WO1998035312A1 - Circuit integrateur de charges photogenerees a linearite amelioree - Google Patents

Circuit integrateur de charges photogenerees a linearite amelioree Download PDF

Info

Publication number
WO1998035312A1
WO1998035312A1 PCT/FR1998/000233 FR9800233W WO9835312A1 WO 1998035312 A1 WO1998035312 A1 WO 1998035312A1 FR 9800233 W FR9800233 W FR 9800233W WO 9835312 A1 WO9835312 A1 WO 9835312A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
mos transistor
point
integration
potential
Prior art date
Application number
PCT/FR1998/000233
Other languages
English (en)
Inventor
Thierry Ducourant
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Priority to JP53388998A priority Critical patent/JP4024869B2/ja
Priority to DE69813775T priority patent/DE69813775T2/de
Priority to EP98906991A priority patent/EP0958545B1/fr
Priority to US09/355,919 priority patent/US6265737B1/en
Publication of WO1998035312A1 publication Critical patent/WO1998035312A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/18Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals
    • G06G7/184Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements

Definitions

  • the invention relates to circuits integrating photogenerated charges. It aims in particular to limit linearity faults caused by stray capacitances.
  • Such integrator circuits are commonly used in various fields, among which mention may be made of digital image detector panels, in particular radiological digital images. Taking the example of digital image detector panels, these generally include a matrix of photosensitive dots. Each photosensitive point delivers a quantity of charges proportional to the intensity of a light signal to which it has been exposed. For each photosensitive point, these photogenerated charges are converted into a voltage value which is then read and then memorized to constitute an elementary point of a digital image.
  • FIG. 1 represents a conventional diagram of such an integrator circuit.
  • the integrator circuit 1 comprises a so-called integration capacity d, of which an armature 2 is connected to a reference potential Vr: in the example shown, this reference potential consists of a positive supply potential V + with respect to the general mass of the circuit; but the reference voltage can be different, for example between the supply potential V + and ground.
  • the second armature 3 of the integration capacity d is connected to a point "A" where a conductor 4 carrying loads arrives.
  • These charges intended to be integrated by the integration capacity d are delivered by a generator. charges 5, of the type for example constituted by a matrix of photosensitive points.
  • a capacitor The simplest way to realize a capacitor consists for example, to form it starting from a transistor gate of the MOS type (from the English "Metal Oxide Semiconductor).
  • MOS Metal Oxide Semiconductor
  • the capacitors of this type are non-linear, their value varies with the voltage applied to their terminals.
  • the integration capacity d is brought to successively integrate quantities of charges Q belonging to different and successive measurements; it is therefore necessary before each measurement, to evacuate the charge stored by the integration capacity in order to avoid voltage drifts, and allow to regularly start from a stable and known voltage value at the terminals of the capacity integration d.
  • This is accomplished by a so-called reset operation, which consists in short-circuiting the integration capacity d using an element fulfilling a switch function.
  • a reset operation it is conventional to use a semiconductor device such as an MOS type transistor controlled all or nothing, as shown in FIG. 1 by a reset transistor t1.
  • the transistor t1 is of the MOS type, channel "P", its source S1 is connected to the first armature 2 of the integration capacity d and therefore to the reference voltage V +.
  • the drain D1 of the transistor t1 is connected to the point "A" with variable potential, that is to say to the second armature 3 of the integration capacity d, and its gate G is connected to a reset control circuit. 6, from which it receives a reset control signal.
  • a drawback of the conventional assembly described above resides in the fact that the drain D1 of the reset transistor t1 being connected to the second armature 2, it brings back in parallel to the integration capacity d, a parasitic capacity cpl (show in dotted lines in FIG. 1) which is formed by a junction formed by this drain D1. It is well known in fact that the drain D1 but also the source S1 of such a transistor t1, are made up each by an area implanted in a semiconductor substrate with which they each form a junction.
  • the drain and the source each consist of a semiconductor zone, doped according to a type of conductivity opposite to that of the substrate.
  • a P type transistor or P channel has an N doped substrate which is brought to the positive potential of the supply voltage applied to the circuit (as shown in Figure 1 where the substrate B1 of transistor t1 is connected to the potential positive V +); and the drain and the source of this transistor are formed by “N” doped zones implanted in this substrate.
  • An N-type transistor on the contrary, is referenced with respect to a substrate which is at the negative potential of the supply voltage.
  • the drain D1 is constituted by a polarized junction in the "blocked" direction, that is to say by a reverse biased diode, a diode which consequently constitutes a parasitic capacitance cpl arranged in parallel with the capacitance of integration d (as shown in dotted lines in the figure).
  • the integration capacity In the case, for example, of an integrator circuit receiving charges produced by a photosensitive matrix, it is common for the integration capacity to have a value of the order of 0.3 to 0.5 pF.
  • the non-linearity generated by the only parasitic capacitance that is to say by the presence of the switch constituted by the transistor t1
  • one solution consists in using MOS transistors having a small junction surface as a switch.
  • the limits of this solution are quickly reached without really giving satisfaction, because the constituent elements of these transistors cannot be made small enough for technological reasons.
  • the invention proposes to compensate for the different variations coming from this parasitic capacitance, by variations accomplished in a contrary direction and coming from at least one other semiconductor junction.
  • a photogenerated charge integrator circuit comprising an integration capacitance, a first armature of which is connected to a reference potential and a second armature at a point of variable potential where it receives the photogenerated charges, a transistor Reset MOS, of the first type, connected on the one hand to the point with variable potential and on the other hand, to a supply potential, this transistor of the first type having a parasitic capacitance in parallel with the integration capacitance .
  • This integrator circuit is characterized in that it comprises one or more second type MOS transistors, connected to the point with variable potential, each having a parasitic capacitance in parallel with the integration capacitance, so that a variation of the voltage across the integration capacity causes a variation in the value of each of the stray capacitances, the variation in the stray capacitances of the second type MOS transistors tends to compensate for the variation in the stray capacitance of the first type MOS transistor.
  • the first type MOS transistor may have its drain connected to the point with variable potential and its source connected to the supply potential.
  • This transistor has a switch function and its gate is connected to a reset control circuit.
  • This circuit can include, as a second type MOS transistor, an MOS transistor connected by its drain to the point with variable potential and which receives the charges from its source. Its grid can be connected to a circuit authorization so as to form a switch allowing the charges to pass when it is in a closed state.
  • This circuit can include, as a second type MOS transistor, an MOS transistor connected by its source to the point with variable potential and by its drain to the supply potential.
  • This second type MOS transistor can be controlled by its gate and have a switch function which in an open state freezes the potential of the point with variable potential, which makes it possible to obtain protection against glare.
  • circuit includes the two second type MOS transistors described above, their gates may be connected to the same authorization circuit.
  • the first type transistor is of type P while the second type transistors of type N.
  • An integrator circuit comprising a first semiconductor device, a so-called integration capacity connected to a point with variable potential where it receives charges produced by a charge generator, the semiconductor device comprising a junction of a first type of which a first zone having a first type of conductivity is connected to the point with variable potential, and of which a second zone having a second type of conductivity (opposite to the first) is connected to a first supply potential by which the junction is polarized in the opposite direction, furthermore comprises at least a second semiconductor device having a junction of a second type, a first zone having the second type of conductivity is connected to the point with variable potential, and a second zone having the first type of conductivity, is connected to a second supply potential by which the junction of the second type is reverse biased.
  • FIG. 2 schematically shows an integrator circuit 10 according to the invention.
  • the integrator circuit 10 includes an integration capacity d of the same type as that described with reference to FIG. 1.
  • the first armature 2 of the integration capacity d is connected to a reference potential Vr, which in the non-limiting example described, is constituted by a positive potential V + of a supply voltage.
  • the second armature 3 receives by a conductor 4, photogenerated charges represented as produced by a charge generator 5. This connection constitutes a point "A" called “with variable potential” where the voltage varies as a function of the charges integrated by the capacity d integration d.
  • a switch element is mounted in parallel with the integration capacity d, in order to carry out reset operations.
  • This switch function is performed by a transistor t1 of the same MOS type as the transistor t1 in FIG. 1, ie of the P type in the example.
  • the drain D1 of the transistor t1 is connected to the point "A" with variable potential; its source S1 is connected to the supply potential V + which in the example described also corresponds to the first armature 2 of the integration capacity d; and its gate G is connected to a reset control circuit 6.
  • the transistor t1 constitutes a semiconductor device comprising at least one junction jB1 (not shown in FIG. 2), junction whose polarization is such that it constitutes a capacitance parasite cpl (shown in dotted lines in Figure 2) reported in parallel on the integration capacity d.
  • the integrator circuit 10 also comprises at least one other semiconductor device having at least one jB2 junction (not shown in Figure 2) of a second type having the following characteristics:
  • this junction jB2 of the second type has a first zone having a given type of conductivity, and which is connected to point "A" with variable potential; b) This jB2 junction of the second type differs from the jB1 junction of the first type belonging to the first semiconductor device t1, in that its first zone is of the conductivity type contrary to that of the first zone of the jB1 junction of the first type; thus for example, if the first zone of the jB1 junction of the first type is doped P, the first zone of the jB2 junction of the second type is doped N;
  • this junction jB2 of the second type has a second zone having the type of conductivity opposite to that of the first zone, which second zone is connected to a second supply potential whose polarity with respect to point "A" with variable potential is such that this junction jB2 of the second type is reverse biased.
  • this junction jB2 of a second type also constitutes a so-called parasitic capacity cp2, connected in parallel with the integration capacity d.
  • the second parasitic capacitance cp2 although of the same nature as the first parasitic capacitance cpl, differs in that it results from the reverse polarization of a different junction, of a type of conduction opposite to that of the junction having given birth to the first parasitic capacity cpl. Consequently, a variation in the voltage across the integration capacitance d causes a variation in the value of each of the stray capacitances cpl, cp2, in opposite directions with respect to each other. These variations in parasitic capacitance values thus tend to compensate each other.
  • the other or second semiconductor device is constituted by a second transistor t2 of the MOS type opposite to that of the MOS transistor t1, in the example with "N" channel in order to include a junction of the second type described above.
  • the second transistor t2 is connected by its drain D2 to the point "A" with variable potential, and its substrate Bp is connected to the second supply potential V- mentioned above, the polarity of which is negative with respect to the point "A” with variable potential.
  • This suffices to make the connection of the junction corresponding to this drain D2, as well as its reverse bias, and consequently suffices to make the second stray capacitance cp2. It is clear that this can also be obtained by a semiconductor device of another type, by a diode for example. It should also be noted that in the in the case of a MOS transistor, the installation of a second parasitic capacitance cp2 would be obtained just as well by connecting, at point "A" with variable potential, the source of this transistor rather than its drain.
  • FIG. 2 shows in dotted lines a MOS transistor t3 of the second type opposite to that of the MOS transistor t1 which has a parasitic capacitance cp3 in parallel with the integration capacitance d.
  • the second transistor t2 already having its drain D2 connected to the point "A" with variable potential, it can also provide another additional function, such as for example to authorize, or prohibit the passage of charges and their integration, such as in the nonlimiting example shown in Figure 2; in FIG. 2, in fact, the second transistor t2 is disposed between the point "A" with variable potential, and the charge generator 5 to which it is connected by its source S2. It is controlled by all or nothing by an authorization circuit 7 to which its gate G is connected, so as to constitute a switch allowing the charges to pass when it is put in the "closed" state.
  • the second transistor could just as easily fulfill another additional function, the important thing is that it is connected to point "A" with variable potential by its drain D2 or its source S2, in order to connect at this point the second parasitic capacity cp2.
  • the second type MOS transistor t3 can be controlled by its gate G and have a switch function which in an open state freezes the potential of point "A” and makes it possible to achieve protection against glare, which corresponds to the situation where the potential at point "A" becomes very negative compared to the potential V +. It should also be noted that compensation can be obtained by several parasitic capacitances cp2, cp3 in parallel formed using several junctions of the second type, all connected to point "A" belonging to transistors and / or to diodes.
  • the integrator circuit 10 could include both the second type MOS transistor t2 and the second type MOS transistor t3 that we have just described. which is arranged in parallel with the first transistor t1, that is to say which has its source S3 connected to point "A" and its drain D3 connected to the first armature 2 of the integration capacity d, so on the one hand that its junction (of the same type as the junction of the second transistor t2) forms a stray capacitance cp3 put in parallel with that cp2 of the second transistor t2; and on the other hand that this third transistor t3 performs another function, for example that of a switch with anti-dazzle function.
  • the integration circuit 10 comprises the two MOS transistors t2, t3 of the second type, their gates G can be connected to the same authorization circuit 7.
  • FIG. 3 shows in a simplified manner a semiconductor structure 11, carrying the two transistors t1, t2, and illustrating the mechanisms which lead to forming the parasitic capacitances cpl, cp2.
  • the structure 11 is shown by a sectional view, parallel to the channel of each of these transistors. It comprises a substrate called main substrate Bp doped according to a first type of conductivity P, in which a large area B1 is implanted forming the substrate of the first transistor t1.
  • This substrate B1 is doped according to the second type of conductivity (opposite to the first), that is to say N.
  • the drain D1 and the source S1 of the first transistor t1 are each formed, in a manner in itself conventional, by a P doped area, implanted in the substrate B1.
  • the drain D1 and the source S1 having a type of conductivity P opposite to that (N) of the substrate B1, this drain and this source each form with the substrate B1 a semiconductor junction jB1 of a diode 13 shown in dotted lines.
  • the cathode of these diodes 13 corresponds to the substrate B1, and their anode corresponds to the drain and to the source, that is to say to the doped zone P.
  • the drain D1 and the source S1 each constitute the first region previously mentioned of a junction jB1 of the first type, of which the substrate B1 is the second zone.
  • the substrate B1 of the first transistor t1 is connected to the first supply potential V +, while the drain D1 is connected to the point "A" with variable potential whose voltage is negative with respect to this first potential V +.
  • the diodes 13 are reverse biased, and under these conditions they each constitute a capacitor, of which that which corresponds to the drain D1 constitutes the first parasitic capacitance cpl shown in FIGS. 1 and 2.
  • the drain D2 and the source S2 of the second transistor t2 are produced by zones doped with the second type of conductivity, ie N, located in the main substrate Bp (P doped). They are located at a distance from each other which represents the length L2 of channel 14 of this transistor, channel above which the gate G. is disposed.
  • the drain D2 and the source S2 having a conductivity type opposite to that of the main substrate Bp, this drain D2 and this source S2 each form with this substrate Bp a semiconductor junction jB2 of a diode 15 shown in dashed lines.
  • the anode of these diodes 15 corresponds to the main substrate Bp, and their cathode corresponds to the drain D2 and to the source S2, that is to say to the doped zone N.
  • the drain D2 and the source S2 each constitute the first zone previously mentioned a junction jB2 of the second type, of which the main substrate Bp is the second zone.
  • the main substrate Bp of the second transistor t2 is connected to the second supply potential V-, while the drain D2 is connected to the point "A" with variable potential whose voltage is positive with respect to this second supply potential V- . It follows that, as in the case of the first transistor t1, the diodes 15 are reverse biased: under these conditions they each constitute a capacitor, of which that which corresponds to the drain D2 constitutes the second parasitic capacitance cp2 shown in FIG. 2.
  • first parasitic capacitance cpl is formed by several semiconductor devices, each of them has a junction such as the junction of the first type jB1. It is the same with regard to the second parasitic capacitance cp2: if it is formed by several semiconductor devices, each of them comprises a junction such as the junction of the second type jB2.
  • the description has been made by considering that the parasitic capacity to compensate was induced by a junction of the first type jB1, the compensation of which is effected using a jB2 junction of the second type, but of course the invention is applies equally well otherwise.
  • the value of the first and second parasitic capacitances cpl, cp2 produced respectively by one or more junctions of the first type jB1 and one or more junctions of the second type jB2, depends on both the junction bias voltage and the junction surface: on the one hand, the value of the capacitance increases when the reverse bias voltage decreases, and on the other the value of the capacitance increases as the junction area increases.
  • the integration of the charges by the integration capacity d can generate at the variable potential point “A” a voltage variation representing an operating voltage range VC included in a potential difference formed between the first V + and the second V- feeding potentials.
  • the invention proposes to adapt the dimensions of the junctions jB1, jB2, as a function of the position of the coding range within the potential difference formed between the first and second supply voltages V +, V-.
  • the invention therefore proposes to give a larger dimension to that of the surfaces Sj1 , Sj2 which corresponds to the type of junction jB1, jB2 being referenced to that of the supply potentials V +, V- whose coding range VC is the most distant.
  • the first and second supply potentials V +, V- are respectively at +5 volts and at -5 volts relative to the ground, and that on the other hand the reference voltage Vr to which the first armature 2 of the integration capacity d is connected, ie a voltage of +1.5 volts relative to ground: under these conditions the central voltage Vc of the coding range is at ground potential , that is to say centered with respect to the supply potentials V +, V-, and the junction surfaces Sj1, Sj2 can be substantially equal.
  • the compensation of one stray capacitance by another was optimized for a coding voltage range of 3 volts, centered on +2 volts, and with first and second supply potentials V +, V- of +5 volts and - 5 volts, and the reference voltage Vr constituted by the first supply potential V +.
  • the first parasitic capacitance cpl consisted of the drain of a P channel MOS transistor, mounted in the same way as the first transistor t1; and the second stray capacitance cp2 came from the drain of an N-channel MOS transistor, mounted in the same way as the second transistor t2.
  • the junction area imparted to the drain of the channel N transistor was 70 ⁇ m 2
  • the junction area of the drain of the channel P transistor was 25 ⁇ m 2 .
  • these dimensions are given for information only and must be optimized for each type of technological process.
  • the surfaces of the junctions jB1, jB2 can be easily increased, without modifying either the length L1, L2 of the channels 12, 14, or the width of these channels which it is particularly defined by the width L3 of the grids G. It suffices for this purpose for example, to increase parallel to the length of the channels 12, 14, the length L5, L6 of one of the locations which constitute the drains D1, D2 and sources S1, S2; of course the increase in these lengths L5, L6 must in this case take place rather on the side opposite to that which borders the channel 12, 14.
  • An integrator circuit 10 according to the invention can advantageously be used in all the input stages of most charge amplifiers.
  • Such charge amplifiers are commonly associated with light censors of the kind constituted by arrays of photodetectors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Amplifiers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

L'invention concerne les circuits intégrateurs de charges photogénérées. Elle a pour but notamment, de limiter des défauts de linéarité engendrés par des capacités parasites non linéaires. Le circuit intégrateur de l'invention comporte une capacité d'intégration (c1) dont une première armature (2) est reliée à un potentiel de référence (Vr) et une seconde armature (3) à un point ('A') à potentiel variable où elle reçoit les charges photogénérées, un transistor MOS (t1) de remise à zéro de premier type (P) relié d'une part au point ('A') à potentiel variable et d'autre part à un potentiel d'alimentation (V+), ce transistor MOS (t1) de premier type représentant une capacité parasite (cp1) en parallèle avec la capacité d'intégration (C1). Suivant une caractéristique de l'invention, il comporte un ou plusieurs transistors MOS (t2, t3) de second type reliés au point à potentiel variable, présentant chacun une capacité parasite en parallèle avec la capacité d'intégration. Une variation de la tension aux bornes de la capacité d'intégration provoque une variation de la valeur des capacités parasites des transistors MOS de second type qui tend à compenser la variation de la capacité parasite du transistor MOS de premier type. L'invention s'applique aux étages d'entrée des amplificateurs de charges.

Description

CIRCUIT INTEGRATEUR DE CHARGES PHOTOGENEREES A LINEARITE AMELIOREE
L'invention concerne les circuits intégrateurs de charges photogénérées. Elle a pour but notamment, de limiter des défauts de linéarité engendrés par des capacités parasites.
De tels circuits ont pour fonction d'effectuer la transformation en tension, d'une quantité de courant ou charges accumulées durant un temps d'intégration. De tels circuits intégrateurs sont couramment utilisés dans différents domaines, parmi lesquels on peut citer celui des panneaux détecteurs d'images numérisées, notamment d'images numérisées radiologiques. En prenant pour exemple les panneaux détecteurs d'images numérisée, ces derniers comportent généralement une matrice de points photosensibles. Chaque point photosensible délivre une quantité de charges proportionnelle à l'intensité d'un signal lumineux auquel il a été exposé. Pour chaque point photosensible, ces charges photogénérées sont converties en une valeur de tension qui ensuite est lue, puis mémorisée pour constituer un point élémentaire d'une image numérique.
Le procédé le plus courant pour effectuer cette conversion en tension consiste à charger une capacité, comme montré à la figure 1.
La figure 1 représente un schéma classique d'un tel circuit intégrateur. Le circuit intégrateur 1 comporte une capacité dite d'intégration d , dont une armature 2 est reliée à un potentiel de référence Vr : dans l'exemple représenté, ce potentiel de référence est constitué par un potentiel d'alimentation V+ positif par rapport à la masse générale du circuit ; mais la tension de référence peut être différente, comprise par exemple entre le potentiel d'alimentation V+ et la masse. La seconde armature 3 de la capacité d'intégration d , est reliée à un point " A "où arrive un conducteur 4 transportant des charges Q. Ces charges destinées à être intégrées par la capacité d'intégration d , sont délivrées par un générateur de charges 5, du type par exemple constitué par une matrice de points photosensibles. Le point " A " c'est à dire la seconde armature 3 de la capacité d'intégration d , constitue un point à potentiel variable : la tension au point " A " varie par rapport au potentiel de référence V+, en fonction de la quantité de charge accumulée par la capacité d'intégration d , suivant la relation : V=Q/c1 , où V est l'augmentation de tension, Q est la quantité de charges et d est la capacité d'intégration.
La façon la plus simple de réaliser une capacité consiste par exemple, à la former à partir d'une grille de transistor du type MOS (de l'anglais " Métal Oxyde Semiconductor). Cependant les capacités de ce type sont non-linéaires, leur valeur varie avec la tension appliquée à leurs bornes. Aussi, pour garantir la linéarité des mesures, on préfère généralement constituer une capacité d'intégration telle que d, par une capacité de type MIM (de l'anglais " Métal Isolant Métal ") qui elle est indépendante de la tension.
La capacité d'intégration d est amenée à intégrer successivement des quantités de charges Q appartenant à des mesures différentes et successives ; il est donc nécessaire avant chaque mesure, d'évacuer la charge stockée par la capacité d'intégration afin d'éviter des dérives de tension, et permettre de partir régulièrement d'une valeur de tension stable et connue aux bornes de la capacité d'intégration d . Ceci est accompli par une opération dite de remise à zéro, qui consiste à court- circuiter la capacité d'intégration d à l'aide d'un élément remplissant une fonction d'interrupteur. Pour effectuer cette opération de remise à zéro, il est classique d'utiliser un dispositif à semi-conducteur tel qu'un transistor de type MOS commandé en tout ou rien, comme représenté à la figure 1 par un transistor t1 de remise à zéro. Le transistor t1 est du type MOS, canal " P " sa source S1 est reliée à la première armature 2 de la capacité d'intégration d et donc à la tension de référence V+. Le drain D1 du transistor t1 est relié au point " A "à potentiel variable, c'est à dire à la seconde armature 3 de la capacité d'intégration d , et sa grille G est reliée à un circuit de commande de remise à zéro 6, dont elle reçoit un signal de commande de remise à zéro.
Un inconvénient du montage classique ci-dessus décrit, réside dans le fait que le drain D1 du transistor t1 de remise à zéro étant relié à la seconde armature 2, il ramène en parallèle sur la capacité d'intégration d , une capacité parasite cpl (représentée en pointillé sur la figure 1 ) qui est formée par une jonction que constitue ce drain D1. Il est bien connu en effet que le drain D1 mais aussi la source S1 d'un tel transistor t1 , sont constitués chacun par une zone implantée dans un substrat semi-conducteur avec lequel ils forment chacun une jonction.
Le drain et la source sont constitués chacun par une zone semi- conductrice, dopée suivant un type de conductivité contraire de celui du substrat. Ainsi par exemple, un transistor de type P ou canal P possède un substrat dopé N qui est porté au potentiel positif de la tension d'alimentation appliquée au circuit (comme représenté à la figure 1 où le substrat B1 du transistor t1 est relié au potentiel positif V+) ; et le drain et la source de ce transistor sont formés par des zones dopées " N " implantées dans ce substrat. Un transistor de type N, est au contraire référencé par rapport à un substrat qui est au potentiel négatif de la tension d'alimentation.
Dans ces conditions, le drain D1 est constitué par une jonction polarisée dans le sens " bloqué ',' c'est à dire par une diode polarisée en inverse, diode qui par suite constitue une capacité parasite cpl disposée en parallèle avec la capacité d'intégration d (comme il est représenté en traits pointillés dans la figure).
La tension aux bornes de la capacité d'intégration d étant variable du fait de l'intégration des charges, et d'autre part ainsi que déjà indiqué plus haut, la valeur de la capacité parasite cpl étant fortement dépendante de la tension à ces bornes, la capacité résultante possède une fraction importante de non-linéarité. Cette part de capacité non linéaire a bien entendu une influence d'autant plus marquée, que la capacité d'intégration d est de valeur faible.
Il est à remarquer que le problème ainsi posé par la présence de l'élément de commutation constitué par le transistor t1 , est d'autant plus prononcé que l'on veut un intégrateur de grande sensibilité, sensibilité qui elle est d'autant plus grande que la capacité d'intégration est faible.
Dans le cas par exemple d'un circuit intégrateur recevant des charges produites par une matrice photosensible, il est courant que la capacité d'intégration ait une valeur de l'ordre de 0,3 à 0,5 pF. La non- linéarité engendrée par la seule capacité parasite, c'est-à-dire par la présence de l'interrupteur constitué par le transistor t1 , peut atteindre 1 %, et aller même jusqu'à 5%, pour une plage de tension de fonctionnement correspondant à une variation de tension de l'ordre de 3 volts. Dans le but de diminuer l'influence de la capacité parasite cpl , une solution consiste à utiliser comme interrupteur des transistors MOS présentant une faible surface de jonction. Cependant les limites de cette solution sont rapidement atteintes sans donner vraiment satisfaction, car les éléments constitutifs de ces transistors ne peuvent être rendus assez petits pour des raisons d'ordre technologique.
En vue de réduire, voire de supprimer dans un circuit d'intégration, les effets néfastes d'une capacité parasite constituée par une jonction semi-conductrice rapportée notamment par un transistor comme ci- dessus expliqué, l'invention propose de compenser les différentes variations provenant de cette capacité parasite, par des variations accomplies dans un sens contraire et provenant d'au moins une autre jonction semi-conductrice.
Suivant l'invention, on propose un circuit intégrateur de charges photogénérées, comportant une capacité d'intégration dont une première armature est reliée à un potentiel de référence et une seconde armature à un point à potentiel variable où elle reçoit les charges photogénérées, un transistor MOS de remise à zéro, de premier type, relié d'une part au point à potentiel variable et d'autre part, à un potentiel d'alimentation, ce transistor de premier type présentant une capacité parasite en parallèle avec la capacité d'intégration. Ce circuit intégrateur est caractérisé en ce qu'il comporte un ou plusieurs transistors MOS de second type, reliés au point à potentiel variable, présentant chacun une capacité parasite en parallèle avec la capacité d'intégration, de manière qu'une variation de la tension aux bornes de la capacité d'intégration provoque une variation de la valeur de chacune des capacités parasites, la variation des capacités parasites des transistors MOS de second type tendant à compenser la variation de la capacité parasite du transistor MOS de premier type.
Dans ce circuit, le transistor MOS de premier type peut avoir son drain relié au point à potentiel variable et sa source reliée au potentiel d'alimentation. Ce transistor a une fonction d'interrupteur et sa grille est reliée à un circuit de commande de remise à zéro.
Ce circuit peut comporter comme transistor MOS de second type un transistor MOS relié par son drain au point à potentiel variable et qui reçoit les charges par sa source. Sa grille peut être reliée à un circuit d'autorisation de manière à former un interrupteur laissant passer les charges quand il est dans un état fermé.
Ce circuit peut comporter comme transistor MOS de second type un transistor MOS relié par sa source au point à potentiel variable et par son drain au potentiel d'alimentation. Ce transistor MOS de second type peut être commandé par sa grille et avoir une fonction d'interrupteur qui dans un état ouvert fige le potentiel du point à potentiel variable, ce qui permet d'obtenir une protection contre un éblouissement.
Si le circuit comporte les deux transistors MOS de second type décrits précédemment, il est possible que leurs grilles soient reliées au même circuit d'autorisation.
Le transistor de premier type est de type P tandis que les transistors de second type de type N.
Un circuit intégrateur comportant un premier dispositif à semi- conducteur, une capacité dite d'intégration reliée à un point à potentiel variable où elle reçoit des charges produites par un générateur de charges, le dispositif à semi-conducteur comportant une jonction d'un premier type dont une première zone ayant un premier type de conductivite est reliée au point à potentiel variable, et dont une seconde zone ayant un second type de conductivite (opposé au premier) est reliée à un premier potentiel d'alimentation par lequel la jonction est polarisée dans le sens inverse, comporte en outre au moins un second dispositif à semi-conducteur ayant une jonction d'un second type dont une première zone ayant le second type de conductivite est reliée au point à potentiel variable, et dont une seconde zone ayant le premier type de conductivite, est reliée à un second potentiel d'alimentation par lequel la jonction du second type est polarisée en inverse.
L'invention sera mieux comprise à la lecture de la description qui suit de certains de ces modes de réalisation, description faite à titre d'exemple non limitatif en référence aux dessins annexés, dans lesquels: - la figure 1 déjà décrite représente un circuit d'intégration selon l'art antérieur ;
- la figure 2 représente le schéma d'un circuit intégrateur conforme à l'invention ;
- la figure 3 représente une structure semi-conductrice illustrant la mise en oeuvre de l'invention. La figure 2 montre schématiquement un circuit intégrateur 10 suivant l'invention.
Le circuit intégrateur 10 comporte une capacité d'intégration d d'un même type que celle décrite en référence à la figure 1. La première armature 2 de la capacité d'intégration d est reliée à un potentiel de référence Vr, qui dans l'exemple non limitatif décrit, est constitué par un potentiel positif V+ d'une tension d'alimentation. La seconde armature 3 reçoit par un conducteur 4, des charges photogénérées représentées comme produites par un générateur de charges 5. Cette connexion constitue un point " A "dit " à potentiel variable " où la tension varie en fonction des charges intégrées par la capacité d'intégration d .
Comme dans l'exemple décrit en référence à la figure 1 , un élément interrupteur est monté en parallèle avec la capacité d'intégration d , en vue de réaliser des opérations de remise à zéro. Cette fonction d'interrupteur est réalisée par un transistor t1 d'un même type MOS que le transistor t1 de la figure 1 , soit du type P dans l'exemple. Le drain D1 du transistor t1 est connecté au point " A " à potentiel variable ; sa source S1 est reliée au potentiel d'alimentation V+ ce qui dans l'exemple décrit correspondant aussi à la première armature 2 de la capacité d'intégration d ; et sa grille G est reliée à un circuit de commande de remise à zéro 6.
Ainsi qu'il a été indiqué plus haut dans le préambule, le transistor t1 constitue un dispositif à semi-conducteur comportant au moins une jonction jB1 ( non représentée à la figure 2), jonction dont la polarisation est telle qu'elle constitue une capacité parasite cpl (montrée en traits pointillés sur la figure 2) rapportée en parallèle sur la capacité d'intégration d .
En vue de compenser les effets produits par cette première jonction d'un premier type ci-dessus mentionnée, et suivant une caractéristique de l'invention, le circuit intégrateur 10 comporte en outre au moins un autre dispositif à semi-conducteur ayant au moins une jonction jB2 (non représentée à la figure 2) d'un second type présentant les caractéristiques suivantes :
- a) cette jonction jB2 du second type possède une première zone ayant un type de conductivite donné, et qui est reliée au point " A " à potentiel variable ; - b) cette jonction jB2 du second type diffère de la jonction jB1 du premier type appartenant au premier dispositif à semi-conducteur t1 , en ce que sa première zone est du type de conductivite contraire à celui de la première zone de la jonction jB1 du premier type ; ainsi par exemple, si la première zone de la jonction jB1 du premier type est dopée P, la première zone de la jonction jB2 du second type est dopée N ;
- c) enfin, cette jonction jB2 du second type possède une seconde zone ayant le type de conductivite opposé à celui de la première zone, laquelle seconde zone est reliée à un second potentiel d'alimentation dont la polarité par rapport au point " A " à potentiel variable est telle, que cette jonction jB2 du second type est polarisée en inverse.
Il en résulte que cette jonction jB2 d'un second type constitue elle aussi une capacité dite parasite cp2, connectée en parallèle avec la capacité d'intégration d . Cependant la seconde capacité parasite cp2, bien que de même nature que la première capacité parasite cpl, en diffère en ce qu'elle résulte de la polarisation en inverse d'une jonction différente, d'un type de conduction contraire de celui de la jonction ayant donné naissance à la première capacité parasite cpl . En conséquence, une variation de la tension aux bornes de la capacité d'intégration d provoque une variation de la valeur de chacune des capacités parasites cpl , cp2, dans des sens opposés l'une par rapport à l'autre. Ces variations de valeurs de capacités parasites ont ainsi tendance se compenser.
Dans l'exemple non limitatif décrit, l'autre ou second dispositif à semi-conducteur est constitué par un second transistor t2 du type MOS opposé à celui du transistor MOS t1 , dans l'exemple à canal " N " afin de comporter une jonction du second type ci-dessus décrite.
Le second transistor t2 est relié par son drain D2 au point " A "à potentiel variable, et son substrat Bp est relié au second potentiel d'alimentation V- ci-dessus cité, dont la polarité est négative par rapport au point " A " à potentiel variable. Ceci suffit à réaliser la connexion de la jonction correspondant à ce drain D2, ainsi que sa polarisation en inverse, et par suite suffit à réaliser la seconde capacité parasite cp2. Il est à clair que ceci peut être obtenu également par un dispositif à semi-conducteur d'un autre type, par une diode par exemple. Il est à noter en outre que dans le cas d'un transistor MOS, la mise en place d'une seconde capacité parasite cp2 serait obtenue tout aussi bien en connectant, au point " A " à potentiel variable, la source de ce transistor plutôt que son drain. C'est ainsi que la figure 2 montre en pointillés un transistor MOS t3 de second type opposé à celui du transistor MOS t1 qui présente une capacité parasite cp3 en parallèle avec la capacité d'intégration d . Ce transistor MOS t3 qui ici est de type N a sa source S3 reliée au point "A" à potentiel variable et son drain D3 relié au premier potentiel d'alimentation V+ ce qui correspond dans l'exemple à la première armature 2 de la capacité d'intégration d puisqu'on a Vr = V+. Son substrat Bp est aussi relié au second potentiel d'alimentation V- ci-dessus cité.
Le second transistor t2 ayant déjà son drain D2 connecté au point " A " à potentiel variable, il peut en outre assurer une autre fonction, additionnelle, comme par exemple d'autoriser, ou d'interdire le passage des charges et leur intégration, comme dans l'exemple non limitatif représenté à la figure 2 ; à la figure 2 en effet, le second transistor t2 est disposé entre le point " A " à potentiel variable, et le générateur de charges 5 auquel il est relié par sa source S2. Il est commandé par tout ou rien par un circuit d'autorisation 7 auquel sa grille G est reliée, de façon à constituer un interrupteur laissant passer les charges quand il est mis à l'état " fermé ".
Bien entendu, le second transistor pourrait tout aussi bien remplir une autre fonction additionnelle, l'important est qu'il soit connecté au point " A " à potentiel variable par son drain D2 ou sa source S2, afin de connecter en ce point la seconde capacité parasite cp2. Le transistor MOS t3 de second type peut être commandé par sa grille G et avoir une fonction d'interrupteur qui dans un état ouvert fige le potentiel du point "A" et permet de réaliser une protection contre un éblouissement, ce qui correspond à la situation où le potentiel au point "A" devient très négatif par rapport au potentiel V+. II est à remarquer également que la compensation peut être obtenue par plusieurs capacités parasites cp2, cp3 en parallèles formées à l'aide de plusieurs jonctions du second type, toutes reliées au point " A " appartenant à des transistors et/ou à des diodes. Ainsi par exemple, le circuit intégrateur 10 pourrait comporter à la fois le transistor MOS t2 de second type et le transistor MOS t3 de second type que l'on vient de décrire qui est disposé en parallèle avec le premier transistor t1 c'est à dire qui a sa source S3 connectée au point " A "et son drain D3 connecté à la première armature 2 de la capacité d'intégration d , de manière d'une part que sa jonction (du même type que la jonction du second transistor t2) forme une capacité parasite cp3 mise en parallèle avec celle cp2 du second transistor t2 ; et d'autre part que ce troisième transistor t3 assure une autre fonction, par exemple celle d'un interrupteur avec fonction d'antiéblouissement. Lorsque le circuit d'intégration 10 comporte les deux transistors MOS t2, t3 de second type leurs grilles G peuvent être reliées au même circuit d'autorisation 7.
La figure 3 représente de manière simplifiée une structure semi- conductrice 11 , portant les deux transistors t1 , t2, et illustrant les mécanismes qui conduisent à former le capacités parasites cpl , cp2. La structure 11 est montrée par une vue en coupe, parallèle au canal de chacun de ces transistors. Elle comporte un substrat dit substrat principal Bp dopé suivant un premier type de conductivite P, dans lequel est implantée une large zone B1 formant le substrat du premier transistor t1. Ce substrat B1 est dopé suivant la second type de conductivite (opposé au premier), c'est à dire N. Le drain D1 et la source S1 du premier transistor t1 sont formés chacun, d'une manière en elle-même classique, par une zone dopée P, implantée dans le substrat B1. Ils sont implantés à une distance l'un de l'autre qui représente la longueur L1 du canal 12 du transistor, canal au dessus duquel est disposée la grille G. Le drain D1 et la source S1 ayant un type de conductivite P opposé à celui (N) du substrat B1 , ce drain et cette source forment chacun avec le substrat B1 une jonction semi-conductrice jB1 d'une diode 13 représentée en traits pointillés. La cathode de ces diodes 13 correspond au substrat B1 , et leur anode correspond au drain et à la source c'est à dire à la zone dopée P. Le drain D1 et la source S1 constituent chacun la première zone précédemment citée d'une jonction jB1 du premier type, dont le substrat B1 est la seconde zone.
Conformément aux schéma des figures 1 et 2, le substrat B1 du premier transistor t1 est relié au premier potentiel d'alimentation V+, alors que le drain D1 est relié au point " A "à potentiel variable dont la tension est négative par rapport à ce premier potentiel V+. Il en résulte que les diodes 13 sont polarisées en inverse, et dans ces conditions elles constituent chacune une capacité, dont celle qui correspond au drain D1 constitue la première capacité parasite cpl montrée aux figures 1 et 2.
Le drain D2 et la source S2 du second transistor t2, sont réalisés par des zones dopées avec le second type de conductivite c'est à dire N, implantées dans le substrat principal Bp (dopé P). Ils sont implantés à une distance l'un de l'autre qui représente la longueur L2 du canal 14 de ce transistor, canal au dessus duquel est disposée la grille G. Le drain D2 et la source S2 ayant un type de conductivite opposé à celui du substrat principal Bp, ce drain D2 et cette source S2 forment chacun avec ce substrat Bp une jonction semi-conductrice jB2 d'une diode 15 représentée en traits pointillés. L'anode de ces diodes 15 correspond au substrat principal Bp, et leur cathode correspond au drain D2 et à la source S2 c'est à dire à la zone dopée N. Le drain D2 et la source S2 constituent chacun la première zone précédemment citée d'une jonction jB2 du second type, dont le substrat principal Bp est la seconde zone.
Le substrat principal Bp du second transistor t2 est relié au second potentiel d'alimentation V-, alors que le drain D2 est relié au point " A "à potentiel variable dont la tension est positive par rapport à ce second potentiel d'alimentation V-. Il en résulte que comme dans le cas du premier transistor t1 , les diodes 15 sont polarisées en inverse : dans ces conditions elles constituent chacune une capacité, dont celle qui correspond au drain D2 constitue la seconde capacité parasite cp2 montrée dans la figure 2.
Si la première capacité parasite cpl est formée par plusieurs dispositifs à semi-conducteur, chacun d'eux comporte une jonction telle que la jonction du premier type jB1. Il en est de même en ce qui concerne la seconde capacité parasite cp2 : si elle est formée par plusieurs dispositifs à semi-conducteur, chacun d'eux comporte une jonction telle que la jonction du second type jB2. La description a été faite en considérant que la capacité parasite à compenser était induite par une jonction du premier type jB1 , dont la compensation s'effectue à l'aide d'une jonction jB2 du second type, mais bien entendu l'invention s'applique aussi bien dans le cas contraire.
La valeur des première et seconde capacités parasites cpl , cp2 produites respectivement par une ou des jonctions du premier type jB1 et une ou des jonctions du second type jB2, dépend à la fois de la tension de polarisation de jonction et de la surface de jonction : d'une part, la valeur de la capacité augmente quand la tension de polarisation inverse diminue, et d'autre part la valeur de la capacité augmente quand la surface de jonction augmente.
L'intégration des charges par la capacité d'intégration d peut engendrer au point « A » à potentiel variable une variation de tension représentant une plage de tension de fonctionnement VC comprise dans une différence de potentiel formée entre le premier V+ et le second V- potentiels d'alimentation.
Aussi, en vue d'optimiser la compensation l'une par l'autre des première et seconde capacités parasites cpl , cp2, dans la plage de tension de fonctionnement ou plage de codage VC prévue , dans laquelle opère l'intégrateur, l'invention propose d'adapter les dimensions des jonctions jB1 , jB2, en fonction de la position de la plage de codage à l'intérieur de la différence de potentiel formée entre les première et seconde tensions d'alimentations V+, V-.
Entre une première et une seconde surfaces Sj1 , Sj2 de jonction, dont la première Sj1 correspond à l'ensemble des surfaces de jonction du premier type jB1 connectées au point " A "à potentiel variable (et formant la première capacité parasite cpl ), et dont la seconde Sj2 correspond à l'ensemble des surfaces de jonction du second type jB2 également connectées audit point " A " (et formant la seconde capacité parasite cp2), l'invention propose donc de conférer une plus grande dimension à celle des surfaces Sj1 , Sj2 qui correspond au type de jonction jB1 , jB2 se trouvant référencé à celui des potentiels d'alimentation V+, V- dont la plage de codage VC est la plus éloignée.
Par exemple, pour une plage de codage prévue de 3 volts :
- a) en supposant d'une part, que les premier et second potentiels d'alimentation V+, V- soient respectivement à +5 volts et à -5 volts par rapport à la masse, et que d'autre part la tension de référence Vr à laquelle est reliée la première armature 2 de la capacité d'intégration d , soit une tension de +1 ,5 volt par rapport à la masse : dans ces conditions la tension centrale Vc de la plage de codage est au potentiel de la masse, c'est à dire centrée par rapport aux potentiels d'alimentation V+, V-, et les surfaces de jonction Sj1 , Sj2 peuvent être sensiblement égales.
- b) pour des potentiels d'alimentations V+, V- respectivement à +5 volts et -5 volts comme ci-dessus, mais avec un potentiel de référence Vr différent (auquel est reliée la première armature 2 de la capacité d'intégration d ) constitué par exemple par le premier potentiel d'alimentation V+ (+5 volts) : dans ce cas pour une plage de codage de 3 volts, la valeur centrale de cette plage est à +3,5 volts, donc plus proche du potentiel positif V+ ou premier potentiel d'alimentation que du deuxième potentiel d'alimentation V- (négatif) ; dans ces conditions la seconde surface de jonction Sj2 (correspondant au second type de jonction jB2), est plus grande que la première surface de jonction Sj1.
- c) enfin, si la valeur centrale de la plage de codage est plus proche du potentiel d'alimentation négatif c'est à dire du second potentiel d'alimentation V-, la première surface de jonction Sj1 est plus grande que la seconde surface Sj2.
Dans certains domaines comme par exemple celui des détecteurs d'images, où des charges à mesurer et donc à intégrer sont produites par des matrices photosensibles, il est courant de fournir à l'intégrateur avant l'application des charges à mesurer, une quantité de charges formant par exemple des charges dites " d'entraînement " ayant un niveau calibré. L'intégration de ces charges d'entraînement provoque une variation de la tension aux bornes de la capacité d'intégration, variation qui a pour effet de décaler la plage de codage. Dans la configuration décrite ci-dessus, l'invention a permis d'obtenir des résultats très intéressants, car des valeurs de non-linéarités résiduelles ont été estimées à 0,05%, alors qu'elles sont généralement de l'ordre de 0,5% sans la compensation conforme à l'invention. Ces résultats ont été obtenus dans le cadre d'une technologie du type CMOS 2μm (longueur de canal). La compensation d'une capacité parasite par une autre était optimisée pour une plage de tension de codage de 3 volts, centrée sur +2 volts, et avec des premier et second potentiels d'alimentation V+, V- respectivement de +5 volts et -5 volts, et la tension de référence Vr constituée par le premier potentiel d'alimentation V+. La première capacité parasite cpl était constituée par le drain d'un transistor MOS canal P, monté d'une même manière que le premier transistor t1 ; et la seconde capacité parasite cp2 provenait du drain d'un transistor MOS canal N, monté d'une même façon que le second transistor t2. La surface de jonction conférée au drain du transistor canal N était de 70 μm2, et la surface de jonction du drain du transistor canal P était de 25 μm2. Bien entendu, ces dimensions sont données uniquement à titre indicatif et doivent être optimisées pour chaque type de procédé technologique.
Il peut être difficile de réduire la taille de certaines jonctions semi- conductrices, notamment pour des questions de " prise de contact " par contre leur taille peut aisément être augmentée sans inconvénients.
Dans la structure semi-conductrice 11 représentée à la figure 3 à titre d'exemple non limitatif, les surfaces des jonctions jB1 , jB2 peuvent être facilement augmentées, sans modifier ni la longueur L1 , L2 des canaux 12, 14, ni la largeur de ces canaux qui elle est particulièrement définie par la largeur L3 des grilles G. Il suffit à cet effet par exemple, d'accroître parallèlement à la longueur des canaux 12, 14, la longueur L5, L6 de l'une des implantations qui constituent les drains D1 , D2 et les sources S1 , S2 ; bien entendu l'accroissement de ces longueurs L5, L6 doit dans ce cas s'effectuer plutôt du côté opposé à celui qui borde le canal 12, 14. Il est possible aussi, en combinaison ou non avec l'augmentation de longueur L5, L6 citée ci-dessus, d'augmenter ces surfaces de jonction en augmentant la largeur L7, L8 des implantations (parallèlement à la largeur L3 du canal 12, 14) qui forment ces drains et ces sources.
La description ci-dessus a été faite en considérant que la capacité parasite à compenser était induite par une ou plusieurs jonctions du premier type jB1 , dont la compensation s'effectue à l'aide d'une ou plusieurs jonctions jB2 du second type, mais bien entendu l'invention peut s'appliquer tout aussi bien dans le cas inverse.
Un circuit intégrateur 10 conforme à l'invention, est utilisable avantageusement dans tous les étages d'entrée de la plupart des amplificateurs de charges. De tels amplificateurs de charges sont couramment associés à des censeurs de lumière du genre constitué par des matrices de photodétecteurs.

Claims

REVENDICATIONS
1. Circuit intégrateur de charges photogénérées comportant une capacité d'intégration (d ) dont une première armature (2) est reliée à un potentiel de référence (Vr) et une seconde armature (3) à un point « A » à potentiel variable où elle reçoit les charges photogénérées, un transistor MOS (t1) de remise à zéro, de premier type (P) relié d'une part au point « A » à potentiel variable et d'autre part à un potentiel d'alimentation (V+), ce transistor MOS (t1 ) de premier type présentant une capacité parasite (cpl ) en parallèle avec la capacité d'intégration (d), caractérisé en ce qu'il comporte un ou plusieurs transistors MOS (t2, t3) de second type (N) opposé au premier type (P), reliés au point (« A ») à potentiel variable, présentant chacun une capacité parasite (cp2, cp3) en parallèle avec la capacité d'intégration (d ), de manière qu'une variation de la tension aux bornes de la capacité d'intégration (d ) provoque une variation de la valeur de chacune des capacités parasites (cpl , cp2, cp3), la variation des capacités parasites (cp2, cp3) des transistors MOS (t2, t3) de second type (N) tendant à compenser la variation de la capacité parasite (cpl ) du transistor MOS (t1 ) de premier type.
2. Circuit intégrateur selon la revendication 1 , caractérisé en ce que le transistor MOS (t1 ) de premier type (P) a son drain (D1 ) relié au point
« A » à potentiel variable et sa source (S1 ) reliée au potentiel d'alimentation (V+).
3. Circuit d'intégration selon l'une des revendications 1 ou 2, caractérisé en ce que le transistor MOS (t1 ) de premier type (P) a une fonction d'interrupteur, sa grille (G) étant relié à un circuit de commande de remise à zéro (6).
4. Circuit d'intégration selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte comme transistor MOS (t2) de second type (N) un transistor MOS relié par son drain (D2) au point (« A ») à potentiel variable et qui reçoit les charges photogénérées par sa source (S2).
5. Circuit d'intégration selon la revendication 4, caractérisé en ce que le transistor MOS (t2) de second type (N) a une fonction d'interrupteur laissant passer les charges lorsqu'il est fermé, sa grille (G) étant reliée à un circuit d'autorisation (7).
6. Circuit d'intégration selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte comme transistor MOS (t3) de second type
(N) un transistor MOS relié par sa source (S3) au point (« A ») à potentiel variable et par son drain (D3) au potentiel d'alimentation (V+).
7. Circuit d'intégration selon la revendication 6, caractérisé en ce que le transistor MOS (t3) de second type (N) est commandé par sa grille
(G) et a une fonction d'interrupteur qui fige le potentiel du point (« A ») lorsqu'il est ouvert afin d'assurer une protection contre un éblouissement.
8. Circuit d'intégration selon les revendications 4 et 6, caractérisé en ce que les transistors MOS (t1 , t3) de second type N ont chacun leur grille (G) reliée au même circuit d'autorisation (7).
9. Circuit d'intégration selon l'une des revendications 1 à 8, caractérisé en ce que le transistor MOS (t1 ) de premier type (P) est un transistor de type P et en ce que les transistors MOS (t2, t3) de second type (N) sont de type N.
PCT/FR1998/000233 1997-02-07 1998-02-06 Circuit integrateur de charges photogenerees a linearite amelioree WO1998035312A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP53388998A JP4024869B2 (ja) 1997-02-07 1998-02-06 線形性を向上させた光に起因する電荷の積分回路
DE69813775T DE69813775T2 (de) 1997-02-07 1998-02-06 Integratorschaltung von photoerzeugten ladungen mit verbesserter linearität
EP98906991A EP0958545B1 (fr) 1997-02-07 1998-02-06 Circuit integrateur de charges photogenerees a linearite amelioree
US09/355,919 US6265737B1 (en) 1997-02-07 1998-02-06 Circuit for integrating light-induced charges with improved linearity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/01429 1997-02-07
FR9701429A FR2759509B1 (fr) 1997-02-07 1997-02-07 Circuit integrateur a linearite amelioree

Publications (1)

Publication Number Publication Date
WO1998035312A1 true WO1998035312A1 (fr) 1998-08-13

Family

ID=9503459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000233 WO1998035312A1 (fr) 1997-02-07 1998-02-06 Circuit integrateur de charges photogenerees a linearite amelioree

Country Status (6)

Country Link
US (1) US6265737B1 (fr)
EP (1) EP0958545B1 (fr)
JP (1) JP4024869B2 (fr)
DE (1) DE69813775T2 (fr)
FR (1) FR2759509B1 (fr)
WO (1) WO1998035312A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760585B1 (fr) 1997-03-07 1999-05-28 Thomson Tubes Electroniques Procede de commande d'un dispositif photosensible a faible remanence, et dispositif photosensible mettant en oeuvre le procede
FR2796239B1 (fr) * 1999-07-06 2001-10-05 Trixell Sas Procede de commande d'un dispositif photosensible apte a produire des images de bonne qualite
FR2802698B1 (fr) * 1999-12-17 2002-03-22 Trixell Sas Circuit de lecture de charges protege contre des surcharges provenant de charges de polarite non desiree
FR2803082B1 (fr) * 1999-12-28 2002-03-22 Trixell Sas Procede de compensation en temperature de la sensibilite d'un detecteur d'image
FR2803081B1 (fr) * 1999-12-28 2002-12-06 Trixell Sas Procede de compensation en temperature d'un detecteur d'image
FR2817106B1 (fr) * 2000-11-17 2003-03-07 Trixell Sas Dispositif photosensible et procede de commande du dispositif photosensible
DE102006058292A1 (de) * 2006-12-11 2008-06-19 Austriamicrosystems Ag Anordnung und Verfahren zur Ladungsintegration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109168A (en) * 1977-01-19 1978-08-22 Analog Technology Corporation Current-to-frequency converter
US4270090A (en) * 1978-04-24 1981-05-26 Williams Bruce T D.C. Electrostatic voltage follower having ion-coupled probe
FR2731569B1 (fr) 1995-03-07 1997-04-25 Thomson Tubes Electroniques Dispositif de recopie de tension a grande linearite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SINGH S P ET AL: "A SIMPLE HIGH FREQUENCY CMOS TRANSCONDUCTOR", June 1989, PROCEEDINGS OF THE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VICTORIA,1 - 2 JUIN, 1989, NR. -, PAGE(S) 76 - 79, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, XP000077442, 164480 *

Also Published As

Publication number Publication date
EP0958545B1 (fr) 2003-04-23
DE69813775D1 (de) 2003-05-28
DE69813775T2 (de) 2004-01-29
FR2759509B1 (fr) 1999-04-30
FR2759509A1 (fr) 1998-08-14
JP4024869B2 (ja) 2007-12-19
US6265737B1 (en) 2001-07-24
EP0958545A1 (fr) 1999-11-24
JP2001510659A (ja) 2001-07-31

Similar Documents

Publication Publication Date Title
EP0367650B1 (fr) Dispositif photosensible du type à amplification du signal au niveau des points photosensibles
FR2638042A1 (fr) Procede pour reduire la remanence d'un phototransistor, notamment de type nipin
EP2458849B1 (fr) Circuit de détection à double échantillonnage corrélé avec circuit d'anti-éblouissement amélioré
EP0153251A1 (fr) Capteur d'images à barettes multilinéaires à transfert de charges
EP2071628A1 (fr) Dispositif microélectronique photosensible avec multiplicateurs par avalanche
EP0958545B1 (fr) Circuit integrateur de charges photogenerees a linearite amelioree
FR2627922A1 (fr) Matrice photosensible a deux diodes par point, sans conducteur specifique de remise a niveau
EP3324612B1 (fr) Capteur d'images cmos à bruit réduit
EP2966687A1 (fr) Capteur d'images cmos
EP0098191B1 (fr) Dispositif photosensible assurant un effet anti-éblouissement
EP0148086B1 (fr) Procédé de suppression de charge de fond d'un dispositif photosensible à l'état solide
EP3324610A1 (fr) Circuit de detection a faible flux et faible bruit
WO2010130950A1 (fr) Capteur d'image integre a tres grande sensibilite
FR2846147A1 (fr) Commande d'une cellule photosensible
EP0182679B1 (fr) Dispositif photosensible à transfert de ligne muni d'amplificateurs de contre-réaction
EP2178288B1 (fr) Dispositif et procédé pour réaliser la lecture de courants électriques résultant d'un détecteur de signaux électromagnétiques
EP0354106B1 (fr) Circuit d'élimination du bruit, intégré dans un détecteur d'images à l'état solide
EP0149948A2 (fr) Perfectionnement aux dispositifs photosensibles à l'état solide
EP0068975A1 (fr) Détecteur photonique à lecture à transfert de charges à l'état solide, et cible de prise de vues utilisant un tel détecteur
EP2463632B1 (fr) Dispositif de détection comportant un circuit de test robuste
FR2857158A1 (fr) Procede de commande d'un photocopieur de type mos
FR2483667A1 (fr) Dispositif d'echantillonnage et maintien a capacite mos
FR3083001A1 (fr) Capteur d'images
EP3163622A1 (fr) Cellule logique photosensible a illumination par la face avant
EP0737002A1 (fr) Registre de lecture à transfert de charges à sorties multiples

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 533889

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09355919

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998906991

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998906991

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998906991

Country of ref document: EP