WO1999011368A1 - Catalyseur pour la production d'acrylonitrile - Google Patents

Catalyseur pour la production d'acrylonitrile Download PDF

Info

Publication number
WO1999011368A1
WO1999011368A1 PCT/CN1998/000165 CN9800165W WO9911368A1 WO 1999011368 A1 WO1999011368 A1 WO 1999011368A1 CN 9800165 W CN9800165 W CN 9800165W WO 9911368 A1 WO9911368 A1 WO 9911368A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
propylene
acrylonitrile
mixture
ammoxidation
Prior art date
Application number
PCT/CN1998/000165
Other languages
English (en)
French (fr)
Inventor
Xingya Guan
Xin Chen
Lianghua Wu
Original Assignee
China Petro-Chemical Corporation
Shanghai Research Institute Of Petrochemical Technology, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petro-Chemical Corporation, Shanghai Research Institute Of Petrochemical Technology, Sinopec filed Critical China Petro-Chemical Corporation
Priority to US09/508,038 priority Critical patent/US6596897B1/en
Priority to BRPI9812154-5A priority patent/BR9812154B1/pt
Priority to EP98938589A priority patent/EP1027929A4/en
Priority to JP2000508459A priority patent/JP4889149B2/ja
Publication of WO1999011368A1 publication Critical patent/WO1999011368A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a fluidized bed catalyst for the ammoxidation of propylene to acrylonitrile.
  • the reaction pressure of a fluidized bed reactor is determined by the resistance drop of a series of heat exchangers, towers and piping between the reactor outlet and the top of the absorption tower. Due to the increase in production capacity, the amount of material at the reactor outlet is significantly increased, which increases the above-mentioned resistance drop. In addition, if the heat transfer area of each heat exchanger is not enough, heat exchange equipment needs to be added to further increase the resistance drop. Due to environmental protection requirements, the reaction exhaust gas at the top of the absorption tower is not allowed to be directly discharged into the atmosphere and must be sent to a furnace to be burned. In this case, if an induced draft fan is not used, the pressure at the top of the absorption tower must be increased. Due to the above-mentioned reasons, the operating pressure of the reactor is currently increased by 0.5 to 1.0 times the design value, that is, more than 0.08 MPa.
  • the second problem mentioned above is the catalyst load, namely WWH. It is defined as how many tons of propylene can be processed per hour of catalyst. Due to the increase in reactor feed, if the catalyst load remains the same, the catalyst load should also increase accordingly. However, the height of the cooling water pipe in the originally designed fluidized bed reactor is not sufficient, so the fluidization height of the catalyst in the reactor may exceed the height of the cooling water pipe. In addition, as the reactor feed amount increases, the operating line speed is also significantly increased. The combined effect of these two changes may increase the temperature of the dilute phase of the reactor, increase the amount of carbon dioxide produced, and decrease the selectivity of acrylonitrile. Therefore, the higher WWH of the catalyst can prevent the above problems.
  • A a BbCcNidCo e NafFe g BihMiMojOx
  • A is potassium, rubidium, cesium, rubidium, thorium
  • B is manganese, magnesium, strontium, calcium, barium, lanthanum, rare earth elements
  • C is phosphorus, arsenic, boron, antimony, chromium
  • M is tungsten, vanadium.
  • the above catalyst can obtain a high acrylonitrile yield, but the catalyst has a lower propylene load, and the acrylonitrile yield declines significantly at higher reaction pressures. Further research shows that the loading of components B and M in the above catalyst on the catalyst is related to the performance under high pressure. Although some elements in component B have an effect on increasing the single yield of acrylonitrile, they have a negative impact on the increase in catalyst load and the performance of high reaction pressure, which is not conducive to the catalyst adapting to higher pressure and operating under higher load conditions. In addition, CN1021638C has stipulated that in the above catalyst composition, the sum of i and j is 12, which is a constant.
  • the purpose of the present invention is to overcome the problems that the catalysts in the above literature cannot adapt to higher reaction pressures and operating loads, and to provide a new catalyst for the production of acrylonitrile. It operates under the conditions, and maintains a high yield of acrylonitrile and has a high ammonia conversion rate.
  • One of the objects of the present invention is to provide a fluidized bed catalyst for the ammoxidation of propylene to produce acrylonitrile, comprising a silica support and a composition having the following chemical formula:
  • A is at least one selected from the group consisting of potassium, rubidium, cesium, rubidium, and rubidium, or a mixture thereof;
  • C is at least one selected from the group consisting of phosphorus, arsenic, boron, antimony, and chromium; Selected from nickel, cobalt or a mixture thereof;
  • M is selected from tungsten, vanadium or a mixture thereof;
  • a 0.01 to 1.0
  • c 0.01 to 2.0
  • d 0.01 to 12
  • f is 0.2 to 0.7
  • g 0.01 to 8
  • h is 0.01 to 6
  • i is 0.01 to 9, and
  • x is to satisfy the valence of each element in the catalyst The total number of oxygen atoms required.
  • the support of the catalyst is silica, with a content of 30-70% by weight.
  • Another object of the present invention is to provide a method for producing acrylonitrile from the ammoxidation of propylene under a higher reaction pressure and a high propylene load, which is characterized by using the above-mentioned present invention in a fluidized-bed reactor in which propylene is ammoxidized Catalyst.
  • the preferred range of a is 0.03-0.4, the preferred range of c is 0.1 1.5, the preferred range of d is 0.1-8, the preferred range of f is 0.3-0.5, and the preferred range of g is 0.1-4, h
  • the preferred range is 0.1 to 4, and the preferred range of i is 0.1 to 6;
  • the catalyst support silica content is preferably 40 to 60% by weight.
  • the method for producing the catalyst of the present invention has no special requirements, and can be carried out according to a conventional method.
  • each component of the catalyst is made into a solution, and then mixed with the carrier to prepare a slurry, which is spray-dried to form a microsphere, and finally calcined to make a catalyst.
  • the preparation of the slurry is preferably carried out according to the method of CN 1005248C.
  • the raw materials for manufacturing the catalyst of the present invention are:
  • Component A is preferably a nitrate, hydroxide or a salt which can be decomposed into oxides.
  • Phosphorus, arsenic and boron in the group C element are preferably the corresponding acids or their ammonium salts.
  • Chromium is preferably chromium trioxide, chromium nitrate or a mixture of the two.
  • Antimony can be antimony trioxide, antimony pentoxide, or antimony oxide or antimony sol that can be produced by hydrolysis.
  • nickel, cobalt, iron, and bismuth, nitrates, oxides, or salts that can be decomposed into oxides can be used, but water-soluble nitrates are preferred.
  • the tungsten in the component M can be ammonium tungstate or tungsten oxide, and vanadium can be ammonium metavanadate.
  • the molybdenum component in the catalyst is molybdenum oxide or ammonium molybdate.
  • silica sol As the raw material of the silica used as the carrier, a silica sol, a silica gel, or a mixture of the two can be used. If silica sol is used, its quality must meet the requirements of CN 1005248C.
  • the prepared slurry is heated and concentrated to a solid content of 47.5% and then spray-dried.
  • the spray dryer can be a pressure type, a two-flow type, or a centrifugal rotary disc type, but the centrifugal type is better, which can ensure that the prepared catalyst has a good particle size distribution.
  • the roasting of the catalyst can be divided into two stages: the decomposition of the salts of the elements in the catalyst and the high-temperature roasting.
  • the temperature of the decomposition stage is preferably 200 to 300, and the time is 0.5 to 2 hours.
  • the roasting temperature is 500 800, preferably 550 ⁇ 650 ° C, and the roasting time is 20 minutes to 2 hours.
  • the above-mentioned decomposition and roasting are performed separately in two roasting furnaces, or they can be divided into two zones in one furnace, or they can be simultaneously completed in a continuous rotary roasting furnace.
  • an appropriate amount of air should be introduced to prevent the catalyst from being excessively reduced.
  • the specifications of propylene, ammonia, and molecular oxygen required for the production of acrylonitrile by using the catalyst of the present invention are the same as those of other ammonia oxidation catalysts.
  • the low-molecular saturated hydrocarbon content in the raw material propylene has no effect on the reaction, the propylene concentration is preferably greater than 85% (mole) from an economic point of view.
  • Ammonia can be fertilizer-grade liquid ammonia.
  • the molecular oxygen required for the reaction is technically pure oxygen, oxygen-enriched, and air, but it is best to use air for economic and safety reasons.
  • the molar ratio of ammonia and propylene entering the fluidized bed reactor is between 0.8 to 1.5, preferably 1.0 to 1.3.
  • the molar ratio of air to propylene is from 8 to 10.5, preferably from 9.0 to 9.8. in case When a higher air ratio is required for some operational reasons, it can be increased to 11, which has no significant effect on the reaction. However, for safety reasons, the excess oxygen in the reaction gas should not be more than 7% by volume, and preferably not more than 4%.
  • the reaction temperature is 420 to 470'C, preferably 435 to 450 ° C.
  • the catalyst of the present invention is a catalyst suitable for high pressure and high load, so the reaction pressure in the production device can be above 0. 08MPa, for example, from 0. 08 to 0. 15MPa. If the reaction pressure is lower than 0.08 MPa, there will not be any adverse effects, and the single yield of acrylonitrile can be further increased.
  • the propylene load (WWH) of the catalyst of the present invention is from 0.06 to 0.15hr _1 , preferably from 0.07 to 0.10hr " 1. If the load is too low, not only the catalyst is wasted, but also the amount of carbon dioxide generated is increased, and the selectivity is decreased. It is unfavorable. Too high a load is not practical, because too little catalyst is added, which will make the heat transfer area of the cooling water pipe in the catalyst layer smaller than the area required to remove the reaction heat, resulting in uncontrollable reaction temperature.
  • the product recovery and refining process for producing acrylonitrile by using the catalyst of the present invention can use the existing production process without any modification. That is, the effluent gas from the fluidized bed reactor is passed through a neutralization tower to remove unreacted ammonia, and then all organic products are absorbed with low-temperature water. The absorption solution was subjected to extractive distillation, dehydrocyanic acid and dehydration to obtain a high-purity acrylonitrile product.
  • a characteristic of the catalyst is a high ammonia conversion rate.
  • acrylonitrile catalysts do not want the conversion of ammonia to be too high, because the rate of ammonia oxidation or combustion reaction is faster than the rate of ammonia oxidation of propylene. If the ammonia conversion rate is too high, there is not enough ammonia to react with propylene. As a result, a large amount of oxidation products of propylene, such as acrolein and acrylic acid, are generated, which makes it difficult to recover and refine acrylonitrile. Therefore, a catalyst with a high ammonia conversion rate requires a high ammonia to propylene ratio, which is uneconomical. Since the catalyst of the present invention has a low amount of propionate oxidation products, even if the ammonia conversion rate is high, a large amount of oxidation products will not be generated under normal ammonia ratio conditions.
  • vanadium can improve the performance of the catalyst at high reaction pressure, so remove some components that have a negative impact on high pressure and high load reaction performance, increase the use of tungsten and vanadium, and make the catalyst Has a high reaction pressure (0. 15MPa), a higher load (WWH is 0. 15hr-under the conditions of operation capacity, and the single-pass yield of acrylonitrile still maintained at a level of more than 78%, achieved good Effect.
  • Example 1 Mix 8.5 grams of 20% potassium nitrate, 4.3 grams of sodium nitrate, 8.2 grams of 20% cesium nitrate and 4.5 grams of rubidium nitrate to dissolve into material (A).
  • (A) was mixed with 1250 grams of a 40% strength ammonia- stabilized sodium-free silica sol. With stirring, 12.3 g of 20% phosphoric acid and 8.4 g of chromium trioxide were added. After dissolving, materials (B) and (C) are added with stirring.
  • the slurry was stirred and heated to concentrate to a solid content of about 50%, and then spray-dried using a centrifugal spray dryer.
  • the prepared microspherical powder was calcined at 670 ° C for 1 hour in a rotary roaster with an inner diameter of 89 mm and a length of 1700 mm to obtain a catalyst. Its chemical composition is:
  • a catalyst having the following composition was prepared according to the method of Example 1:
  • the amount of ammonium tungstate was 65.5 g, cobalt nitrate was 48.7 g, and nickel nitrate was 306.4 g. The rest was the same as in Example 1.
  • a catalyst having the following composition was prepared according to the method of Example 1:
  • a catalyst having the following composition was prepared according to the method of Example 1:
  • ammonium tungstate is 65.5 g
  • bismuth nitrate is 121.7 g
  • cobalt nitrate is 24.3 g
  • nickel nitrate is 316.1 g
  • cesium nitrate is a 20% concentration aqueous solution 16. 3 g
  • rhenium nitrate It was 6.7 grams, and the rest was the same as in Example 1.
  • a catalyst having the following composition was prepared according to the method of Example 1:
  • a catalyst having the following composition was prepared according to the method of Example 1:
  • Example 1 65.5 g of ammonium tungstate, 121.7 g of bismuth nitrate, 48.7 g of cobalt nitrate, 291.8 g of nickel nitrate, 4.8 g of 85% gallate, 16.3 g of 20% cesium nitrate aqueous solution, and 20% gadolinium nitrate An aqueous solution of 12.3 g was used instead of thorium nitrate in Example 1, and the rest was the same as in Example 1.
  • a catalyst having the following composition was prepared according to the method of Example 1;
  • Example 1 4.8 g of 85% phosphoric acid and 16.3 g of a 20% cesium nitrate aqueous solution were used, and 12.3 g of a 20% gadolinium nitrate aqueous solution was used in place of the gadolinium nitrate in Example 1, and the rest were the same as in Example 1.
  • the catalyst of Example 1 in CN 1021638C was prepared by the method of Example 1 and the content of silicon dioxide on the support was 50%.
  • the catalyst of Example 3 in CN 1021638C was prepared by the method of Example 1, and the content of silicon dioxide on the support was 50%.
  • the catalyst was examined for activity in a 38 mm id fluidized bed reactor.
  • the reactor outlet has a pressure regulator to regulate the reaction pressure.
  • Example 1 Comparative Example 1 79.3 2.8 1.6 0.2 1.0 3.8 9.2 98.1 93.5 Comparative Example 2 79.5 2.9 1.4 0.3 1.1 3.5 8.9 96.7 93.0
  • Example 1 80.6 2.9 2.2 0.5 1.6 3.3 8.0 99.0 97.0
  • Example 2 80.5 3.0 1.6 0.2 1.8 3.1 9.2 99.4 97.4
  • Example 3 80.4 2.7 2.1 0.5 1.8 3.5 8.1 99.0 97.5
  • Example 4 81.1 3.3 0.9 0.2 1.6 2.6 8.6 99.1 97.1
  • Example 5 81.4 3.7 1.0 0.1 1.7 2.8 8.9 99.4 97.8
  • Example 6 80.8 3.2 1.2 0.3 1.7 2.7 9.0 98.9 97.5
  • Example 7 80.7 3.2 1.4 0.5 1.7 2.7 8.9 99.2 97.2
  • Test result 3 The catalyst of Example 1 of the present invention was used to examine the activity under different reaction pressures.
  • the results are as follows:
  • the catalyst of the present invention improves the single acrylonitrile yield of the catalyst of the present invention by about 1.0 to 1.5 under normal pressure and propylene load (WWH) conditions. %, Ammonia conversion increased by 3-4%, and under higher reaction pressure and propylene loading conditions, acrylonitrile single yield increased by about 1.5-2.0%, and ammonia conversion increased by 4-5%.
  • WWH normal pressure and propylene load

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

生产丙烯腈的催化剂 本发明涉及一种丙烯氨氧化生产丙烯腈的流化床催化剂。
氨氧化法生产丙烯腈经过 30多年的发展, 工厂的生产能力与市场 需求已接近平衡。 目前丙烯腈生产的主要发展倾向, 已由建设新装置 转向原有工厂的改造, 以进一步降低原料消耗和增加生产能力。 通过 对原有工厂的改造, 更换高效催化剂和消除生产工艺中的瓶颈, 丙烯 腈的生产能力有可能提高 50 ~ 80 % , 而所需的投资仅为新建装置的 20 ~ 30 % , 经济效益十分巨大。
工厂改造中会产生两个问题: ①流化床反应器的反应压力将上 升, ②催化剂的装载量不能太多。 为此要求换用的催化剂应有较高的 丙烯负荷和能承受较高的反应压力。
流化床反应器的反应压力是由反应器出口到吸收塔顶之间一系列 换热器, 塔器和配管的阻力降决定的。 由于生产能力的增加使反应器 出口的物料量明显增大, 使上述阻力降增加。 另外, 各换热器传热面 积不够也需增加换热设备, 使阻力降进一步增大。 由于环保要求, 吸 收塔顶的反应废气不准直接排放到大气中, 要送到炉子烧掉。 这样如 果不用引风机, 则必须提高吸收塔顶压力。 由于上述种种原因, 目前 反应器的操作压力比设计值要增加 0. 5 - 1. 0倍, 即达到 0. 08MPa 以 上。
上述第二个问题是催化剂的负荷, 即 WWH。 其定义是每吨催化剂, 每小时可以处理多少吨丙烯。 由于反应器进料量的增加, 如果催化剂 的负荷不变, 则催化剂装载量也要相应增加。 但原设计的流化床反应 器中冷却水管高度不够, 因此反应器中催化剂的流化高度有可能超过 冷却水管的高度。 另外, 由于反应器进料量增大, 所以操作线速也显 著提高。 这两项变化的综合影响有可能使反应器稀相温度上升, 造成 二氧化碳生成量增大, 丙烯腈选择性下降。 因此催化剂的 WWH较高可 以防止出现上述问题。
从理论上来说提高催化剂的 WWH应当增加催化剂对丙烯的吸附能 力, 但目前尚无催化剂中某种元素可以提高对丙烯吸附能力的理论。 在文献 CN 1021638C中提出了如下组成的催化剂:
AaBbCcNidCoeNafFegBihMiMojOx 其中 A为钾、 铷、 铯、 钐、 铊; B为锰、 镁、 锶、 钙、 钡、 镧、 稀土元素; C为磷、 砷、 硼、 锑、 铬; M为钨, 钒。
上述催化剂可以得到较高的丙烯腈单收, 但催化剂的丙烯负荷较 低, 在较高的反应压力下丙烯腈单收下降较大。 进一步研究表明, 上 述催化剂中的组分 B和 M对催化剂的负荷和在高压下的性能有关。 组 分 B中的某些元素虽然对提高丙烯腈单收有作用, 但对催化剂负荷的 提高和高反应压力的性能却有负面影响, 不利于催化剂适应较高压 力, 较高负荷条件下操作。 另外在 CN1021638C中曾规定上述催化剂组 成中, i和 j的总和为 12, 即是一个常数。 在本发明中取消此项规定, 因为按此规定 M组分增加时钼组分将减少, 将影响丙烯腈单收, 另外 该文献中没有报道氨转化率的数据, 经实施证明其氨转化率为 92~ 93 %左右, 相对偏低。
本发明的目的是要克服上述文献中存在的催化剂不能适应较高反 应压力和操作负荷的问题, 提供一种新的生产丙烯腈催化剂, 该催化 剂能适应在较高的反应压力和较高的负荷条件下操作, 且保持高的丙 烯腈单程收率及具有高的氨转化率。
本发明的目的之一是提供一种丙烯氨氧化生产丙烯腈的流化床催 化剂, 含有二氧化硅载体和化学式如下的组合物:
AaCcDdNafFegBihMiMo120x
式中 A为选自钾、 铷、 铯、 钐、 铊中的至少一种或它们的混合物; C为选自磷、 砷、 硼, 锑、 铬中的至少一种或它们的混合物; D为选自 镍、 钴或它们的混合物; M为选自钨、 钒或它们的混合物;
a为 0.01 ~ 1.0, c为 0.01 ~ 2.0, d为 0.01 ~ 12, f 为 0.2 ~ 0.7, g为 0.01- 8, h为 0.01 ~ 6, i为 0.01 - 9, x为满足催化剂中各元素 化合价所需的氧原子总数。
催化剂的载体是二氧化硅, 含量为 30- 70% (重量) 。
本发明的又一目的是提供一种在较高反应压力和高丙烯负荷下从 丙烯的氨氧化生产丙烯腈的方法, 其特征在于在丙烯进行氨氧化的流 化床反应器中使用上述本发明的催化剂。
上述技术方案中 a 的优选范围为 0.03- 0.4, c 的优选范围为 0.1 1.5, d的优选范围为 0.1- 8, f 的优选范围为 0.3- 0.5, g的 优逸范围为 0.1~ 4, h为优选范围为 0.1~ 4, i的优选范围为 0.1~ 6; 催化剂载体二氧化硅含量优选为 40 ~ 60 % (重量) 。
本发明催化剂的制造方法并无特殊要求, 可按常法进行。 首先将 催化剂各组分制成溶液, 再与载体混合制成浆料, 经喷雾干燥成型为 微球状, 最后焙烧制成催化剂。 浆料的配制最好按 CN 1005248C方法 进行。
制造本发明催化剂的原料为:
组分 A最好用硝酸盐, 氢氧化物或可分解为氧化物的盐类。
组分 C类元素中的磷, 砷和硼最好用相应的酸类或其铵盐。 铬最 好用三氧化铬, 硝酸铬或二者的混合物。 锑可用三氧化二锑, 五氧化 锑, 水解可生成氧化锑的 化锑或锑溶胶。
組分镍, 钴, 铁, 铋可用硝酸盐, 氧化物或可分解为氧化物的盐 类, 但最好用水溶性的硝酸盐。
組分 M类元素中的钨可用钨酸铵或氧化钨, 钒用偏钒酸铵。
催化剂中的钼组分用氧化钼或钼酸铵。
作为载体的二氧化硅的原料可用硅溶胶, 硅凝胶或两者的混合 物。 如果用硅溶胶, 其质量要符合 CN 1005248C的要求。
配制好的浆料加热浓缩到固含量为 47 55 %后喷雾干燥。 喷雾干 燥器可用压力式, 两流式或离心转盘式, 但以离心式较好, 能保证制 成的催化剂有良好的粒度分布。
催化剂的焙烧可分为两个阶段进行: 催化剂中各元素盐类的分解 和高温焙烧。 分解阶段温度最好为 200 ~ 300 , 时间为 0. 5 ~ 2小时。 焙烧温度为 500 800 , 最好为 550 ~ 650°C , 焙烧时间为 20分钟到 2 小时。 上述分解和焙烧在两个焙烧炉内分别进行, 也可在一个炉内 分为两个区域, 也可在连续式旋转焙烧炉内同时完成分解和焙烧。 在 催化剂分解和焙烧过程中要通入适量空气, 防止催化剂被过度还原。
采用本发明催化剂制造丙烯腈所需的丙烯、 氨和分子氧的规格与 使用其它氨氧化催化剂相同。 虽然原料丙烯中的低分子饱和烃含量对 反应并无影响, 但从经济观点考虑丙烯浓度最好大于 85 % (摩尔) 。 氨可用肥料级液氨。 反应所需分子氧从技术角度可用纯氧, 富氧和空 气, 但从经济和安全考虑最好用空气。
进入流化床反应器的氨与丙烯的摩尔比为 0. 8 ~ 1. 5之间,最好为 1. 0 ~ 1. 3。 空气与丙烯的摩尔比为 8 ~ 10. 5, 最好为 9. 0 - 9. 8。 如果 由于某些操作上的原因须用较高空气比时, 可以增大到 11, 对反应没 有重大影响。 但从安全考虑, 反应气体中的过量氧不能大于 7 % (体 积) , 最好不大于 4 % 。
本发明催化剂用于流化床反应器时, 反应温度为 420 ~ 470'C, 最 好 为 435 ~ 450°C。 本发明催化剂是一种适用于高压、 高负荷催化剂, 因此在生产装置中反应压力可在 0. 08MPa 以上, 例如, 0. 08 ~ 0. 15MPa。 如果反应压力低于 0. 08MPa 也不会有任何不利影响, 丙烯 腈单收可进一步提高。
本发明催化剂的丙烯负荷(WWH )为 0. 06 ~ 0. 15hr_1,最好为 0. 07 ~ 0. lOhr"1. 负荷过低不仅浪费催化剂, 也会使二氧化碳生成量增加, 选择性下降, 是不利的。 负荷过高没有实际意义, 因为催化剂加入量 过少, 会使催化剂层内冷却水管的传热面积小于移去反应热所需的面 积, 造成反应温度无法控制。
用本发明催化剂制造丙烯腈的产品回收精制工艺, 可用已有的生 产工艺, 不需做任何改造。 即流化床反应器的流出气体经中和塔除去 未反应氨, 再用低温水将全部有机产物吸收。 吸收液经萃取蒸馏, 脱 氢氰酸和脱水得高纯度丙烯腈产品。
在本发明中, 催化剂的一个特点是氨转化率高。 通常丙烯腈催化 剂不希望氨的转化率太高, 因为氨的氧化或燃烧反应速度大于丙烯氨 氧化的反应速度。 如果氨转化率太高, 则没有足够的氨与丙烯反应, 结果会生成大量丙烯的氧化产物, 如丙烯醛、 丙烯酸等, 给丙烯腈的 回收精制带来困难。 因此氨转化率高的催化剂就需要较高的氨与丙烯 的比例, 是不经济的。 本发明催化剂由于丙晞氧化产物生成量较低, 因此即使氨转化率较高, 在正常的氨比条件下也不会生成大量氧化产 物。
由于组分 M中的钨对提高负荷有利, 钒可以改进催化剂在高反应 压力的性能, 因此去掉一些对高压、 高负荷反应性能有负面影响的组 分,增加钨、钒的使用量,使催化剂具有了在较高反应压力( 0. 15MPa ), 较高负荷 (WWH 为 0. 15hr— 条件下的搡作能力, 且丙烯腈单程收率 仍保持在了 78 %以上的水平, 取得了较好的效果。
下面通过实施例对本发明作进一步的阐述。
[实施例 1] 将 8. 5克浓度为 20 %的硝酸钾, 4. 3克硝酸钠, 8. 2克浓度为 20 %的硝酸铯和 4. 5克硝酸铊混合使溶解为物料(A ) 。
将 43. 7克钨酸铵溶于 100毫升 5 %氨水, 与 354. 克钼酸铵溶于 300毫升热水的溶液混合得物料(B ) 。
将 135. 1克硝酸铁溶于 70毫升水, 加入 97. 3克硝酸钴, 257. 7 克硝酸镍和 81. 1克硝酸铋, 加热使其溶解为物料( C ) 。
将(A )与 1250克浓度为 40 %的氨稳定无钠硅溶胶混合。 在搅拌 下加入 12. 3克浓度为 20 %的磷酸和 8. 4克三氧化铬。 溶解后再于搅 拌下加入物料(B ) 和(C ) 。
浆料搅拌加热浓缩到其中固体含量为 50 %左右, 用离心式喷雾干 燥器进行喷雾干燥。 制成的微球状粉体在内径 89毫米, 长 1700毫米 的旋转焙烧炉内, 在 670°C焙烧 1小时得催化剂。 其化学组成为:
Mo12Wi. oBii.0Fe2.0Co2.0Ni5.3Cr0.5P0. i5Na0.3K0. iCs0.05T10. !+50%Si02
[实施例 2]
按例 1方法制造组成如下的催化剂:
Mo12Wi. sBii.0Fe2. oCoL 0Ni6.3Cr0.5Po. i5Na0.3K0. iCs0.05T10. i+50%Si02
其中钨酸铵用量为 65. 5克, 硝酸钴为 48. 7克, 硝酸镍为 306. 4 克, 其余与例 1相同。
[实施例 3]
按例 1方法制造组成如下的催化剂:
M012W1. oVo.2Bii.0Fe2.0Co2.0Ni5.3Cr0.5Po.15Na0.3K0. iCs0.05T10. i+50%Si02 其中偏钒酸铵用量为 1. 71克, 其余与例 1相同。
[实施例 4]
按例 1方法制造组成如下的催化剂:
MoiaWj.5Bii.5Fe2.0Co0.5Ni6.5Cr0.5Po.15Na0.3K0. iCs0. iTl0.15+50%Si02
其中钨酸铵用量为 65. 5克, 硝酸铋为 121. 7克, 硝酸钴为 24. 3 克, 硝酸镍为 316. 1克, 硝酸铯为浓度 20 %的水溶液 16. 3克, 硝酸 铊为 6. 7克, 其余与例 1相同。
[实施例 5]
按例 1方法制造组成如下的催化剂:
Mo12W2. oBii.7Fe2.0Co0.5Ni6.3Cr0.5Po. iNa0.3K0. iSm0. Jlo.2+50%Si02
其中钨酸铵用量为 87. 6克, 硝酸铋为 137. 9克, 硝酸钴为 24. 3 克, 硝酸镍为 306.4克, 浓度为 20%磷酸水溶液 8.2克, 浓度为 20 %硝酸钐水溶液 17.8克, 硝酸铊为 9.0克, 其余与例 1相同。
[实施例 6]
按例 1方法制造组成如下的催化剂:
M012W1.5Bii.5Fe2. oCoi.0Ni6.0Cr0.5Po.25Na0.3K0. iRb0. iCs0. i+50%Si02
其中钨酸铵为 65.5克, 硝酸铋为 121.7克, 硝酸钴为 48.7克, 硝酸镍为 291.8克, 85%嶙酸 4.8克, 浓度为 20%硝酸铯水溶液 16.3 克, 并用浓度为 20%硝酸铷水溶液 12.3克代替例 1 中的硝酸铊, 其 余与例 1相同。
[实施例 7]
按例 1方法制造组成如下的催化剂;
M012W1.5Bii.0Fe2.0C00.5Ni7.5Cr0.5Ρ0.25Na0.3K0. iRbo. iCs0. i+50%Si02
其中钨酸铵为 65.5克, 硝酸钴为 24.3克, 硝酸镍为 364.8克,
85%磷酸 4.8克, 浓度为 20%硝酸铯水溶液 16.3克, 并用浓度为 20 %硝酸铷水溶液 12.3克代替例 1中的硝酸铊, 其余与例 1相同。
[比较例 1]
用例 1方法制造组成为 CN 1021638C中例 1的催化剂, 载体二氧 化硅含量为 50%。
Mon.5Wo.5B10.
Figure imgf000008_0001
8Co4. oNi2. aMih.0Cr0. P0.2sNa0.3Rb0. iCs0.05
[比较例 2]
用例 1方法制造組成为 CN 1021638C中例 3的催化剂, 载体二氧 化硅含量为 50%。
Mon.8Wo.2Bio. gFei.8Co4. oNi2.3M111.0Cr0.4P0.15B0. iNa0.3K0. iCs0.05TI0.1
催化剂活性考查。 催化剂在内径 38 毫米流化床反应器中考查活 性。 反应器出口有压力调节器以调节反应压力。
试验结果 1: 在较高反应压力和丙烯负荷条件下考查催化剂活性。 催化剂加入量为 400克, 原料气配比为; 丙烯:氨:空气 = 1:1.2:9.8, 反应温度 440 , 反应压力 0.14MPa, WWH为 0.085hr— 结果如下: 催化剂 单 程 收 率 ( % ) 转化率 ( ) 丙烯腈 乙腈 氰氢酸 丙烯醛 丙烯酸 一氧 二氧 丙婦 氨 化碳 化碳
比较例 1 77.7 2.5 1.9 0.5 1.4 3.3 9.5 96.8 92.1 比较例 2 77.1 2.6 2.3 0.6 1.6 3.6 9.3 97.1 91.8 实施例 1 79.7 2.8 1.9 0.5 1.5 3.1 8.1 97.5 96.5 实施例 2 79.4 3.1 1.1 0.5 1.5 2.7 9.4 97.6 97.1 实施例 3 79.5 2.6 2.1 0.5 1.5 3.3 8.1 97.5 97.0 实施例 4 79.2 2.7 2.6 0.8 1.5 3.0 7.5 97.3 96.8 实施例 5 79.5 2.8 2.2 0.4 1.3 3.2 8.7 98.1 97.3 实施例 6 79.5 3.4 1.0 0.5 1.5 2.5 9.0 97.6 97.1 实施例 7 79.6 2.5 1.9 0.4 1.5 3.2 8.7 97.9 96.6 试验结果 2: 在正常反应压力和丙烯负荷条件下考查催化剂活性。 催化剂加入量 550 克, 原料气配比为; 丙烯:氨:空气 = 1:1.2:9.8, 反应温度 440 , 反应压力 0.082MPa, WWH为 0.045hr— 结果如下: 催化剂 单 程 收 率 ( % ) 转化率 (%) 丙烯腈 乙腈 氰氢酸 丙烯醛 丙烯酸 一氧 二氧 丙婦 氨 化碳 化碳
比较例 1 79.3 2.8 1.6 0.2 1.0 3.8 9.2 98.1 93.5 比较例 2 79.5 2.9 1.4 0.3 1.1 3.5 8.9 96.7 93.0 实施例 1 80.6 2.9 2.2 0.5 1.6 3.3 8.0 99.0 97.0 实施例 2 80.5 3.0 1.6 0.2 1.8 3.1 9.2 99.4 97.4 实施例 3 80.4 2.7 2.1 0.5 1.8 3.5 8.1 99.0 97.5 实施例 4 81.1 3.3 0.9 0.2 1.6 2.6 8.6 99.1 97.1 实施例 5 81.4 3.7 1.0 0.1 1.7 2.8 8.9 99.4 97.8 实施例 6 80.8 3.2 1.2 0.3 1.7 2.7 9.0 98.9 97.5 实施例 7 80.7 3.2 1.4 0.5 1.7 2.7 8.9 99.2 97.2 试验结果 3: 用本发明实例 1催化剂, 在不同反应压力下考查活 性。催化剂加入量 400克,原料气配比为; 丙烯:氨:空气 = 1:1.2:9.8, 反应温度 440 , WWH为 0.085hr_1, 结果如下:
反应 单 程 收 率 ( % ) 转化率(%) 压力
(MPa) 丙烯腈 乙腈 氰氢酸 丙埽搭 丙烯酸 一氧 二氧 丙諦 氨 化碳 化碳
0.08 79.6 2.1 2.3 2.0 2.1 2.5 7.1 97.8 97.5
0.09 79.7 2.4 1.7 1.7 2.2 2.5 7.2 97.4 97.0
0.10 80.1 2.1 2.7 1.1 1.6 3.2 7.5 98.3 97.1
0.11 79.7 2.3 2.7 0.9 1.7 3.2 7.6 98.0 96.9
0.12 79.4 2.7 2.0 0.9 1.7 2.9 7.8 97.3 96.7
0.13 79.4 2.6 2.5 0.5 1.6 3.2 7.7 97.5 96.5
0.14 79.7 2.8 1.9 0.5 1.5 3.1 8.1 97.5 96.5
0.15 78.2 3.2 2.5 0.5 1.6 3.4 7.8 97.1 96.3 以上试验表明, 本发明催化剂与原有文献 CN 1021638C比较, 在 正常压力和丙烯负荷(WWH)条件下, 本发明催化剂的丙烯腈单收约提 高 1.0 ~ 1.5%, 氨转化率提高 3-4%, 而在较高反应压力和丙烯负荷 条件下, 丙烯腈单收约提高 1.5-2.0%, 氨转化率提高 4-5%。 同时 在提高反应压力时, 本发明催化剂丙烯腈单收下降低于原有催化剂。

Claims

权 利 要 求
1.一种丙烯氨氧化生产丙烯腈的流化床催化剂, 含有二氧化硅载 体和化学式如下的组合物:
AaCcDdNafFegBihMiMoi20x
式中 A为选自钾、 铷、 铯、 钐、 铊中的至少一种或其混合物;
C为为选自磷、 砷、 硼、 锑、 铬中的至少一种或其混合物;
D为选自镍、 钴或其混合物;
M为选自钨、 钒或其混合物;
a为 0.01 ~ 1.0, c为 0.01 ~ 2.0, d为 0.01 ~ 12, f 为 0.2 ~ 0.7, g为 0.01 8, h为 0.01-6, i为 0.01 9, x为满足催化剂中各元素 化合价所需的氧原子总数;
催化剂的载体是二氧化硅, 含量为 30- 70% (重量) 。
2.根据权利要求 1 所述的丙烯氨氧化生产丙烯腈的流化床催化 剂, 其特征在于 a为 0.03 ~ 0.4, c为 0.1 ~ 1.5, d为 0.1 ~ 8, f 为 0.3~ 0.5, g为 0·1~4, h为 0·1~4, i为 0· 1 ~ 6。
3.根据权利要求 1 所述的丙烯氨氧化生产丙烯腈的流化床催化 剂, 其特征在于催化剂中载体二氧化硅含量为 40- 60% (重量) 。
4.在较高反应压力和高丙烯负荷下从丙烯的氨氧化生产丙烯腈的 方法,其特征在于在丙烯进行氨氧化反应的流化床中使用权利要求 1 ~ 3的催化剂。
5.根据权利要求 4所述的方法, 其中反应压力为 0.08 0.15MPa 和丙烯负荷 WWH为 0.06-0.15h—
PCT/CN1998/000165 1997-09-03 1998-08-12 Catalyseur pour la production d'acrylonitrile WO1999011368A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/508,038 US6596897B1 (en) 1997-09-03 1998-08-12 Catalyst for producing acrylonitrile
BRPI9812154-5A BR9812154B1 (pt) 1997-09-03 1998-08-12 processo para a produção de acrilonitrila usando catalisador de leito fluidizado.
EP98938589A EP1027929A4 (en) 1997-09-03 1998-08-12 CATALYST FOR THE PRODUCTION OF ACRYLONITRILE
JP2000508459A JP4889149B2 (ja) 1997-09-03 1998-08-12 アクリロニトリル生産用触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN97106580A CN1108865C (zh) 1997-09-03 1997-09-03 生产丙烯腈的催化剂
CN97106580.2 1997-09-03

Publications (1)

Publication Number Publication Date
WO1999011368A1 true WO1999011368A1 (fr) 1999-03-11

Family

ID=5168806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1998/000165 WO1999011368A1 (fr) 1997-09-03 1998-08-12 Catalyseur pour la production d'acrylonitrile

Country Status (8)

Country Link
US (1) US6596897B1 (zh)
EP (1) EP1027929A4 (zh)
JP (1) JP4889149B2 (zh)
CN (1) CN1108865C (zh)
BR (1) BR9812154B1 (zh)
TW (1) TW458960B (zh)
WO (1) WO1999011368A1 (zh)
ZA (1) ZA987996B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046957A1 (de) * 2000-09-21 2002-04-11 Basf Ag Verfahren zur Herstellung eines Multimetalloxid-Katalysators, Verfahren zur Herstellung ungesättigter Aldehyde und/oder Carbonsäuren und Bandcalziniervorrichtung
US6946422B2 (en) * 2002-12-12 2005-09-20 Saudi Basic Industries Corporation Preparation of mixed metal oxide catalysts for catalytic oxidation of olefins to unsaturated aldehydes
EP1602405B1 (en) * 2003-03-05 2014-09-10 Asahi Kasei Chemicals Corporation Particulate porous ammoxidation catalyst
JP4242197B2 (ja) * 2003-04-18 2009-03-18 ダイヤニトリックス株式会社 アクリロニトリル合成用触媒
US7229945B2 (en) * 2003-12-19 2007-06-12 Saudi Basic Industrics Corporation Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP4597782B2 (ja) * 2005-06-08 2010-12-15 ダイヤニトリックス株式会社 流動層アンモ酸化触媒の製造方法
MX2012010925A (es) * 2010-03-23 2012-12-17 Ineos Usa Llc Proceso de amoxidacion de alta eficiencia y catalizadores de oxido de metal mezclados.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018103A1 (en) * 1979-04-18 1980-10-29 Ube Industries, Ltd. Ammoxidation catalyst for the production of acrylonitrile from propylene and process for producing the same
CN1021638C (zh) * 1990-11-05 1993-07-21 中国石油化工总公司 丙烯腈流化床催化剂
US5364825A (en) * 1992-06-25 1994-11-15 Basf Aktiengesellschaft Multimetal oxide compositions and process of preparing same
EP0713724A1 (en) * 1993-08-10 1996-05-29 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst composition and process for producing acrylonitrile or methacrylonitrile by using the same
EP0714697A1 (en) * 1993-08-17 1996-06-05 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst composition
CN1172691A (zh) * 1996-08-06 1998-02-11 中国石油化工总公司 丙烯腈流化床含锂催化剂

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32484E (en) * 1968-12-30 1987-08-25 The Standard Oil Company Oxidation catalysts
US4192776A (en) * 1973-12-19 1980-03-11 The Standard Oil Company Catalysts and process for the ammoxidation of olefins
JPS5318014B2 (zh) * 1974-02-09 1978-06-13
CA1045619A (en) * 1974-04-19 1979-01-02 Mitsubishi Chemical Industries Limited (Mitsubishi Kasei Kogyo Kabushiki Kaisha Also Trading As) Method of preparing maleic anhydride and catalysts utilized therefor
US4397771A (en) * 1975-01-13 1983-08-09 The Standard Oil Co. Oxidation catalysts
US4322358A (en) * 1979-10-17 1982-03-30 E. I. Du Pont De Nemours And Company Preparation of furan
JPS56140931A (en) * 1980-04-04 1981-11-04 Nippon Zeon Co Ltd Preparation of conjugated diolefin
DE3125061C2 (de) * 1981-06-26 1984-03-15 Degussa Ag, 6000 Frankfurt Verfahren zur Herstellung von Acrolein bzw. Methacrolein durch katalytische Oxidation von Propylen bzw. Isobutylen oder tertiär-Butanol in sauerstoffhaltigen Gasgemischen
US4511548A (en) * 1981-12-18 1985-04-16 The Standard Oil Company Ammoxidation of methanol to produce hydrogen cyanide
JPS58119346A (ja) * 1982-01-06 1983-07-15 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒
US4537874A (en) * 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
JPS59204164A (ja) * 1983-05-06 1984-11-19 Asahi Chem Ind Co Ltd 不飽和ニトリルの製法
CN1009340B (zh) * 1986-03-24 1990-08-29 三菱油化株式会社 含钼-铋的复合氧化物催化剂的制法
JPS62234548A (ja) * 1986-03-24 1987-10-14 Mitsubishi Petrochem Co Ltd 複合酸化物触媒の製造法
EP0279374B1 (en) * 1987-02-17 1992-01-02 Nippon Shokubai Kagaku Kogyo Co., Ltd Catalyst for oxidation of olefin or tertiary alcohol and process for production thereof
DE3740271A1 (de) * 1987-11-27 1989-06-01 Basf Ag Verfahren zur herstellung einer fuer die gasphasenoxidation von propylen zu acrolein und acrylsaeure katalytisch aktiven masse
US5093299A (en) * 1990-01-09 1992-03-03 The Standard Oil Company Catalyst for process for the manufacture of acrylonitrile and methacrylonitrile
US5212137A (en) * 1990-01-09 1993-05-18 Standard Oil Company Catalyst for the manufacture of acrylonitrile and methacrylonitrile
US5134105A (en) * 1990-03-19 1992-07-28 The Standard Oil Company Catalyst for propylene ammoxidation to acrylonitrile
CN1025551C (zh) * 1990-11-05 1994-08-03 中国石油化工总公司 保持丙烯腈流化床钼系催化剂活性稳定的补加催化剂
FR2670686B1 (fr) * 1990-12-20 1994-08-12 Rhone Poulenc Chimie Composition catalytique pour la preparation d'aldehydes alpha,beta-insatures par oxydation d'olefines en phase gazeuse et procede d'oxydation.
JP3272745B2 (ja) * 1991-06-06 2002-04-08 三菱レイヨン株式会社 メタクロレイン及びメタクリル酸の製造法
US5532199A (en) * 1992-06-19 1996-07-02 Mitsubishi Rayon Co., Ltd. Carrier-supported catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids and process for preparing the same
TW349033B (en) * 1994-05-31 1999-01-01 Nippon Catalytic Chem Ind Catalyst for production of methacrylic acid and method for production of methacrylic acid by the use of the catalysta catalyst for the production of methacrylic acid by the vapor-phase catalytic oxidation and/or oxidative dehydrogenation of at least one compound
JP3476307B2 (ja) * 1996-05-09 2003-12-10 三菱レイヨン株式会社 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の充填方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018103A1 (en) * 1979-04-18 1980-10-29 Ube Industries, Ltd. Ammoxidation catalyst for the production of acrylonitrile from propylene and process for producing the same
CN1021638C (zh) * 1990-11-05 1993-07-21 中国石油化工总公司 丙烯腈流化床催化剂
US5364825A (en) * 1992-06-25 1994-11-15 Basf Aktiengesellschaft Multimetal oxide compositions and process of preparing same
EP0713724A1 (en) * 1993-08-10 1996-05-29 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst composition and process for producing acrylonitrile or methacrylonitrile by using the same
EP0714697A1 (en) * 1993-08-17 1996-06-05 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst composition
CN1172691A (zh) * 1996-08-06 1998-02-11 中国石油化工总公司 丙烯腈流化床含锂催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1027929A4 *

Also Published As

Publication number Publication date
JP4889149B2 (ja) 2012-03-07
ZA987996B (en) 1999-03-25
US6596897B1 (en) 2003-07-22
CN1108865C (zh) 2003-05-21
CN1210033A (zh) 1999-03-10
TW458960B (en) 2001-10-11
BR9812154A (pt) 2000-07-18
JP2001525238A (ja) 2001-12-11
BR9812154B1 (pt) 2009-08-11
EP1027929A4 (en) 2004-02-04
EP1027929A1 (en) 2000-08-16

Similar Documents

Publication Publication Date Title
EP0484792B1 (en) Fluidized-bed catalyst for preparing acrylonitrile
CN107413372B (zh) 生产卤代芳腈的流化床催化剂及其使用方法
WO2001014057A1 (fr) Catalyseur a lit fluidise pour l'ammoxydation de propylene en acrylonitrile
CN103896807A (zh) 用于氨氧化制备对苯二甲腈的方法
CN102188981A (zh) 丙烯腈流化床催化剂的制备方法
CN101147868A (zh) 生产丙烯腈的流化床催化剂
WO1999011368A1 (fr) Catalyseur pour la production d'acrylonitrile
CN101147867B (zh) 丙烯氨氧化流化床催化剂
CN1136980C (zh) 丙烯氨氧化生产丙烯腈的流化床催化剂
CN101121128A (zh) 丙烯氨氧化生产丙烯腈的流化床催化剂
CN100384531C (zh) 氨氧化制备丙烯腈的流化床催化剂
CN100381203C (zh) 高收率的丙烯腈催化剂
CN101306372B (zh) 生产丙烯腈的流化床催化剂
CN100566828C (zh) 制备丙烯腈的流化床催化剂
CN1099316C (zh) 丙烯腈流化床催化剂
CN1094073C (zh) 生产丙烯腈的流化床催化剂
CN100391602C (zh) 氨氧化生产丙烯腈的流化床催化剂
CN1107541C (zh) 生产丙烯腈的流化床催化剂
CN1100612C (zh) 丙烯氨氧化流化床催化剂
CN100358630C (zh) 丙烯氨氧化制备丙烯腈的流化床催化剂
CN1285237A (zh) 丙烯氨氧化制造丙烯腈流化床催化剂
CN101279265B (zh) 制备丙烯腈的流化床催化剂
CN100368082C (zh) 制备丙烯腈的方法
CN1130261C (zh) 丙烯氨氧化流化床催化剂
CN100358631C (zh) 制备丙烯腈的流化床催化剂

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/002218

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1998938589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09508038

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998938589

Country of ref document: EP