WO1998031644A1 - Methods for making geopolymeric cements and cements resulting from these methods - Google Patents

Methods for making geopolymeric cements and cements resulting from these methods Download PDF

Info

Publication number
WO1998031644A1
WO1998031644A1 PCT/FR1998/000059 FR9800059W WO9831644A1 WO 1998031644 A1 WO1998031644 A1 WO 1998031644A1 FR 9800059 W FR9800059 W FR 9800059W WO 9831644 A1 WO9831644 A1 WO 9831644A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
silicate
mixture
parts
weight
Prior art date
Application number
PCT/FR1998/000059
Other languages
French (fr)
Inventor
Joseph Davidovits
Original Assignee
Cordi-Geopolymere S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordi-Geopolymere S.A. filed Critical Cordi-Geopolymere S.A.
Priority to AU58712/98A priority Critical patent/AU5871298A/en
Priority to EP98902074A priority patent/EP0891310A1/en
Publication of WO1998031644A1 publication Critical patent/WO1998031644A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00189Compositions or ingredients of the compositions characterised by analysis-spectra, e.g. NMR
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention describes methods which make it possible to reduce the cost price of geopolymer cements. These methods describe the use of alkaline alumino-silicates of geological origin.
  • Geopolymen cements result from a mineral polycondensation reaction by alkaline activation, called geosynthesis, as opposed to traditional hydraulic binders in which hardening is the result of hydration of calcium aluminates and calcium silicates.
  • geosynthesis a mineral polycondensation reaction by alkaline activation
  • hardening is the result of hydration of calcium aluminates and calcium silicates.
  • the means of investigation used is the Nuclear Magnetic Resonance spectrum.
  • the products resulting from geosynthesis or geopolymerization reaction, as recommended in the present invention have a characteristic peak at 55 ⁇ 5 ppm, attributed to coordination AI (IV) of type Q.4 ( 4Si).
  • the hydration compounds obtained in traditional hydraulic binders have a peak at 0 ⁇ 5 ppm, characteristic of coordination AI (VI), that is to say of calcium hydroxy-aluminate.
  • the MASNMR spectrum of 29 S ⁇ also makes it possible to make a very clear differentiation between geopolymenic cements and hydraulic binders.
  • the peaks characterizing the geopolymen cements are found in the range -85 to -100 ppm and correspond to the three-dimensional network (Q4) characteristic of poly (sialates) and poly (s ⁇ alate-siloxo).
  • Q4 three-dimensional network
  • the results of the hydration of hydraulic binders leading to hydrated calcium silicate CSH produce peaks located in the range -68 to -85 ppm or monosilicate (Q 0 ) or disilicate (Q1XQ2); Binders and cements have been proposed in the past based on geopolymeric reactions involving three of the four reactants employed in the present invention.
  • the Davidovits / Sawyer US Pat. No. 4,509,985 and its European equivalent EP 153,097 describe geopolymeric compositions allowing the production of fast-hardening mortar.
  • the so-called "standard" composition comprises a reaction mixture characterized by the molar ratios of the oxides: K 2 O: SiO 2 0.32
  • the present invention also makes it possible to reduce the amount of alkali silicate by 70-80% by a means different from those recommended in the prior art.
  • the main object of the invention is to radically reduce the amounts of alkali silicate compared to the geopolymeric cements of the prior art.
  • the method recommended in the present invention starts from the idea that it should be possible to replace a certain quantity of the reagent K2O produced by the chemical industry, by K2O extracted from volcanic rocks. .
  • the method of the invention shows that certain volcanic rocks of the alkaline alumino-silicate type make it possible to reduce by 70-80% by weight the quantity of K2O of chemical origin.
  • Table I composition of the cements of the prior art and of the present invention (parts by weight of dry matter).
  • EP 0153097 EP 0500845 Presents US 4,509,985 US 4,642,137 WO92 / 04300 WO92 / 04298 invention aluminosilicate oxide 100 100 80-140 100 100
  • the process for manufacturing a geopolymeric cement which does not contain Portland cement consists in producing the reaction mixture whose components expressed as dry matter are: - reagent I: 100 parts by weight of an aluminosilicate oxide
  • - reagent II 30-55 parts of sodium and / or potassium silicate in which the molar ratio M2 ⁇ / Si ⁇ 2 is between 0.5 and 0.8, M denoting Na and / or K or the Na + K mixture.
  • - reagent III 80-110 parts of basic silicate, in the vitreous state, composed in part of gehlinite, akermanite and wollastonite.
  • the reagent (I), the aluminosilicate oxide of simplified formula (S ' i2 ⁇ 5, Al2 ⁇ 2) (iv-V) / is obtained by calcination of a kaolinitic material at a temperature below 1000 ° C.
  • Reagent (II) is powdered sodium and / or potassium silicate, for example potassium disilicate K2 (H3Si ⁇ 4) 2, or sodium disilicate Na2 (H3Si ⁇ 4) 2, or potassium and potassium double disilicate sodium (K, Na) (H3Si ⁇ ) 2, or a mixture of alkaline silicate and solid NaOH / KOH.
  • the alkali silicate can also be used in the form of an aqueous solution.
  • the M2 ⁇ / Si ⁇ 2 molar ratio is generally between 0.5 and 0.8, M denoting Na and / or K or the Na + K mixture.
  • the reagent (III) is a weakly basic calcium silicate, that is to say having a Ca / Si atomic ratio of less than 1. It is obtained by using as basic material a basic calcium silicate, that is to say having a Ca / Si atomic ratio equal to or greater than 1 essentially characterized by its ability to generate, under the action of an alkaline attack, the formation of weakly basic calcium silicate, that is to say having a lower Ca / Si atomic ratio to 1, preferably close to 0.5.
  • the reagent (IV) is a geological material, alkaline aluminosilicate, in which the atomic ratio Si: Al is between 2.5 and 5, the molar ratio M2 ⁇ : Al2 ⁇ 3 is between 0.7 and 1.1 and the molar ratio (M2 ⁇ + CaO ): AI2O3 is between 0.8 and 1.6.
  • This alkaline aluminosilicate material is generally calcined at a temperature below 850 ° C, but some geological varieties can be used without calcination. The calcination has the advantage of reducing the amount of water that must be added to the mixture in order to obtain good fluidity with the mortar
  • the prior art shows that the mechanical strengths of geopolymeric cements decrease when the amount of water increases.
  • the geopolymeric cement consists of two distinct phases: a) a so-called vitreous phase which has a MAS NMR spectrum for 29 Si having a band between -85 and -89ppm, and a MASNMR spectrum for 27 AI having a resonance at 54-58ppm.
  • This so-called glassy phase is a geopolymeric compound consisting of groups (AIO4) of type 0_4 (4Si) polymerized with groups (Si ⁇ 4) of type Q_4 (3AI, lSi), associated with a hydroxylated aluminosilicate consisting of (Si0 4 ) 3 (2Si, IAI, 10H); b) a crystalline phase which has a MAS NMR spectrum for 9 Si having a band between -90ppm and -115ppm, and a MAS-NMR spectrum 27 AI having a resonance at 57ppm.
  • This so-called crystalline phase corresponds to an alkaline aluminosilicate.
  • the geopolymeric cement obtained according to the methods described in the present invention is resistant to corrosion of sulfuric acid and it is not subject to the ASR reaction.
  • the mechanical characteristics are good.
  • the compressive strength at 28 days is between 25 Mpa and 60 Mpa, without adding special loads. It varies according to the particle size of the powdered elements. In general, the average particle size is between 7 microns and 10 microns.
  • the reagent (I), the aluminosilicate oxide of simplified formula (Si2 ⁇ 5, Al2 ⁇ 2) (iv-v) / is obtained, as in the prior art, by calcination of a kaolinitic material at a temperature below 1000 ° C. Said calcination is carried out so that said aluminosilicate oxide has an analysis spectrum in Nuclear Magnetic Resonance MASNMR for 27 AI having in addition the two main resonances at 20 ⁇ 5 ppm [coordination AI (V)] and 50 ⁇ 5 ppm [ AI (IV) coordination], a secondary resonance at 0 ⁇ 5ppm of much lower intensity [AI (VI) coordination].
  • the kaolinitic material is generally a clay containing at least 30% by weight of the mineral kaolinite.
  • the calcination is carried out at a temperature below 1000 ° C., this temperature varying with the method used. Calcination in a vertical or rotating oven takes place at a temperature between 650 ° C and 800 ° C. In the fluidized bed process, the temperature is between 700 ° C and 850 ° C. In the flash process, with a hot air current, the temperature is between 900 ° C and 1000 ° C.
  • Reagent (II) is a water soluble alkali silicate. From the description of the Davidovits / Sawyer patent, a person skilled in the art knows that, in this alkaline silicate, the molar ratio M2 ⁇ : SiO2 (M denoting either Na, or K, or the mixture Na + K) must be close to 0.5, that is to say substantially correspond to a silicate M2 ⁇ : 2Si ⁇ 2, nH2 ⁇ , n being between 2 and 6.
  • M is K.
  • the silicate of potassium is more expensive than sodium silicate, the properties of cements obtained with potassium silicate are much better than those obtained with sodium silicate.
  • the cement thus obtained develops a lower compressive strength than that with potassium silicate.
  • the molar ratio M2 ⁇ : Si ⁇ 2 is between 0.5 and 0.8.
  • the alkali silicate can either be in the form of a water-soluble alkali silicate powder, or a mixture of powdered alkali silicate and solid NaOH / KOH, or in the form of a solution. In the case of the examples below, the solution contains 20-23% by weight of SiO 2, 20-26% by weight of K2O, and 50-55% by weight of water.
  • Reagent (III) is a basic calcium silicate, i.e. with the Ca / Si atomic ratio greater than or equal to 1, such as wollastonite Ca (Si0 3 ), gehlenite (2CaO.AI 2 ⁇ 3.Si0 2 ), akermanite (2CaO. Mg0.2Si0).
  • wollastonite Ca Si0 3
  • gehlenite 2CaO.AI 2 ⁇ 3.Si0 2
  • akermanite 2CaO. Mg0.2Si0.
  • the amount of basic calcium silicate participating in the geopolymeric reaction is greater than that of the prior art. This is expressed by the molar ratios of the oxides connecting the reactants (I), (II) and (III) to each other.
  • Table 2 Molar ratio of the various oxides connecting the reagents (I), (II), (III) of the present invention and of the prior art. relationship between US ratios 4,509,985 WO 92/04298 Present invention molar reagents Examples 2 to 9 Examples 1 to 10
  • the reagent (IV) is a geological material, alkaline aluminosilicate, which contains at least 5% by weight of Na2 ⁇ + K2 ⁇ . It belongs to the class of volcanic rocks. Tables 3 and 4 give the chemical characteristics of the alkaline aluminosilicates used in the examples below. They are very different from the alumina silicates described in US Pat. No. 4,642,137 which are either fly ash from power plants thermal coal, very poor in alkali, or calcined clays. It is also very different from the amorphous silica used in US patent 4,642,137 or from the geological material of international publication WO92 / 04300.
  • amorphous silica such as, for example, silica smoke, rice ash, but also silicas of geological origin such as diatomaceous earth, silicic smectites, some highly silicic pozzolans (with a high percentage of allophane and glass of volcanic origin). It is explained there, page 9, lines 17-21, that these materials of geological origin are considered as finely divided, reactive charges. The reactivity of these charges makes them react on the surface with the geopolymeric reaction medium, thus increasing the mechanical resistance of the mineral binder poly (sialate-siloxo).
  • reagent IV of the present invention also reacts on the surface but with a different chemical mechanism.
  • the objective is to dissolve silica in order to transform it into soluble alkaline silicate. Therefore, in addition to the alkali silicate, sodium hydroxide NaOH and / or potassium KOH which must form alkali silicate with the amorphous silica.
  • the cement of the prior art is of the tecto-alumino-silicate type, that is to say a three-dimensional structure in which the groups (SiO 4) are of type Q 4 exclusively.
  • the MASNMR spectrum of 29 Si is very characteristic since it has a resonance towards -92, -94 ppm, Q4 (2Si, 2AI) and a resonance around -110 ppm, Q4 (4Si).
  • Examples of these spectra can be found in publication WO92 / 04300, Figure 7, and in the publication "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cernent" by J. Davidovits, Journal of Materials Education , Flight. 16, numbers 2 & 3, pages 91-137, 1994, figure 13.
  • the first resonance at -92. -94 ppm characterizes the matrix of the geopolymeric cement, the resonance at - 115 ppm being attributed to the siliceous filler.
  • the so-called glassy phase has a MAS NMR spectrum for 29 Si which has a band between -85 and -89ppm.
  • the MAS-NMR spectrum for 27 AI of this so-called glassy phase is 54-58ppm.
  • the spectrum of all the hardened reagents (I) + (II) + (III) is identical to that of the glassy phase.
  • Said vitreous phase is a geopolymeric compound consisting of an alkaline silico-aluminate structure which contains a group (AIO4) of the type
  • Q4 (4Si), polymerized with groups (Si0 4 ) of type Q4 (3AI, lSi), associated with a hydroxylated aluminosilicate consisting of (Si ⁇ 4) of type Q3 (2Si, lAI, 10H).
  • Said crystalline phase has a MAS NMR spectrum for 29 Si which has a band between -90 and -115 ppm.
  • the MAS-NMR spectrum for 27 AI has a resonance at 57-58 ppm corresponding to (AIO4) of type Q4 (4Si).
  • Each reactive natural alkaline aluminosilicate IV has its very specific spectrum which is practically identical to that of the crystalline phase. It is believed that the alkaline action of the reaction mixture produces a hydrolysis of the surface of the crystalline phase, with the formation of the silanol -Si-OH " M + function , M being either K or Na. It is believed that this surface hydrolysis is favored by the fact that this crystalline phase already contains in situ alkalis Na2 ⁇ , K2 ⁇ .
  • composition parts by weight are composition parts by weight
  • the cement thus obtained is poured without addition of filler, into a mold and allowed to harden at room temperature.
  • the compressive strength Rc is measured at 28 days.
  • two cements were obtained, one containing the natural reagent (IV), the other containing the reagent (IV) which had previously been calcined at a temperature equal to or greater than 600 ° C. .
  • the calcination took place at 800 ° C for 3 hours.
  • the reagent (IV) was also ground to an average particle size of 8 microns.
  • Table 3 Chemical composition, by weight, of the geological alkaline aluminosilicates (reagent IV), used in Examples 1 to 10
  • Table 5 The results are grouped in Table 5. They are averages of 4 samples for each mixture with natural or calcined geological material. The Maximum Rc is the value of the best resistance obtained for each geological deposit. It is not an average. Table 4: Petrographic type, chemical composition (expressed in moles) and atomic ratio for various geological alkaline aluminosilicates (reagent IV).
  • Example 1 Example 2
  • Example 3 Example 5
  • Example 6 Example 9 type Ignimbrite Tuff Lava Pumice Ignimbrite petrographic volcanic andesitic volcanic type A potassium lamproitic phonolitic
  • FIG. 1 shows the MASNMR spectra for 29 Si of each geopolymeric cement obtained in examples 1 to 10. All the spectra consist of the addition of two spectra, one belonging to the glassy phase (identical to that of all reagents I + II + III), the other in the crystalline phase (identical to that of reagent IV geological).
  • Example 2 in Figure 1 shows these two spectra as well as the full spectrum. In the other Examples of Figure 1, we find both the full spectrum and the spectrum of the glassy phase.
  • Example 11 shows the MASNMR spectra for 29 Si of each geopolymeric cement obtained in examples 1 to 10. All the spectra consist of the addition of two spectra, one belonging to the glassy phase (identical to that of all reagents I + II + III), the other in the crystalline phase (identical to that of reagent IV geological).
  • Example 2 in Figure 1 shows these two spectra as well as the full spectrum. In the other Examples of Figure 1, we find both the full spectrum and the spectrum of the glass
  • the physico-chemical properties of the mortars are studied by comparing them with a hydraulic binder based on Portland cement, for example the CEM I 42.5 R from Cementi Buzzi (Italy).
  • the sand + cement mixture is carried out according to the European standard and procedure, namely: the powdered reagents (I), (III) and (IV) are homogenized for 30 sec with the standardized sand (ISO sand), then the liquid and water reagent (II), mixing for 270 sec, and finishing at high speed for 60 sec.
  • the prisms are shaped in standard molds (DIN 1164).
  • the mortar contains 450 parts of sand for 190 parts of cement + water.
  • the geopolymeric cement was produced with the following mixture:
  • the mortar hardens after 30 minutes. It remains in the mold for 24 hours, then it is removed from the mold and immersed in water. Its resistance to compression and bending is measured at 24 h (demolding), 7 days (in water) and 28 days (in water). The values are as follows: 24_h 7d 28d
  • Prisms are made with the mortar of Example 11 in order to be able to follow the resistance to chemical corrosion, in comparison with prisms made with a hydraulic cement CEM I 42.5 R from Cementi Buzzi (Italy). Corrosion is measured at:
  • the cements according to the invention have a higher resistance than that of Portland cement.
  • the reagent (II), an alkaline silicate is introduced into the reaction mixture, either in the form of a powder, or of a mixture of powdered silicate and solid NaOH / KOH, or in the form of an aqueous solution.
  • the prior art indicates to us that the powdered form makes it possible to obtain mortars which have a relatively long setting time, while developing a mechanical resistance greater than that provided by a reagent in aqueous solution. Only the applications will decide on the choice of one or the other physical form of the alkali silicate. The choice between potassium silicate or sodium silicate is above all dictated by economic considerations, sodium silicate being cheaper.
  • silica smoke As is the case with traditional hydraulic cements, silica smoke here also improves the long-term properties of cements geopolymers. This addition of silica is accompanied, in the MAS NMR spectrum for 29 Si of hardened cement, by the appearance of a resonance at - 110 ⁇ 5 ppm, identical to that already present in the geological reagent IV of Example 1 in Figure 1. This is proof that this silica smoke, unlike the prior art already discussed above, is not transformed into alkaline silicate, but acts as a reactive fine filler.
  • the applications of geopolymer cements obtained according to the methods of the invention are multiple.
  • the amount of alkali silicate has been reduced from 70% to 80% compared to the prior art, making it possible to very significantly lower the price of these cements.
  • their manufacture requires very little energy and generates very little release of greenhouse gases such as carbon dioxide C ⁇ 2-Us can therefore advantageously replace traditional hydraulic cements in building and public works applications.
  • They have the physicochemical properties of the geopolymeric binders and cements described in the prior art. They can therefore be used in encapsulation and solidification applications of toxic or radioactive substances, mineral or organic, and also in the stabilization of mining waste. These cements are also temperature stable.
  • geopolymeric cement can be quickly dried from its constituent water, then mounted at temperatures between 400 ° C and 1000 ° C, without damage. It is therefore possible to agglomerate substances which must undergo these temperature variations.

Abstract

The invention concerns a method for making geopolymeric cement consisting in producing a reaction mixture containing (parts in weight of dry matter):reagent (I):100 parts by weight of aluminosilicate oxide [Si2O5,Al2O2]9[Si2O5,Al2(OH)3], or simplified below as (Si2O5Al2O2)(IV-V); reagent (II): 30-55 parts of alkali silicate in which the mol ratio M2O/SiO2 ranges between 0.5 and 0.8, M representing Na and/or K or the mixture Na+K; reagent (III): 80-110 parts of basic silicate, in glass state, consisting partly of gehlenite, akermanite and wollastonite; reagent (IV): 150-250 parts of alkali aluminosilicate containing at least 5 % by weight of (Na2O+K2O), preferably at least 8 % by weight; then in hardening said mixture by adding water: After hardening the geopolymeric cements are made of two distinct phases: a) a glass phase having a MAS NMR spectrum for 29Si with a band ranging between -85 and -89ppm, and a MAS NMR spectrum for 27Al with a resonance at 54-58ppm; b) a crystalline phase having a MAS NMR spectrum for 29Si with a band ranging between -90ppm and -115ppm, and a MAS NMR spectrum for 27Al with a resonance at 57ppm.

Description

Méthodes de fabrication de ciments geopolymenques et ciments obtenus par ces méthodes.Methods of making geopolymer cements and cements obtained by these methods.
La présente invention décrit des méthodes qui permettent de réduire le prix de revient des ciments geopolymenques. Ces méthodes décrivent l'emploi d'alummo-silicates alcalins d'origine géologique.The present invention describes methods which make it possible to reduce the cost price of geopolymer cements. These methods describe the use of alkaline alumino-silicates of geological origin.
Techniques antérieures.Prior techniques.
On distingue deux types de ciment: les ciments hydrauliques et les ciments geopolymenques. Les ciments geopolymenques résultent d'une réaction de polycondensation minérale par activation alcaline, dite géosynthèse, par opposition aux liants traditionnels hydrauliques dans lesquels le durcissement est le résultat d'une hydratation des aluminates de calcium et des silicates de calcium. Comme il est d'usage dans la profession, la comparaison entre les deux modes de durcissement s'effectue dans le cadre de la normalisation des essais physiques effectués à 28 jours. Le moyen d'investigation utilisé est le spectre de Résonance Magnétique Nucléaire. Dans le spectre MASNMR pour 27A|, les produits résultant de la géosynthèse ou réaction de géopolymèπsation, comme préconisé dans la présente invention, possèdent un pic caractéristique à 55±5 ppm, attribué à la coordination AI(IV) de type Q.4(4Si). Les composés d'hydratation obtenus dans les liants hydrauliques traditionnels ont un pic à 0±5 ppm, caractéristique de la coordination AI(VI), c'est à dire de l'hydroxy-aluminate de calcium. Le spectre MASNMR de 29Sι permet également de faire une différentiation très nette entre les ciments geopolymenques et les liants hydrauliques. Si on représente le degré de polymérisation du tétraèdre S1O4 par Qn (n=0, 1,2,3,4), on peut faire la distinction entre les monosilicates (Q0), les disilicates (Qi), les groupes de silicate (Q2), les silicates greffés (Q3) et les silicates faisant partie d'un réseau tridimensionnel (Q4). Ces degrés de polymérisation sont caractérisés en MASNMR du 29Sι par les pics suivants: (Q0) de -68 à -76 ppm; (Qi) de -76 à -80; (Q2) de -80 à -85 ppm; (Q3) de -85 à -90 ppm; (Q4) de -91 à -130 ppm. Les pics caractérisant les ciments geopolymenques se trouvent dans la zone -85 à -100 ppm et correspondent au réseau tridimensionnel (Q4) caractéristique des poly(sialates) et poly(sιalate- siloxo). Au contraire, les résultats de l'hydratation des liants hydrauliques conduisant au silicate de calcium hydraté C-S-H (selon la terminologie employée dans la chimie des ciments) produisent des pics se situant dans la zone -68 à -85 ppm soit le monosilicate (Q0) ou le disilicate (Q1XQ2); On a proposé dans le passé des liants et ciments basés sur des réactions geopolymeriques mettant en jeu trois des quatre réactifs employés dans la présente invention.There are two types of cement: hydraulic cements and geopolymenic cements. Geopolymen cements result from a mineral polycondensation reaction by alkaline activation, called geosynthesis, as opposed to traditional hydraulic binders in which hardening is the result of hydration of calcium aluminates and calcium silicates. As is customary in the profession, the comparison between the two modes of hardening is carried out within the framework of the standardization of physical tests carried out at 28 days. The means of investigation used is the Nuclear Magnetic Resonance spectrum. In the MASNMR spectrum for 27A |, the products resulting from geosynthesis or geopolymerization reaction, as recommended in the present invention, have a characteristic peak at 55 ± 5 ppm, attributed to coordination AI (IV) of type Q.4 ( 4Si). The hydration compounds obtained in traditional hydraulic binders have a peak at 0 ± 5 ppm, characteristic of coordination AI (VI), that is to say of calcium hydroxy-aluminate. The MASNMR spectrum of 29 Sι also makes it possible to make a very clear differentiation between geopolymenic cements and hydraulic binders. If we represent the degree of polymerization of the tetrahedron S1O4 by Q n (n = 0, 1,2,3,4), we can distinguish between monosilicates (Q 0 ), disilicates (Qi), silicate groups (Q2), the grafted silicates (Q3) and the silicates forming part of a three-dimensional network (Q4). These degrees of polymerization are characterized in MASNMR of 29 Sι by the following peaks: (Q 0 ) from -68 to -76 ppm; (Qi) from -76 to -80; (Q2) from -80 to -85 ppm; (Q3) from -85 to -90 ppm; (Q4) from -91 to -130 ppm. The peaks characterizing the geopolymen cements are found in the range -85 to -100 ppm and correspond to the three-dimensional network (Q4) characteristic of poly (sialates) and poly (sιalate-siloxo). On the contrary, the results of the hydration of hydraulic binders leading to hydrated calcium silicate CSH (according to the terminology used in the chemistry of cements) produce peaks located in the range -68 to -85 ppm or monosilicate (Q 0 ) or disilicate (Q1XQ2); Binders and cements have been proposed in the past based on geopolymeric reactions involving three of the four reactants employed in the present invention.
Ainsi par exemple le brevet Davidovits/Sawyer US 4,509,985 et son équivalent européen EP 153,097 décrivent des compositions geopolymeriques permettant la réalisation de mortier à durcissement rapide. Dans le brevet Davidovits/Sawyer, la composition dite "standard" comprend un mélange réactionnel caractérisé par les rapports molaires des oxydes : K2O: SiO2 0.32For example, the Davidovits / Sawyer US Pat. No. 4,509,985 and its European equivalent EP 153,097 describe geopolymeric compositions allowing the production of fast-hardening mortar. In the Davidovits / Sawyer patent, the so-called "standard" composition comprises a reaction mixture characterized by the molar ratios of the oxides: K 2 O: SiO 2 0.32
SiO2: AI2O3 4.12SiO 2 : AI 2 O 3 4.12
H O:AI θ3 17.0H O: AI θ3 17.0
K2O:AI2O3 1.33K 2 O: AI 2 O 3 1.33
H20 : K2O 12.03 auquel a été ajouté du laitier de haut fourneau broyé.H 2 0: K 2 O 12.03 to which was added milled blast furnace slag.
Dans les compositions décrites par le brevet Davidovits/Sawyer, il est fait usage de silicate alcalin soluble, en particulier du silicate de potassium dans lequel le rapport molaire des oxydes l<2θ : Siθ2 est de l'ordre de 0.5 (soit !< θ: 2Siθ2). Dans le prix de revient des compositions minérales geopolymeriques décrites dans les formulations antérieures, la partie la plus onéreuse est celle allouée à ce silicate de potassium. Il était donc très important de pouvoir diminuer très sensiblement le prix de revient de ce produit très onéreux, afin de pouvoir produire un ciment géopolymèrique dont le prix puisse être comparable à celui du ciment Portland. C'est le principal objectif de la présente invention.In the compositions described by the Davidovits / Sawyer patent, use is made of soluble alkali silicate, in particular potassium silicate in which the molar ratio of oxides l <2θ: Siθ2 is of the order of 0.5 (or! <Θ : 2Siθ2). In the cost price of the geopolymeric mineral compositions described in the previous formulations, the most expensive part is that allocated to this potassium silicate. It was therefore very important to be able to very significantly reduce the cost price of this very expensive product, in order to be able to produce a geopolymeric cement whose price could be comparable to that of Portland cement. This is the main objective of the present invention.
On a déjà proposé dans l'art antérieur différentes méthodes pour réduire les quantités de ce réactif relativement coûteux. Ces différentes méthodes sont regroupées dans le Tableau 1 ci dessous. Ainsi dans le brevet Heitzman US 4,642,137 on fabrique le silicate alcalin dans le mélange in-situ, par réaction alcaline avec de la silice amorphe. Cependant, ces formulations selon le brevet Heitzman ne durcissent pas à la température ambiante, puisque pour obtenir ce durcissement rapide, il est absolument nécessaire d'ajouter du ciment Portland. Dans la publication WO 92/04298, on décrit un ciment géopolymèrique à durcissement rapide dans lequel il est fait usage du disilicate de potassium !<2(H3Siθ4)2 en poudre. On peut déjà réduire ainsi de moitié la quantité de silicate alcalin. Dans la publication internationale WO 92/04300, il est préconisé de fabriquer le silicate alcalin à partir de divers matériaux géologiques, comme les silices amorphes, en procédant par fusion à haute température (vers 1000-1250°C) avec du carbonate alcalin. Les quantités de silicate alcalin sont soit équivalentes à celles du brevet Davidovits/Sawyer ou égale à celle de la publication internationale WO 92/04298 (voir Tableau 1). On notera également la méthode décrite dans Ja publication internationale WO 95/13995 qui propose la fabrication d'un verre obtenu par la fusion d'aluminosilicate alcalins naturels (roches volcaniques) à une température comprise entre 1000°C et 1350°C.Various methods have already been proposed in the prior art for reducing the amounts of this relatively expensive reagent. These different methods are grouped in Table 1 below. Thus in Heitzman US Pat. No. 4,642,137, the alkali silicate is manufactured in the in-situ mixture, by alkaline reaction with amorphous silica. However, these formulations according to the Heitzman patent do not harden at room temperature, since to obtain this rapid hardening, it is absolutely necessary to add Portland cement. In publication WO 92/04298, a rapidly hardening geopolymer cement is described in which potassium disilicate! <2 (H3Siθ4) 2 is used in powder form. We can already reduce the amount of alkali silicate in half. In the international publication WO 92/04300, it is recommended to manufacture the alkali silicate from various geological materials, such as amorphous silicas, proceeding by fusion at high temperature (around 1000-1250 ° C) with alkaline carbonate. The amounts of alkali silicate are either equivalent to those of the Davidovits / Sawyer patent or equal to that of the international publication WO 92/04298 (see Table 1). Note also the method described in the international publication WO 95/13995 which proposes the manufacture of a glass obtained by the fusion of natural alkaline aluminosilicate (volcanic rocks) at a temperature between 1000 ° C and 1350 ° C.
La présente invention permet encore de réduire de 70 - 80% la quantité de silicate alcalin par un moyen différent de ceux préconisés dans l'art antérieur.The present invention also makes it possible to reduce the amount of alkali silicate by 70-80% by a means different from those recommended in the prior art.
Exposé de l'invention.Statement of the invention.
L'objet principal de l'invention est de réduire radicalement les quantités en silicate alcalin par rapport aux ciments geopolymeriques de l'art antérieur. Par rapport au brevet Davidovits/Sawyer US 4,509,985, la méthode préconisée dans la présente invention part de l'idée qu'il devrait être possible de remplacer une certaine quantité du réactif K2O produit par l'industrie chimique, par du K2O extrait des roches volcaniques. La méthode de l'invention montre que certaines roches volcaniques de type alumino- silicate alcalin permette de réduire de 70-80% en poids la quantité de K2O d'origine chimique.The main object of the invention is to radically reduce the amounts of alkali silicate compared to the geopolymeric cements of the prior art. Compared to the Davidovits / Sawyer US Pat. No. 4,509,985, the method recommended in the present invention starts from the idea that it should be possible to replace a certain quantity of the reagent K2O produced by the chemical industry, by K2O extracted from volcanic rocks. . The method of the invention shows that certain volcanic rocks of the alkaline alumino-silicate type make it possible to reduce by 70-80% by weight the quantity of K2O of chemical origin.
Tableau I : composition des ciments de l'art antérieur et de la présente invention (parties en poids de matière sèche).Table I: composition of the cements of the prior art and of the present invention (parts by weight of dry matter).
EP 0153097 EP 0500845 Présente US 4,509,985 US 4,642,137 WO92/04300 WO92/04298 invention oxyde aluminosilicate 100 100 80-140 100 100EP 0153097 EP 0500845 Presents US 4,509,985 US 4,642,137 WO92 / 04300 WO92 / 04298 invention aluminosilicate oxide 100 100 80-140 100 100
Silicate alcalin 148 55-145 6-110 48-72 30-55 silice amorphe 0 70-215 40-500 0 0Alkaline silicate 148 55-145 6-110 48-72 30-55 amorphous silica 0 70-215 40-500 0 0
Silicate basique 100 20-70 20-120 50-70 80-110Basic silicate 100 20-70 20-120 50-70 80-110
Silicate d'alumine cendres volantes 0 85-130 0 0 0Alumina silicate fly ash 0 85-130 0 0 0
Aluminosilicate alcalin, M2θ> 5% 0 0 0 0 150-250Alkaline aluminosilicate, M2θ> 5% 0 0 0 0 150-250
Le procédé de fabrication d'un ciment géopolymèrique qui ne contient pas de ciment Portland, selon la présente invention, consiste à réaliser le mélange réactionnel dont les composants exprimés en matière sèche sont: - réactif I : 100 parties en poids d'un oxyde aluminosilicateThe process for manufacturing a geopolymeric cement which does not contain Portland cement, according to the present invention, consists in producing the reaction mixture whose components expressed as dry matter are: - reagent I: 100 parts by weight of an aluminosilicate oxide
[Si2θ5,Al2θ2]9[Si2θ5,Al2(OH)3], ayant le cation Al en coordination mixte (IV-V) comme déterminé par le spectre d'analyse en Résonance Magnétique Nucléaire MASNMR pour 27AI, ou pour simplifier dans ce qui suit,[Si 2 θ5, Al2θ2] 9 [Si2θ5, Al 2 (OH) 3], having the cation Al in mixed coordination (IV-V) as determined by the analysis spectrum in Nuclear Magnetic Resonance MASNMR for 27 AI, or for simplify in what follows,
(Si2θ5,AI2θ2)(iv-V) (If 2 θ5, AI 2 θ2) (iv-V)
- réactif II: 30-55 parties de silicate de sodium et/ou de potassium dans lequel le rapport molaire M2θ/Siθ2 est compris entre 0.5 et 0.8, M désignant Na et/ou K ou le mélange Na+K. - réactif III: 80-110 parties de silicate basique, à l'état vitreux, composé en partie de gehlinite, d'akermanite et de wollastonite.- reagent II: 30-55 parts of sodium and / or potassium silicate in which the molar ratio M2θ / Siθ2 is between 0.5 and 0.8, M denoting Na and / or K or the Na + K mixture. - reagent III: 80-110 parts of basic silicate, in the vitreous state, composed in part of gehlinite, akermanite and wollastonite.
- réactif IV: 150-250 parties aluminosilicate alcalin contenant au moins- reagent IV: 150-250 alkaline aluminosilicate parts containing at least
5% en poids de (Na2θ+I<2θ), de préférence au moins 8% en poids; puis à faire durcir le dit mélange en ajoutant de l'eau.5% by weight of (Na2θ + I <2θ), preferably at least 8% by weight; then hardening said mixture by adding water.
Le réactif (I) , l'oxyde aluminosilicate de formule simplifiée (S'i2θ5,Al2θ2)(iv-V)/ est obtenu par calcination d'un matériau kaolinitique à une température inférieure à 1000°C.The reagent (I), the aluminosilicate oxide of simplified formula (S ' i2θ5, Al2θ2) (iv-V) / is obtained by calcination of a kaolinitic material at a temperature below 1000 ° C.
Le réactif (II) est le silicate de sodium et/ou de potassium, en poudre, par exemple le disilicate de potassium K2(H3Siθ4)2, ou le disilicate de sodium Na2(H3Siθ4)2, ou le disilicate double de potassium et de sodium (K,Na)(H3Siθ )2, ou un mélange de silicate alcalin et de NaOH/KOH solide. On peut aussi utiliser le silicate alcalin sous forme d'une solution aqueuse. Le rapport molaire M2θ/Siθ2 est en général compris entre 0.5 et 0.8, M désignant Na et/ou K ou le mélange Na+K.Reagent (II) is powdered sodium and / or potassium silicate, for example potassium disilicate K2 (H3Siθ4) 2, or sodium disilicate Na2 (H3Siθ4) 2, or potassium and potassium double disilicate sodium (K, Na) (H3Siθ) 2, or a mixture of alkaline silicate and solid NaOH / KOH. The alkali silicate can also be used in the form of an aqueous solution. The M2θ / Siθ2 molar ratio is generally between 0.5 and 0.8, M denoting Na and / or K or the Na + K mixture.
Le réactif (III) est un silicate de calcium faiblement basique, c'est à dire ayant un rapport atomique Ca/Si inférieur à 1. Il est obtenu en utilisant comme matière première un silicate de calcium basique, c'est à dire ayant un rapport atomique Ca/Si égal ou supérieur à 1 essentiellement caractérisé par son aptitude à générer, sous l'action d'une attaque alcaline, la formation de silicate du calcium faiblement basique, c'est à dire ayant un rapport atomique Ca/Si inférieur à 1, de préférence proche de 0,5.The reagent (III) is a weakly basic calcium silicate, that is to say having a Ca / Si atomic ratio of less than 1. It is obtained by using as basic material a basic calcium silicate, that is to say having a Ca / Si atomic ratio equal to or greater than 1 essentially characterized by its ability to generate, under the action of an alkaline attack, the formation of weakly basic calcium silicate, that is to say having a lower Ca / Si atomic ratio to 1, preferably close to 0.5.
Le réactif (IV) est un matériau géologique, aluminosilicate alcalin, dans lequel le rapport atomique Si : Al est compris entre 2,5 et 5, le rapport molaire M2θ:Al2θ3 est compris entre 0.7 et 1.1 et le rapport molaire (M2θ+CaO): AI2O3 est compris entre 0.8 et 1.6. Ce matériau aluminosilicate alcalin est généralement calciné à une température inférieure à 850°C, mais certaines variétés géologiques peuvent être utilisées sans calcination. La calcination a pour avantage de diminuer la quantité d'eau qu'il faut ajouter au mélange afin d'obtenir une bonne fluidité au mortier. L'art antérieur montre que les résistances mécaniques des ciments geopolymeriques diminuent lorsque la quantité d'eau augmente. Il sera donc, en général, avantageux d'effectuer cette calcination. Certaines variétés géologiques, comme celles décrites dans les exemples 2, 3, 6, ont des résistances mécaniques qui sont sensiblement équivalentes pour le produit non calciné (naturel) et le produit calciné. La décision de calciner ou non ces aluminosilicates alcalins dépend uniquement de la rhéologie des mortiers et des bétons qui seront obtenus avec ces ciments. Le mélange des réactifs qui constitue l'ensemble comprenant les réactifs (I) + (II)+(III), voir le Tableau 2, possède un rapport molaireThe reagent (IV) is a geological material, alkaline aluminosilicate, in which the atomic ratio Si: Al is between 2.5 and 5, the molar ratio M2θ: Al2θ3 is between 0.7 and 1.1 and the molar ratio (M2θ + CaO ): AI2O3 is between 0.8 and 1.6. This alkaline aluminosilicate material is generally calcined at a temperature below 850 ° C, but some geological varieties can be used without calcination. The calcination has the advantage of reducing the amount of water that must be added to the mixture in order to obtain good fluidity with the mortar The prior art shows that the mechanical strengths of geopolymeric cements decrease when the amount of water increases. It will therefore generally be advantageous to carry out this calcination. Certain geological varieties, such as those described in Examples 2, 3, 6, have mechanical strengths which are substantially equivalent for the non-calcined (natural) product and the calcined product. The decision to calcine or not these alkaline aluminosilicates depends solely on the rheology of the mortars and concretes which will be obtained with these cements. The mixture of reagents which constitutes the assembly comprising the reagents (I) + (II) + (III), see Table 2, has a molar ratio
Ca+ +/(Si2θ5,Al2θ2)(i -V) Qui est supérieur à 1 et un rapport (Na+, +,Ca+ + )/(Si2θ5,Al2θ2)(iv-V) u1' est supérieur à 1,5. Après durcissement, le ciment géopolymèrique est constitué de deux phases distinctes: a) une phase dite vitreuse qui possède un spectre MAS NMR pour 29Si ayant une bande comprise entre -85 et -89ppm, et un spectre MASNMR pour 27AI ayant une résonance à 54-58ppm. Cette dite phase vitreuse est un composé géopolymèrique constitué de groupes (AIO4) de type 0_4(4Si) polymérisés avec des groupes (Siθ4) de type Q_4(3AI,lSi), associés à un aluminosilicate hydroxylé constitué de (Si04) de type Q3(2Si, lAI,10H) ; b) une phase cristalline qui possède un spectre MAS NMR pour 9Si ayant une bande comprise entre -90ppm et -115ppm, et un spectre MAS-NMR 27AI ayant une résonance à 57ppm. Cette dite phase cristalline correspond à un aluminosilicate alcalin.Ca + + / (Si2θ5, Al2θ2) (i -V) Q ui is greater than 1 and a ratio (Na +, + , Ca + + ) / (Si2θ5, Al2θ2) (iv-V) u1 'is greater than 1, 5. After hardening, the geopolymeric cement consists of two distinct phases: a) a so-called vitreous phase which has a MAS NMR spectrum for 29 Si having a band between -85 and -89ppm, and a MASNMR spectrum for 27 AI having a resonance at 54-58ppm. This so-called glassy phase is a geopolymeric compound consisting of groups (AIO4) of type 0_4 (4Si) polymerized with groups (Siθ4) of type Q_4 (3AI, lSi), associated with a hydroxylated aluminosilicate consisting of (Si0 4 ) 3 (2Si, IAI, 10H); b) a crystalline phase which has a MAS NMR spectrum for 9 Si having a band between -90ppm and -115ppm, and a MAS-NMR spectrum 27 AI having a resonance at 57ppm. This so-called crystalline phase corresponds to an alkaline aluminosilicate.
Le ciment géopolymèrique obtenu selon les méthodes décrites dans la présente invention est résistant à la corrosion de l'acide sulfurique et il n'est pas sujet à la réaction ASR. Les caractéristiques mécaniques sont bonnes. Ainsi, la résistance à la compression à 28 jours est comprise entre 25 Mpa et 60 Mpa, sans ajout de charges particulières. Elle varie en fonction de la granulométrie des éléments en poudre. En général, la granulométrie moyenne est comprise entre 7 microns et 10 microns.The geopolymeric cement obtained according to the methods described in the present invention is resistant to corrosion of sulfuric acid and it is not subject to the ASR reaction. The mechanical characteristics are good. Thus, the compressive strength at 28 days is between 25 Mpa and 60 Mpa, without adding special loads. It varies according to the particle size of the powdered elements. In general, the average particle size is between 7 microns and 10 microns.
Meilleures manières de réaliser l'inventionBest Ways to Carry Out the Invention
Dans les méthodes de l'invention, le réactif (I), l'oxyde aluminosilicate de formule simplifiée (Si2θ5,Al2θ2)(iv-v)/ est obtenu, comme dans l'art antérieur, par calcination d'un matériau kaolinitique à une température inférieure à 1000°C. La dite calcination est conduite de telle sorte que le dit oxyde aluminosilicate possède un spectre d'analyse en Résonance Magnétique Nucléaire MASNMR pour 27AI ayant en supplément des deux résonances principales à 20±5ppm [coordination AI(V)] et 50±5ppm [coordination AI(IV)], une résonance secondaire à 0±5ppm de beaucoup plus faible intensité [coordination AI(VI)]. Le matériau kaolinitique est en général une argile contenant au moins 30% en poids du minéral kaolinite. La calcination s'effectue à une température inférieure à 1000°C, cette température variant avec la méthode employée. La calcination en four vertical ou tournant se fait à une température comprise entre 650°C et 800°C. Dans le procédé à lit fluidisé, la température est entre 700°C et 850°C. Dans le procédé flash, à courant d'air chaud, la température est comprise entre 900°C et 1000°C. Certains résidus industriels contiennent déjà le dit oxyde aluminosilicate (S'i2θ5,Al2θ2)(iv-V) comme les cendres résultant de la combustion du charbon dans les centrales thermiques dites à basse température ou en lit fluidisé; la bauxite calcinée contient également une certaine quantité de (Si2θ5,Al2θ2)(iv- )- 0n Peut aussi citer les produits de calcinations des déchets de papeterie, chargés en kaolin.In the methods of the invention, the reagent (I), the aluminosilicate oxide of simplified formula (Si2θ5, Al2θ2) (iv-v) / is obtained, as in the prior art, by calcination of a kaolinitic material at a temperature below 1000 ° C. Said calcination is carried out so that said aluminosilicate oxide has an analysis spectrum in Nuclear Magnetic Resonance MASNMR for 27 AI having in addition the two main resonances at 20 ± 5 ppm [coordination AI (V)] and 50 ± 5 ppm [ AI (IV) coordination], a secondary resonance at 0 ± 5ppm of much lower intensity [AI (VI) coordination]. The kaolinitic material is generally a clay containing at least 30% by weight of the mineral kaolinite. The calcination is carried out at a temperature below 1000 ° C., this temperature varying with the method used. Calcination in a vertical or rotating oven takes place at a temperature between 650 ° C and 800 ° C. In the fluidized bed process, the temperature is between 700 ° C and 850 ° C. In the flash process, with a hot air current, the temperature is between 900 ° C and 1000 ° C. Certain industrial residues already contain the said aluminosilicate oxide (S ' i2θ5, Al2θ2) (iv-V) like the ashes resulting from the combustion of coal in thermal power plants called low temperature or in a fluidized bed; calcined bauxite also contains a certain amount of (Si2θ5, Al2θ2) (iv-) - 0n P had also include calcination products of paper waste, loaded kaolin.
Le réactif (II) est un silicate alcalin soluble dans l'eau. Depuis la description du brevet Davidovits/Sawyer, l'homme de l'art sait que, dans ce silicate alcalin, le rapport molaire M2θ:SiÛ2 (M désignant soit Na, soit K, soit le mélange Na+K) doit être voisin de 0,5, c'est à dire correspondre sensible- ment à un silicate M2θ:2Siθ2,nH2θ, n étant compris entre 2 et 6. De préférence, dans la méthode de l'invention, M est K. Bien que le silicate de potassium soit plus coûteux que le silicate de sodium, les propriétés des ciments obtenus avec le silicate de potassium sont bien supérieures de celles obtenues avec le silicate de sodium. En effet, l'expérience montre qu'avec un silicate double de sodium et de potassium, le ciment ainsi obtenu développe une résistance à la compression inférieure de celle avec le silicate de potassium. Dans la présente invention, le rapport molaire M2θ:Siθ2 est compris entre 0.5 et 0.8. Le silicate alcalin peut être soit sous forme de poudre silicate alcalin soluble dans l'eau, soit d'un mélange de silicate alcalin en poudre et de NaOH/KOH solide, soit sous la forme d'une solution. Dans le cas des exemples ci-dessous, la solution contient 20-23% en poids de Siθ2, 20-26% en poids de K2O, et 50-55% en poids d'eau.Reagent (II) is a water soluble alkali silicate. From the description of the Davidovits / Sawyer patent, a person skilled in the art knows that, in this alkaline silicate, the molar ratio M2θ: SiO2 (M denoting either Na, or K, or the mixture Na + K) must be close to 0.5, that is to say substantially correspond to a silicate M2θ: 2Siθ2, nH2θ, n being between 2 and 6. Preferably, in the method of the invention, M is K. Although the silicate of potassium is more expensive than sodium silicate, the properties of cements obtained with potassium silicate are much better than those obtained with sodium silicate. Indeed, experience shows that with a double sodium and potassium silicate, the cement thus obtained develops a lower compressive strength than that with potassium silicate. In the present invention, the molar ratio M2θ: Siθ2 is between 0.5 and 0.8. The alkali silicate can either be in the form of a water-soluble alkali silicate powder, or a mixture of powdered alkali silicate and solid NaOH / KOH, or in the form of a solution. In the case of the examples below, the solution contains 20-23% by weight of SiO 2, 20-26% by weight of K2O, and 50-55% by weight of water.
Le réactif (III) est un silicate de calcium basique, c'est à dire avec le rapport atomique Ca/Si supérieur ou égal à 1, comme la wollastonite Ca(Si03), la gehlenite (2CaO.AI2θ3.Si02), l'akermanite (2CaO. Mg0.2Si0 ) . Lorsque les grains de ces matières sont mis en contact avec le silicate alcalin du réactif (II), il se produit très rapidement une désorption de CaO de telle sorte que le rapport atomique Ca/Si devient inférieur à 1 et tend vers 0,5. Il y a production in situ de disilicate de calcium Ca(H3Siθ4)2 qui vient participer à la réaction géopolymèrique.Reagent (III) is a basic calcium silicate, i.e. with the Ca / Si atomic ratio greater than or equal to 1, such as wollastonite Ca (Si0 3 ), gehlenite (2CaO.AI 2 θ3.Si0 2 ), akermanite (2CaO. Mg0.2Si0). When the grains of these materials are brought into contact with the alkali silicate of the reagent (II), a desorption of CaO takes place very quickly so that the Ca / Si atomic ratio becomes less than 1 and tends towards 0.5. There is in situ production of calcium disilicate Ca (H3Siθ4) 2 which participates in the geopolymeric reaction.
Certains sous-produits de traitements industriels ou de combustion à haute température contiennent essentiellement les silicates basiques gehlenite, akermanite, wollastonite et conviennent donc très bien. Nous citerons, à titre d'exemple non limitatif, le laitier de haut fourneau, certaines scories et certaines cendres de centrales thermiques à haute température, ces produits étant de préférence à l'état vitreux. Lorsque l'on regarde au microscope les ciments durcis à partir des mélanges décrits dans les exemples 1 à 10, on constate que, dans le cas du laitier de haut-fourneau, la majorité des grains de laitiers ont disparu . On voit seulement une empreinte de leur forme initiale, sous la forme d'une enveloppe vraisemblablement constituée d'akermanite qui n'a pas réagi. Ce processus est très régulier et peut être complet en 30 minutes, à la température ambiante. Cependant, comme on peut le voir dans le Tableau 2, la quantité de silicate de calcium basique participant à la réaction géopolymèrique est supérieure à celle de l'art antérieur. Ceci s'exprime par les ratios molaires des oxydes reliant entre eux les réactifs (I), (II) et (III).Certain by-products of industrial treatments or of combustion at high temperature essentially contain the basic silicates gehlenite, akermanite, wollastonite and are therefore very suitable. We will cite, by way of nonlimiting example, blast furnace slag, certain slag and certain ash from high temperature thermal power stations, these products preferably being in the vitreous state. When we look under a microscope at hardened cements from the mixtures described in examples 1 to 10, we see that, in the case of blast furnace slag, the majority of the slag grains have disappeared. We only see an imprint of their initial shape, in the form of an envelope probably made of unreacted Akermanite. This process is very regular and can be completed in 30 minutes, at room temperature. However, as can be seen in Table 2, the amount of basic calcium silicate participating in the geopolymeric reaction is greater than that of the prior art. This is expressed by the molar ratios of the oxides connecting the reactants (I), (II) and (III) to each other.
Tableau 2: Ratio molaire des différents oxydes reliant entre eux les réactifs (I), (II), (III) de la présente invention et de l'art antérieur. relation entre ratios US 4,509,985 WO 92/04298 Présente invention réactifs molaires Exemples 2 à 9 Exemples 1 à 10Table 2: Molar ratio of the various oxides connecting the reagents (I), (II), (III) of the present invention and of the prior art. relationship between US ratios 4,509,985 WO 92/04298 Present invention molar reagents Examples 2 to 9 Examples 1 to 10
(II)/(I) Na20,K2θ/(Si2θ5,Al2θ2) 1.33 0.40-0.60 0.441(II) / (I) Na 2 0, K2θ / (Si2θ5, Al 2 θ2) 1.33 0.40-0.60 0.441
(III)/(I) Ca++/(Si2θ5,AI2θ2) 0.9-1.6 0.60-0.40 1.29(III) / (I) Ca ++ / (Si2θ5, AI 2 θ2) 0.9-1.6 0.60-0.40 1.29
(II)+(IH)/(I) Na20,K2θ,CaO/(Si2θ5,Al2θ2) 2.2-2.9 1.0 1.731(II) + (IH) / (I) Na 2 0, K2θ, CaO / (Si2θ5, Al2θ2) 2.2-2.9 1.0 1.731
Le réactif (IV) est un matériau géologique, aluminosilicate alcalin, qui contient au moins 5% en poids de Na2θ+K2θ. Il appartient à la classe des roches volcaniques. Les Tableaux 3 et 4 donnent les caractéristiques chimiques des aluminosilicates alcalins utilisés dans les exemples ci- dessous. Ils sont très différents des silicates d'alumines décrits dans le brevet US 4,642,137 qui sont soit des cendres volantes de centrales thermiques au charbon, très pauvres en alcalin, soit des argiles calcinées. Il est également très différent de la silice amorphe employée dans le brevet US 4,642,137 ou du matériau géologique de la publication internationale WO92/04300. Dans la demande internationale WO 92/04298, on préconise l'emploi de la silice amorphe, comme par exemple la fumée de silice, les cendres de riz, mais aussi des silices d'origine géologique comme les terres de diatomées, les smectites siliciques, certaines pouzzolanes fortement siliciques (avec un fort pourcentage d'allophane et de verre d'origine volcanique). On y explique, page 9, lignes 17-21, que ces matériaux d'origine géologique sont considérés comme des charges finement divisées, réactives. La réactivité de ces charges les fait réagir en surface avec le milieu réactionnel géopolymèrique, augmentant ainsi la résistance mécanique du liant minéral poly(sialate-siloxo).The reagent (IV) is a geological material, alkaline aluminosilicate, which contains at least 5% by weight of Na2θ + K2θ. It belongs to the class of volcanic rocks. Tables 3 and 4 give the chemical characteristics of the alkaline aluminosilicates used in the examples below. They are very different from the alumina silicates described in US Pat. No. 4,642,137 which are either fly ash from power plants thermal coal, very poor in alkali, or calcined clays. It is also very different from the amorphous silica used in US patent 4,642,137 or from the geological material of international publication WO92 / 04300. In international application WO 92/04298, the use of amorphous silica is recommended, such as, for example, silica smoke, rice ash, but also silicas of geological origin such as diatomaceous earth, silicic smectites, some highly silicic pozzolans (with a high percentage of allophane and glass of volcanic origin). It is explained there, page 9, lines 17-21, that these materials of geological origin are considered as finely divided, reactive charges. The reactivity of these charges makes them react on the surface with the geopolymeric reaction medium, thus increasing the mechanical resistance of the mineral binder poly (sialate-siloxo).
On pense que le réactif IV de la présente invention réagit également en surface mais avec un mécanisme chimique différent. En effet, dans tous les brevets de l'art antérieur, l'objectif est de solubiliser de la silice pour la transformer en silicate alcalin soluble. On ajoute donc, en plus du silicate alcalin, de l'hydroxyde de sodium NaOH et/ou de potassium KOH qui devra former du silicate alcalin avec la silice amorphe. Après durcissement et géopolymérisation, le ciment de l'art antérieur est du type tecto-alumino- silicate, c'est à dire une structure tridimensionnelle dans laquelle les groupes (SiÛ4) sont de type Q4 exclusivement. Dans l'art antérieur, le spectre MASNMR de 29Si est très caractéristique puisqu'il présente une résonance vers -92,-94 ppm, Q4(2Si,2AI) et une résonance vers -110 ppm, Q4(4Si). On peut trouver des exemples de ces spectres dans la publication WO92/04300, figure 7, et dans la publication « Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cernent » par J. Davidovits, Journal of Materials Education, Vol. 16, numbers 2&3, pages 91-137, 1994, figure 13. La première résonance à -92, -94 ppm caractérise la matrice même du ciment géopolymèrique, la résonance à - 115 ppm étant attribuée à la charge siliceuse.It is believed that reagent IV of the present invention also reacts on the surface but with a different chemical mechanism. In fact, in all the patents of the prior art, the objective is to dissolve silica in order to transform it into soluble alkaline silicate. Therefore, in addition to the alkali silicate, sodium hydroxide NaOH and / or potassium KOH which must form alkali silicate with the amorphous silica. After hardening and geopolymerization, the cement of the prior art is of the tecto-alumino-silicate type, that is to say a three-dimensional structure in which the groups (SiO 4) are of type Q 4 exclusively. In the prior art, the MASNMR spectrum of 29 Si is very characteristic since it has a resonance towards -92, -94 ppm, Q4 (2Si, 2AI) and a resonance around -110 ppm, Q4 (4Si). Examples of these spectra can be found in publication WO92 / 04300, Figure 7, and in the publication "Geopolymers: man-made rock geosynthesis and the resulting development of very early high strength cernent" by J. Davidovits, Journal of Materials Education , Flight. 16, numbers 2 & 3, pages 91-137, 1994, figure 13. The first resonance at -92. -94 ppm characterizes the matrix of the geopolymeric cement, the resonance at - 115 ppm being attributed to the siliceous filler.
Des exemples du spectre MASNMR de 29Si des ciments obtenus par la méthode de la présente invention sont à la Figure 1. Ces spectres sont différents de ceux de l'art antérieur. Ils se composent de deux résonances principales: la première est celle de la phase dite vitreuse ou matrice géopolymèrique qui résulte de la réaction entre les réactifs (I)-(II)-(III); la deuxième est celle de la phase dite cristalline propre au réactif IV.Examples of the MASNMR spectrum of 29 Si cements obtained by the method of the present invention are in Figure 1. These spectra are different from those of the prior art. They consist of two main resonances: the first is that of the so-called vitreous phase or geopolymeric matrix which results from the reaction between the reactants (I) - (II) - (III); the second is that of the so-called crystalline phase specific to reagent IV.
La phase dite vitreuse, possède un spectre MAS NMR pour 29Si qui a une bande comprise entre -85 et -89ppm. Le spectre MAS-NMR pour 27AI de cette dite phase vitreuse est 54-58ppm. Le spectre de l'ensemble des réactifs (I) + (II)+(III) durci est identique à celui de la phase vitreuse. La dite phase vitreuse est un composé géopolymèrique constitué d'une structure siliço-aluminate alcaline qui contient un groupe (AIO4) de typeThe so-called glassy phase has a MAS NMR spectrum for 29 Si which has a band between -85 and -89ppm. The MAS-NMR spectrum for 27 AI of this so-called glassy phase is 54-58ppm. The spectrum of all the hardened reagents (I) + (II) + (III) is identical to that of the glassy phase. Said vitreous phase is a geopolymeric compound consisting of an alkaline silico-aluminate structure which contains a group (AIO4) of the type
Q4(4Si), polymérisé avec des groupes (Si04) de type Q4(3AI,lSi), associé à un aluminosilicate hydroxylé constitué de (Siθ4) de type Q3(2Si,lAI,10H).Q4 (4Si), polymerized with groups (Si0 4 ) of type Q4 (3AI, lSi), associated with a hydroxylated aluminosilicate consisting of (Siθ4) of type Q3 (2Si, lAI, 10H).
La dite phase cristalline, possède un spectre MAS NMR pour 29Si qui a une bande comprise entre -90 et -115ppm. Le spectre MAS-NMR pour 27AI a une résonance à 57-58 ppm correspondant à (AIO4) de typeQ4(4Si).Said crystalline phase has a MAS NMR spectrum for 29 Si which has a band between -90 and -115 ppm. The MAS-NMR spectrum for 27 AI has a resonance at 57-58 ppm corresponding to (AIO4) of type Q4 (4Si).
Chaque aluminosilicate alcalin naturel, réactif IV, possède son spectre bien spécifique qui est pratiquement identique à celui de la phase cristalline. On pense que l'action alcaline du mélange réactionnel produit une hydrolyse de la surface de la phase cristalline, avec la formation de fonction silanol -Si- OH" M+, M étant soit K soit Na. On pense que cette hydrolyse de surface est favorisée par le fait que cette phase cristalline contient déjà in situ des alcalis Na2θ,K2θ. On pense aussi que la réaction entre la matrice, phase vitreuse, et le réactif IV, phase cristalline, a lieu par polycondensation entre les hydroxyles -OH des groupes (Si04) de type Q3(2Si,lAI,10H) de la phase vitreuse et les silanol -Si-OH" M+ en surface de la phase cristalline.Each reactive natural alkaline aluminosilicate IV has its very specific spectrum which is practically identical to that of the crystalline phase. It is believed that the alkaline action of the reaction mixture produces a hydrolysis of the surface of the crystalline phase, with the formation of the silanol -Si-OH " M + function , M being either K or Na. It is believed that this surface hydrolysis is favored by the fact that this crystalline phase already contains in situ alkalis Na2θ, K2θ. It is also thought that the reaction between the matrix, glassy phase, and the reagent IV, crystalline phase, takes place by polycondensation between the hydroxyls -OH of the groups (Si0 4 ) type Q3 (2Si, IA, 10H) of the glassy phase and the silanol -Si-OH "M + at the surface of the crystalline phase.
La méthode de l'invention est illustrée par les Exemples suivants. Ils n'ont pas de caractère limitatif sur la portée globale de l'invention telle que présentée dans les revendications. Toutes les parties indiquées sont en poids.The method of the invention is illustrated by the following Examples. They are not limiting on the overall scope of the invention as presented in the claims. All parts shown are by weight.
Exemples 1 à 10:Examples 1 to 10:
Dans ce groupe d'exemples le mélange réactionnel des réactifs (I)+(II)+(III) est inchangé. On l'appelle « base ». Cette base est constituée du mélange suivant, parties en poids:In this group of examples the reaction mixture of the reactants (I) + (II) + (III) is unchanged. It is called "base". This base consists of the following mixture, parts by weight:
composition parties en poidscomposition parts by weight
- réactif (I) argile kaolinique calcinée 30- reagent (I) calcined kaolin clay 30
- réactif (II) solution silicate de K,- reagent (II) silicate solution of K,
(en po ids) K?0: 26%, SiO? : 21%, H?0 : 53% 25(in po ids) K? 0: 26%, SiO? : 21%, H? 0: 53% 25
- réactif (III) laitier de haut fourneau granulométrie moyenne 8 microns 27- reagent (III) blast furnace slag, average particle size 8 microns 27
- eau 31 total base 113 En ajoutant à 113 parties en poids de « base », 50 parties en poids d'aluminosilicates alcalins géologiques décrits dans les Tableaux 3 et 4 (réactif IV), on réalise les Exemples 1 à 10. Les matériaux géologiques ont été sélectionnés dans le cadre du programme de recherche européen Brite- Euram/Geocistem, référencés SAOl / SA07 / CAOl / CA02 / LAOl / LA02 / TO03 / ES03 / GC05 / TE03 (Dpt Scienze délia Terra, Université de Cagliari, Italie, B.R.G.M., Orléans, France, Facultat de Geologia, Université de Barcelone, Espagne).- water 31 total base 113 By adding to 113 parts by weight of "base", 50 parts by weight of geological alkaline aluminosilicates described in Tables 3 and 4 (reagent IV), Examples 1 to 10 are carried out. The geological materials were selected in the context of the European research program Brite- Euram / Geocistem, referenced SAOl / SA07 / CAOl / CA02 / LAOl / LA02 / TO03 / ES03 / GC05 / TE03 (Dpt Scienze délia Terra, University of Cagliari, Italy, BRGM, Orléans, France, Facultat de Geologia, University of Barcelona, Spain).
Le ciment ainsi obtenu, appelé pâte, est versé sans addition de charge, dans un moule et laissé durcir à la température ambiante. On mesure la résistance à la compression Rc à 28 jours. Pour chacun des Exemples 1 à 10, on a obtenu deux ciments, l'un contenant le réactif (IV) naturel, l'autre contenant le réactif (IV) qui avait été au préalable calciné à une température égale ou supérieure à 600°C. Dans le cadre des exemples 1 à 10, la calcination a eu lieu à 800°C pendant 3 heures. Le réactif (IV) a également été broyé à la granulométrie moyenne de 8 microns.The cement thus obtained, called paste, is poured without addition of filler, into a mold and allowed to harden at room temperature. The compressive strength Rc is measured at 28 days. For each of Examples 1 to 10, two cements were obtained, one containing the natural reagent (IV), the other containing the reagent (IV) which had previously been calcined at a temperature equal to or greater than 600 ° C. . In the context of Examples 1 to 10, the calcination took place at 800 ° C for 3 hours. The reagent (IV) was also ground to an average particle size of 8 microns.
Tableau 3 : Composition chimique, en poids, des aluminosilicates alcalins géologiques (réactif IV), employés dans les Exemples 1 à 10Table 3: Chemical composition, by weight, of the geological alkaline aluminosilicates (reagent IV), used in Examples 1 to 10
Exemples 1 2 3 4 5 6 7 8 9 10Examples 1 2 3 4 5 6 7 8 9 10
Si02 71.48 74.16 5aœ 5252 5535 8a42 57.94 57.61 56.50 56.76Si0 2 71.48 74.16 5aœ 5252 5535 8a42 57.94 57.61 56.50 56.76
Al203 14.55 ι 80 19.26 1641 19.20 10.80 17.66 ι s9 1586 1R45Al 2 0 3 14.55 ι 80 19.26 1641 19.20 10.80 17.66 ι s9 1586 1R45
Fe203 160 1.13 4.17 3.67 400 530 3.72 4.74 3.74 339Fe 2 0 3 160 1.13 4.17 3.67 400 530 3.72 4.74 3.74 339
MgO 004 0.17 120 1.73 1.15 868 0.70 1.16 063 0.47MgO 004 0.17 120 1.73 1.15 868 0.70 1.16 063 0.47
CaO 0Û7 0.43 3.14 754 235 256 261 352 0.44 039CaO 0.07 0.43 3.14 754 235 256 261 352 0.44 039
Na20 069 433 222 058 235 150 350 325 621 728Na 2 0 069 433 222 058 235 150 350 325 621 728
K20 10.41 469 8S0 634 825 835 799 760 563 5.77K 2 0 10.41 469 8S0 634 825 835 799 760 563 5.77
Tι02 0.16 0.13 0JB1 051 054 1.40 0.41 0.47 0.74 0.45Tι0 2 0.16 0.13 0JB1 051 054 1.40 0.41 0.47 0.74 0.45
P205 004 002 0.15 0.17 0.17 0.76 0.13 0.19 <0.05 <0.05P 2 0 5 004 002 0.15 0.17 0.17 0.76 0.13 0.19 <0.05 <0.05
MnO 001 002 0.16 0.10 0.13 009 0.12 0.16 027 025MnO 001 002 0.16 0.10 0.13 009 0.12 0.16 027 025
Loi. 036 052 223 10.43 600 1.15 5.76 256 934 667Law. 036 052 223 10.43 600 1.15 5.76 256 934 667
Les résultats sont groupés dans le Tableau 5. Ils sont des moyennes de 4 échantillons pour chaque mélange avec matériau géologique naturel ou calciné. La Rc Maximum est la valeur de la meilleure résistance obtenue pour chaque gisement géologique. Elle n'est pas une moyenne. Tableau 4: Type petrographique, composition chimique (exprimées en moles) et ratio atomique pour divers aluminosilicates alcalins géologiques (réactif IV).The results are grouped in Table 5. They are averages of 4 samples for each mixture with natural or calcined geological material. The Maximum Rc is the value of the best resistance obtained for each geological deposit. It is not an average. Table 4: Petrographic type, chemical composition (expressed in moles) and atomic ratio for various geological alkaline aluminosilicates (reagent IV).
Exemple 1 Exemple 2 Exemple 3 Exemple 5 Exemple 6 Exemple 9 type Lave Tuf Ignimbrite Ponce Lave Ignimbrite petrographique andésitique volcanique type A potassique lamproitique phonolitiqueExample 1 Example 2 Example 3 Example 5 Example 6 Example 9 type Ignimbrite Tuff Lava Pumice Ignimbrite petrographic volcanic andesitic volcanic type A potassium lamproitic phonolitic
Si02 1.191 1.236 0.967 0.922 0.973 0.936Si0 2 1.191 1.236 0.967 0.922 0.973 0.936
Al203 0.142 0.135 0.188 0.188 0.105 0.155Al 2 0 3 0.142 0.135 0.188 0.188 0.105 0.155
Na20 0.011 0.069 0.035 0.037 0.024 0.100Na 2 0 0.011 0.069 0.035 0.037 0.024 0.100
K20 0.108 0.051 0.091 0.086 0.086 0.058K 2 0 0.108 0.051 0.091 0.086 0.086 0.058
CaO 0.001 0.007 0.056 0.052 0.045 0.007CaO 0.001 0.007 0.056 0.052 0.045 0.007
Si : Al 4.25 4.55 2.59 2.44 4.6 3.03If: Al 4.25 4.55 2.59 2.44 4.6 3.03
(Na + K) :AI 0.767 0.888 0.670 0.654 1.047 1.019(Na + K): AI 0.767 0.888 0.670 0.654 1.047 1.019
(Na + K+Ca) - Al 0.845 0.940 0.968 0.930 1.476 1.067(Na + K + Ca) - Al 0.845 0.940 0.968 0.930 1.476 1.067
Tableau 5: Résistance à la compression Rc à 28 jours, Mpa sur la pâte, sans chargeTable 5: Resistance to compression Rc at 28 days, Mpa on the dough, without load
Exemples 1 2 3 4 5 6 7 8 9 10Examples 1 2 3 4 5 6 7 8 9 10
Rc Mpa, naturel 48 50 46 31 33 50 30 36 34 33Rc Mpa, natural 48 50 46 31 33 50 30 36 34 33
Rc Mpa, calciné 44 45 54 43 51 51 39 47 51 45Rc Mpa, calcined 44 45 54 43 51 51 39 47 51 45
Rc Mpa, maximum 67 63 59 55 67 56 40 61 60 47Rc Mpa, maximum 67 63 59 55 67 56 40 61 60 47
En général, la calcination augmente très sensiblement la résistance mécanique. Il est cependant évident que, lorsque le gisement géologique le permettra, on pourra éviter cette calcination et par conséquent réduire le coût de fabrication du ciment géopolymèrique de l'invention.In general, calcination very significantly increases the mechanical resistance. It is however obvious that, when the geological deposit allows it, this calcination can be avoided and consequently the cost of manufacturing the geopolymeric cement of the invention can be reduced.
On trouvera à la figure 1 les spectres MASNMR pour 29Si de chaque ciment géopolymèrique obtenu dans les exemples 1 à 10. Tous les spectres sont constitués de l'addition de deux spectres, l'un appartenant à la phase vitreuse (identique à celui de l'ensemble des réactifs I+II+III), l'autre à la phase cristalline (identique à celui du réactif IV géologique). L'Exemple 2 dans la Figure 1 montre ces deux spectres ainsi que le spectre complet. Dans les autres Exemples de la Figure 1, on trouve à la fois le spectre complet et le spectre de la phase vitreuse. Exemple 11 :FIG. 1 shows the MASNMR spectra for 29 Si of each geopolymeric cement obtained in examples 1 to 10. All the spectra consist of the addition of two spectra, one belonging to the glassy phase (identical to that of all reagents I + II + III), the other in the crystalline phase (identical to that of reagent IV geological). Example 2 in Figure 1 shows these two spectra as well as the full spectrum. In the other Examples of Figure 1, we find both the full spectrum and the spectrum of the glassy phase. Example 11:
Avec les ingrédients et le matériau géologique de l'Exemple 2, on étudie les propriétés physico-chimiques des mortiers en les comparant à un liant hydraulique à base de ciment Portland, par exemple le CEM I 42.5 R de Cementi Buzzi (Italie). Le mélange sable+ciment est effectué selon la procédure et norme européenne, à savoir: les réactifs en poudre (I), (III) et (IV) sont homogénéisés pendant 30 sec avec le sable normalisé (sable ISO), puis on ajoute le réactif (II) liquide et l'eau en mélangeant pendant 270 sec, et on finit à grande vitesse pendant 60 sec. Les prismes sont façonnés dans les moules normalisés (DIN 1164) . Le mortier contient 450 parties de sable pour 190 parties de ciment + eau.With the ingredients and the geological material of Example 2, the physico-chemical properties of the mortars are studied by comparing them with a hydraulic binder based on Portland cement, for example the CEM I 42.5 R from Cementi Buzzi (Italy). The sand + cement mixture is carried out according to the European standard and procedure, namely: the powdered reagents (I), (III) and (IV) are homogenized for 30 sec with the standardized sand (ISO sand), then the liquid and water reagent (II), mixing for 270 sec, and finishing at high speed for 60 sec. The prisms are shaped in standard molds (DIN 1164). The mortar contains 450 parts of sand for 190 parts of cement + water.
Afin d'obtenir une bonne ouvrabilité du mortier, le ciment géopolymèrique a été réalisé avec le mélange suivant:In order to obtain good workability of the mortar, the geopolymeric cement was produced with the following mixture:
- réactif (I) 23 parties - réactif (III) 20.3 parties- reagent (I) 23 parts - reagent (III) 20.3 parts
- réactif (IV) 56.7 parties- reagent (IV) 56.7 parts
- réactif (II) 23.4 parties- reagent (II) 23.4 parts
- eau 29 parties- water 29 parts
- superplastifiant (naphtalene sulfonate) : 1% en poids du ciment- superplasticizer (naphthalene sulfonate): 1% by weight of the cement
Le mortier durcit au bout de 30 minutes. Il reste 24 heures dans le moule, puis il est démoulé et plongé dans l'eau. On mesure sa résistance à la compression et à la flexion à 24 h (au démoulage), 7 jours (dans l'eau) et 28 jours (dans l'eau). Les valeurs sont les suivantes: 24_h 7 j 28 jThe mortar hardens after 30 minutes. It remains in the mold for 24 hours, then it is removed from the mold and immersed in water. Its resistance to compression and bending is measured at 24 h (demolding), 7 days (in water) and 28 days (in water). The values are as follows: 24_h 7d 28d
Résistance compression (N/mm2) 10.5 34 42.5Compression resistance (N / mm2) 10.5 34 42.5
Résistance flexion (N/mm2) 2.8 5.8 7.4Flexural strength (N / mm2) 2.8 5.8 7.4
Exemple 12:Example 12:
On réalise des prismes avec le mortier de l'Exemple 11 afin de pouvoir suivre la résistance à la corrosion chimique, en comparaison avec des prismes réalisés avec un ciment hydraulique CEM I 42.5 R de Cementi Buzzi (Italie). On mesure la corrosion à:Prisms are made with the mortar of Example 11 in order to be able to follow the resistance to chemical corrosion, in comparison with prisms made with a hydraulic cement CEM I 42.5 R from Cementi Buzzi (Italy). Corrosion is measured at:
- l'acide sulfurique: après 24 h dans le moule, le prisme est plongé dans un solution aqueuse contenant 5% en poids d'acide sulfurique. On mesure la perte de poids et la résistance à la compression et à la flexion à lj, 7j, 28j. Après 28 jours, la solution acide a un pH=0.6. Les résultats sont donnés par la figure 2.- sulfuric acid: after 24 hours in the mold, the prism is immersed in an aqueous solution containing 5% by weight of sulfuric acid. We measure the weight loss and the resistance to compression and bending at 1d, 7d, 28d. After 28 days, the acid solution has a pH = 0.6. The results are given in FIG. 2.
- la réaction alcali-agrégat ASR: test accéléré selon la méthode standard du Danemark. On mesure la variation dimensionnelle à lj, 5j, 14j. Les résultats sont donnés par la figure 3.- the alkali-ASR aggregate reaction: accelerated test according to the Danish standard method. The dimensional variation is measured at 1d, 5d, 14d. The results are given in FIG. 3.
- la réaction au sulfate: selon la norme ASTM C 1012. On mesure les variations dimensionnelles sur une longue période (6 mois). Les résultats sont donnés par la figure 4.- the sulfate reaction: according to standard ASTM C 1012. The dimensional variations are measured over a long period (6 months). The results are given in FIG. 4.
Dans tous ces tests de corrosion chimique, les ciments selon l'invention ont une résistance supérieure à celle du ciment Portland.In all of these chemical corrosion tests, the cements according to the invention have a higher resistance than that of Portland cement.
Le réactif (II), silicate alcalin, est introduit dans le mélange réactionnel, soit sous la forme de poudre, ou de mélange de silicate poudre et de NaOH/KOH solide, soit sous la forme de solution aqueuse. L'art antérieur nous indique que la forme en poudre permet d'obtenir des mortiers qui ont un temps de prise relativement long, tout en développant une résistance mécanique supérieure à celle fournie par un réactif en solution aqueuse. Seules les applications décideront du choix de l'une ou de l'autre forme physique du silicate alcalin. Le choix entre le silicate de potassium ou le silicate de sodium est avant tout dicté par des considérations économiques, le silicate de sodium étant meilleur marché. Cependant, l'expérience montre que les ciments contenant uniquement du silicate de sodium ont une faible tenue au gel/dégel, par rapport au ciments avec le silicate de potassium. Le mélange ( 2O, Na2θ) dans le silicate alcalin devra donc être établi en fonction de ce test au gel/dégel. Il semble évident que, dans les régions ou le risque de gel est nul, le choix se portera sur une formulation plus riche en Na2θ que en K2O. L'homme de l'art sera en mesure de déterminer la meilleure qualité pour son ciment et la composition du silicate alcalin la plus économique, sans sortir du cadre de l'invention.The reagent (II), an alkaline silicate, is introduced into the reaction mixture, either in the form of a powder, or of a mixture of powdered silicate and solid NaOH / KOH, or in the form of an aqueous solution. The prior art indicates to us that the powdered form makes it possible to obtain mortars which have a relatively long setting time, while developing a mechanical resistance greater than that provided by a reagent in aqueous solution. Only the applications will decide on the choice of one or the other physical form of the alkali silicate. The choice between potassium silicate or sodium silicate is above all dictated by economic considerations, sodium silicate being cheaper. However, experience shows that cements containing only sodium silicate have a low freeze / thaw resistance, compared to cements with potassium silicate. The mixture (2O, Na2θ) in the alkaline silicate must therefore be established according to this freeze / thaw test. It seems obvious that, in regions where the risk of freezing is zero, the choice will be made on a formulation richer in Na2θ than in K2O. Those skilled in the art will be able to determine the best quality for its cement and the most economical alkali silicate composition, without departing from the scope of the invention.
Lors de la confection des mortiers et bétons, et lors des opérations d'encapsulation et de solidification des matériaux, on pourra ajouter à ces ciments les différents additifs et produits auxiliaires employés par l'homme de l'art pour améliorer la rhéologie et le comportement des ciments hydrauliques. Un additif particulièrement intéressant est la fumée de silice. Comme c'est le cas pour les ciments hydrauliques traditionels, la fumée de silice améliore ici aussi les propriétés à long terme des ciments geopolymeriques. Cette addition de silice s'accompagne, dans le spectre MAS NMR pour 29Si du ciment durci, par l'apparition d'une résonance à - 110±5 ppm, identique à celle déjà présente dans le réactif IV géologique de l'Exemple 1 de la Figure 1. C'est la preuve que cette fumée de silice, contrairement à l'art antérieur déjà discuté plus haut, n'est pas transformée en silicate alcalin, mais intervient comme charge fine réactive.When making mortars and concretes, and during encapsulation and solidification of materials, we can add to these cements the various additives and auxiliary products used by those skilled in the art to improve rheology and behavior hydraulic cements. A particularly interesting additive is silica smoke. As is the case with traditional hydraulic cements, silica smoke here also improves the long-term properties of cements geopolymers. This addition of silica is accompanied, in the MAS NMR spectrum for 29 Si of hardened cement, by the appearance of a resonance at - 110 ± 5 ppm, identical to that already present in the geological reagent IV of Example 1 in Figure 1. This is proof that this silica smoke, unlike the prior art already discussed above, is not transformed into alkaline silicate, but acts as a reactive fine filler.
Les applications des ciments geopolymeriques obtenus selon les méthodes de l'invention sont multiples. Tout d'abord la quantité de silicate alcalin a été réduite de 70% à 80% par rapport à l'art antérieur, permettant de baisser très sensiblement le prix de ces ciments. Ensuite, leur fabrication nécessite très peu d'énergie et ne génère que très peu de dégagement de gaz à Effet de Serre comme le gaz carbonique Cθ2- Us peuvent donc avantageusement remplacer les ciments hydrauliques traditionnels dans les applications du bâtiment et des travaux publics. Ils possèdent les propriétés physico-chimiques des liants et ciments geopolymeriques décrites dans l'art antérieur. Ils peuvent donc être employés dans les applications d'encapsulation et de solidification de substances toxiques ou radioactives, minérales ou organiques, et aussi dans la stabilisation de déchets miniers. Ces ciments sont également stables à la température. Contrairement au ciment Portland qui explose par suite du dégagement de son eau d'hydration, le ciment géopolymèrique peut être rapidement séché de son eau de constitution, puis monté à des températures comprises entre 400°C et 1000°C, sans dommage. On peut donc agglomérer des substances qui doivent subir ces variations de température.The applications of geopolymer cements obtained according to the methods of the invention are multiple. First of all, the amount of alkali silicate has been reduced from 70% to 80% compared to the prior art, making it possible to very significantly lower the price of these cements. Then, their manufacture requires very little energy and generates very little release of greenhouse gases such as carbon dioxide Cθ2-Us can therefore advantageously replace traditional hydraulic cements in building and public works applications. They have the physicochemical properties of the geopolymeric binders and cements described in the prior art. They can therefore be used in encapsulation and solidification applications of toxic or radioactive substances, mineral or organic, and also in the stabilization of mining waste. These cements are also temperature stable. Unlike Portland cement, which explodes as a result of the release of its hydration water, geopolymeric cement can be quickly dried from its constituent water, then mounted at temperatures between 400 ° C and 1000 ° C, without damage. It is therefore possible to agglomerate substances which must undergo these temperature variations.
Bien entendu, diverses modifications peuvent être apportées par l'homme de l'art aux méthodes et aux ciments Géopolymères qui viennent d'être décrits uniquement à titre d'exemple, sans sortir du cadre de l'invention. Of course, various modifications can be made by those skilled in the art to the methods and cements Geopolymers which have just been described by way of example, without departing from the scope of the invention.

Claims

RevendicationsClaims
1) Méthode de fabrication d'un ciment géopolymèrique résultant du mélange de: - réactif (I) : l'oxyde aluminosilicate1) Method for manufacturing a geopolymeric cement resulting from the mixture of: - reagent (I): aluminosilicate oxide
[Si2θ5,AI2θ2]9[Si2θ5,Al2(OH)3], ayant le cation Al en coordination mixte (IV-V) comme déterminé par le spectre d'analyse en Résonance Magnétique Nucléaire MASNMR pour 27AI, ou pour simplifier dans ce qui suit,
Figure imgf000017_0001
[Si2θ5, AI 2 θ2] 9 [Si2θ5, Al2 (OH) 3], having the cation Al in mixed coordination (IV-V) as determined by the analysis spectrum in Nuclear Magnetic Resonance MASNMR for 27 AI, or to simplify in the following,
Figure imgf000017_0001
- réactif (II) : du silicate alcalin soluble (M2θ,Siθ2), M désignant Na et/ou K ou le mélange Na+K;- reagent (II): soluble alkaline silicate (M2θ, Siθ2), M denoting Na and / or K or the Na + K mixture;
- réactif (III): du silicate basique, à l'état vitreux, composé en partie de gehlinite, d'akermanite et de wollastonite; caractérisée en ce que pour réduire la quantité de silicate alcalin dans le réactif (II), par rapport à l'art antérieur, on ajoute dans le mélange un matériau géologique aluminosilicate alcalin naturel contenant au moins 5% en poids de (Na2θ + K2θ), appelé réactif (IV), le dit réactif (IV) matériau géologique aluminosilicate alcalin, ayant un rapport atomique Si : Al compris entre 2,5 et 5, un rapport molaire M2Û :Al2θ3 compris entre 0.7 et 1.1 et un rapport molaire (M2θ+CaO): AI2O3 compris entre 0.8 et 1.6; puis on fait réagir, à la température ambiante, l'ensemble des réactifs (I), (II), (III) et (IV).- reagent (III): basic silicate, in a vitreous state, partly composed of gehlinite, akermanite and wollastonite; characterized in that in order to reduce the amount of alkali silicate in the reagent (II), compared with the prior art, a natural alkaline aluminosilicate geological material containing at least 5% by weight of (Na2θ + K2θ) is added to the mixture , called reagent (IV), the said reagent (IV) alkaline aluminosilicate geological material, having an atomic ratio Si: Al between 2.5 and 5, a molar ratio M2Û: Al2θ3 between 0.7 and 1.1 and a molar ratio (M2θ + CaO): AI2O3 between 0.8 and 1.6; then reacting, at room temperature, all of the reactants (I), (II), (III) and (IV).
2) Méthode selon la revendication 1, caractérisée en ce que le dit réactif (IV), matériau géologique aluminosilicate alcalin, est employé soit à l'état naturel, soit après avoir subit une calcination, sans vitrification, à une température inférieure à 850°C.2) Method according to claim 1, characterized in that said reagent (IV), an alkaline aluminosilicate geological material, is used either in the natural state or after having undergone calcination, without vitrification, at a temperature below 850 ° vs.
3) Méthode selon la revendication 1, dans laquelle le réactif (II) silicate alcalin possède un rapport molaire M2θ/Siθ2 supérieur à 0.5, de préférence compris entre 0.5 et 0.8, caractérisée en ce que dans l'ensemble constitué des réactifs (I)+(II)+(III), le rapport molaire3) Method according to claim 1, in which the reagent (II) alkali silicate has an M2θ / Siθ2 molar ratio greater than 0.5, preferably between 0.5 and 0.8, characterized in that in the assembly consisting of the reagents (I) + (II) + (III), the molar ratio
Ca+ +/(Si2θ5,Al2θ2)(i -V) est supérieur à 1 et le rapport molaire (Na+,K+,Ca+ +)/(Si2θ5,Al2θ2)(iv-V) est supérieur à 1,5.Ca + + / (Si2θ5, Al2θ2) (i -V) is greater than 1 and the molar ratio (Na + , K +, Ca + + ) / (Si2θ5, Al2θ2) (iv-V) is greater than 1.5.
4) Méthode de fabrication d'un ciment géopolymèrique selon l'une quelconque des revendications 1) à 3), caractérisée en ce qu'elle consiste à réaliser le mélange réactionnel suivant (parties en poids de matière sèche):4) Method for manufacturing a geopolymeric cement according to any one of claims 1) to 3), characterized in that it consists in carrying out the following reaction mixture (parts by weight of dry matter):
- réactif (I) : 100 parties en poids d'un oxyde aluminosilicate- reagent (I): 100 parts by weight of an aluminosilicate oxide
[Si2θ5,Al2θ2]9[Si2θ5,AI2(OH)3], ayant le cation Al en coordination mixte (IV-V) comme déterminé par le spectre d'analyse en Résonance Magnétique Nucléaire MASNMR pour 27AI, ou pour simplifier dans ce qui suit,[Si 2 θ5, Al2θ2] 9 [Si2θ5, AI 2 (OH) 3], having the cation Al in mixed coordination (IV-V) as determined by the analysis spectrum in Nuclear Magnetic Resonance MASNMR for 27 AI, or for simplify in what follows,
(Si2θ5,Al2θ2)(iv-V) •(Si2θ 5 , Al2θ 2 ) (iv-V) •
- réactif (II): 30-55 parties de silicate alcalin soluble dans lequel le rapport molaire M2θ/Siθ2 est compris entre 0.5 et 0.8, M désignant Na et/ou K ou le mélange Na+K. - réactif (III): 80-110 parties de silicate basique, à l'état vitreux, composé en partie de gehlinite, d'akermanite et de wollastonite.- reagent (II): 30-55 parts of soluble alkaline silicate in which the molar ratio M2θ / Siθ2 is between 0.5 and 0.8, M denoting Na and / or K or the Na + K mixture. - reagent (III): 80-110 parts of basic silicate, in the vitreous state, partly composed of gehlinite, akermanite and wollastonite.
- réactif (IV): 150-250 parties aluminosilicate alcalin contenant au moins- reagent (IV): 150-250 alkaline aluminosilicate parts containing at least
5% en poids de (Na20+K 0); puis à faire durcir le dit mélange en ajoutant de l'eau.5% by weight of (Na 2 0 + K 0); then hardening said mixture by adding water.
5) Méthode selon l'une quelconque des revendications 1) à 4), caractérisée en ce que le dit silicate alcalin solube est ajouté sous la forme d'une solution aqueuse dans laquelle le rapport molaire M2O/S1O2 est compris entre 0.5 et 0.8, M désignant soit Na soit K, soit le mélange Na+K.5) Method according to any one of claims 1) to 4), characterized in that the said alkaline silicate solube is added in the form of an aqueous solution in which the molar ratio M2O / S1O2 is between 0.5 and 0.8, M denoting either Na or K, or the Na + K mixture.
6) Méthode selon l'une quelconque des revendications 1) à 4), caractérisée en ce que le dit silicate alcalin soluble est ajouté sous la forme de poudre ou de mélange en poudre contenant le silicate alcalin et NaOH/KOH solide, dans lequel le rapport molaire M2Û/Siθ2 est compris entre 0.5 et 0.8, M désignant soit Na soit K, soit le mélange Na+K..6) Method according to any one of claims 1) to 4), characterized in that said soluble alkaline silicate is added in the form of powder or powder mixture containing the alkali silicate and solid NaOH / KOH, in which the M2Û / Siθ2 molar ratio is between 0.5 and 0.8, M denoting either Na or K, or the Na + K mixture.
7) Ciment géopolymèrique obtenu selon l'une quelconque des revendications 1) à 6), caractérisé en ce que, après durcissement, le dit ciment est constitué de deux phases distinctes: a) une phase dite vitreuse qui possède un spectre MAS NMR pour 29Si ayant une bande comprise entre -85 et -89ppm mettant en évidence un degré de polymérisation du tétraèdre (Si04) de type Q3(2Si,lAI,10H), et un spectre MAS-NMR pour 27AI ayant une résonance à 54-58ppm correspondant à (AI04) de type Q4(4Si). b) une phase cristalline qui possède un spectre MAS NMR pour 29Si ayant une bande comprise entre -90ppm et -115ppm, et un spectre MASNMR 27AI ayant une résonance à 57ppm.7) Geopolymer cement obtained according to any one of Claims 1) to 6), characterized in that, after hardening, the said cement consists of two distinct phases: a) a so-called vitreous phase which has a MAS NMR spectrum for 29 If having a band between -85 and -89ppm showing a degree of polymerization of the tetrahedron (Si04) of type Q3 (2Si, IA, 10H), and a MAS-NMR spectrum for 27 AI having a resonance at 54-58ppm corresponding to (AI04) of type Q4 (4Si). b) a crystalline phase which has a MAS NMR spectrum for 29 Si having a band between -90ppm and -115ppm, and a MASNMR 27 AI spectrum having a resonance at 57ppm.
8) Ciment géopolymèrique utilisé pour stabiliser des déchets chimiques ou des déchets miniers, résistant à la corrosion de l'acide sulfurique et non sujet à la réaction aicali-aggrégat ASR, obtenu selon l'une quelconque des revendications 1 à 6.8) Geopolymer cement used to stabilize chemical waste or mining waste, resistant to corrosion of sulfuric acid and not subject to the aicali-aggregate reaction ASR, obtained according to any one of claims 1 to 6.
9) Ciment géopolymèrique pouvant être séché et monté jusqu'à des températures comprises entre 400°C et 1000°C, obtenu selon l'une quelconque des revendications 1 à 6.9) Geopolymeric cement which can be dried and mounted up to temperatures between 400 ° C and 1000 ° C, obtained according to any one of claims 1 to 6.
10) Ciment géopolymèrique dont la fabrication ne produit que très peu de gaz carbonique CO2 à effet de serre, obtenu selon l'une quelconque des revendications 1 à 6. 10) Geopolymeric cement, the production of which produces very little carbon dioxide CO2 with greenhouse effect, obtained according to any one of claims 1 to 6.
PCT/FR1998/000059 1997-01-15 1998-01-14 Methods for making geopolymeric cements and cements resulting from these methods WO1998031644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU58712/98A AU5871298A (en) 1997-01-15 1998-01-14 Methods for making geopolymeric cements and cements resulting from these methods
EP98902074A EP0891310A1 (en) 1997-01-15 1998-01-14 Methods for making geopolymeric cements and cements resulting from these methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9700332A FR2758323B1 (en) 1997-01-15 1997-01-15 METHODS OF MAKING GEOPOLYMERIC CEMENTS AND CEMENTS OBTAINED THEREBY
FR97/00332 1997-01-15

Publications (1)

Publication Number Publication Date
WO1998031644A1 true WO1998031644A1 (en) 1998-07-23

Family

ID=9502603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000059 WO1998031644A1 (en) 1997-01-15 1998-01-14 Methods for making geopolymeric cements and cements resulting from these methods

Country Status (4)

Country Link
EP (1) EP0891310A1 (en)
AU (1) AU5871298A (en)
FR (1) FR2758323B1 (en)
WO (1) WO1998031644A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839970A1 (en) 2002-05-27 2003-11-28 Joseph Davidovits Geopolymer cement useful for building comprises mellilite, aluminosilicate and quartz particles in an amorphous vitreous matrix comprising a poly(sialate-disiloxo) geopolymer
CZ300134B6 (en) * 2007-02-14 2009-02-18 Výzkumný ústav anorganické chemie, a. s. Two-component geopolymeric binding agent and process for producing thereof
US7691198B2 (en) 2006-03-29 2010-04-06 Zeobond Research Pty Ltd Dry mix cement composition, methods and systems involving same
US7727330B2 (en) 2006-02-24 2010-06-01 Cemex Research Group Ag Universal hydraulic binder based on fly ash type F
WO2011003918A1 (en) 2009-07-06 2011-01-13 Banah Uk Ltd. Geopolymeric structural building units and methods of manufacture thereof
WO2011135584A2 (en) * 2010-04-29 2011-11-03 Aditya Birla Science And Technology Company Limited Geopolymer concrete
WO2018015494A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Modified geopolymer and modified geopolymer composite and process for the production thereof
WO2018015490A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Process for the production of geopolymer or geopolymer composite
EP3495335A1 (en) 2015-01-14 2019-06-12 Synthos S.A. Process for the production of a geopolymer composite
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
WO2023277713A1 (en) * 2021-07-01 2023-01-05 Universidad Católica San Pablo A geopolymer binder, a geomortar and methods for obtaining said geopolymer binder and geomortar
CN115974431A (en) * 2023-01-10 2023-04-18 深圳科宇环保产业有限公司 Alkali-activated geopolymer material and application thereof
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831882B1 (en) 2001-11-08 2004-01-23 Davidovits Joseph GEOPOLYMERIC STONE FOR CONSTRUCTION AND DECORATION, ANALOGUE OF APPEARANCE TO NATURAL STONE
CN101687704A (en) * 2007-06-29 2010-03-31 全南大学校产学协力团 Alkali-activated binder with no cement, method for fabricating mortar using it, and method for fabricating alkali-activated reinforcement mortar with no cement
FR3034094B1 (en) 2015-03-27 2020-10-09 Hoffmann Jb Tech COMPOSITION FOR CONSTRUCTION MATERIAL BASED ON METAKAOLIN, ASSOCIATED MANUFACTURING PROCESS AND USE FOR THE REALIZATION OF CONSTRUCTION ELEMENTS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490626A1 (en) * 1980-09-23 1982-03-26 Davidovits Joseph Building prods. mfr. from natural clay soils - by drying, adjusting silica alumina ratio and reacting with alkali to give mouldable material
US4509985A (en) * 1984-02-22 1985-04-09 Pyrament Inc. Early high-strength mineral polymer
SU1548178A1 (en) * 1988-05-26 1990-03-07 Научно-производственное объединение "Камень и силикаты" Initial composition for making heat-insulation construction articles
SU1669882A1 (en) * 1988-05-26 1991-08-15 Научно-производственное объединение "Камень и силикаты" Composition for manufacturing foam material
WO1992004298A1 (en) * 1990-09-04 1992-03-19 Joseph Davidovits Method for obtaining a geopolymer binder allowing to stabilize, solidify and consolidate toxic or waste materials
WO1992004300A1 (en) * 1990-09-03 1992-03-19 Holderbank Financiere Glarus Ag Tectoaluminosilicate cement and process for producing it
WO1995013995A1 (en) * 1993-11-18 1995-05-26 Joseph Davidovits Geopolymeric cement and methods for preparing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490626A1 (en) * 1980-09-23 1982-03-26 Davidovits Joseph Building prods. mfr. from natural clay soils - by drying, adjusting silica alumina ratio and reacting with alkali to give mouldable material
US4509985A (en) * 1984-02-22 1985-04-09 Pyrament Inc. Early high-strength mineral polymer
SU1548178A1 (en) * 1988-05-26 1990-03-07 Научно-производственное объединение "Камень и силикаты" Initial composition for making heat-insulation construction articles
SU1669882A1 (en) * 1988-05-26 1991-08-15 Научно-производственное объединение "Камень и силикаты" Composition for manufacturing foam material
WO1992004300A1 (en) * 1990-09-03 1992-03-19 Holderbank Financiere Glarus Ag Tectoaluminosilicate cement and process for producing it
WO1992004298A1 (en) * 1990-09-04 1992-03-19 Joseph Davidovits Method for obtaining a geopolymer binder allowing to stabilize, solidify and consolidate toxic or waste materials
WO1995013995A1 (en) * 1993-11-18 1995-05-26 Joseph Davidovits Geopolymeric cement and methods for preparing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9104, Derwent World Patents Index; Class L02, AN 91-028548, XP002041694 *
DATABASE WPI Section Ch Week 9229, Derwent World Patents Index; Class L02, AN 92-240306, XP002041693 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839970A1 (en) 2002-05-27 2003-11-28 Joseph Davidovits Geopolymer cement useful for building comprises mellilite, aluminosilicate and quartz particles in an amorphous vitreous matrix comprising a poly(sialate-disiloxo) geopolymer
US7727330B2 (en) 2006-02-24 2010-06-01 Cemex Research Group Ag Universal hydraulic binder based on fly ash type F
US7691198B2 (en) 2006-03-29 2010-04-06 Zeobond Research Pty Ltd Dry mix cement composition, methods and systems involving same
CZ300134B6 (en) * 2007-02-14 2009-02-18 Výzkumný ústav anorganické chemie, a. s. Two-component geopolymeric binding agent and process for producing thereof
WO2011003918A1 (en) 2009-07-06 2011-01-13 Banah Uk Ltd. Geopolymeric structural building units and methods of manufacture thereof
WO2011135584A2 (en) * 2010-04-29 2011-11-03 Aditya Birla Science And Technology Company Limited Geopolymer concrete
WO2011135584A3 (en) * 2010-04-29 2011-12-22 Aditya Birla Science And Technology Company Limited Geopolymer concrete
US10639829B2 (en) 2015-01-14 2020-05-05 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
EP3495335A1 (en) 2015-01-14 2019-06-12 Synthos S.A. Process for the production of a geopolymer composite
US10808093B2 (en) 2015-01-14 2020-10-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US10961154B2 (en) 2015-01-14 2021-03-30 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11267170B2 (en) 2015-01-14 2022-03-08 Synthos S.A. Process for the production of expandable vinyl aromatic polymer granulate having decreased thermal conductivity
US11447614B2 (en) 2015-01-14 2022-09-20 Synthos S.A. Combination of silica and graphite and its use for decreasing the thermal conductivity of vinyl aromatic polymer foam
US11708306B2 (en) 2015-01-14 2023-07-25 Synthos S.A. Geopolymer composite and expandable vinyl aromatic polymer granulate and expanded vinyl aromatic polymer foam comprising the same
US11859066B2 (en) 2015-01-14 2024-01-02 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
WO2018015490A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Process for the production of geopolymer or geopolymer composite
WO2018015494A1 (en) 2016-07-20 2018-01-25 Synthos S.A. Modified geopolymer and modified geopolymer composite and process for the production thereof
US11440843B2 (en) 2016-07-20 2022-09-13 Synthos S.A. Modified geopolymer and modified geopolymer composite and process for the production thereof
WO2023277713A1 (en) * 2021-07-01 2023-01-05 Universidad Católica San Pablo A geopolymer binder, a geomortar and methods for obtaining said geopolymer binder and geomortar
CN115974431A (en) * 2023-01-10 2023-04-18 深圳科宇环保产业有限公司 Alkali-activated geopolymer material and application thereof

Also Published As

Publication number Publication date
EP0891310A1 (en) 1999-01-20
AU5871298A (en) 1998-08-07
FR2758323B1 (en) 1999-08-06
FR2758323A1 (en) 1998-07-17

Similar Documents

Publication Publication Date Title
WO1998031644A1 (en) Methods for making geopolymeric cements and cements resulting from these methods
Tchadjié et al. Potential of using granite waste as raw material for geopolymer synthesis
Rattanasak et al. Development of high volume rice husk ash alumino silicate composites
Guo et al. Compressive strength and microstructural characteristics of class C fly ash geopolymer
Slaty et al. Characterization of alkali activated kaolinitic clay
EP1507749B1 (en) Poly(sialate-disiloxo)-based geopolymeric cement and production method thereof
Zhang et al. Infrared spectroscopy study of structural nature of geopolymeric products
EP2467349A2 (en) Geopolymer cement and use thereof
de Souza Azevedo et al. Brazilian fly ash based inorganic polymers production using different alkali activator solutions
US10800704B2 (en) Fly ash-based geopolymer concrete and method of formation
Abadel et al. Effect of molar ratios on strength, microstructure & embodied energy of metakaolin geopolymer
Azevedo et al. Kaolin, fly-ash and ceramic waste based alkali-activated materials production by the “one-part” method
Liu et al. Application of silica-rich biomass ash solid waste in geopolymer preparation: a review
Naghizadeh et al. Pozzolanic materials and waste products for formulation of geopolymer cements in developing countries: a review
FR2669918A1 (en) Process for obtaining a geopolymer cement without emission of carbon dioxide CO2 and products obtained by this process
HUE033233T2 (en) Method for the manufacturing of cementitious C-S-H seeds
FR2657867A1 (en) PORTLAND CEMENT - BASED GEOPOLYMER CEMENT AND PROCESS FOR PRODUCING THE SAME.
KR100448330B1 (en) artificial aggregate using fly-ashes and bottom-ashes and the production method using the same
WO1995013995A1 (en) Geopolymeric cement and methods for preparing same
Nmiri et al. Temperature effect on mechanical and physical proprieties of Na or K alkaline silicate activated metakaolin-based geopolymers
Wu et al. Effects of construction waste powder on micro–macro properties of green high-strength cement paste with low water-to-binder ratio
Tupayachy-Quispe et al. Peruvian volcanic ashes as new alternative material in geopolymer preparation: influence of dissolution concentration and wear resistance
Škvára et al. Alkali-activated fly ash geopolymeric materials
Oladele et al. Mitigation of efflorescence, drying shrinkage and water demand of calcined clay-based geopolymers with biological waste ashes as activator and hardener
WO1992004295A1 (en) Method for preparing a spherosilicate-type cement and cement thereby obtained

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998902074

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998902074

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998902074

Country of ref document: EP