US5622100A (en) 1992-07-31 1997-04-22 Ayrking Corporation Catalytic assembly for cooking smoke abatement
WO1994023246A1 (en) 1993-03-26 1994-10-13 Applied Regenerative Technologies Co., Inc. Regenerative gas treatment
DE4344700C2 (en) 1993-12-27 1999-01-28 Eisenmann Kg Maschbau Device for cleaning polluted exhaust air from industrial plants by regenerative post-combustion
FR2720488B1 (en) 1994-05-24 1996-07-12 Inst Francais Du Petrole Rotary device for heat transfer and thermal purification applied to gaseous effluents.
US5580535A (en) 1994-07-07 1996-12-03 Engelhard Corporation System and method for abatement of food cooking fumes
US5589142A (en) 1994-07-27 1996-12-31 Salem Englehard Integrated regenerative catalytic oxidation/selective catalytic reduction abatement system
FR2728483B1 (en) 1994-12-26 1997-01-24 Inst Francais Du Petrole IMPROVED ROTARY DEVICE FOR CATALYTIC PURIFICATION OF POLLUTED EFFLUENTS
US5562442A (en) 1994-12-27 1996-10-08 Eisenmann Corporation Regenerative thermal oxidizer
US5547640A (en) 1995-01-06 1996-08-20 Kim; Dae S. Compact high temperature air purifier
US5871347A (en) * 1997-04-01 1999-02-16 Engelhard Corporation Rotary regenerative oxidizer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3012518A1 (en) * 1979-04-04 1980-10-23 Daikin Ind Ltd DEVICE FOR CATALYTIC OXIDATION
JPS61157332A (en) * 1984-12-28 1986-07-17 Gadelius Kk Apparatus for oxidizing carbon monoxide in exhaust gas
EP0193511A2 (en) * 1985-03-01 1986-09-03 Eka Nobel Aktiebolag A catalytic reactor and a method of carrying out a catalysed reaction
EP0354197A2 (en) * 1988-08-02 1990-02-07 Abb Fläkt Ab An apparatus for purification of gases
US5362449A (en) * 1991-02-26 1994-11-08 Applied Regenerative Tech. Co., Inc. Regenerative gas treatment
EP0571161A2 (en) * 1992-05-19 1993-11-24 Prototech Inc. Filter screen
US5431887A (en) * 1992-05-19 1995-07-11 Prototech Company Flame arresting and contaminant-adsorbing filter apparatus and method in the catalytic abatement of broiler emissions
US5584916A (en) * 1993-09-08 1996-12-17 Nichias Corporation Organic-solvent vapor adsorbing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 362 (C - 389) 4 December 1986 (1986-12-04) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2594852A1 (en) * 2011-11-17 2013-05-22 Samsung Electronics Co., Ltd Cooking system comprising a ventilation apparatus
US9874356B2 (en) 2011-11-17 2018-01-23 Samsung Electronics Co., Ltd. Ventilation apparatus and cooking system having the same
EP2594852B1 (en) 2011-11-17 2018-07-18 Samsung Electronics Co., Ltd. Cooking system comprising a ventilation apparatus
WO2014082392A1 (en) * 2012-11-30 2014-06-05 He Weibin Air suction exhaust apparatus and integrated kitchen stove using same

Also Published As

Publication number Publication date
JP2001522027A (en) 2001-11-13
AU9583098A (en) 1999-05-24
DE69824753D1 (en) 2004-07-29
TW534834B (en) 2003-06-01
ATE269960T1 (en) 2004-07-15
US6235249B1 (en) 2001-05-22
EP1029200B1 (en) 2004-06-23
TW200300003A (en) 2003-05-01
EP1029200A1 (en) 2000-08-23

Similar Documents

Publication Publication Date Title
US6235249B1 (en) Rotary oxidizer systems for control of restaurant emissions
EP0972162B1 (en) Rotary regenerative oxidizer
US4280416A (en) Rotary valve for a regenerative thermal reactor
EP0697562B1 (en) Change-over valve, and regenerative combustion apparatus and regenerative heat exchanger using same
US5874053A (en) Horizontal regenerative catalytic oxidizer
JP4719738B2 (en) Method for cleaning heat storage medium of regenerative oxidizer
US5967771A (en) Rotary regenerative oxidizer
US6423275B1 (en) Regenerative devices and methods
IL139441A (en) Web dryer with fully integrated regenerative heat source
US6193504B1 (en) Portable rotary catalytic oxidizer systems
US4089088A (en) Thermal regeneration and decontamination apparatus and industrial oven
WO1999056062A1 (en) Multi-layer heat exchange bed containing structured media and randomly packed media
JPH0868596A (en) Rotary type heat transfer and heating type purifier applied to exhaust gas
JP4121457B2 (en) Module VOC containment chamber for two-chamber regenerative oxidizer
US6203316B1 (en) Continuous on-line smokeless bake-out process for a rotary oxidizer
GB1602812A (en) Industrial oven
WO1994023246A1 (en) Regenerative gas treatment
JP3940832B2 (en) Thermal storage type exhaust gas treatment equipment
KR200349267Y1 (en) VOCs MIST COMBUSTION SYSTEM FOR REGENERATIVE THERMAL OXIDIZER SYSTEM
JP4085298B2 (en) Thermal storage type exhaust gas treatment equipment
JPH1024215A (en) Waste gas purifier
JP2000274644A (en) Regenerative exhaust gas treating device and method for operating it for burnout
JPH0549859A (en) Catalyst purifying device
WO1998057049A1 (en) Pollutant reduction catalyst in thermal oxidizer
JP2001259007A (en) Air cleaning device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 519246

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998949526

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998949526

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998949526

Country of ref document: EP