WO1998025305A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO1998025305A1
WO1998025305A1 PCT/JP1996/003547 JP9603547W WO9825305A1 WO 1998025305 A1 WO1998025305 A1 WO 1998025305A1 JP 9603547 W JP9603547 W JP 9603547W WO 9825305 A1 WO9825305 A1 WO 9825305A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
semiconductor device
manufacturing
dram
semiconductor
Prior art date
Application number
PCT/JP1996/003547
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Miyamoto
Asao Nishimura
Koki Noguchi
Satoshi Michishita
Masashi Horiguchi
Masaharu Kubo
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP52542998A priority Critical patent/JP4025372B2/en
Priority to PCT/JP1996/003547 priority patent/WO1998025305A1/en
Priority to AU10401/97A priority patent/AU1040197A/en
Priority to TW085116158A priority patent/TW326559B/en
Publication of WO1998025305A1 publication Critical patent/WO1998025305A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/4985Flexible insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1029All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being a lead frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1035All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/1058Bump or bump-like electrical connections, e.g. balls, pillars, posts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1047Details of electrical connections between containers
    • H01L2225/107Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15173Fan-out arrangement of the internal vias in a single layer of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device in which a plurality of types of semiconductor chips are housed in a single package so that signals can be input and output from each other from an MCM (Multi Chip Module) approach.
  • One package includes a micro computer including a Central Processing Unit, a programmable nonvolatile memory such as a flash memory, and a logic LSI such as a Dynamic Random Access Memory (DRA) and an Application Specific Integrated Circuit (ASIC).
  • DRA Dynamic Random Access Memory
  • ASIC Application Specific Integrated Circuit
  • the inventor of the present invention has been working on a semiconductor device related to a system-on-chip in order to realize a DRAM on single-inline memory module (SMM) approach and a microcomputer on a flash memory / DRAM with high customer needs.
  • SMM single-inline memory module
  • a technology that accommodates multiple types of semiconductor chips in a single package from a MCM approach and enables signal input and output to and from each other. I was thinking about it.
  • the following are the technologies studied by the inventor, and their outlines are as follows: In recent years, in advanced technology fields such as multimedia, information communication, etc ..
  • Microcomputer, flash memory, DRAM, ASIC By forming such devices on a single chip, there is a growing movement to increase the data transfer speed, save space (improve packaging density), and reduce power consumption. However, if such a large variety of LSIs are to be formed on a single chip, the burden on the semiconductor manufacturing process becomes extremely large.
  • a p-type impurity (boron) is ion-implanted into the main surface of the semiconductor substrate 100 to form a p-type well 101, and then a field is formed on the surface of the p-type well 101 by the LOCOS method.
  • An oxide film 102 is formed.
  • the element formed at the left end of the figure is the MOS FET that constitutes the DRAM memory cell, and the element formed to the right is the M ⁇ S FET that constitutes the memory cell of the flash memory and the peripheral circuits of the flash memory.
  • the high-voltage M ⁇ S FET that forms part of this element, and the element formed at the right end is the MOSFET that makes up a logic LSI such as a micro computer or AS IC.
  • a logic LSI such as a micro computer or AS IC.
  • an actual LSI is mainly composed of an n-channel MOS FET and a p-channel MOS FET, but for simplicity of description, only a region for forming an n-channel MOSFET is illustrated.
  • a tunnel oxide film 103 of the flash memory is formed.
  • the thickness of the tunnel oxide film 103 is set to about 8 to 13.
  • a polycrystalline silicon film deposited by the CVD method is patterned on the semiconductor substrate 100 to form (part of) the floating gate 104 of the flash memory.
  • a second gate insulating film (ONO film) 105 having a thickness of about 10 to 30 nm formed by stacking a silicon oxide film, a silicon nitride film and a silicon oxide film is formed thereon.
  • a gate oxide film 106 of a high withstand voltage MOSFET is formed in the peripheral circuit region of the flash memory.
  • the gate oxide film 106 is formed with a thickness (10 to 30 nm) larger than the gate oxide films of other MOS FETs in order to increase the breakdown voltage.
  • a gate oxide film 107 of the MOS FET forming the logic LSI and a gate oxide film 130 of the MOS FET forming the memory cell of the DRAM are formed.
  • the thickness of the gate oxide film 107 is about 4 to 10 nm, and the thickness of the gate oxide film 130 is about 8 to 15 nm.
  • the polycrystalline silicon film deposited by the CVD method on the semiconductor substrate 100 is patterned to form a gate electrode (gate line) 108 of a DRAM memory cell.
  • Flash memory controller gate 109, High voltage M ⁇ SFET gate electrode 110, MO SFET gate electrode 1 1 1 constituting logic LSI is patterned to form the floating gate 104, as shown in FIG.
  • n-type impurities phosphorus and arsenic
  • n-type impurities are ion-implanted into a part of the memory cell region of the flash memory to form an rT type semiconductor region 112 of the flash memory.
  • n-type impurities are ion-implanted into a part of the memory cell area of the flash memory, the peripheral circuit area, and the logic LSI formation area, and the n-type semiconductor area of the flash memory is removed.
  • n-type impurities phosphorous or arsenic
  • the silicon oxide film 116 deposited on the semiconductor substrate 100 by the CVD method is etched to form connection holes on both sides of the DRAM gate electrode (lead wire).
  • the n ⁇ type semiconductor region 1 1 2 of the upper connection hole of the flash memory both sides of the gate electrode of the DRAM forming a plug 1 1 7 of the polycrystalline silicon film to ⁇ these connecting holes.
  • an n- type semiconductor region 118 is formed by the impurity diffused from the polycrystalline silicon film.
  • the polycrystalline silicon film deposited by CVD on the silicon oxide film L and the bit line BL of the flash memory are formed.
  • the polycrystalline silicon film deposited on the silicon oxide film 119 is patterned.
  • the lower electrode 120 of the DRAM capacitor is formed.
  • the tantalum oxide film (or silicon nitride film) and the polycrystalline silicon film deposited on the semiconductor substrate 100 are patterned to form a capacitor insulating film 1221 of a DRAM capacitor.
  • a silicon oxide film 123 is deposited on the semiconductor substrate 100 by the CVD method, and the A1 film deposited on the silicon oxide film 123 is patterned.
  • a first-layer metal wiring 124 is formed.
  • a silicon oxide film 125 is deposited on the semiconductor substrate 100 by the CVD method, and the A 1 film deposited on the silicon oxide film 125 is patterned to form a second metal layer.
  • the wiring 126 is formed.
  • the gate oxide of the MOS FET in the DRA-VI part needs to be somewhat thicker than the gate oxide of the MOS FET in the logic part in consideration of the withstand voltage.
  • the gate oxide film of the high breakdown voltage MOS FET of the flash memory to which a high breakdown voltage is applied needs to be further thickened in order to secure a sufficient breakdown voltage.
  • DRAM, logic, and flash memory are mixed, gate oxide films with different thicknesses are required depending on the required power supply level, so the number of processes and the number of masks increase significantly.
  • a microphone-based computer system including a CPU to be equipped with both a flash memory and a DRAM in terms of a circuit based on a functional block configuration.
  • a CPU it is essential to integrate two types of semiconductor chips, flash memory and DRAM, into one package. Therefore, the present inventor has attempted to reduce the number of external connection terminals by assigning the common communication signal of each semiconductor chip to a common external connection terminal, and to reduce the mounting area by integrating a plurality of types of semiconductor chips into one package. I thought that it would be possible to reduce the cost of the microphone computer system in terms of circuitry.
  • One object of the present invention is to reduce the number of external connection terminals and reduce the number of external connection terminals by using a function block configuration in a package structure in which two types of semiconductor chips, a CPU and a flash memory and a DRAM, are packaged separately.
  • One-package semiconductor chip An object of the present invention is to provide a semiconductor device capable of reducing the mounting area and reducing the cost of a microcomputer system.
  • one object of the present invention is to provide a common external connection terminal when each semiconductor chip has a built-in logic circuit such as an ASIC or when a DRAM is a synchronous DRAM. It is still another object of the present invention to provide a semiconductor device capable of reducing the number of external connection terminals and reducing the cost. Further, a third object of the present invention is to provide the above-described semiconductor device at a low cost. And there.
  • a semiconductor chip called a microcomputer equipped with a flash memory equipped with a CPU and a flash memory, and a logic circuit such as a DRAM and an ASIC are mounted.
  • Two types of semiconductor chips called so-called DRAM on-chip logic
  • measures are taken for the data transfer speed between the CPU operation of the computer with the flash memory-equipped microphone and the access operation to the DRAM of the DRAM on-chip logic and the access operation to the DRAM from the logic circuit inside the DRAM on-chip logic. Is required.
  • the first method is to return a wait signal to the CP while the logic circuit is operating.
  • the memory between the microcomputer with flash memory and the DRAM on-chip mouth must be treated as an asynchronous memory, one clock cycle cannot be transferred, that is, the time during which the wait signal is being viewed.
  • the present inventor focused on the fact that it is preferable that the CPU of the microcomputer with the flash memory control the time itself, and effective the self-refresh period of the DRAM viewed from the CPU of the microcomputer with the flash memory.
  • the logic circuit inside the DRAM Data transfer between on-board microcomputer and DRAM on-chip logic We came up with the idea that high-speed transmission can be realized.
  • One object of the present invention is to provide a semiconductor chip on which a DRAM and a logic circuit such as an AS IC are mounted, by effectively utilizing a self-refresh period of the DRAM viewed from the outside by eliminating the need for wait control.
  • An object of the present invention is to provide a semiconductor device which enables a logic circuit to perform an access operation to a DRAM during a refresh period, thereby realizing high-speed data transfer between an external device and a semiconductor chip.
  • An object of the present invention is to provide a semiconductor device that enables a logic circuit to perform an access operation to a DRAM during a DRAM self-refresh period as viewed from a PU, thereby realizing high-speed data transfer between semiconductor chips.
  • a semiconductor chip equipped with DRAM and a logic circuit is directly connected to a semiconductor chip equipped with CP and flash memory for high-speed operation. It is decided to provide a semiconductor device capable of performing such operations.
  • the method for manufacturing a semiconductor device according to the present invention includes:
  • connection terminal of the laminated TCP at one end of the through hole, wherein a connection terminal common to a plurality of semiconductor chips mounted on the plurality of tape carriers is the same as the plurality of tape carriers. This is drawn out to the same external connection terminal through the through hole formed at the location.
  • the semiconductor chip includes at least a semiconductor chip on which a CPU and a flash memory are formed, and at least one or more semiconductor chips on which a DRAM is formed.
  • FIGS. 1 to 6 are schematic configuration diagrams showing a configuration example of a semiconductor device according to an embodiment of the present invention
  • FIGS. 7 to 14 are internal configurations of a semiconductor chip constituting a semiconductor device according to an embodiment of the present invention.
  • Functional block diagrams showing examples and explanatory diagrams showing examples of terminal functions FIGS. 15 to 18 show explanatory diagrams showing examples of terminal functions of semiconductor chips
  • FIGS. 19 and 20 show examples of connection of semiconductor chips.
  • FIG. 21 is a schematic configuration diagram schematically showing an example of an internal function of a semiconductor chip
  • FIG. 22 is a configuration diagram showing a detailed example of a DRAM access control unit
  • FIG. 23 is an internal control signal generation circuit FIG.
  • FIG. 24 is an explanatory diagram showing an example of a transition state of an operation mode.
  • FIG. 24 is an operation timing diagram showing a control example of a DRAM access control unit for a DRAM.
  • FIG. 25 is an overall perspective view of a package according to an embodiment of the present invention. 2 6 of this package Sectional views, FIGS. 27 and 28 are plan views showing a lead pattern formed on one surface of the tape carrier, and FIGS. 29 to 37 show a method of manufacturing a semiconductor device according to an embodiment of the present invention. 38 to 66 are cross-sectional views showing another method of manufacturing this semiconductor device, and FIGS. 67 to 69 are plan views showing patterns of leads formed on one surface of a tape carrier. FIGS.
  • FIGS. 70 to 72 are cross-sectional views showing another embodiment of the semiconductor device
  • FIGS. 73 to 77 are functional block diagrams showing an example of a system configuration using the semiconductor device of the present embodiment.
  • FIG. 78 to FIG. 94 are cross-sectional views showing the microcomputer, flash memory, DRAM, and ASIC mixed processes studied by the present inventors. BEST MODE FOR CARRYING OUT THE INVENTION
  • the semiconductor device according to the present embodiment is, for example, an LSI package having a stacked structure in which a plurality of types of semiconductor chips are connected to each other so that signals can be input and output.
  • a chip MF first semiconductor chip
  • a microcomputer equipped with a flash memory which is equipped with a microcomputer M including peripheral circuits and peripherals, and a flash memory F, and logic such as DR AMD and ASIC
  • It consists of a chip AD (second semiconductor chip) called a so-called DRAM on-chip logic on which the circuit A is mounted.
  • the connection terminal between each chip MF and chip AD is connected via a bus inside the package. Connected to each other and to an external connection terminal that enables connection with the outside.
  • the flash memory F is one of the LSI memories, which is a programmable nonvolatile memory, and is a memory that performs writing or erasing by applying a high voltage to the memory cells.
  • An LSI memory is a memory in which it is necessary to supply a control (refresh) signal for repetitive data reproduction in order to retain the contents of data in one of the LSI memories.
  • ASICs are application-specific ICs. Other Les dedicated IC, have Unlike a general-purpose LSI that are sold on the open market as a large-capacity memory LS I and micro-processor LSI, there is an LSI that was developed for the specific equipment, to sell:)
  • a chip MF first semiconductor chip
  • a microphone computer M including a CPU, a memory, a peripheral circuit, and the like, and a flash memory F are mounted.
  • DR A chip D second semiconductor chip
  • the logic circuit A such as AS IC is removed from the second semiconductor chip. I have.
  • a microphone memory computer M including a CPU, a memory and peripheral circuits, a flash memory F, and a logic circuit A are mounted. It consists of a chip MFA (first semiconductor chip) called an on-chip logic microcomputer and a chip D (second semiconductor chip) on which only DRAMD is mounted.
  • the configuration is such that a logic circuit A such as an AS IC is mounted on the first semiconductor chip.
  • a chip when a chip is configured by a chip MF A and a chip AD as shown in FIG. 4, as a modified example of FIG. 2, one chip MF as shown in FIG.
  • a configuration example such as a configuration including a chip MFA and a plurality of chips D as shown in FIG. .
  • the microcomputer M, flash memory F, DRAMD, and logic circuit A mounted on each chip are composed of the same functional blocks even if the chip configuration is different:
  • the chip AD and the chip D are easily connected directly to the chip MF and the chip MFA by the general-purpose DRAM interface specification, and the DR AMD is used as an extended memory in each semiconductor device. Furthermore, AS IC of chip AD In any logic circuit A, access control to DR AMD can be performed inside chip AD independently of access control by the CPU of chip MF and chip MFA.
  • FIGS. 15 to 18 show a list of examples of the terminal functions of the chip MF.
  • FIG. 7 and 8 show examples of the 144-pin chip MF
  • FIG. 7 is a functional block diagram showing an example of the internal configuration
  • FIG. 8 is an explanatory diagram showing an example of the terminal functions.
  • 9 and 10 show examples of pins 112 of the chip MF
  • FIG. 9 is a functional block diagram showing an example of the internal configuration
  • FIG. 10 is an explanatory diagram showing an example of the terminal functions.
  • the difference between the 144-pin chip: l F and the 11.2-pin chip MF is that the external terminals for data input / output correspond to the 32-bit and 16-bit data widths of D0 to D, respectively. 31 is the only difference between D0 and D15.
  • the 144-pin chip MF will be mainly described.
  • This 144-pin chip MF is formed at least by the microphone port computer and the flash memory. It has a circuit configuration that has overall control and processing functions of the semiconductor device and a programmable memory function that can be electrically erased in a batch. For example, as shown in FIG. 1 ash, random access memory / cache memory RA 1 / Cache, data transfer controller DTC, direct memory access controller DMA C, bus state controller BSC, user blur Network controller UBC, interrupt controller I NTC, serial communication interface SCI, multi-function timer panelless unit MTL; compare match timer CMT, / D converter A / D, watchdog timer WDT, faze look loop
  • the processor CPU is a central processing unit having a RISC type instruction set, for example.
  • this CPU basically operates in one instruction and one cycle, the instruction execution speed is dramatically improved, and the internal 32-bit configuration enhances the data processing capability.
  • the features of this CPU include a general-purpose register machine (16 general-purpose registers, 16 32-bit registers, 3 32-bit control registers, Instruction set compatible with RISC (Instruction length is 16-bit fixed length to improve code efficiency), Load store architecture (Basic operation is executed between registers), Delayed branch instruction Reduces pipeline turbulence at branching, C language-oriented instruction set), instruction execution time is 1 instruction Z1 cycle (35 ns / instruction at 28 MHz operation), address space is 4 GB in architecture, multiplier Built-in functions include 32 x 32 ⁇ 64 multiplication in 2 to 4 cycles, 32 x 32 + 64-64 multiply and accumulate in 2 to 4 cycles, and a 5-stage pipeline method.
  • the flash memory F 1 ash is a circuit that incorporates, for example, a 64 Kbyte or 128 Kbyte electrically erasable programmable memory that can be erased collectively.
  • This F1ash is connected to the CPU, DMAC, and DTC via a 32-bit data bus, for example.
  • the CPU, DMAC, and DTC can access F1ash with 8, 16, or 32 bits wide. This F 1 ash data can always be accessed in one state.
  • the random access memory / cache memory RAM / Cache is, for example, a memory composed of a random access memory RAM of 4 KB and a cache memory Cache of 1 KB.
  • the features of this cache are instruction code and PC relative readout, data caching, line length is 4 bytes (1 long word is 2 instruction lengths), cache tag is 256 entries, direct map method, built-in ROM / RA ,
  • the built-in IZ area is not subject to caching and is also used as built-in RAM.
  • various functions are provided, such as using 2 KB of the built-in RAM as an address array and data array.
  • the data transfer controller DTC is a circuit that can be activated by an interrupt or software to perform data transfer.
  • the features of this DTC are that data can be transferred independently of the CP by an interrupt request from the peripheral I70, the transfer mode can be set for each interrupt source (transfer mode is set on the memory), and one activation source Multiple data transfer possible, various transfer modes (Normal mode / Rebeat mode / Block transfer mode) can be selected, Byte transfer unit
  • the address space can be specified with 32 bits for both the transfer source address and the transfer destination address, and the transfer target device is for the internal memory such as Flash memory, Flash / RAM, external memory, and internal peripheral circuits.
  • the direct memory access controller DMAC consists of, for example, four channels. Data is transferred between an external device with DACK (transfer request acceptance signal), an external memory, an external memory map device, and internal peripheral circuits (excluding DMAC, BSC, and UBC). This is a circuit that can perform high-speed data transfer in place of the CPU. Using this DMAC can reduce the load on the CPU and increase the operating efficiency of the chip MF.
  • the features of this DMAC are: cycle stealing transfer, dual address mode transfer support, direct transfer mode Z indirect The transfer mode can be switched (only channel 3). In this direct transfer mode, the data in the source address is transferred to the destination address. In the indirect transfer mode, the data in the source address is used as the address. Is a function to transfer the data in the destination to the destination address.
  • a reload function for specific channels, there is a reload function, an external request, an internal circuit, a transfer request function by auto request, a bus mode selection, a fixed priority mode, a priority setting by a round mouth bin mode, and a CP. It has various functions such as interrupt request to the same
  • the bus state controller BSC is a circuit that separates an address space, outputs control signals corresponding to various memories, and the like. This makes it possible to directly connect DRAM, SRAVI, ROM, etc. to the chip MF without external circuits.
  • the feature of this BSC is that it supports memory access during external expansion (external data bus
  • the address space is divided into 5 areas (SRAM space x 4 areas, DRAM space XI area), each area has a bus size (8 / 16Z 32-bit), number of wait cycles, and each area
  • Output of chip select signal corresponding to DDR, output of DRAM RAS when accessing DRAM space, output of CAS signal, RAS precharging time securing Tp cycle can be set, and which characteristics can be set, DRAM bar Fast access function (supports DRAM high-speed access mode), DRAM refresh function (programmable refresh interval, supports CAS refresh before RAS refresh / self-refresh), wait cycle insertion by external wait signal Yes, various functions that can access the address data multipletus
  • the user break controller UBC is a circuit that provides functions that facilitate user program debugging.
  • a break condition is set in this UBC, a user break interrupt is generated according to the contents of the bus cycle by the CPU or DMAC and DTCC.
  • a high-performance self-monitoring debugger can be easily created, and programs can be easily debugged with the chip MF alone without using a large-scale in-circuit emulator.
  • the features of this UBC are that an interrupt is generated when the CPU or DMAC generates a bus cycle under a set condition, and that an on-chip debugger can be easily constructed.
  • MAZDTC cycle instruction fetch or data access, read or write, operand size (longword, word, byte) can be set.
  • the interrupt controller INTC is a circuit that determines the priority of interrupt factors and controls interrupt requests to the processor CPU.
  • This INTC has a register for setting the priority of each interrupt, so that interrupt requests can be processed according to the priority set by the user.
  • the features of this INTC include nine external interrupt pins, 43 internal interrupt sources, 16 levels of priority setting, and a noise canceller function that indicates the status of the NMI pin. It is possible to output the occurrence of an interrupt to the outside, notify the external bus master that an internal peripheral circuit interrupt has occurred while the chip MF has released the bus right, and request the bus right. I have.
  • the serial communication interface SCI for example, has two independent channels. The two channels have the same function.
  • This SCI is a circuit that can perform serial communication in two systems: start-stop synchronous communication and clock synchronous communication.
  • a serial communication function between multiple processors is provided.
  • the features of this SCI are: Asynchronous / clock synchronous mode can be selected for each channel, transmission and reception can be performed simultaneously (full duplex), dedicated baud rate generator built-in, multiprocessor
  • Various functions such as communication functions are provided.
  • the Manorechi function timer pulse unit MTU is a circuit configured by, for example, a 16-channel 16-bit timer. This MTU has the following features: 16 types of waveform output or 16 types of input / output processing of up to 16 types of pulses based on 5 channels of 16-bit timer, 16 output compare registers and input keys Bucher registers, total number of 16 independent comparators, selectable eight types of counter input clocks, input capture function, pulse output mode (in-shot / toggle ZP WM complementary PWM / reset synchronization PWM ), Synchronization function of multiple counters, Complementary PWM output mode (outputs non-overlap waveform for 6-phase inverter control, dead time automatic setting, PWM duty can be set to any value from 0 to 100%, output OFF function), Reset synchronous PWM mode (Positive and negative phase PWM waveforms of arbitrary duty are output in 3-phase), Phase counting mode (2-phase encoder counting is possible), etc.
  • Various functions are provided.
  • the compare match timer CMT is composed of, for example, two channels, a 16-bit free running counter, one compare register, etc., and has a function of generating an interrupt request at the compare match.
  • the A / D converter AZD is a 10-bit x 8 channel, which enables conversion by external trigger and has two built-in sample & hold functions, so that two channels can be sampled at the same time. I have.
  • the watchdog timer WDT is a one-channel timer that can monitor the system. This WDT outputs an overflow signal to the outside if the CPU overflows the counter value due to system runaway, etc., without being correctly rewritten by the CPU. At the same time, the chip MF can generate an internal reset signal. Wear. When not used as a WDT, it can be used as an interval timer. When used as an interval timer, an interval timer interrupt is generated each time the counter overflows. The WDT is also used when exiting standby mode. The internal reset signal can be generated by setting a register, and the reset type can be set to a reset or manual reset. You can choose. The features of this WDT include the ability to switch the watchdog timer and the interval timer, a countover buffer temporary, an internal reset, and the ability to generate an external signal or interrupt.
  • the phase-look loop circuit PLL is a circuit that incorporates, for example, a clock oscillator and operates as a PLL circuit for clock doubling.
  • these internal circuits are connected to each other by an internal address bus BUS AI and upper and lower internal data buses BUS DI as shown in FIG.
  • the external connection terminal IZO are connected by the peripheral address bus BUS A ⁇ , the peripheral data bus BUSDO, and the control signal line SL.
  • Internal address bus BU SAI is a bus width of 24 bits, the processor CP to: flash memory F 1 ash, random access memory / cache memory RAM / C ache, Data transfer control one la DTC, direct Tomemo Li Access Controller DMAC and bus state controller BSC are connected between each other.
  • the internal data bus BU SDI consists of a high-order 16-bit bus and a low-order 16-bit bus, each of which is a processor CPU, flash memory F1ash, random access memory Z cache memory RAM / C ache, data transfer controller DTC, direct memory access controller DMAC, and state controller BSC are connected between each other, and the upper 16-bit bus and the lower 16-bit bus This allows for a 32-bit data width.
  • the address bus BUS AO has a bus width of 24 bits and a bus state code.
  • Controller BSC interrupt controller I NTC, serial communication interface SCI, multi-function timer pulse unit MTL; compare match timer CMT, watchdog timer WDT internal circuit and external connection terminal I ZO Is connected between.
  • the peripheral data bus BUSDO has a bus width of 16 bits.
  • the bus state controller BSC, interrupt controller I NTC, serial communication interface SCI, manorechi function timer pulse unit MTU compare match timer CMT, It is connected between each internal circuit of watchdog timer WDT and external connection terminal IZ ⁇ .
  • the control signal line SL consists of a data transfer controller DTC, a direct memory access controller DMAC, a bus state controller BSC, a use break controller UBC, an interrupt controller INTC, a serial communication interface SCI, and a multifunction timer panorama. It is connected between the internal circuits of the Resunit MTU, compare match timer CMT, and AZD converter A / D, and between these internal circuits and the external connection terminal I / O.
  • the functions are assigned as shown in Fig. 8 as the external connection terminal I ZO, with 98 input / output terminals and 8 input terminals.
  • the functions of ⁇ are as shown in the list of examples of terminal functions corresponding to the classification, symbols, input / output, and names, as shown in Fig. 15 to Fig. 18.
  • the MF is assigned functions as shown in Fig. 10, and has 74 input / output terminals and 8 input terminals.
  • Fig. 11 is a functional block diagram showing an example of the internal configuration of the chip AD
  • Fig. 12 is an explanatory diagram showing an example of the terminal functions.
  • the chip AD shows an example of 144 pins: , A DRAM and an ASIC are formed, and have a circuit configuration having a memory function that can be written and read at any time and a processing function by a logic circuit.
  • DRAM bank Bank main amplifier MA, data transfer circuit DT, digital signal processing circuit DSP, row address buffer RAB, column address buffer CAB, control logic, It is composed of a mining generation circuit CRZTG.
  • the DRAM is a dynamic random access memory (DRAM) that can be written and read at any time that requires a memory retention operation, a synchronous synchronous DRAM (SDRAM) using a clock, and an external memory that can lengthen the data output time.
  • DRAM dynamic random access memory
  • SDRAM synchronous synchronous DRAM
  • EDO-DRAM Date Data Out DR A
  • the power supply circuit VS is a circuit for supplying necessary power to the plurality of DRAM banks B ank and the main amplifier MA by using externally supplied voltages of the power supply V cc and the ground V ss.
  • each bank includes, for example, a memory cell, a word decoder, a column decoder, a sense amplifier, and a timing generator.
  • the capacity of these DRAM banks B an k is 256 k bits per bank.
  • the main amplifier MA is a circuit that performs data input / output between the plurality of DRAM banks B ank and the external connection terminals DO to D31. For example, between each DRAM bank B ank, there are 128 and many global data lines through which data is exchanged.
  • the data transfer circuit DT switches a data transfer pattern between a DRAM including a DRAM bank B ank and a main amplifier MA and a digital signal processing circuit D SP in real time. For example, it is possible to select one of the adjacent data or clear the data
  • Digital signal processing circuit DSP is a circuit that executes digital signal processing such as image and sound processing.For example, in the case of image processing, processing to remove hidden surfaces by Z comparison, processing to give transparency by ct blending, etc. Execute. Also, data is output from the serial output ports SD0 to SD23 to an output device such as a display.
  • the digital signal processing circuit DSP and the data transfer circuit DT are controlled by control signals C0 to C27.
  • the address address buffer RAB and the column address buffer CAB are circuits that take in address signals from the external address signal input terminals AO to A10, generate internal address signals, and supply the signals to each DRAM bank Bank. .
  • the control logic / timing generation circuit CR / TG is a circuit that generates various timing signals necessary for the operation of the DRAM.
  • the input bar CS is the chip select signal
  • bar RAS is the row address strobe signal
  • bar CAS L is the row address strobe signal
  • bar CASH bar CASHL
  • bar CASHH is the column address strobe signal
  • RD / bar WR is the read / write signal (high). Level indicates read, low level indicates write).
  • the four column address strobe signals are used to enable byte control (read / write control for each byte), with CAS L being the lowest byte D0 to D7 and CASH being the lowest.
  • the second byte D8 to D15, the bar CASHL is for the third byte D16 to D23 from the bottom, and the bar CASHH is for the top byte D24 to D31.
  • the plurality of DRAM banks Bank, the row address buffer RAB, and the column address buffer CAB are connected to each other by the internal address bus BUSA I, and further, the row address buffer is used.
  • the peripheral address bus BUS AO connects the RAB and column address buffer CAB to the external connection terminal I / O
  • the peripheral data bus BUS DO connects the main amplifier IA to the external connection terminal I / O:
  • the data transfer circuit DT and the digital signal processing circuit DSP are connected to each other by an address bus and an internal data bus BUS I.
  • the data transfer circuit DT, the digital signal processing circuit DSP and the external connection terminal I / O Are connected by a peripheral bus BUSO for data and control signals.
  • chip AD as external connection terminals, as shown in Fig. 12, power supply Vcc, ground Vss voltage terminals Vcc, Vss, address terminals AO to A10, data input / output terminals D0 to D31 1, Chip select pin bar CS, row address strobe pin bar RAS, column address strobe pin bar CAS L, bar CASH, bar CASH L, bar CASHH, read / write pin RD / bar WR, clock pin CK: Serial data output terminals SD0 to SD23 and AS IC control signal terminals C0 to C27 are provided.
  • Fig. 13 is a functional block diagram showing an example of the internal configuration of chip D, and Fig. 14 is its terminal functions. It is explanatory drawing which shows an example. Note that chip D shows an example of 50 pins.
  • This chip D has a circuit configuration having only a DRAM and a memory function that can be written and read at any time.
  • a power supply circuit VS a plurality of DRAM banks Bank, It consists of a main amplifier MA, a row address buffer RAB, a column address buffer CAB, and a control logic Z timing generator CR ZTG.
  • the chip D has a circuit configuration of only the DRAM in which the logic circuit of the data transfer circuit DT and the digital signal processing circuit DSP of the chip AD shown in FIG. Since the internal circuit to be used is the same as the internal circuit of the chip AD, the functional description is omitted here.
  • power supply Vcc As external connection terminals, as shown in FIG. 14, power supply Vcc, ground Vss voltage terminals Vcc, Vss, address terminals ⁇ to ⁇ 11, data input / output terminals 0 ⁇ 30 to 0 ⁇ 331 1, Row address strobe pin bar RAS, column address strobe pin bar LCAS, bar UCAS, write enable pin bar WE, output enable pin bar OE.
  • the chip MF is one of the features of the present invention.
  • the signal terminal common to the chip MFA connection terminal and the chip AD or chip D connection terminal is commonly assigned to the same external connection terminal.
  • the connection terminals commonly assigned to the same external connection terminal will be described in detail.
  • FIG. 19 is a connection diagram showing an example of connection between the 144-pin chip MF shown in FIGS. 7 and 8 and the two 50-pin chips D shown in FIGS. 13 and 14.
  • FIG. 19 only the connection between the signal terminal common to the connection terminal of the chip MF and the connection terminal of the chip D and the external connection terminal is shown. In practice, the signal terminal independent only to the chip MF is shown. Is also connected to the external connection terminal.
  • the address terminals AO to A11 of the chip MF are connected to the address terminals AO to A11 of the two chips D and the same external terminals.
  • connection terminals A 0 to A 1 1 and chip M The data input / output terminals D 0 to D 31 of the F are divided and connected to the data input / output terminals D Q0 to DQ 15 of the respective chips D and connected to the same external connection terminals DO to D 31, and
  • the power supply terminal V CC and the ground terminal V ss of the chip MF are connected to the power terminal V cc and the ground terminal V ss of the respective chip D and also connected to the same external connection terminal V cc and V ss, respectively. I have. Since these voltage terminals are actually assigned to a plurality of terminals such as a chip MF, a chip D, and an external connection terminal, each is connected by the same terminal.
  • the row address strobe terminal bar RAS of the chip MF is commonly connected to the two chips D and connected to the external connection terminal bar RAS, and the column address strobe of the chip MF is provided.
  • Terminal bar CAS L and bar CAS H are connected to column dress strobe terminal bar L CAS and bar UCAS of chip D, and are also connected to external connection terminal bar CAS L and bar CASH and chip MF
  • the column address strobe terminals CASHL and CAS HH are connected to the column address strobe terminals L CAS and UCAS of the other chip D, and to the external connection terminals CASHL and CASHH.
  • the read / write terminal RDZ bar WR of the chip MF is connected to the write enable terminal bar WE of the two chips D in common, and is also connected to the external connection terminal RD / bar WR, and the chip select terminal bar CS of the chip MF Numeral 3 is commonly connected to the output enable terminal bar OE of the two chips D and to the external connection terminal bar CS3.
  • connection terminals of the chip D are common to the connection terminals of the chip MF and are connected to the same external connection terminals.
  • connection terminals which are independent signal terminals only on the chip ⁇ 1F, so that external connection terminals connected to the independent connection terminals are also included. Provided so that it can be connected to the outside 3
  • FIG. 20 is a connection diagram showing a connection example between the 144-pin chip MF shown in FIGS. 7 and 8 and the 144-pin chip AD shown in FIGS. 11 and 12.
  • FIG. 20 also shows only the connection between the signal terminal common to the connection terminal of the chip MF and the connection terminal of the chip AD and the external connection terminal, as in FIG.
  • the connection terminal which is an independent signal terminal only for the chip AD, is also connected to the external connection terminal.
  • the address terminals AO to A10 of the chip MF are connected to the address terminals AO to A10 of the chip AD and the same external connection terminal AO.
  • the data input / output terminals D0 to D31 of the chip MF are connected to the data input / output terminals D0 to D31 of the chip AD and the same external connection terminals DO to D31 It is connected to the.
  • the power supply terminal Vcc and the ground terminal Vss of the chip MF are connected to the power supply terminal Vcc and the ground terminal Vss of the chip AD, respectively, and are also connected to the same external connection terminals Vcc and Vss, respectively. Note that these voltage terminals are actually assigned to multiple terminals of the chip MF, chip AD, and external connection terminal, so each is connected by the same terminal.
  • control signals are as follows: row address strobe terminal bar RAS of chip MF, column address strobe terminal bar CAS L, bar CASH, bar CA SHL, bar CASHH, read Z write terminal RD / bar WR, chip select CTS terminal bar CS 3 and clock terminal CK are the chip AD row address strobe terminal bar RAS, column address strobe terminal bar CAS L, CASH, CASH L, CASHH, read / write terminal RDZ, WR, Chip select terminal bar CS 3 and clock terminal CK are connected to each other, and the same external connection terminal, row address strobe terminal bar RAS, column address port terminal bar CASL, bar CASH, bar CASHL, bar CA SHH, read / write terminal RD / bar WR, chip select terminal CS3, clock terminal CK ing.
  • the serial data outputs SD0 to SD23 which are signals specific to only the chip AD, and the ASIC control signal terminals C0 to C27 are independent. Since there are also connection terminals that are independent signal terminals only in the chip MF, external terminals connected to these independent connection terminals The connection terminal is also provided so as to be connectable to the outside.
  • the DRAM of the chip AD and the chip D is a synchronous DRAM, it is necessary to further synchronize inside the semiconductor device. Therefore, a clock signal which is a control signal for this synchronization is required.
  • the clock terminal to which is assigned is also connected to the same external connection terminal as a common connection terminal.
  • the chip MF (chip IF A)
  • chip IF A The outline of read, write, and refresh operations from the processor CPU to the DRAM of chip AD (chip D) is described.
  • the address signal is input in a time-division manner, two synchronous signals of a row address strobe signal RAS and a column address strobe signal CAS from the processor CPU are required.
  • the period when RAS is high (H) is the period during which the RAS circuit is precharged, and no memory operation is performed inside the chip during this period.
  • the period when the bus CAS is H is a period in which the CAS circuits such as the data output buffer and the data input buffer are precharged, and during this period, the read operation and the write operation with the outside of the chip AD are not performed.
  • the RAS circuitry When RAS goes low (L), the RAS circuitry is activated and memory operation begins. Subsequently, when the bar CAS becomes L, the read operation or the write operation starts, and data is exchanged with the chip MF outside the chip AD. As described above, in the DRAM of the chip AD, the precharge period and the active period are alternately repeated. Normally, the cycle time of RAS is the cycle time of chip AD.
  • the read operation is specified by setting the write enable signal WE to H before the falling edge of CAS, until the CAS rises. Do it by holding it. Once the data is output, the data is held until the basic CAS starts.
  • the time from the falling edge of one CAS until the data is output to the data output terminal is called the RAS access time and the CAS access time, respectively.
  • the time from when the column address is determined until the data is output Is called the address access time.
  • the relationship between the address signal and RAS and CAS is the same as in the read operation, so the description is omitted here.
  • the timing specifications of RAS and CAS, such as the cycle time, are the same as in the read operation.
  • the write operation is specified by setting WE low before the fall of CAS. During this cycle, the data output terminal is kept in the high impedance state. It should be noted that there is also a specification of a Read-a-write Write operation in which data once read out to the chip MF outside the chip AD is changed by the chip MF while the base R AS is kept at L, and the data is written again to the same memory cell.
  • refresh operations There are two types of refresh operations: interrupt operations during random access operations such as read and write operations, and refresh operations that are performed only to retain information stored inside the chip AD during the battery backup period.
  • the former is standard for RASonely refresh and CBR (RAS for RAS) refresh, and the latter is standard for self-refresh.
  • RAS only refresh
  • all memory cells in one row are refreshed simultaneously during one cycle of RAS with the same timing standard as read operation and write operation.
  • the bus CAS must be set to H and the refresh address must be given from the chip MF outside the chip AD.
  • Distributed refresh is one in which one refresh operation is evenly distributed over the maximum refresh period. In practice, distributed refresh is often used, One cycle of the fresh operation is the timing that interrupts the normal read / write operation cycle.
  • the CBR refresh is internally determined to be a refresh operation by setting the CAS to L before the RAS. With this determination pulse, an address is generated from the internal refresh address counter, and the word line is selected and refreshed. Therefore, it is not necessary to give an address from outside the chip AD.
  • the pulse width of RAS is set to, for example, 100 ⁇ s or more by performing CBR timing.
  • the refresh operation using the refresh address counter and refresh timer starts, and self-refresh continues as long as both RAS and CAS are low. The less frequently refreshed, the lower the power consumption of chip AD, but this frequency is automatically adjusted by a timer that detects the internal temperature of chip AD.
  • a precharge period of RAS is required.
  • the read operation, the write operation, and the refresh operation are performed from the processor CPU of the chip MF to the DRAM of the chip AD.
  • the chip AD The internal logic circuit has a circuit configuration capable of executing a refresh operation / access operation.
  • the refresh operation / access operation can be performed during the self-refresh operation.
  • FIG. 21 is a schematic configuration diagram schematically showing an example of internal functions of the chip AD shown in FIG.
  • This chip AD is composed of a dynamic random access memory DRAM, a memory logic Logic, and a DRAM access control circuit DAC.
  • DRAM, logic logic with built-in memory, and DRAM access control circuit DAC in FIG. 21 correspond to a DRAM section by a plurality of DRAM banks and a main amplifier MA shown in FIG. Circuit DT and digital signal processing circuit AS AS part by DSP and access by low address buffer RAB and dynamic RAM address buffer CAB etc. It corresponds to the control part.
  • the input buffer IB and the output buffer ⁇ B are connected to the circuit I / O for performing data input / output between the main amplifier MA and the external connection terminals DO to D32 shown in FIG. 11 and the digital signal processing circuit DSP. It corresponds to the circuit I / O to be performed.
  • the chip select signal CS, the row address strobe signal RAS, and the column address strobe signal CAS are used as control signal terminals, and address signals are sent to the DRAM access control circuit DAC via address terminals. Input and data signals can be input / output via the data input / output terminal.
  • the DRAM and the DRAM access control circuit DAC are connected by an address bus BUS A, and the DRAM and a logic built in the memory Logic and a data bus BUS are connected between the data input / output terminals. Connected by D.
  • the internal data bus BUS D has a wider 64-bit bus width than the 8-bit data input / output terminals, for example:
  • the logic logic with built-in memory and the DRAM access control circuit DAC are connected by an address bus control signal line, and the logic logic with built-in memory is connected from the DRAM access control circuit DAC.
  • a self-refresh operation enable signal is output, and a read / write Z write signal R / W and an address signal are output from the logic inside the memory to the DRAM access control circuit DAC.
  • the read Z write signal RZW can also be output separately for the read signal R and the write signal W.
  • the data input / output inhibit signal DIS is output from the DRAM access control circuit DAC to the input buffer IB and the output buffer OB.
  • FIG. 22 is a configuration diagram showing a detailed example of the DRAM access control circuit DAC.
  • the DRAM access control circuit DAC includes an internal control signal generation circuit CSG, a plurality of selector circuits SC, and the like, and is input to the internal control signal generation circuit CSG.
  • chip select signal bar CS row address strobe signal bar RAS, and column address strobe signal bar CAS, it generates a control signal to select an address, etc., and also generates a self-refresh operation enable signal and incorporates memory. Output to logic.
  • the logic in the memory that has received the permission signal becomes accessible to the DRAM, and outputs a read / write signal R / W to the DRAM access control circuit DAC to read / write data.
  • Makes a request outputs an address signal to the DRAM access control circuit DAC, selects an arbitrary memory cell, and reads / writes data between the selected memory cell and the logic with built-in memory. It can be carried out.
  • this read / write request can be made by outputting a read signal R when making a read request and outputting a write signal W when making a write request.
  • the address control signal generated by the internal control signal generation circuit CSG is used for access operations from the processor CPU of the chip MF outside the chip AD and access operations from the logic Logic inside the chip AD internal memory. In contrast, one is selected via a selector circuit SC and used as an address control signal for selecting an arbitrary memory cell of the DRAM.
  • FIG. 23 is an explanatory diagram showing an example of a transition state of the operation mode by the internal control signal generation circuit CSG.
  • This operation mode can be divided into a normal DRAM access operation mode, a DRAM senoref refresh operation mode, and an access operation mode using the internal logic logic of the internal memory.
  • a transition to the operation mode is made without a read / write request by the read / write signal R / W from the logic inside the memory Logic.
  • Return to the normal DRAM access operation mode is performed by releasing the refresh.
  • transition from the self-refresh operation mode to the internal access operation mode is made when a read / write request is made from the logic inside the memory, and the return to the self-refresh operation mode is performed by the completion of the read / write.
  • transitions when there is a read / write request from the logic inside the memory and the normal return to the DRAM access operation mode is performed by releasing the refresh.
  • FIG. 24 is an operation timing chart showing a control example of the DRAM access control circuit DAC including the internal control signal generation circuit CSG for the DRAM.
  • a normal DRAM access period during which normal DRAM access can be performed, and a period between the normal DRAM access period and the normal DRAM access period.
  • DRAM self-refresh period is a period in which normal access operation from the chip MF to DRA-V [is not performed.
  • a self-refresh operation enable signal is applied to the internal memory logic L 0 gic based on the address strobe signal RAS and the column address strobe signal CAS in synchronization with the clock signal CK.
  • the refresh operation is released only when there is a request for an access operation for read / write by the control signal RZW to the DRAM from the logic Logic of the memory and the logic Logic of the DRAM. Access operation from digital signal processing circuit (DSP) is possible.
  • DSP digital signal processing circuit
  • the execution of the refresh operation Z access operation during the self-refresh period can be repeated in accordance with a read request by the control signal R, for example, as shown in FIG.
  • the refresh operation can be executed during the period between the two, and the read operation can be repeated according to the write request by the control signal W.
  • the refresh operation can be executed during the period between the write and the write, and the read operation by the control signal R can be performed.
  • the read and write access operations can be repeated according to the output request and the write request by the control signal W, and the refresh operation can be executed during the access operation:
  • the chip AD DRA by the chip-VI F processor CP During the self-refresh operation for M, the logic inside the memory of the chip AD can access the DRAM, and data can be written to the DRAM in response to a write request from the logic inside the memory. Also, data can be read from the DRAM in response to a read request.
  • the access operation to the DRAM by the logic built into the memory of the chip AD during the self-refresh operation is the same when the other chip is connected to the chip AD.
  • the chip MFA or the CPU Similar effects can be expected for other semiconductor chips including. That is, the present invention can be applied to a semiconductor device having a package structure capable of performing an access operation to a chip AD DRAM from the outside and a self-refresh operation of the DRAM.
  • FIG. 25 is an overall perspective view of the package of the present embodiment
  • FIG. 26 is a cross-sectional view of the package.
  • the package of the present embodiment seals the first chip MF (microcomputer equipped with flash memory) on which a microcomputer and a flash memory are formed in a first TCP (Tape Carrier Package) 1A and
  • the second chip AD (DRAM on-chip logic) on which DRAM and AS IC are formed is sealed in a second TCP 1B, and these two TCP 1A and IB are vertically It has a stacked TCP structure that is superimposed and bonded together.
  • the first chip MF sealed in the first TCP 1A has its main surface (element formation surface) facing down in the device hole 3a opened in the center of the tape carrier 2a. And electrically connected to one end (inner lead portion) of a lead 5a formed on one surface of the tape carrier 2a via a bump electrode 4 formed on the periphery of the main surface. I have.
  • the main surface of the chip MF is covered with a potting resin 6 for protecting the LSI (microphone computer with flash memory) formed on the main surface from the external environment.
  • the lead 5a formed on one surface of the tape carrier 2a has a pattern as shown in FIG.
  • the surfaces of these leads 5a project into the device holes 3a. Except for the one end (inner lead part) that protrudes, it is covered with solder resist 7.
  • the other end of each lead 5a is electrically connected to a through hole 8a penetrating from one surface of the tape carrier 2a to the other surface.
  • These through holes 8a are arranged in two rows along the four sides of the tape carrier 2a, and the surface of each through hole 8a is provided with the stacked TCPs as shown in Fig. 26.
  • Solder bumps 9, which are external connection terminals when mounting the printed circuit board on a printed wiring board, are joined.
  • the second TCPIB is stacked on the first TCP 1A.
  • TCP 1A and TCPIB are tightly joined by an adhesive 10 applied to the mating surface of both.
  • the second chip AD sealed in the TCP 1B is disposed with its main surface facing downward in a device hole 3b opened in the center of the tape carrier 2b. It is electrically connected to one end (inner lead portion) of a lead 5b formed on one surface of the tape carrier 2b via a bump electrode 4 formed on a peripheral portion of the surface.
  • the main surface of the chip AD, potting resin 6 to protect LSI formed on the main surface (DR AM on-chip logic) from the external environment is deposited Rereru 3
  • the outer diameter of the tape carrier 2b of the TCP 1B is the same as the tape carrier 2a of the TCP 1A.
  • the dimension of the device hole 3b of the tape carrier 2b is smaller than that of the device hole 3a of the tape carrier 2a because the outer diameter of the chip AD is smaller than that of the chip MF.
  • the lead 4b formed on one surface of the tape carrier 2b has a pattern as shown in FIG.
  • the other end of each lead 5b is electrically connected to a through hole 8b penetrating from one surface of the tape carrier 2b to the other surface.
  • These through holes 8b are arranged in two rows along the four sides of the tape carrier 2b, like the through holes 8a of the tape carrier 2a.
  • the through holes 8a of the tape carrier 2a and the through holes 8b of the tape carrier 2b are formed with the same number and the same bit, respectively, and they face each other when the tape carriers 2a and 2b are overlapped.
  • the through holes 8a and 8b are arranged so as to overlap each other exactly.
  • connection terminals (pins) common to the two chips MF and AD that is, having the same function
  • pins are arranged at the same position on the tape carriers 2a and 2b. It is electrically connected through the through holes 8a and 8b, and is connected to the outside (printed wiring board) through the solder bump 9 joined to one end of the through hole 8a.
  • the numbers (1 to 144) of the connection terminals formed on the chip MF and the numbers (1 to 200) of the through holes 8a formed on the tape carrier 2a are given.
  • the numbers (1 to 144) of the connection terminals formed on the chip AD and the numbers (1 to 200) of the through holes 8b formed on the tape carrier 2b are given.
  • the same numbers are given to the through holes 8a and 8b arranged at the same position on the tape carriers 2a and 2b.
  • Table 1 shows an example of the assignment of the connection terminals for the chips MF and AD and the through holes 8a and 8b.
  • the numbers (1 to 144) in the MF pin # column correspond to the connection terminal numbers (1 to 144) of the chip MF shown in FIG. 27, and the numbers (1 to 144) in the AD pin # column. 144) correspond to the connection terminal numbers (1 to 144) of the chip AD shown in FIG. 28.
  • the numbers in the Via # column are the through-holes 8a, Of the numbers in 8b (1 to 200), these are the numbers assigned to the connection terminal common to one or both of the chip MF and AD.
  • connection terminals common to the chips MF and AD are arranged at substantially the same positions on the chips MF and AD.
  • the leads 5a and 5b of the tape carriers 2a and 2b can be easily routed and the lead length can be reduced, so that the data transfer of the chips MF and AD can be speeded up.
  • the tape carrier 2a since the number of required through holes 8a and 8b can be minimized, the tape carrier 2a,
  • the package size can be reduced by reducing the outer diameter of 2b.
  • each member constituting the laminated TCP of the present embodiment is formed of the following materials and dimensions.
  • the tape carriers 2a and 2b are made of a 75- ⁇ m-thick polyimide resin film.
  • Leads 5a and 5b are made of 18m thick Cu (copper) foil, and the surface of one end (inner lead) is made of Au (gold) or Sn (tin). Meshes are applied.
  • the adhesive 10 is made of polyimide resin and has a thickness of 12 ⁇ m.
  • the solder resist 7 is made of an epoxy resin and has a thickness of 20 ⁇ m.
  • Solder in the external connection terminal solder bump 9 and through hole 8a, 8b 1 1 is made of lead (Pb) -tin (Sn) alloy :: Chip MF and chip AD have thickness 5 It is composed of 0 m single crystal silicon, and the botting resin 6 for protecting the main surfaces thereof is composed of epoxy resin.
  • the bump electrode 4 formed on the main surface of the chip MF and the chip AD is made of Au and has a height of 20 ⁇ ⁇ : That is, the stacked TCP is composed of the chip MF and the bump electrode. 4 is smaller than the thickness of the tape carrier 2a, and the total thickness of the chip AD and the bump electrode 4 is smaller than the thickness of the tape carrier 2b. It is an ultra-thin package with a thickness of 218 ⁇ in the stacking direction.
  • FIGS. 29A to 33 are (a) a cross-sectional view of TCPIB, and (b) a cross-sectional view of TCP1A.
  • tape carriers 2a and 2b made of a polyimide resin film are prepared, punched out, and device holes are placed in the tape carrier 2a.
  • tape carriers 2a and 2b are long films wound on reels, and only a part (one for TCP 1A and one for TCP 113) is shown in the figure.
  • the Cu foil is wet-etched to form a lead 5 a on the tape carrier 2 a.
  • the lead 5b is formed on the tape carrier 2b.
  • a Cu foil hole 12a is formed at one end of the through hole 8a, and a Cu foil hole 12b is formed at one end of the through hole 8b.
  • a Cu foil hole 1 2 The diameter of a is smaller than the through hole 8a, and the diameter of the Cu foil hole 12b is smaller than the through hole 8.
  • Cu foil has a smaller thermal expansion coefficient and higher dimensional stability than tape carriers 2a and 2b made of polyimide resin, so it passes through the diameter of Cu foil holes 12a and 12b. If the holes are smaller than the holes 8a and 8b, the positioning of the tape carrier 2a and the tape carrier 2b when using the through holes 8a and 8b in the subsequent process will be highly accurate. Can be done.
  • the bump electrodes 4 formed on the connection terminals of the chip MF and the leads 5a of the tape carrier 2a are collectively connected by a gang bonding method.
  • the bump electrodes 4 formed on the connection terminals of the above and the leads 5b of the tape carrier 2b are collectively connected by a gang bonding method.
  • the thickness is reduced to 5 ⁇ by spin etching.
  • the bump electrode 4 is formed in the final step of the wafer process by using a stud bump bonding method.
  • Lead 5 Since the inner leads of a and 5b are plated with Au or Sn, the lead 5a and the bump electrode 4 and the lead 5b and the bump electrode 4 are connected by Au—Au bonding or Au—S Bonded by n-eutectic bonding.
  • the bonding between the leads 5a and 5b and the bump electrode 4 may be performed by a single point bonding method instead of the gang bonding method.
  • the long tape carriers 2a and 2b are separated into individual pieces using a cutting die, and then the individual tape carriers 2a and 2b are mounted in sockets and subjected to an aging inspection. Sort out. Aging of tape carriers 2a and 2b is performed by applying socket pins to the test pads formed on each part of tape carriers 2a and 2b.
  • the tape carriers 2a and 2b are overlapped so that the positions of the through holes 8a and 8b facing each other exactly match, and then heat-pressed.
  • the chip MF is thinner than the tape carrier 2a
  • the chip AD is thinner than the tape carrier 2b.
  • a and TCP 1 B can be tightly joined.
  • the above-described Cu foil holes 12a and 12b are used for positioning the through hole 8a and the through hole 8b. There is a test pad that is formed on each part of the tape carriers 2a and 2b.
  • solder paste made of a lead (Pb) -tin (Sn) alloy is embedded in the through holes 8a and 8b by screen printing, and the paste Is reflowed to form solder 11 1.
  • solder bump 9 is formed at one end of the through hole 8a of the tape carrier 2a, whereby the stacked TCP shown in FIGS. 1 and 2 is completed.
  • Solder bumps 9 are placed beforehand with the solder bump forming surface of tape carrier 2a facing up.
  • the solder ball formed above is positioned on the through hole 8a, and then the solder ball is formed by reflow.
  • the solder bumps arranged on the surface of the glass substrate may be transferred to the surface of the through hole 8a.
  • the solder bump 9 is made of a lead (Pb) -tin (Sn) alloy having a lower melting point than the solder 11 filled in the through holes 8a and 8b.
  • solder bumps 9 are positioned on the electrodes 15 of the printed wiring board 14, and then the solder bumps 9 are formed. I'll make a riff.
  • the chip MF which forms the computer with the microphone port with flash memory, has more functional blocks and generates more heat than the chip AD, which forms the DRAM on chip logic.
  • Chip MF is arranged.
  • arranging a chip having a large number of connection terminals on the lower side (substrate side) facilitates routing of wiring connecting the chip connection terminals and external connection terminals.
  • the DRAM memory cells formed in the chip AD adopt a stacked capacitor (STC) structure.
  • STC stacked capacitor
  • the multilayer capacitor structure has a lower thermal leakage current and higher thermal reliability than the Braina capacitor structure.
  • the multilayer capacitor structure can prolong the refresh cycle and generate heat. It is also possible to reduce the amount.
  • a radiation fin 16 made of a metal having high thermal conductivity such as A1 may be attached to the upper part of the stacked TCP as shown in FIG. In this case, a chip that generates a large amount of heat is placed above the chip AD (closer to the radiation fins 16).
  • solder 11 is embedded in the through holes 8a and 8b where the directional force is combined (see Figs. 34 and 35).
  • Force S, TCP 1 A, 1 B can be made into one package by the following method.
  • TCP 1 A and TCP 1 B are individually formed according to the method described above.
  • the solder paste l ip is embedded in the through hole 8a of the TCP 1A, and the solder paste 11 p is embedded in the through hole 8b of the TCP 1B. Screen printing is used for embedding the solder paste.
  • the tape carriers 2a and 2b are overlapped and heated and pressed, and the two are joined with an adhesive 10 and the solder paste lip is reflowed to form the through holes 8a and 8b.
  • Solder 11 is formed inside b. Subsequent steps are the same as the above-mentioned manufacturing method.
  • TCP 1A and TCP 1B are temporarily attached with the adhesive force of solder paste 11p, so the stacked TCP 1A and IB are transported to a heating furnace, etc., and both are heated and pressed. In the meantime, the displacement of the facing through holes 8a and 8b can be prevented.
  • tape carriers 2a and 2b are overlapped to form TCP 1A and 1B into one package, and then tape carriers 2a and 2b are drilled.
  • a conductive layer may be formed inside the hole by an electroless plating method.
  • the chips MF and AD can be sealed by a transfer molding method instead of the botting method.
  • the bump electrode of the chip MF is formed according to the method described above. 4 and the leads 5a of the tape carrier 2a are electrically connected, and the bump electrodes 4 of the chip AD and the leads 5b of the tape carrier 2b are electrically connected.
  • the chips MF and AD are sealed with the mold resin 17.
  • the tape carriers 2a and 2b are attached to the molds, respectively.
  • a plurality of chips MF and AD are respectively sealed in multiple units. Epoxy resin is used for the mold resin 17.
  • the entire surface of the chips MF and AD is covered with the mold resin 17, but a structure in which the back surfaces of the chips MF and AD are exposed from the mold resin 17 may be employed.
  • the resin processed into a sheet is applied to the upper surfaces of the tape carriers 2a and 2b and heated and pressed, so that the resin flows into the main and side surfaces of the chips MF and AD.
  • the thickness of the mold resin 17 for sealing the chips MF and AD is extremely small, the case where the back surface of the chips MF and AD is exposed from the mold resin 17 or the entire surface of the chips MF and AD is used. If the thickness of the mold resin 17 is not uniform between the main surface and the back surface of the chip MF, AD, the heat of the chip ⁇ 1F, AD and the mold resin 1 ⁇ If there is a difference in expansion coefficient, TCP 1A and 1B will warp, causing chip cracks and poor connection during board mounting. Accordingly, the mold resin 17 has a low coefficient of thermal expansion, and it is necessary to select a material close to the coefficient of thermal expansion of the chips MF and AD.
  • the tape carriers 2a and 2b are singulated, and each TCP 1A and 1B is subjected to an aging inspection to select non-defective products, and as shown in Fig. 43.
  • the tape carriers 2a and 2b are superimposed and heated and pressed together so that the positions of the facing through holes 8a and 8b exactly match, and the two are joined with an adhesive 10.
  • Solder 11 is formed inside through-holes 8a and 8b, and solder bump 9 is formed at one end of through-hole 8a of tape carrier 2a to complete the laminated TCP.
  • TCPs 1A and 1B are stacked after filling solder 11 inside TCP 1A through hole 8a and TCP 1B through hole 8b, respectively. You can make one package.
  • the chip MF and the chip AD may be sealed simultaneously with the mold resin 17 at the same time.
  • the tape carriers 2a and 2b are superimposed. And then heat and pressure-bond and bond them with adhesive 10: Then, as shown in Fig. 46, chips IF and AD are simultaneously coated with mold resin 17 After soldering, as shown in Fig. 47, solder 11 is formed inside through holes 8a and 8b according to the method described above, and solder bumps are attached to one end of through hole 8a of tape carrier 2a.
  • C to form 9 is
  • the outer diameter dimension accuracy of the sealing portion is improved compared to the method of sealing the chips MF and AD with the botting resin 6. Therefore, also 3 can be manufactured multilayer TCP of uniform shape with high dimensional stability, Ri by the be sealed collectively plurality of chip MF, the AD in multiple-shortened sealing time can do. Furthermore, by making the thickness of the mold resin 17 the same as that of the tape carriers 2a and 2b, there is no gap between TCP 1A and TCP 1B.
  • the laminated TCP of the present invention is replaced with a method in which external connection terminals are formed by solder bumps 9.
  • the external connection terminals can be formed by the leads 5a and 5b.
  • a tape carrier 2a, 2b made of polyimide resin film is punched out to form a device hole 3a in the tape carrier 2a, and a device hole 3b in the tape carrier 2b.
  • the tape carriers 2a and 2b do not have the through holes 8a and 8b as described above.
  • a lead 5a is formed on the tape carrier 2a according to the above-described method, and a lead 5b is formed on the tape carrier 2b, and one end (inner lead portion) is formed.
  • a solder resist 7 is applied to one surface of the tape carrier 2a, and an adhesive 10 is applied to one surface of the tape carrier 2b.
  • the leads 5a and 5b are formed in such a length that their other ends (outer leads) can be used as external connection terminals.
  • the bump electrode 4 of the chip MF and the lead 5a of the tape carrier 2a are electrically connected according to the method described above, and the bump electrode 4 of the chip AD and the lead of the table carrier 2b are electrically connected.
  • the chips MF and AD are sealed with botting resin 6.
  • tape carriers 2a and 2b are singulated, and each TCP 1A and 1B is aged. Good products are selected by inspection.
  • the TCPs 1A and 1B are made into one package by overlapping and joining the tape carriers 2a and 2b according to the method described above, and then, as shown in FIG.
  • the tape carriers 2a and 2b supporting the other ends (outer lead portions) of the leads 5a and 5b are cut and removed.
  • the other ends of the leads 5a and 5b Is formed into a galling shape using a lead molding die. Leads 5a and 5b are molded simultaneously using the same mold.
  • the illustrated stacked TCP has the main surfaces of the chips MF and AD facing upward, it may be placed facing downward. Also, the force of sealing the chips MF and AD with the botting resin 6 As shown in FIG. 55, the chips MF and AD may be sealed with the molding resin 17.
  • the manufacturing process is simplified as compared with the above-mentioned laminated TC # in which the external connection terminals are constituted by the solder bumps 9. Therefore, the manufacturing cost of the stacked TCP can be reduced. Also, since it is not necessary to provide the through holes 5a and 5b in the tape carriers 2a and 2b, the leads 5a and 5b can be easily routed and the manufacturing cost of the tape carriers 2a and 2b can be reduced. It can also be reduced.
  • the time required for forming the external connection terminals can be reduced. Also, connect the other ends (outer leads) of the leads 5a and 5b.
  • the electrodes 15 on the printed wiring board 14 By overlapping and connecting the electrodes 15 on the printed wiring board 14, the area of the electrodes 15 occupying the surface of the printed wiring board 14 can be reduced, and the mounting of the stacked TCP (lead 5 a , 5b and the electrode 15) can be performed once.
  • the leads 5a and 5b which constitute the external connection terminals, may be individually molded using two dies. In this case, as shown in Fig. 56 (chip MF, AD sealed with potting resin 6) and Fig. 57 (chip MF, AD sealed with molding resin 17), two chips MF and AD are sealed.
  • the leads 5 a and 5 b connected to the common connection terminal of AD and AD are connected to the same electrode 15 of the printed wiring board 14.
  • the external connection terminal is formed by forming the other end (outer lead) of the lead 5a formed on the lower TCP 1A into a gull-wing shape, and the TCP 1A and TCP 1A
  • the electrical connection with B is made through a c- gull wing-shaped lead that is made through solder 11 embedded in the through holes 8a and 8b formed in the tape carriers 2a and 2b.
  • the stress applied to the connection between the stacked TCP and the printed wiring board due to the difference in thermal expansion coefficient between them is absorbed and relaxed by the deformation of the flexible lead.
  • the connection reliability with the board is higher than the structure where the external connection terminals are composed of solder bumps.
  • the package of the present invention can be individually mounted on the printed wiring board 14 without forming the TCP 1A and the TCP 1B into one package.
  • the mounting density is lower than that of the stacked TCP in which TCPs 1A and 1B are packaged in one package, the process of stacking TCPs 1A and 1B into one package is unnecessary. The manufacturing cost of the package can be reduced.
  • the stacked TCP of the present invention is used in a PGA (Pin Grid Array) type package as shown in FIG. 60, instead of a method in which external connection terminals are formed by solder bumps 9 and leads 5a and 5b.
  • the external connection terminal can also be configured with pin 18.
  • the surface of the bottle 1 8 is decorated plated such as S n (tin), the through-hole 8 a, 8 b leads have you inside of 5 a and Z or the lead 5 b and 3 electrically connected
  • the chip MF and the lead 5a and the chip AD and the lead 5b can be connected by using an anisotropic conductive film.
  • an anisotropic conductive film To manufacture a laminated TCP using an anisotropic conductive film, first, as shown in Fig. 61, the device hole 3a, the through hole 8a and the lead 5a are formed in the tape carrier 2a according to the method described above. After forming device holes 3b, through holes 8a and leads 5b on the tape carrier 2b, a solder resist 7 is applied on one side of the tape carrier 2a, and one side of the tape carrier 2b is formed. Adhesive 10 is applied to the substrate.
  • the anisotropic conductive film 19a which has been cut to the same size as the device hole 3a of the tape carrier 2a in advance, is projected into the device hole 3a. Position it on one end (inner lead part) of lead 5a.
  • an anisotropic conductive film 19b which has been cut to the same size as the device hole 3b of the tape carrier 2b in advance, is provided with one end 19b of the lead 5b protruding into the inside of the device hole 3b. (Inner lead part).
  • the chip MF on which the bump electrodes 4 are formed is positioned on the anisotropic conductive film 19 a with the main surface facing down, and then the anisotropic conductive film 1 is positioned.
  • bump electrode 4 and lead 5a are electrically connected via conductive particles in anisotropic conductive film 19a.
  • the anisotropic conductive film 19 b is heated and pressed.
  • the bump electrode 4 and the lead 5b are electrically connected via conductive particles in the anisotropic conductive film 19b.
  • the tape carriers 2a and 2b are separated into individual pieces, and each TCP 1 A, 1 B is subjected to aging inspection to select good products.
  • the tape carriers 2a and 2b are superimposed according to the above-described method to form TCPs 1A and 1B into one package, and then, as shown in Fig. 65, Solder 11 is filled in 8a and 8b, and solder bump 9 is formed at one end of snorkel hole 8a.
  • the various stacked TCPs of the present invention described above are applicable not only to the case where the chip MF and the chip AD are combined, but also to the above-described configuration examples of the chip MFA + chip D, the chip MFA + chip AD, the chip IF + chip D, and the like. Of course, you can.
  • the stacked TCP of the present invention can also be applied to a case where three or more chips are stacked. it can,,
  • the stacked TC II shown in Fig. 66 has a chip MF that forms a microcomputer and a flash memory encapsulated in a TC II, and two chips D 0 2 that form only DRAM are connected to two chips.
  • It has a stacked TCP structure in which it is sealed in TCP 1D, and these three TCPs 1A, 1C, and 1D are vertically overlapped and joined together.
  • the chip MF sealed in the lowermost layer TCP 1A is placed in the device hole 3a of the tape carrier 2a with its main surface (element forming surface) facing upward, and the peripheral portion of the main surface.
  • the tape carrier 2a is electrically connected to one end (inner lead portion) of a lead 5a formed on one surface of the tape carrier 2a via a bump electrode 4 formed on the tape carrier 2a.
  • the chip is sealed with a mold resin 17.
  • the lead 5a formed on one surface of the tape carrier 2a has a pattern as shown in FIG.
  • TCP 1 C sealing chip D On top of TCP 1 A, TCP 1 C sealing chip D, is laminated, and further on top, TCP 1 D sealing chip D 2 is laminated.
  • Tip D sealed in TC P 1 C! Is disposed in a device hole 3c opened in the center of the tape carrier 2c with its main surface facing upward, and via a bump electrode 4 formed in the center of the main surface of the tape carrier 2c. It is electrically connected to one end (inner-lead portion) of a lead 5c formed on one surface of the tape carrier 2c.
  • the chip D 2 sealed in the TCP 1 D is arranged with its main surface facing upward in a device hole 3 d opened in the center of the tape carrier 2 d.
  • the lead 5c formed on one surface of the tape carrier 2c has a pattern as shown in FIG. 68, and the lead 5d formed on one surface of the tape carrier 2d is formed as shown in FIG. It has a pattern.
  • the multilayer TCP is the three-chip MF, D "common D 2 to (i.e. having the same function) through a connection terminal (pin) disposed at the same position of the tape carrier 2 a, 2 c, 2 d Electrical connection through holes 8a, 8c, 8d
  • the lead 5a formed on the carrier 2a has a structure in which the lead 5a is commonly drawn to the outside (blind wiring board) through the other end (outer lead).
  • the external connection terminals can be composed of solder bumps, pins, etc., in addition to the leads.
  • FIG. 67 shows the connection terminal numbers (1 to 144) formed on the chip MF and the tape carrier. The number (1 to 144) of the through hole 8a formed in 2a is given. In FIG.
  • Figure 69 is a number of connection terminals formed on the chip D 2 (1-46) and a tape carrier 2 d to form through holes 8 d number (1 to 144) are then Togazuke.
  • the same numbers are assigned to the through horns 8a, 8c, and 8d arranged at the same position on the tape carriers 2a, 2c, and 2d ::
  • the package of the present invention is not limited to the above-described structure, and various design changes can be made to its details.
  • a structure is adopted in which the chip ⁇ ' ⁇ F sealed in TCP 1A and the lead 5a formed in the table carrier 2a are electrically connected by the Au wire 20. You can also.
  • the chip MF and chip AD are not packaged in one package, but are individually sealed in a QFP (Quad Flat package) type package and printed wiring It can also be mounted on the substrate 14.
  • QFP Quad Flat package
  • the package according to the present invention includes devices and systems such as multimedia devices and information home appliances, for example, a force navigation system as shown in FIG. 73, a D-ROM (Compact Disk ROM) driving device as shown in FIG. 74, and FIG. It is used for a game device as shown in FIG. 1, a PDA (Personal Digital Assistance) as shown in FIG. 76, a mobile communication device as shown in FIG. Figure 73 is a functional block diagram showing an example of the internal configuration of the car navigation system. is there.
  • This car navigation system includes a control unit, a display unit connected to the control unit, a GPS and a CD-ROM.
  • the control unit consists of a main CPU, program EPROM (4M), work RAM (SRAM: 1M), I / O control circuit, ARTOP, image RAM (DRAM: 4M), CG (Computer Graphics) ROM ( It consists of a mask ROM: 4M), a gate array, and the like, and the display unit consists of a slave microcomputer, TFT, and so on.
  • the main CPU of the control unit controls according to a control program stored in a program EPROM.
  • the control unit compares the position information by GPS, which measures the position of the car between the satellite and the ground station, and the map information stored on the CD-ROM via the I / O control circuit and the gate array. Input and store this information in work RAM.
  • the processing of arranging the position of the car on the map based on the position information and the map information stored in the work RAM is performed by ARTOP, and this image information is obtained.
  • image RAM Store in image RAM.
  • the image information stored in the image RAM is passed to the display unit, and the display unit displays the image information on a TFT screen based on the control of the computer with the slave microphone, so that the vehicle information is displayed. An image whose position is arranged on a map can be displayed.
  • the main CPL is configured by a processor
  • the program EP ROM is configured by a flash memory
  • the ART ⁇ P is configured by a logic circuit using an ASIC.
  • the chip AD of the present embodiment can be used for this block by using an MFA, configuring the image RAM with DRA 1 and the gate array with a logic circuit using an ASIC. It is also possible to simply use a chip MF for the main CPU and program EPROM, and a chip D for the image RAM.
  • Fig. 74 is a functional block diagram showing an example of the internal configuration of a CD-ROM drive.
  • This CD-ROM drive has a microcomputer including a flash memory, a pre-servo circuit, a signal processing circuit, a ROM decoder, a host IZF, a pre-servo circuit, and a signal processing circuit, which are bidirectionally connected to the microcomputer. It consists of a pickup, SRAM connected in the direction, a D / A connected to the ROM decoder, and a buffer RAM connected to the host I / F.
  • a motor M for driving a CD-ROM is connected to the signal processing circuit, and signals from the CD-ROM are read by a pickup. The rotation of this motor is controlled by the signals of the mini servo circuit and the signal processing circuit.
  • DZA is connected to the slipper.
  • the CD-ROM drive is connected to the host computer via the host IZF.
  • the signal of the CD-ROM is read by a pickup under the control of a microcomputer, the read information is processed by a signal processing circuit, and the processed information is stored in an SRAM.
  • the information stored in SRA ⁇ i can be decoded by the R ⁇ VI decoder, converted to an analog signal via D / A, output from the speaker, and stored in the buffer RAM. After storing temporarily, it can be output to the host computer via the host I7F.
  • the chip MFA of the present embodiment is used for a block portion of a microcomputer including a flash memory, a signal processing circuit, and the like, and a block portion of a buffer RAM and a host I / F.
  • the chip AD of the present embodiment can be used.
  • the chip MF can be simply used for a microcomputer part including a flash memory
  • the chip D can be used for a buffer RAM part.
  • FIG. 75 is a functional block diagram showing an example of the internal configuration of the game device.
  • This game machine has a main unit control unit, a speaker connected to the main unit control unit, a display RAM (SDRAM: 4 M) connected to a CD-R ⁇ M, ROM cassette, and CRT, DRAM: 4M) and keyboard.
  • the main unit controls are the main CP, system ROM (mask ROM: 16M), DRAM (SDRA-VI: 4M), RAM (SRAM: 256k), sound processor, graphics processor, image compression processor, I It is composed of a DA control circuit.
  • the main CPU of the main unit control unit is controlled according to a control program stored in the system ROM.
  • CD-ROM, ROM cassette Image and audio information and instruction information from the keyboard are input via the IZ ⁇ control circuit, and these information are stored in DRAM and RAM.
  • the information is processed into audio and video signals using a sound processor and a graphic processor, respectively.
  • the audio signals are output as audio from speakers, and the video signals are temporarily stored in the display RAM and then displayed on the CRT screen. Can be displayed as an image.
  • the video signal is used by being compressed in the amount of information by an image compression processor and stored in a buffer RAM.
  • the chip MFA of the present embodiment is used for blocks such as a main CPU, a system ROM, a sound processor, and a graphic processor, and the present embodiment is used for blocks such as a DRAM and an image compression processor. It is also possible to use chip AD in the form of chip MF, DRAM, R ⁇ 1 for the part of main CPU, system ROM, chip I) for the part of buffer RAM, etc. it can.
  • FIG. 76 is a functional block diagram showing an example of the internal configuration of the PDA.
  • This PDA consists of a microcomputer including a flash memory consisting of a graphic control circuit, a handwriting input circuit, a memory control circuit, a security management circuit, and a communication control circuit; an LCD connected to the microcomputer's graphic control circuit; Digitizer via A / D connected to power circuit, system memory (mask ROM: 16) connected to memory control circuit, IC card connected to security management circuit, IR connected to communication control circuit It consists of IF, RS-232C, PCMCIA card via PCMCIA control circuit.
  • This microcomputer is connected to PHS, GSM, ADC, etc. from a communication control circuit via a network.
  • This PDA is controlled by a memory control circuit according to a control program stored in a system memory, converts information written using a digitizer into digital signals by A / D, and stores it in a handwriting input circuit.
  • the information stored in the handwriting input circuit can be displayed on an LCD screen after signal processing using a graphic control circuit. Information such as quality management information can also be displayed on the LCD screen via the graphic control circuit.
  • communication with PHS, GS, ADC, etc. can be performed by controlling a communication control circuit via a network, and a PCMCIA card via an IR-IF, RS_232C, PCMCIA control circuit, etc. Can also be imported into the micro-computer. Further, information of the IC card is used for security management by the security management circuit 3
  • the chip MFA of the present embodiment is used for a block portion of a micro computer including a flash memory including a graphic control circuit, a handwriting input circuit, a memory control circuit, a security management circuit, and a communication control circuit. It is; also simply, c can also such as by using Chi Tsu Bed D graphic control circuit, a part of the handwritten input circuit
  • FIG. 77 is a functional block diagram showing an example of the internal configuration of the mobile communication device.
  • This mobile communication device consists of a CPU including flash memory, a CH codec, LCD controller / driver, and IC card connected to this CPU, and an RF / RF card connected to the CH codec and connected via a modem. It consists of an IF, a speech codec, and an LCD connected to the LCD controller / driver. An antenna is connected to the RF / IF, and a speaker and a microphone are connected to the speech codec.
  • control is performed by a program stored in a flash memory of a CPU, and when a signal is received, a signal from an antenna is received via RF / IF and modulated using a modem. Then, the modulated signal is converted into an audio signal using a CH codec and a speech codec, and can be output as audio from a speaker.
  • the voice signal from the microphone is converted using a speech codec and CH codec, demodulated using a modem, and then transmitted from the antenna via RF / IF. can do.
  • the chip MFA of the present embodiment is used for a block portion such as a CP controller and a CH codec, and an LCD controller / driver is provided.
  • the chip AD of the present embodiment can be used. It is also possible to simply use a chip MF for the CPU part.
  • the semiconductor device composed of the combination of the chip MF, the chip 1FA, the chip AD, the chip D, and the like includes a power acquisition system, a CD-ROM drive, a game device, a PDA, It can be widely applied to multimedia devices such as mobile communication devices, devices and systems such as information home appliances.
  • the number of external connection terminals is reduced by using a package structure in which two types of chips, a chip MF using a CPU and a flash memory, and a chip D using a DRAM, are packaged separately.
  • the mounting area can be reduced by integrating two types of chips into a single package, and the cost of semiconductor devices can be reduced: In addition, the cost of equipment and systems using this semiconductor device can be reduced. .
  • the chip MF and chip D each have a chip MFA or chip AD with a built-in logic circuit such as an ASIC, and if the DRAM is a synchronous DRAM, the external connection terminals must be shared. Therefore, the number of external connection terminals can be further reduced and cost can be reduced.
  • weight control is unnecessary by using a chip AD equipped with a DRAM and a logic circuit such as ASIC, so that external
  • the access operation from the logic circuit to the DRAM can be performed during the DRAM self-refresh period, the speed of data transfer between the external device and the chip AD can be increased.
  • the CPU itself controls the time and realizes one clock cycle, it is not necessary to exchange wait signals, so that high-speed access can be performed. Further, the speed of processing in equipment and systems using the semiconductor device can be increased.
  • chip AD On which DRAM and logic circuits are mounted
  • chip MF on which CPU and flash memory are mounted
  • chip MFA chip MFA
  • the processing timing itself can be controlled from the CPU, that is, the processing timing itself can be known in the CPU program. This makes it easy to create a semiconductor device program.
  • Using a general-purpose DRAM interface enables high-speed operation of chip AD with DRAM and logic circuits, chip MF and chip MFA with CPU and flash memory, etc. Can be directly connected.
  • the process load is reduced by dividing DRAM, logic, flash memory, etc. with different power levels into two or more chips, so that these are mixedly mounted on one chip. As a result, the manufacturing cost of the chip can be significantly reduced.
  • the chip mounting area is reduced by mounting two types of chips, a chip MF using a CPU and a flash memory, and a chip D using a DRAM, in an ultra-thin stacked package to form a single package. It can be significantly reduced.
  • the semiconductor device employs, from an MCVI approach, a first chip in which a flash memory is further formed on a microcomputer including a CPU, and further a logic circuit such as an AS IC, a DRAM, Furthermore, in a package structure in which a plurality of types of semiconductor chips, such as one or more second chips forming a logic circuit such as an AS IC, are housed in the same package so that signals can be input / output to each other, In terms of circuit, the number of external connection terminals is reduced by the functional block configuration. It is useful for semiconductor devices that can reduce the mounting area by making one type of chip into one package and can reduce costs. Furthermore, multimedia devices, information home appliances, and other devices and systems using this semiconductor device It can be widely applied to such applications.

Abstract

A semiconductor process for a laminated package that contains a semiconductor chip on which at least a CPU and flash memory are formed and one or more semiconductor chips on which at least DRAMs are formed. The process comprises the steps of: patterning conductive layers formed on the tape carriers so that leads may protrude into device holes on one side and connected to the through holes in tape carriers on the other side; sealing the semiconductor chips with a resin after the leads are bonded to the terminals of the chips for electrical connections; stacking the tape carriers with their through holes aligned and filling conductor in the through holes for electrical connections; and forming external terminals connected with the through holes on one end.

Description

明 細 書  Specification
半導体装置の製造方法 技術分野 Manufacturing method of semiconductor device
本発明は、 M C M (Multi Chip Module) 的なアプローチから複数種類の半導体 チップを互いに信号の入出力が可能となるように単一のパッケージに収納した半 導体装置の製造方法に関し、 特に、 C P U (Central Processing Unit)を含むマ イク口コンピュータ、 フラッシュメモリなどのブログラマブルな不揮発性メモリ、 D R A (Dynamic Random Access Memory) およひ A S I C (Application Spec ific Integrated Circuit)などのロジック L S Iをワンパッケージィヒした半導体 装置の製造に適用して有効な技術に関する。 背景技術  The present invention relates to a method for manufacturing a semiconductor device in which a plurality of types of semiconductor chips are housed in a single package so that signals can be input and output from each other from an MCM (Multi Chip Module) approach. One package includes a micro computer including a Central Processing Unit, a programmable nonvolatile memory such as a flash memory, and a logic LSI such as a Dynamic Random Access Memory (DRA) and an Application Specific Integrated Circuit (ASIC). Technology that is effective when applied to the manufacture of semiconductor devices. Background art
本発明者は、 システムオンチップに関する半導体装置において、 顧客ニーズの 高い D R AM . S I MM (Single In-l ine memory Module) のアプローチ、 フラ ッシュメモリ · D R AMのマイクロコンピュータオンチップの実現に当たり、 マ イク口コンピュータ、 フラッシュメモリ、 D R AM、 A S I Cなどを全てワンチ ップ化するのではなく、 M CM的なアプローチから複数種類の半導体チップを単 ーバッケージに収納して互いに信号の入出力を可能とする技術にっレ、て検討した。 以下は、 本発明者によって検討された技術であり、 その概要は次のとおりである: 近年、 マルチメディア、 情報通信などの先端技術分野においては、. マイクロコ ンピュータ、 フラッシュメモリ、 D R AM、 A S I Cなどをワンチップ上に形成 することによって、 データ転送速度の高速化、 省スベース (実装密度向上) 、 低 消費電力化などを図ろうとする動きが活発になっている。 しかしながら、 このよ うな多種類の L S Iをワンチップ上に形成しょうとすると、 半導体製造プロセス の負担が極めて大きくなる。  The inventor of the present invention has been working on a semiconductor device related to a system-on-chip in order to realize a DRAM on single-inline memory module (SMM) approach and a microcomputer on a flash memory / DRAM with high customer needs. Rather than making all computers, flash memory, DRAM, ASIC, etc. all in one chip, a technology that accommodates multiple types of semiconductor chips in a single package from a MCM approach and enables signal input and output to and from each other. I was thinking about it. The following are the technologies studied by the inventor, and their outlines are as follows: In recent years, in advanced technology fields such as multimedia, information communication, etc .. Microcomputer, flash memory, DRAM, ASIC By forming such devices on a single chip, there is a growing movement to increase the data transfer speed, save space (improve packaging density), and reduce power consumption. However, if such a large variety of LSIs are to be formed on a single chip, the burden on the semiconductor manufacturing process becomes extremely large.
以下、 その理由を本発明者が検討したマイクロコンピュータ、 フラッシュメモ リ、 D R AM、 A S I C混載プロセスに基づいて説明する。 この混載プロセスの 概略は次の通りである。 まず、 図 78に示すように、 半導体基板 1 00の主面に p型不純物 (ホウ素) をイオン打ち込みして p型ゥエル 1 01を形成した後、 p型ゥエル 1 01の表面 に LOCOS法でフィールド酸化膜 102を形成する。 図の左端に形成される素 子は DRAMのメモリセルを構成する MOS F ET、 その右隣りに形成される素 子はフラッシュメモリのメモリセルを構成する M〇 S FETとフラッシュメモリ の周辺回路の一部を構成する高耐圧 M〇S FET、 右端に形成される素子はマイ ク口コンピュータ、 AS I Cなどのロジック L S Iを構成する MO S F ETであ る。 なお、 実際の L S Iは、 主として nチャネル型 MOS FETと pチャネル型 MOS FETで構成されるが、 ここでは説明を簡単にするために、 nチャネル型 MO S F ETを形成する領域のみを図示する。 The reason will be described below based on the microcomputer, flash memory, DRAM, and ASIC mixed processes studied by the present inventors. The outline of this mixed loading process is as follows. First, as shown in FIG. 78, a p-type impurity (boron) is ion-implanted into the main surface of the semiconductor substrate 100 to form a p-type well 101, and then a field is formed on the surface of the p-type well 101 by the LOCOS method. An oxide film 102 is formed. The element formed at the left end of the figure is the MOS FET that constitutes the DRAM memory cell, and the element formed to the right is the M〇S FET that constitutes the memory cell of the flash memory and the peripheral circuits of the flash memory. The high-voltage M〇S FET that forms part of this element, and the element formed at the right end is the MOSFET that makes up a logic LSI such as a micro computer or AS IC. Note that an actual LSI is mainly composed of an n-channel MOS FET and a p-channel MOS FET, but for simplicity of description, only a region for forming an n-channel MOSFET is illustrated.
次に、 図 79に示すように、 フラッシュメモリのトンネル酸化膜 1 03を形成 する, このトンネル酸化膜 1 03の膜厚は、 8〜1 3 程度とする。  Next, as shown in FIG. 79, a tunnel oxide film 103 of the flash memory is formed. The thickness of the tunnel oxide film 103 is set to about 8 to 13.
次に、 図 80に示すように、 半導体基板 1 00上に C VD法で堆積した多結晶 シリコン膜をパターユングしてフラッシュメモリのフローティングゲート 104 (の一部) を形成した後、 図 8 1に示すように、 その上部に酸化シリコン膜、 窒 化シリコン膜および酸化シリコン膜を積層した膜厚 1 0〜30 nm程度の第 2ゲ 一ト絶縁膜 (ONO膜) 1 05を形成する。  Next, as shown in FIG. 80, a polycrystalline silicon film deposited by the CVD method is patterned on the semiconductor substrate 100 to form (part of) the floating gate 104 of the flash memory. As shown in FIG. 1, a second gate insulating film (ONO film) 105 having a thickness of about 10 to 30 nm formed by stacking a silicon oxide film, a silicon nitride film and a silicon oxide film is formed thereon.
次に、 図 82に示すように、 フラッシュメモリの周辺回路領域に高耐圧 MOS F ETのゲート酸化膜 1 06を形成する。 このゲート酸化膜 1 06は、 耐圧を高 くするために、 他の MO S F E Tのゲート酸化膜よりも厚い膜厚 (1 0〜30 n m) で形成する。  Next, as shown in FIG. 82, a gate oxide film 106 of a high withstand voltage MOSFET is formed in the peripheral circuit region of the flash memory. The gate oxide film 106 is formed with a thickness (10 to 30 nm) larger than the gate oxide films of other MOS FETs in order to increase the breakdown voltage.
次に、 図 83に示すように、 ロジック LS Iを構成する MOS FETのゲート 酸化膜 1 07と DRAMのメモリセルを構成する MOS FETのゲート酸化膜 1 30とを形成する。ゲ一ト酸化膜 1 07の膜厚は 4〜 1 0 nm程度とし、ゲート酸 化膜 1 30の膜厚は 8〜 1 5 nm程度とする。  Next, as shown in FIG. 83, a gate oxide film 107 of the MOS FET forming the logic LSI and a gate oxide film 130 of the MOS FET forming the memory cell of the DRAM are formed. The thickness of the gate oxide film 107 is about 4 to 10 nm, and the thickness of the gate oxide film 130 is about 8 to 15 nm.
次に、 図 84に示すように、 半導体基板 1 00上に C VD法で堆積した多結晶 シリコン膜をバターニングして、 DRAMのメモリセルのゲ一ト電極(ヮ一ド線) 1 08、 フラッシュメモリのコント口一ルゲ一ト 1 09、 高耐圧 M〇 S F E Tの ゲート電極 1 1 0、 ロジック L S Iを構成する MO S F E Tのゲ一ト電極 1 1 1 を同時に形成した後、 図 85に示すように、 フラッシュメモリの (部分的に形成 された) フローティングゲート 1 04をパターニングしてフローティングゲート 1 04を形成する。 Next, as shown in FIG. 84, the polycrystalline silicon film deposited by the CVD method on the semiconductor substrate 100 is patterned to form a gate electrode (gate line) 108 of a DRAM memory cell. Flash memory controller gate 109, High voltage M〇 SFET gate electrode 110, MO SFET gate electrode 1 1 1 constituting logic LSI Then, the (partially formed) floating gate 104 of the flash memory is patterned to form the floating gate 104, as shown in FIG.
次に、 図 86に示すように、 フラッシュメモリのメモリセル領域の一部に n型 不純物 (リンおよびヒ素) をイオン打ち込みしてフラッシュメモリの rT型半導体 領域 1 1 2を形成した後、 図 8 7に示すように、 フラッシュメモリのメモリセル 領域の一部と周辺回路領域およびロジック L S I形成領域に n型不純物 (リンお よびヒ素) をイオン打ち込みして、 フラッシュメモリの n—型半導体領域 1 13、 1 1 3、 高耐圧 MO S F ETの n—型半導体領域 1 1 3、 1 1 3、 ロジック LS I を構成する M〇S FETの n—型半導体領域 1 1 3、 1 1 3を同時に形成する 次に、 図 88に示すように、 DRAMのメモリセルのゲート電極 (ワード線) 1 08、 フラッシュメモリのコント口一ルゲート 1 09、 高而ォ圧 MO S F E Tの ゲ一ト電極 1 1 0、 ロジック L S Iを構成する M〇 S F E Tのゲート電極 1 1 1 の側壁にサイ ドウォ一ルスぺーサ 1 1 4を形成する。  Next, as shown in FIG. 86, n-type impurities (phosphorus and arsenic) are ion-implanted into a part of the memory cell region of the flash memory to form an rT type semiconductor region 112 of the flash memory. As shown in Fig. 7, n-type impurities (phosphorus and arsenic) are ion-implanted into a part of the memory cell area of the flash memory, the peripheral circuit area, and the logic LSI formation area, and the n-type semiconductor area of the flash memory is removed. , 1 13, n-type semiconductor regions 1 13, 1 13 of the high-voltage MOS FET and n-type semiconductor regions 1 1 3, 1 1 3 of the M〇S FET constituting the logic LSI are formed simultaneously Next, as shown in Fig. 88, the gate electrode (word line) 108 of the DRAM memory cell, the control gate 109 of the flash memory, the gate electrode 110 of the high-voltage MOS FET, The gate voltage of the M〇 SFET that constitutes the logic LSI A side wall spacer 114 is formed on the side wall of the pole 111.
次に、 図 89に示すように、 フラッシュメモリのメモリセル領域の一部と周辺 回路領域およびロジック L S I形成領域に n型不純物 (リンまたはヒ素) をィォ ン打ち込みして、 フラッシュメモリの n+型半導体領域 1 1 5、 高耐圧 MOS FE Tの n—型半導体領域 1 1 5、 1 1 5、 ロジック L S Iを構成する- VIO S F ETの n—型半導体領域 1 1 5、 1 1 5を同時に形成することにより、 フラッシュメモリ のソース領域、 ドレイン領域の一方と高耐圧 MO S F ETのソース領域、 ドレイ ン領域とロジック L S Iを構成する M〇 S F E Tのソース領域、 ドレイン領域を L DD (Lightly Doped Drain)構造にする., Next, as shown in FIG. 89, n-type impurities (phosphorous or arsenic) are implanted into a part of the memory cell area of the flash memory, the peripheral circuit area, and the logic LSI formation area, and the n + -Type semiconductor region 1 15, n-type semiconductor region 1 15, 1 15 of high voltage MOS FET, and n-type semiconductor region 1 15 1 1 5 of VIOSFET constituting logic LSI By forming one of the source and drain regions of the flash memory and the source and drain regions of the high-voltage MOS FET, the drain region and the M〇SFET that constitutes the logic LSI, the LDD (Lightly Doped Drain) ) Structure,
次に、 図 90に示すように、 半導体基板 1 00上に C VD法で堆積した酸化シ リコン膜 1 1 6をエッチングして D R AMのゲート電極 (ヮ一ド線) の両側に接 続孔を形成し、フラッシュメモリの n÷型半導体領域 1 1 2の上部に接続孔を形成 した後、 これらの接続孔の內部に多結晶シリコン膜のプラグ 1 1 7を形成する DRAMのゲート電極の両側には、 この多結晶シリコン膜から拡散した不純物に よって n型半導体領域 1 1 8が形成される。 その後、 酸化シリコン膜 1 1 6上に CVD法で堆積した多結晶シリコン膜をパターニングして DRAMのビット線 B Lとフラッシュメモリのビット線 B Lを形成する。 Next, as shown in FIG. 90, the silicon oxide film 116 deposited on the semiconductor substrate 100 by the CVD method is etched to form connection holes on both sides of the DRAM gate electrode (lead wire). forming a, after forming the n ÷ type semiconductor region 1 1 2 of the upper connection hole of the flash memory, both sides of the gate electrode of the DRAM forming a plug 1 1 7 of the polycrystalline silicon film to內部these connecting holes Then, an n- type semiconductor region 118 is formed by the impurity diffused from the polycrystalline silicon film. After that, the polycrystalline silicon film deposited by CVD on the silicon oxide film L and the bit line BL of the flash memory are formed.
次に、 図 9 1に示すように、 半導体基板 1 00上に CVD法で酸化シリコン膜 1 1 9を堆積した後、 酸化シリコン膜 1 1 9上に堆積した多結晶シリコン膜をパ ターニングして DRAMのキャパシタの下部電極 1 20を形成する。  Next, as shown in FIG. 91, after depositing a silicon oxide film 119 on the semiconductor substrate 100 by a CVD method, the polycrystalline silicon film deposited on the silicon oxide film 119 is patterned. The lower electrode 120 of the DRAM capacitor is formed.
次に、図 92に示すように、半導体基板 100上に堆積した酸化タンタル膜(ま たは窒化シリコン膜) と多結晶シリコン膜とをパターニングして DRAMのキヤ パシタの容量絶縁膜 1 2 1と上部電極 1 22とを形成した後、 図 93に示すよう に、 半導体基板 1 00上に CVD法で酸化シリコン膜 1 23を堆積し、 酸化シリ コン膜 1 23上に堆積した A 1膜をパターエングして第 1層目のメタル配線 12 4を形成する。 その後、 図 94に示すように、 半導体基板 100上に C VD法で 酸化シリコン膜 1 25を堆積した後、 酸化シリコン膜 1 25上に堆積した A 1膜 をパターニングして第 2層目のメタル配線 1 26を形成する。  Next, as shown in FIG. 92, the tantalum oxide film (or silicon nitride film) and the polycrystalline silicon film deposited on the semiconductor substrate 100 are patterned to form a capacitor insulating film 1221 of a DRAM capacitor. After forming the upper electrode 122, as shown in FIG. 93, a silicon oxide film 123 is deposited on the semiconductor substrate 100 by the CVD method, and the A1 film deposited on the silicon oxide film 123 is patterned. As a result, a first-layer metal wiring 124 is formed. Then, as shown in FIG. 94, a silicon oxide film 125 is deposited on the semiconductor substrate 100 by the CVD method, and the A 1 film deposited on the silicon oxide film 125 is patterned to form a second metal layer. The wiring 126 is formed.
以上がマイクロコンピュータ、 フラッシュメモリ、 DRAM、 AS I C混載プ 口セスの概略である。  The above is the outline of the microcomputer, flash memory, DRAM, and ASIC mixed process.
本発明者の検討によれば、 上記の混載プロセスには次のような問題がある。 According to the study of the present inventor, the above mixed process has the following problems.
(1) ロジック部の高速化を図るためには MOS FETのゲート長を短くして、 ゲート酸化膜の膜厚を薄くする必要がある。 他方、 D RA-VI部の MO S F ETの ゲート酸化膜は、 耐圧を考慮して、 ロジック部の MOS FETのゲート酸化膜よ りもある程度厚くする必要がある。 さらに、 高耐圧が印加されるフラッシュメモ リの高耐圧 MO S F E Tのゲ一ト酸化膜は、 十分な耐圧を確保するためにさらに 膜厚を厚くする必要がある。 すなわち、 DRAM、 ロジック、 フラッシュメモリ を混載する場合は、 要求される電源レベルに応じて異なる膜厚のゲート酸化膜が 必要となるので、 工程数、 マスク数が大幅に増加する (1) To increase the logic speed, it is necessary to shorten the gate length of the MOS FET and reduce the thickness of the gate oxide film. On the other hand, the gate oxide of the MOS FET in the DRA-VI part needs to be somewhat thicker than the gate oxide of the MOS FET in the logic part in consideration of the withstand voltage. Furthermore, the gate oxide film of the high breakdown voltage MOS FET of the flash memory to which a high breakdown voltage is applied needs to be further thickened in order to secure a sufficient breakdown voltage. In other words, when DRAM, logic, and flash memory are mixed, gate oxide films with different thicknesses are required depending on the required power supply level, so the number of processes and the number of masks increase significantly.
(2) DRAMを 1 トランジスタ + 1キヤバシタで構成すると、 キャパシタ形成 時に高温熱処理 (酸化タンタル膜を安定化するための熱処理、 あるいは窒化シリ コン膜を形成するための高温窒化処理) が入るので、 ロジック部のゲート長を多 少長めに設定する必要がある。 しかし、 ロジック部のゲ一卜長を長くすると、 口 ジック部の高速性が犠牲になってしまう。  (2) If a DRAM is composed of one transistor and one capacitor, high-temperature heat treatment (heat treatment for stabilizing a tantalum oxide film or high-temperature nitridation treatment for forming a silicon nitride film) is performed when forming a capacitor. It is necessary to set the gate length of the part slightly longer. However, increasing the gate length of the logic section sacrifices the high-speed performance of the mouthpiece.
( 3 ) 半導体チップ上における D R AM部の標高がロジック部よりも高く、 両者 間に段差が生じるため、 配線形成に悪影響を及ぼす。 特に、 積層型キャパシタ(S tacked Capacitor)構造を採用する D R AMの場合はこの傾向が顕著である,、 このように、 D R AV1、 ロジック、 フラッシュメモリのそれぞれの性能を共に 維持しながらワンチッブ化を図ろうとすると、 工程数、 マスク数が大幅に増加す る力、 あるいはワンチップ化に適した混载プロセスを新たに開発しなければなら ず、 いずれの場合も製造コス トが大幅に高くなる。 (3) The elevation of the DRAM section on the semiconductor chip is higher than that of the logic section. Since a step is generated between them, wiring formation is adversely affected. In particular, this tendency is remarkable in the case of DRAMs that employ a stacked capacitor structure. In this way, a one-chip configuration is maintained while maintaining the performance of both the DRAV1, the logic, and the flash memory. Attempting to do so would require a drastic increase in the number of steps and masks, or a new mixed process suitable for one-chip integration, in each case significantly increasing manufacturing costs.
また、 前記のような製造プロセス的なコス ト分析に加えて、 機能ブロック構成 による回路的にも、 C P Uを含むマイク口コンピュータシステムにはフラッシュ メモリと D R AMとの両方を搭載する要求が強く、 組み込み機器への実装性を考 えた場合に、 フラッシュメモリと D R AMとの 2種類の半導体チップをワンパッ ケージ化することは必須である。 そこで、 本発明者は、 互いの半導体チップの共 通信号を共通の外部接続端子に割り当てることで、 外部接続端子数の低減、 複数 種類の半導体チップのワンパッケージ化による実装面積の縮小を図り、 回路的に もマイク口コンピュータシステムのコストダウンが可能となることを考えついた。 本発明の一つの目的は、 C P Uおよびフラッシュメモリと D R AMとの 2種類 の半導体チップをヮンパッケージ化したパッケージ構造において、 機能プロック 構成による回路的にも、 外部接続端子数の低減、 2種類の半導体チップのワンバ ッケージ化:こよる実装面積の縮小を図り、 マイクロコンピュータシステムのコス トダウンを可能とすることができる半導体装置を提供することにある。  Further, in addition to the cost analysis in the manufacturing process as described above, there is a strong demand for a microphone-based computer system including a CPU to be equipped with both a flash memory and a DRAM in terms of a circuit based on a functional block configuration. Considering the ease of mounting on embedded devices, it is essential to integrate two types of semiconductor chips, flash memory and DRAM, into one package. Therefore, the present inventor has attempted to reduce the number of external connection terminals by assigning the common communication signal of each semiconductor chip to a common external connection terminal, and to reduce the mounting area by integrating a plurality of types of semiconductor chips into one package. I thought that it would be possible to reduce the cost of the microphone computer system in terms of circuitry. One object of the present invention is to reduce the number of external connection terminals and reduce the number of external connection terminals by using a function block configuration in a package structure in which two types of semiconductor chips, a CPU and a flash memory and a DRAM, are packaged separately. One-package semiconductor chip: An object of the present invention is to provide a semiconductor device capable of reducing the mounting area and reducing the cost of a microcomputer system.
さらに、 本発明の一つの目的は、 それぞれの半導体チップに A S I Cなどの口 ジック回路を内蔵する場合、 D R A Mをシンクロナス D R A Mとする場合には、 さらに外部接続端子を共通にすることができるので、 より一層、 外部接続端子数 を低減してコストダウンを図ることができる半導体装置を提供することにある さらに、 本発明の一^ 3の目的は、 上記のような半導体装置を安価に提供するこ とにある。  Further, one object of the present invention is to provide a common external connection terminal when each semiconductor chip has a built-in logic circuit such as an ASIC or when a DRAM is a synchronous DRAM. It is still another object of the present invention to provide a semiconductor device capable of reducing the number of external connection terminals and reducing the cost. Further, a third object of the present invention is to provide the above-described semiconductor device at a low cost. And there.
また、 前記のようなマイクロコンピュータシステムにおいて、 例えば C P Uと フラッシュメモリを搭載した、 いわゆるフラッシュメモリ搭載マイクロコンピュ ータと称される半導体チップと、 D R AMと A S I Cなどのロジック回路とを搭 載した、 いわゆる D R A Mオンチップロジックと称される半導体チップとの 2種 類の半導体チップを考えた場合に、 フラッシュメモリ搭載マイク口コンピュータ と D R A [オンチップロジックとの間の動作対策が必須である。 すなわち、 フラ ッシュメモリ搭載マイク口コンピュータの C P Uから D R AMオンチップロジッ クの D R AMに対するァクセス動作と、 D R AMオンチップロジックの内部にお けるロジック回路から D R AMに対するァクセス動作とにおけるデータ転送速度 の対策が要求される。 Further, in the microcomputer system as described above, for example, a semiconductor chip called a microcomputer equipped with a flash memory equipped with a CPU and a flash memory, and a logic circuit such as a DRAM and an ASIC are mounted. Two types of semiconductor chips called so-called DRAM on-chip logic When considering semiconductor chips of a kind, it is essential to take countermeasures between the microphone-computer with flash memory and the DRA [on-chip logic]. In other words, measures are taken for the data transfer speed between the CPU operation of the computer with the flash memory-equipped microphone and the access operation to the DRAM of the DRAM on-chip logic and the access operation to the DRAM from the logic circuit inside the DRAM on-chip logic. Is required.
例えば、 前記のようなフラッシュメモリ搭载マイクロコンピュータと D R AM オンチップロジックとの半導体チップ同士を高速でつなげたいというときには、 D R AMの直結ィンタフェースを使うことで高速でつなぐことができるが、 もし D R A Mオンチップロジックのロジック回路が D R A -Mをアクセスしたいという ときには、 第 1の方法としてロジック回路が動作をしているときにウェイ ト信号 を C Pじに返す方法がある。 この方法では、 フラッシュメモリ搭載マイクロコン ビュータと D R AMオンチップ口ジックとの間を非同期のメモリとして扱わなけ ればならないので、 1クロックサイクルの転送ができず、 すなわちウェイ ト信号 を見ている時間がとれないので 2ク口ックサイクルのデータ転送となる 3 また、 1クロックサイクルを実現することができる第 2の方法として、 オンチ ップロジック自身をフラッシュメモリ搭載マイクロコンピュータにバスァービト レーシヨンする方法がある。 この方法では、 D R AMオンチップロジックのロジ ック回路が C P Uに対してバスの開放を要求するリクエス卜信号を出力し、 ロジ ック回路にバスを開放している期間には C P Uは何もすることができないので、 ァービトレーションのオーバーへッドが大きくなることと、 C P U自身が時間的 なコント口ールができないという不具合が生じる。 For example, if you want to connect the above-mentioned microcomputer with flash memory and the semiconductor chip of the DRAM on-chip logic at high speed, you can use the direct connection interface of DRAM to connect at high speed. When an on-chip logic circuit wants to access DRA-M, the first method is to return a wait signal to the CP while the logic circuit is operating. In this method, since the memory between the microcomputer with flash memory and the DRAM on-chip mouth must be treated as an asynchronous memory, one clock cycle cannot be transferred, that is, the time during which the wait signal is being viewed. 3 also becomes data transfer 2 Qu port Kkusaikuru and does not take, as the second method can be realized by one clock cycle, there is a method of Basuabito Reshiyon the deaf Ppurojikku itself into the flash memory mounted microcomputer. In this method, the logic circuit of the DRAM on-chip logic outputs a request signal requesting the CPU to open the bus, and the CPU does nothing while the bus is open to the logic circuit. In this case, the overhead of the arbitration becomes large and the CPU itself cannot perform time control.
そこで、 本発明者は、 フラッシュメモリ搭載マイクロコンピュータの C P U自 身が時間をコントロールした方が好ましいということに着目し、 フラッシュメモ リ搭載マイクロコンピュータの C P Uから見た D R AMのセルフリフレッシュ期 間を有効に利用し、 D R AMのセルフリフレッシュ動作を可能にすると共に、 こ のセルフリフレッシュ期間に、 D R AMオンチップロジックの内部におけるロジ ック回路から D R AMに対するァクセス動作を可能とすることで、 フラッシュメ モリ搭載マイクロコンピュータと D R AMオンチップロジックとの間のデータ転 送の高速化が実現できることを考えついた。 Therefore, the present inventor focused on the fact that it is preferable that the CPU of the microcomputer with the flash memory control the time itself, and effective the self-refresh period of the DRAM viewed from the CPU of the microcomputer with the flash memory. In addition to enabling the DRAM self-refresh operation during this self-refresh period, the logic circuit inside the DRAM Data transfer between on-board microcomputer and DRAM on-chip logic We came up with the idea that high-speed transmission can be realized.
本発明の一つの目的は、 DRAMと AS I Cなどのロジック回路とが搭載され た半導体チップにおいて、 ウェイ ト制御を不要にして外部から見た DRAMのセ ルフリフレッシュ期間を有効に利用し、 このセルフリフレッシュ期間にロジック 回路から D R AMに対するァクセス動作を可能にして、 外部と半導体チップとの 間のデータ転送の高速化を実現することができる半導体装置を提供することにあ る。  One object of the present invention is to provide a semiconductor chip on which a DRAM and a logic circuit such as an AS IC are mounted, by effectively utilizing a self-refresh period of the DRAM viewed from the outside by eliminating the need for wait control. An object of the present invention is to provide a semiconductor device which enables a logic circuit to perform an access operation to a DRAM during a refresh period, thereby realizing high-speed data transfer between an external device and a semiconductor chip.
また、 DRAMとロジック回路とが搭載された半導体チップと、 CPUとフラ ッシュメモリとが搭載された半導体チップとの 2種類のチップをワンパッケージ 化したパッケージ構造においても、 ウェイ ト制御を不要にして C PUから見た D RA Iのセルフリフレッシュ期間にロジック回路から DRAMに対するアクセス 動作を可能にして、 半導体チップ間のデータ転送の高速化を実現することができ る半導体装置を提供することにある。  Also, in a package structure in which two types of chips, a semiconductor chip equipped with DRAM and a logic circuit, and a semiconductor chip equipped with a CPU and flash memory, are integrated into one package, weight control becomes unnecessary and C An object of the present invention is to provide a semiconductor device that enables a logic circuit to perform an access operation to a DRAM during a DRAM self-refresh period as viewed from a PU, thereby realizing high-speed data transfer between semiconductor chips.
さらに、 ウエイ ト信号のやり取りをするウェイ ト制御が不要となり、 処理のタ イミング自身を CPUからコント口ールすることができるので、 プログラム作成 を容易にすることができる半導体装置を提供することにある。  In addition, there is no need for weight control for weight signal exchange, and the timing of processing itself can be controlled from the CPU, thereby providing a semiconductor device that can facilitate program creation. is there.
また、 汎用の DRA-VIインタフェースを使用することにより、 DRAMとロジ ック回路とが搭載された半導体チップと、 C Pじとフラッシュメモリとが搭載さ れた半導体チップとを高速動作可能に直結することができる半導体装置を提供す ることにめる。  In addition, by using a general-purpose DRA-VI interface, a semiconductor chip equipped with DRAM and a logic circuit is directly connected to a semiconductor chip equipped with CP and flash memory for high-speed operation. It is decided to provide a semiconductor device capable of performing such operations.
本発明の前記ならびにその他の目的と新規な特徴は、 本明細書の記述および添 付図面から明らかになるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. Disclosure of the invention
本願において開示される発明のうち、 代表的なものの概要を簡単に説明すれば. 以下のとおりである。  The following is a brief description of an outline of typical inventions disclosed in the present application.
すなわち、 本発明の半導体装置の製造方法は、  That is, the method for manufacturing a semiconductor device according to the present invention includes:
(a ) 複数のテープキヤリァのそれぞれにデバイスホールとスルーホールとを形 成した後、 前記テープキヤリアの一面に形成した導電層をパターユングすること により、 一端が前記デバイスホール内に突出し、 他端が前記スルーホールに接続 されるリードを形成する工程、 (a) After forming device holes and through holes in each of the plurality of tape carriers, patterning the conductive layer formed on one surface of the tape carrier. Forming a lead having one end protruding into the device hole and the other end connected to the through hole;
( b ) 前記複数のテープキヤリァのそれぞれのデバイスホールに配置した半導体 チップの接続端子に前記リードをボンディングして両者を電気的に接続した後、 前記半導体チップを樹脂封止することにより、 複数のテープキャリアを形成する 工程、  (b) After bonding the leads to the connection terminals of the semiconductor chip arranged in the device holes of the plurality of tape carriers and electrically connecting them, a plurality of tapes are formed by resin-sealing the semiconductor chip. The process of forming a carrier,
( c ) 前記複数のテープキャリアを、 前記スルーホールが互いに重なり合うよう に上下方向に積層した後、 前記スルーホールの内部に導体層を形成して前記スル 一ホール間を電気的に接続することにより、 積層型 T C Pを形成する工程、  (c) by stacking the plurality of tape carriers in a vertical direction such that the through holes overlap each other, and then forming a conductor layer inside the through holes and electrically connecting the through holes. The process of forming a stacked TCP,
( d ) 前記スルーホールの一端部に前記積層型 T C Pの外部接続端子を形成する 工程を含み、 前記複数のテープキヤリァに搭載された複数の半導体チップに共通 の接続端子を、 前記複数のテープキヤリァの同一箇所に形成された前記スルーホ ールを通じて同一の外部接続端子に引き出すようにしたものである。  (d) forming an external connection terminal of the laminated TCP at one end of the through hole, wherein a connection terminal common to a plurality of semiconductor chips mounted on the plurality of tape carriers is the same as the plurality of tape carriers. This is drawn out to the same external connection terminal through the through hole formed at the location.
また、 本発明の半導体装置の製造方法は、 前記半導体チップが、 少なくとも c P Uとフラッシュメモリとが形成された半導体チップと、 少なくとも D R AMが 形成された一または複数の半導体チップとを含んでいる。  Further, in the method for manufacturing a semiconductor device according to the present invention, the semiconductor chip includes at least a semiconductor chip on which a CPU and a flash memory are formed, and at least one or more semiconductor chips on which a DRAM is formed. .
本発明の前記ならびにその他の目的と新規な特徴は、 本明細書の記述および添 付図面から明らかになるであろう。 図面の簡単な説明  The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1〜図 6は本発明の実施の形態である半導体装置の構成例を示す概略構成図、 図 7〜図 1 4は本発明の実施の形態である半導体装置を構成する半導体チップの 内部構成例を示す機能ブロック図と端子機能例を示す説明図、 図 1 5〜図 1 8は 半導体チップの端子機能例の一覧を示す説明図、 図 1 9、 図 2 0は半導体チップ の接続例を示す接続図、 図 2 1は半導体チップの内部機能例を概略的に示す概略 構成図、 図 2 2は D R AMアクセス制御部の詳細例を示す構成図、 図 2 3は内部 制御信号生成回路による動作モードの遷移状態例を示す説明図、 図 2 4は D R A Mに対する D R AMアクセス制御部の制御例を示す動作タイミング図、 図 2 5は 本発明の実施の形態であるバッケージの全体斜視図、 図 2 6はこのパッケージの 断面図、 図 2 7、 図 2 8はテープキヤリァの一面に形成されたリ一ドのパターン を示す平面図、 図 2 9〜図 3 7は本発明の実施の形態である半導体装置の製造方 法を示す断面図、 図 3 8〜図 6 6はこの半導体装置の他の製造方法を示す断面図、 図 6 7〜図 6 9はテープキャリアの一面に形成されたリードのパターンを示す平 面図、 図 7 0〜図 7 2はこの半導体装置の他の実施の形態を示す断面図、 図 7 3 〜図 7 7は本実施の形態の半導体装置を用いたシステム構成例を示す機能プロッ ク図、 図 7 8〜図 9 4は本発明者が検討したマイクロコンピュータ、 フラッシュ メモリ、 D R AM、 A S I C混載プロセスを示す断面図である。 発明を実施するための最良の形態 FIGS. 1 to 6 are schematic configuration diagrams showing a configuration example of a semiconductor device according to an embodiment of the present invention, and FIGS. 7 to 14 are internal configurations of a semiconductor chip constituting a semiconductor device according to an embodiment of the present invention. Functional block diagrams showing examples and explanatory diagrams showing examples of terminal functions, FIGS. 15 to 18 show explanatory diagrams showing examples of terminal functions of semiconductor chips, and FIGS. 19 and 20 show examples of connection of semiconductor chips. FIG. 21 is a schematic configuration diagram schematically showing an example of an internal function of a semiconductor chip, FIG. 22 is a configuration diagram showing a detailed example of a DRAM access control unit, and FIG. 23 is an internal control signal generation circuit FIG. 24 is an explanatory diagram showing an example of a transition state of an operation mode. FIG. 24 is an operation timing diagram showing a control example of a DRAM access control unit for a DRAM. FIG. 25 is an overall perspective view of a package according to an embodiment of the present invention. 2 6 of this package Sectional views, FIGS. 27 and 28 are plan views showing a lead pattern formed on one surface of the tape carrier, and FIGS. 29 to 37 show a method of manufacturing a semiconductor device according to an embodiment of the present invention. 38 to 66 are cross-sectional views showing another method of manufacturing this semiconductor device, and FIGS. 67 to 69 are plan views showing patterns of leads formed on one surface of a tape carrier. FIGS. 70 to 72 are cross-sectional views showing another embodiment of the semiconductor device, and FIGS. 73 to 77 are functional block diagrams showing an example of a system configuration using the semiconductor device of the present embodiment. FIG. 78 to FIG. 94 are cross-sectional views showing the microcomputer, flash memory, DRAM, and ASIC mixed processes studied by the present inventors. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面に基づいて詳細に説明する。 なお、 実施の形 態を説明するための全図において同一機能を有するものは同一の符号を付し、 そ の繰り返しの説明は省略する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In all the drawings for describing the embodiments, those having the same functions are denoted by the same reference numerals, and the description thereof will not be repeated.
まず、 図 1〜図 6を用いて本実施の形態の半導体装置の構成例を説明する。 本実施の形態の半導体装置は、 例えば複数種類の半導体チップを互いに信号の 入出力が可能に接続した積層構造の L S Iパッケージであり、 その一構成例は図 1に示すように、 C Pじ、 メモリおよび周辺回路などを含むマイクロコンピュー タ Mとフラッシュメモリ Fとが搭載された、 いわゆるフラッシュメモリ搭載マイ クロコンピュータと称されるチップ M F (第 1の半導体チップ) と、 D R AMD と A S I Cなどのロジック回路 Aとが搭載された、 いわゆる D R AMオンチップ ロジックと称されるチップ A D (第 2の半導体チップ) とからなり、 それぞれの チップ M Fとチッブ A Dとの接続端子はパッケージの内部においてバスを介して 相互に接続されていると共に、 外部との接続を可能とする外部接続端子に接続さ れている。  First, a configuration example of the semiconductor device of the present embodiment will be described with reference to FIGS. The semiconductor device according to the present embodiment is, for example, an LSI package having a stacked structure in which a plurality of types of semiconductor chips are connected to each other so that signals can be input and output. A chip MF (first semiconductor chip) called a microcomputer equipped with a flash memory, which is equipped with a microcomputer M including peripheral circuits and peripherals, and a flash memory F, and logic such as DR AMD and ASIC It consists of a chip AD (second semiconductor chip) called a so-called DRAM on-chip logic on which the circuit A is mounted. The connection terminal between each chip MF and chip AD is connected via a bus inside the package. Connected to each other and to an external connection terminal that enables connection with the outside.
ここで、 フラッシュメモリ Fとは、 L S Iメモリの一つでブログラマブルな不 揮発性メモリをいい、 メモリセルに高電圧を印加することによって書込みあるい は消去を行うメモリである また、 D R AMDとは、 L S Iメモリの一つでデ一 タの内容を保持するために繰り返しデータ再生用の制御 (リフレッシュ) 信号を 供給する必要があるメモリである。 さらに、 A S I Cとは、 特定用途向け I Cま たは専用 I Cをレ、い、 大容量メモリ LS Iやマイクロプロセッサ L S Iのように 一般市場で販売される汎用 L S I とは異なり、 特定機器用に開発し、 販売する L S Iである :Here, the flash memory F is one of the LSI memories, which is a programmable nonvolatile memory, and is a memory that performs writing or erasing by applying a high voltage to the memory cells. An LSI memory is a memory in which it is necessary to supply a control (refresh) signal for repetitive data reproduction in order to retain the contents of data in one of the LSI memories. In addition, ASICs are application-specific ICs. Other Les dedicated IC, have Unlike a general-purpose LSI that are sold on the open market as a large-capacity memory LS I and micro-processor LSI, there is an LSI that was developed for the specific equipment, to sell:)
また、 他の構成例としては、 図 2に示すように、 CPU、 メモリおよび周辺回 路などを含むマイク口コンピュータ Mとフラッシュメモリ Fとが搭載されたチッ ブ MF (第 1の半導体チップ) と、 DR AMDのみが搭載されたチップ D (第 2 の半導体チップ) とからなり、 図 1の構成例に対して、 第 2の半導体チップから AS I Cなどのロジック回路 Aを取り除いた構成となっている。  As another configuration example, as shown in FIG. 2, a chip MF (first semiconductor chip) on which a microphone computer M including a CPU, a memory, a peripheral circuit, and the like, and a flash memory F are mounted. , DR A chip D (second semiconductor chip) on which only AMD is mounted. In the configuration example of Fig. 1, the logic circuit A such as AS IC is removed from the second semiconductor chip. I have.
さらに、 他の構成例としては、 図 3に示すように、 CPU、 メモリおよび周辺 回路などを含むマイク口コンピュータ Mとフラッシュメモリ Fとロジック回路 A とが搭載された、 レ、わゆるフラッシュメモリ搭載オンチップロジックマイクロコ ンピュータと称されるチップ MF A (第 1の半導体チップ) と、 DRAMDのみ が搭載されたチップ D (第 2の半導体チップ) とからなり、 図 2の構成例に対し て、 第 1の半導体チップに AS I Cなどのロジック回路 Aが搭載された構成とな つている。  Further, as another configuration example, as shown in FIG. 3, a microphone memory computer M including a CPU, a memory and peripheral circuits, a flash memory F, and a logic circuit A are mounted. It consists of a chip MFA (first semiconductor chip) called an on-chip logic microcomputer and a chip D (second semiconductor chip) on which only DRAMD is mounted. The configuration is such that a logic circuit A such as an AS IC is mounted on the first semiconductor chip.
その他にも、 例えば前記図 1の変形例として、 図 4に示すようにチップ MF A とチップ ADとから構成する場合、 前記図 2の変形例として、 図 5に示すように 1つのチップ MFと複数のチップ Dとから構成する場合、 前記図 3の変形例とし て、 図 6に示すようにチップ M F Aと複数のチップ Dとから構成する場合などの ような構成例とすることも可能である。  In addition, for example, as a modified example of FIG. 1, when a chip is configured by a chip MF A and a chip AD as shown in FIG. 4, as a modified example of FIG. 2, one chip MF as shown in FIG. In the case of a configuration including a plurality of chips D, a configuration example such as a configuration including a chip MFA and a plurality of chips D as shown in FIG. .
以上のような、 チップ MF+チップ AD、 チップ MF+チップ D、 チップ MF A丄チップ D、 チップ MF A +チップ AD、 チップ MF +チップ D (拡張) 、 チ ップ MFA +チップ D (拡張) による半導体装置の構成例において、 それぞれの チップに搭載されるマイクロコンピュータ M、 フラッシュメモリ F、 DRAMD, ロジック回路 Aなどはチップの構成が異なっても同様の機能プロックから構成さ れている:.  Semiconductors with chip MF + chip AD, chip MF + chip D, chip MF A 丄 chip D, chip MF A + chip AD, chip MF + chip D (extended), chip MFA + chip D (extended) In the example of the device configuration, the microcomputer M, flash memory F, DRAMD, and logic circuit A mounted on each chip are composed of the same functional blocks even if the chip configuration is different:
また、 チップ AD、 チップ Dは汎用の DRAMインタフェース仕様によりチッ プ MF、 チップ M FAに直結しやすくなつており、 DR AMDはそれぞれの半導 体装置において拡張メモリとして使用される。 さらに、 チップ ADの AS I Cな どのロジック回路 Aは、 チッブ M F、 チッブ M F Aの CPUによるアクセス制御 と独立に、 チッブ ADの内部において D R AMDに対するァクセス制御が可能と なっている。 The chip AD and the chip D are easily connected directly to the chip MF and the chip MFA by the general-purpose DRAM interface specification, and the DR AMD is used as an extended memory in each semiconductor device. Furthermore, AS IC of chip AD In any logic circuit A, access control to DR AMD can be performed inside chip AD independently of access control by the CPU of chip MF and chip MFA.
ここで、 図 7〜図 14によりそれぞれの半導体チップの概要を説明する。 特に、 チップ MF、 チップ AD、 チップ Dを順に説明する。 また、 図 1 5〜図 1 8には チップ M Fの端子機能例の一覧を示す。  Here, the outline of each semiconductor chip will be described with reference to FIGS. In particular, chip MF, chip AD, and chip D will be described in order. FIGS. 15 to 18 show a list of examples of the terminal functions of the chip MF.
図 7、 図 8はチップ M Fの 144ピンの例を示し、 図 7はその内部構成例を示 す機能ブロック図、 図 8は端子機能例を示す説明図である。 また、 図 9、 図 10 はチップ MFの 1 1 2ピンの例を示し、 図 9はその内部構成例を示す機能プロッ ク図、 図 1 0は端子機能例を示す説明図である。 なお、 1 44ピンのチップ:l F と 1 1. 2ピンのチップ MFとの違いは、 データ入出力の外部端子が 32ビットと 1 6ビットとのデータ幅に対応してそれぞれ D 0〜D 3 1と D 0〜D 1 5とで異 なる点のみであり、 ここでは主に 144ピンのチップ MFについて説明する、— この 144ピンのチップ MFは、 少なくともマイク口コンピュータとフラッシ ュメモリ とが形成され、 半導体装置の全体的な制御 ·処理機能と、 電気的に一括 消去可能なプログラマブルメモリ機能とを有する回路構成となっており、 例えば 図 7に示すように、 プロセッサ CPし了、 フラッシュメモリ F 1 a s h、 ランダム アクセスメモリ/キャッシュメモリ RA 1/C a c h e, データトランスファコ ントローラ DTC、 ダイレク トメモリアクセスコン トローラ DMA C、 バスステ —トコント口一ラ B S C、 ユーザブレークコントローラ UB C、 割り込みコン ト ローラ I NTC、 シリアルコミュニケーションインタフェース S C I、 マルチフ アンクシヨンタイマパノレスユニッ ト MTL;、 コンペアマツチタイマ CMT、 / Dコンバータ A/D、 ウォッチドッグタイマ WDT、 フエ一ズルック トループ回 路 P L Lなどから構成されてレ、る - プロセッサ CPUは、 例えば R I S Cタイプの命令セットを持っている中央処 理装置である。 この C PUは、 基本的には 1命令 1サイクルで動作するので、 命 令実行速度が飛躍的に向上され、 また内部 32ビット構成となっており、 データ 処理能力が強化されている。 この C PUの特長としては、汎用レジスタマシン(汎 用レジスタが 32ビッ ト X 1 6本、 コント口一ルレジスタが 32ビッ ト X 3本、 システムレジスタが 32ビット X 4本) 、 R I SC対応の命令セット (命令長が 1 6ビット固定長によるコード効率の向上、 ロードス トアアーキテクチャ (基本 演算はレジスタ間で実行) 、 遅延分岐命令の採用で分岐時のパイプラインの乱れ を軽減、 C言語指向の命令セット) 、 命令実行時間が 1命令 Z1サイクル (28 MH z動作時で 35 n s /命令) 、 アドレス空間がアーキテクチャ上は 4 G B、 乗算器内蔵により、 32 X 32→64乗算を 2〜 4サイクル実行、 32 X 32 + 64— 64積和演算を 2〜 4サイクル実行、 5段パイプライン方式などの各種機 能が備えられている。 7 and 8 show examples of the 144-pin chip MF, FIG. 7 is a functional block diagram showing an example of the internal configuration, and FIG. 8 is an explanatory diagram showing an example of the terminal functions. 9 and 10 show examples of pins 112 of the chip MF, FIG. 9 is a functional block diagram showing an example of the internal configuration, and FIG. 10 is an explanatory diagram showing an example of the terminal functions. The difference between the 144-pin chip: l F and the 11.2-pin chip MF is that the external terminals for data input / output correspond to the 32-bit and 16-bit data widths of D0 to D, respectively. 31 is the only difference between D0 and D15. Here, the 144-pin chip MF will be mainly described. — This 144-pin chip MF is formed at least by the microphone port computer and the flash memory. It has a circuit configuration that has overall control and processing functions of the semiconductor device and a programmable memory function that can be electrically erased in a batch. For example, as shown in FIG. 1 ash, random access memory / cache memory RA 1 / Cache, data transfer controller DTC, direct memory access controller DMA C, bus state controller BSC, user blur Network controller UBC, interrupt controller I NTC, serial communication interface SCI, multi-function timer panelless unit MTL; compare match timer CMT, / D converter A / D, watchdog timer WDT, faze look loop The processor CPU is a central processing unit having a RISC type instruction set, for example. Since this CPU basically operates in one instruction and one cycle, the instruction execution speed is dramatically improved, and the internal 32-bit configuration enhances the data processing capability. The features of this CPU include a general-purpose register machine (16 general-purpose registers, 16 32-bit registers, 3 32-bit control registers, Instruction set compatible with RISC (Instruction length is 16-bit fixed length to improve code efficiency), Load store architecture (Basic operation is executed between registers), Delayed branch instruction Reduces pipeline turbulence at branching, C language-oriented instruction set), instruction execution time is 1 instruction Z1 cycle (35 ns / instruction at 28 MHz operation), address space is 4 GB in architecture, multiplier Built-in functions include 32 x 32 → 64 multiplication in 2 to 4 cycles, 32 x 32 + 64-64 multiply and accumulate in 2 to 4 cycles, and a 5-stage pipeline method.
フラッシュメモリ F 1 a s hは、 例えば 64Kバイ トまたは 1 28 Kバイ トの 電気的に一括消去可能なプログラマブルメモリを内蔵する回路である。 この F 1 a s hは、 例えば 32ビッ ト幅のデータバスを介して C PUと DMAC、 DTC に接続されている。 CPU、 DMAC, DTCは 8、 1 6または 32ビッ ト幅で F 1 a s hをアクセスすることができる。 この F 1 a s hのデータは、 常に 1ス テートでアクセスすることができる。  The flash memory F 1 ash is a circuit that incorporates, for example, a 64 Kbyte or 128 Kbyte electrically erasable programmable memory that can be erased collectively. This F1ash is connected to the CPU, DMAC, and DTC via a 32-bit data bus, for example. The CPU, DMAC, and DTC can access F1ash with 8, 16, or 32 bits wide. This F 1 ash data can always be accessed in one state.
ランダムアクセスメモリ/キャッシュメモリ RAM/C a c h eは、 例えば 4 KBのランダムアクセスメモリ RAMと、 1 KBのキヤッシュメモリ C a c h e からなるメモリである。 この C a c h eの特長としては、 命令コードおよび PC 相対読み出し 'データキャッシング、 ライン長は 4バイ ト (1ロングワードは 2 命令長分) 、 キャッシュタグは 256エントリ、 ダイレク トマップ方式、 内蔵 R OM/RA , 内蔵 I Z〇エリアはキャッシュ対象外、 内蔵 RAMと兼用してお り、 キャッシュイネ一ブル時は内蔵 RAMのうち 2 KBをアドレスアレイ 'デー タアレイとして使用などの各種機能が備えられている。  The random access memory / cache memory RAM / Cache is, for example, a memory composed of a random access memory RAM of 4 KB and a cache memory Cache of 1 KB. The features of this cache are instruction code and PC relative readout, data caching, line length is 4 bytes (1 long word is 2 instruction lengths), cache tag is 256 entries, direct map method, built-in ROM / RA , The built-in IZ area is not subject to caching and is also used as built-in RAM. When cache is enabled, various functions are provided, such as using 2 KB of the built-in RAM as an address array and data array.
データ トランスファコントローラ DTCは、 割り込みまたはソフトウエアによ つて起動され、 データ転送を行うことができる回路である。 この DTCの特長と しては、 周辺 I 70の割り込み要求により C Pじと独立したデータ転送が可能、 割り込み要因毎に転送モードを設定可能 (メモリ上に転送モードを設定) 、 1つ の起動要因に対して、 複数のデータ転送が可能、 豊富な転送モード (ノーマルモ 一ド /リビートモ一ド/プロック転送モード) の選択が可能、 転送単位をバイ ト The data transfer controller DTC is a circuit that can be activated by an interrupt or software to perform data transfer. The features of this DTC are that data can be transferred independently of the CP by an interrupt request from the peripheral I70, the transfer mode can be set for each interrupt source (transfer mode is set on the memory), and one activation source Multiple data transfer possible, various transfer modes (Normal mode / Rebeat mode / Block transfer mode) can be selected, Byte transfer unit
//ワード Zロングヮ一ドに設定可能、 D T Cを起動した割り込みを C P Uに要求 ( 1回のデータ転送終了後に C PUに対する割り込みを発生可能、 指定したデー タ転送の全ての終了後に C PUに割り込みを発生可能) 、 ソフトウェアによる転 送の起動可能などの各種機能が備えられている。 また、 アドレス空間は転送元ァ ドレス、 転送先アドレスとも 32ビットで指定でき、 転送対象デバイスは内蔵メ モリであるフラッシュメモリ F l a s h、 R AM/ C a c h eや、 外部メモリ、 内蔵周辺回路などに対してデータ転送が行われる // Can be set to word Z long mode, request the CPU to activate the DTC interrupt (An interrupt to the CPU can be generated after one data transfer is completed, and an interrupt can be generated to the CPU after all specified data transfers are completed.) I have. The address space can be specified with 32 bits for both the transfer source address and the transfer destination address, and the transfer target device is for the internal memory such as Flash memory, Flash / RAM, external memory, and internal peripheral circuits. Data transfer
ダイレク トメモリアクセスコントローラ DMACは、 例えば 4チャネルからな り、 DACK (転送要求受付信号) 付き外部デバイス、 外部メモリ、 メモリマツ プト外部デバイス、 内蔵周辺回路 (DMAC、 B SC, UBCを除く) 間のデー タ転送を、 C PUに代わって高速に行うことができる回路である。 この DMAC を使うと C P Uの負担を減らすと共にチップ M Fの動作効率を上げることができ るつ この DMACの特長としては、 サイクルスチール転送をサポート、 デュアル ァドレスモード転送をサボ一ト、 直接転送モード Z間接転送モード切り替え可能 (チャネル 3のみ) であり、 この直接転送モードは転送元ァドレスにあるデータ を転送先ァドレスに転送し、 また間接転送モードとは転送元ァドレスにあるデー タをァドレスとして、 そのァドレスにあるデータを転送先ァドレスに転送する機 能である。 また、 特定のチャネルにおいて、 リロ一ド機能、 外部リクエスト、 内 蔵回路、 ォートリクエス トによる転送要求機能があり、 さらにバスモードの選択、 優先順位固定モード、 ラウン ド口ビンモードによる優先順位の設定、 C Pじへの 割り込み要求などの各種機能が備えられている,  The direct memory access controller DMAC consists of, for example, four channels. Data is transferred between an external device with DACK (transfer request acceptance signal), an external memory, an external memory map device, and internal peripheral circuits (excluding DMAC, BSC, and UBC). This is a circuit that can perform high-speed data transfer in place of the CPU. Using this DMAC can reduce the load on the CPU and increase the operating efficiency of the chip MF. The features of this DMAC are: cycle stealing transfer, dual address mode transfer support, direct transfer mode Z indirect The transfer mode can be switched (only channel 3). In this direct transfer mode, the data in the source address is transferred to the destination address. In the indirect transfer mode, the data in the source address is used as the address. Is a function to transfer the data in the destination to the destination address. In addition, for specific channels, there is a reload function, an external request, an internal circuit, a transfer request function by auto request, a bus mode selection, a fixed priority mode, a priority setting by a round mouth bin mode, and a CP. It has various functions such as interrupt request to the same
バスステートコントローラ B SCは、 アドレス空間の分離、 各種メモリに応じ た制御信号の出力などを行う回路である。 これにより、 外付け回路なしに DRA M、 SRAVI、 ROMなどをチップ MFに直結することが可能となっている: こ の B SCの特長としては、 外部拡張時のメモリアクセスをサポート (外部データ バスは 32ビッ ト) 、 アドレス空間を 5エリアに分割 (S RAM空間 X 4エリア、 DRAM空間 X Iエリア) 、 各エリアにはバスサイズ (8/1 6Z 32ビッ ト) 、 ウェイ トサイクル数、 各エリアに対応したチップセレク ト信号の出力、 DRAM 空間アクセス時に DRAM用バ一 RAS、 バー CAS信号の出力、 RASプリチ ヤージタイム確保用 T pサイクル発生可能などの特性を設定可能、 DRAMバー ス トアクセス機能 (DRAMの高速アクセスモードサポート) 、 DRAMリフレ ッシュ機能 (プログラマブルなリフレッシュ間隔、 バー CAS b e f o r ノく 一 R ASリフレッシュ/セルフリフレッシュをサポート) 、 外部ウェイ ト信号に よるウェイ トサイクルの挿入可能、 アドレスデータマルチプレタス I Z〇デバィ スをアクセス可能などの各種機能が備えられている。 The bus state controller BSC is a circuit that separates an address space, outputs control signals corresponding to various memories, and the like. This makes it possible to directly connect DRAM, SRAVI, ROM, etc. to the chip MF without external circuits. The feature of this BSC is that it supports memory access during external expansion (external data bus The address space is divided into 5 areas (SRAM space x 4 areas, DRAM space XI area), each area has a bus size (8 / 16Z 32-bit), number of wait cycles, and each area Output of chip select signal corresponding to DDR, output of DRAM RAS when accessing DRAM space, output of CAS signal, RAS precharging time securing Tp cycle can be set, and which characteristics can be set, DRAM bar Fast access function (supports DRAM high-speed access mode), DRAM refresh function (programmable refresh interval, supports CAS refresh before RAS refresh / self-refresh), wait cycle insertion by external wait signal Yes, various functions that can access the address data multipletus IZ II device are provided.
ユーザブレークコントローラ UB Cは、 ユーザのプログラムデバッグを容易に する機能を提供する回路である。 この UBCにブレーク条件を設定すると、 CP Uまたは DM A Cおよび D T Cによるバスサイクルの内容に応じて、 ユーザブレ ーク割り込みが発生される。 この機能を使用することによって、 高機能のセルフ モニタデバッガを容易に作成でき、 大規模なインサーキットエミュレータを使用 しなくても、 チップ M F単体で手軽にプログラムをデバッグすることが可能とな つている。 この UB Cの特長としては、 CPUや DMACが、 ある設定した条件 のバスサイクルを生成すると割り込みを発生し、 またオンチップデバッガの構築 が容易であり、 さらにブレーク条件としてはアドレス、 CPUサイクルまたは D MAZDTCサイクル、 命令フェッチまたはデータアクセス、 読み出しまたは書 き込み、 オペランドサイズ (ロングワード、 ワード、 バイ ト) が設定でき、 この ブレーク条件の成立により、 ユーザブレーク割り込みが発生し、 ユーザが作成し たユーザブレーク割り込み例外ルーチンを実行させることができるようになって いる- 割り込みコントローラ I NTCは、 割り込み要因の優先順位を判定し、 プロセ ッサ C PUへの割り込み要求を制御する回路である。 この I NTCには、 各割り 込みの優先順位を設定するためのレジスタがあり、 これによりユーザが設定した 優先順位に従って、 割り込み要求を処理させることができる。 この I NTCの特 長としては、 外部割り込み端子が 9本、 内部割り込み要因が 43要因、 1 6レべ ルの優先順位設定が可能であり、 さらに NM I端子の状態を示すノイズキャンセ ラ機能、 割り込みが発生したことを外部へ出力可能として、 チップ MFがバス権 を開放しているときに内蔵周辺回路割り込みが発生したことを外部バスマスタに 知らせ、 バス権を要求することができるようになつている。  The user break controller UBC is a circuit that provides functions that facilitate user program debugging. When a break condition is set in this UBC, a user break interrupt is generated according to the contents of the bus cycle by the CPU or DMAC and DTCC. By using this function, a high-performance self-monitoring debugger can be easily created, and programs can be easily debugged with the chip MF alone without using a large-scale in-circuit emulator. . The features of this UBC are that an interrupt is generated when the CPU or DMAC generates a bus cycle under a set condition, and that an on-chip debugger can be easily constructed. MAZDTC cycle, instruction fetch or data access, read or write, operand size (longword, word, byte) can be set. When these break conditions are satisfied, a user break interrupt is generated and the user The break interrupt exception routine can be executed.-The interrupt controller INTC is a circuit that determines the priority of interrupt factors and controls interrupt requests to the processor CPU. This INTC has a register for setting the priority of each interrupt, so that interrupt requests can be processed according to the priority set by the user. The features of this INTC include nine external interrupt pins, 43 internal interrupt sources, 16 levels of priority setting, and a noise canceller function that indicates the status of the NMI pin. It is possible to output the occurrence of an interrupt to the outside, notify the external bus master that an internal peripheral circuit interrupt has occurred while the chip MF has released the bus right, and request the bus right. I have.
シリアル ミュニケ一シヨンインタフェース S C Iは、 例えば独立した 2チヤ ネルからなり、 この 2チャネルは同一の機能を持っている。 この S C Iは、 調歩 同期式通信とクロック同期式通信の 2方式でシリアル通信ができる回路である。 また、 複数のプロセッサ間のシリアル通信機能 (マルチプロセッサ通信機能) が 備えられている。 この S C Iの特長としては、 1チャネルあたり、 調歩同期/ク ロック同期式モードの選択が可能、 送受信を同時に行うことが可能 (全二重) 、 専用のボーレ一トジェネレータの内蔵、 マルチプロセッサ間の通信機能などの各 種機能が備えられている。 The serial communication interface SCI, for example, has two independent channels. The two channels have the same function. This SCI is a circuit that can perform serial communication in two systems: start-stop synchronous communication and clock synchronous communication. In addition, a serial communication function between multiple processors (multiprocessor communication function) is provided. The features of this SCI are: Asynchronous / clock synchronous mode can be selected for each channel, transmission and reception can be performed simultaneously (full duplex), dedicated baud rate generator built-in, multiprocessor Various functions such as communication functions are provided.
マノレチファンクションタイマパルスュニッ ト MT Uは、 例えば 6チャネルの 1 6ビットタイマにより構成される回路である。 この MT Uの特長としては、 1 6 ビットタイマ 5チャネルをベースに最大 1 6種類の波形出力または最大 1 6種類 のパルスの入出力処理が可能、 1 6本のァゥトプットコンペアレジスタ兼インプ ットキヤブチャレジスタ、 総数 1 6本の独立したコンパレータ、 8種類の力ゥン タ入力クロックを選択可能、 インプットキヤプチャ機能、 パルス出力モード (ヮ ンショッ ト/トグル Z P WM 相補 P WM/リセッ ト同期 P WM) 、 複数カウン タの同期化機能、 相補 P WM出力モード (6相のインバータ制御用ノンオーバラ ップ波形を出力、 デッドタイム自動設定、 P WMデューティを 0〜1 0 0 %任意 に設定可能、 出力 O F F機能) 、 リセッ ト同期 P WMモード (任意デューティの 正相 ·逆相 P WM波形を 3相出力) 、 位相計数モード (2相エンコーダ計数処理 が可能) などの各種機能が備えられている。  The Manorechi function timer pulse unit MTU is a circuit configured by, for example, a 16-channel 16-bit timer. This MTU has the following features: 16 types of waveform output or 16 types of input / output processing of up to 16 types of pulses based on 5 channels of 16-bit timer, 16 output compare registers and input keys Bucher registers, total number of 16 independent comparators, selectable eight types of counter input clocks, input capture function, pulse output mode (in-shot / toggle ZP WM complementary PWM / reset synchronization PWM ), Synchronization function of multiple counters, Complementary PWM output mode (outputs non-overlap waveform for 6-phase inverter control, dead time automatic setting, PWM duty can be set to any value from 0 to 100%, output OFF function), Reset synchronous PWM mode (Positive and negative phase PWM waveforms of arbitrary duty are output in 3-phase), Phase counting mode (2-phase encoder counting is possible), etc. Various functions are provided.
コンぺアマツチタイマ C MTは、 例えば 2チャネルからなり、 1 6ビットフリ 一ランニングカウンタ、 1つのコンペァレジスタなどからなり、 コンペアマツチ で割り込み要求を発生させる機能が備えられている。  The compare match timer CMT is composed of, for example, two channels, a 16-bit free running counter, one compare register, etc., and has a function of generating an interrupt request at the compare match.
A/ Dコンバータ AZDは、 1 0ビット X 8チャネルであり、 外部卜リガによ る変換を可能にすると共に、 サンプル &ホールド機能を 2ユニット内蔵して、 同 時に 2チャネルがサンプリング可能となっている。  The A / D converter AZD is a 10-bit x 8 channel, which enables conversion by external trigger and has two built-in sample & hold functions, so that two channels can be sampled at the same time. I have.
ウォッチドッグタイマ WD Tは、 1チャネルのタイマで、 システムの監視を行 うことができる回路である。 この WD Tは、 システムの暴走などによりカウンタ の値を C P Uが正しく書き換えられずにォ一バフロ一すると、 外部にオーバフロ 一信号を出力する。 同時に、 チップ M Fの内部リセット信号を発生することもで きる。 WD Tとして使用しないときには、 インターバルタイマとして使用するこ ともできる, インタ一バルタイマとして使用した場合には、 カウンタがオーバフ 口一する毎にインタ一バルタイマ割り込みを発生する。 また、 WDTはスタンバ ィモードの解除時にも使用されるようになっているつ なお、 内部リセット信号は、 レジスタの設定により発生させることができ、 リセッ トの種類はパヮ一オンリセ ットまたはマニュアルリセットを選択できる。 この WDTの特長としては、 ゥォ ツチドッグタイマ Ζィンタ一バルタイマの切り換えが可能、 カウントォ一バフロ 一時、 内部リセット、 外部信号または割り込みを発生させる機能などが備えられ ている。 The watchdog timer WDT is a one-channel timer that can monitor the system. This WDT outputs an overflow signal to the outside if the CPU overflows the counter value due to system runaway, etc., without being correctly rewritten by the CPU. At the same time, the chip MF can generate an internal reset signal. Wear. When not used as a WDT, it can be used as an interval timer. When used as an interval timer, an interval timer interrupt is generated each time the counter overflows. The WDT is also used when exiting standby mode.The internal reset signal can be generated by setting a register, and the reset type can be set to a reset or manual reset. You can choose. The features of this WDT include the ability to switch the watchdog timer and the interval timer, a countover buffer temporary, an internal reset, and the ability to generate an external signal or interrupt.
フェーズルック トループ回路 P L Lは、 例えばクロック発振器を内蔵し、 クロ ック通倍用の P L L回路として動作する回路となっている。  The phase-look loop circuit PLL is a circuit that incorporates, for example, a clock oscillator and operates as a PLL circuit for clock doubling.
以上のように構成されるチップ MFにおいて、 これらの内部回路の相互間は、 図 7に示すように、 内部ァドレスバス BUS A Iおよび上位および下位の内部デ ータバス BUS D Iにより接続され、 さらにこれらの内部回路と外部接続端子 I ZOとの間は周辺アドレスバス BUS A〇、 周辺データバス BU S DOおよび制 御信号線 S Lにより接続されている。  In the chip MF configured as described above, these internal circuits are connected to each other by an internal address bus BUS AI and upper and lower internal data buses BUS DI as shown in FIG. And the external connection terminal IZO are connected by the peripheral address bus BUS A〇, the peripheral data bus BUSDO, and the control signal line SL.
内部アドレスバス BU S A Iは、 24ビッ トのバス幅とされ、 プロセッサ CP し :、 フラッシュメモリ F 1 a s h、 ランダムアクセスメモリ/キャッシュメモリ RAM/C a c h e, データ トランスファコントロ一ラ DTC、 ダイレク トメモ リアクセスコントローラ DMAC、 バスステートコントローラ B S Cのそれぞれ の相互間に接続されている。 Internal address bus BU SAI is a bus width of 24 bits, the processor CP to: flash memory F 1 ash, random access memory / cache memory RAM / C ache, Data transfer control one la DTC, direct Tomemo Li Access Controller DMAC and bus state controller BSC are connected between each other.
内部データバス BU S D Iは、 上位の 1 6ビットのバスと下位の 1 6ビットの バスとからなり、 それ.ぞれプロセッサ C PU、 フラッシュメモリ F 1 a s h、 ラ ンダムアクセスメモリ Zキヤッシュメモリ RAM/C a c h e, データトランス フアコントローラ DT C、 ダイレク トメモリアクセスコントローラ DMA C、 ノく スステートコントローラ B SCのそれぞれの相互間に接続され、 上位の 1 6ビッ 卜のバスと下位の 1 6ビッ 卜のバスにより 32ビットのデータ幅に対応できるよ うになっている。  The internal data bus BU SDI consists of a high-order 16-bit bus and a low-order 16-bit bus, each of which is a processor CPU, flash memory F1ash, random access memory Z cache memory RAM / C ache, data transfer controller DTC, direct memory access controller DMAC, and state controller BSC are connected between each other, and the upper 16-bit bus and the lower 16-bit bus This allows for a 32-bit data width.
周 i刀アドレスバス BUS AOは、 24ビッ トのバス幅とされ、 バスステートコ ントローラ B SC、 割り込みコントローラ I NTC、 シリアルコミュニケーショ ンインタフェース SC I、 マ^^チファンクションタイマパルスュニッ ト MTL;、 コンペアマツチタイマ CMT、 ウォッチドッグタイマ WDTのそれぞれの内部回 路と外部接続端子 I ZOとの間に接続されている。 The address bus BUS AO has a bus width of 24 bits and a bus state code. Controller BSC, interrupt controller I NTC, serial communication interface SCI, multi-function timer pulse unit MTL; compare match timer CMT, watchdog timer WDT internal circuit and external connection terminal I ZO Is connected between.
周辺データバス BU S DOは、 1 6ビッ トのバス幅とされ、 バスステートコン トローラ B SC、 割り込みコントローラ I NTC、 シリアルコミュニケーション インタフェース SC I、 マノレチファンクションタイマパルスユニッ ト MTU コ ンペアマッチタイマ CMT、 ウォッチドッグタイマ WDTのそれぞれの内部回路 と外部接続端子 I Z〇との間に接続されている。  The peripheral data bus BUSDO has a bus width of 16 bits. The bus state controller BSC, interrupt controller I NTC, serial communication interface SCI, manorechi function timer pulse unit MTU compare match timer CMT, It is connected between each internal circuit of watchdog timer WDT and external connection terminal IZ〇.
制御信号線 S Lは、 デ一タトランスファコントローラ DTC、 ダイレク トメモ リアクセスコントローラ DMAC、 バスステートコントローラ B S C、 ュ一ザブ レークコントローラ UB C、 割り込みコントローラ I NTC、 シリアルコミュ二 ケーションィンタフェース S C I、 マルチファンクションタイマパノレスュニッ ト MTU、 コンペアマツチタイマ CMT、 AZDコンバータ A/Dのそれぞれの内 部回路の相互間と、 これらの内部回路と外部接続端子 I /Oとの間に接続されて レ、る。  The control signal line SL consists of a data transfer controller DTC, a direct memory access controller DMAC, a bus state controller BSC, a use break controller UBC, an interrupt controller INTC, a serial communication interface SCI, and a multifunction timer panorama. It is connected between the internal circuits of the Resunit MTU, compare match timer CMT, and AZD converter A / D, and between these internal circuits and the external connection terminal I / O.
このチップ MFにおいては、 外部接続端子 I ZOとして、 図 8に示すような機 能割り付けとなっており、 98本の入出力端子、 8本の入力端子となっている, それぞれの外部接続端子 I Z〇の機能については、 図 1 5〜図 1 8に示すように、 分類、 記号、 入出力、 名称と対応させた端子機能例の一覧に示すとおりである.: なお、 1 1 2ピンのチップ M Fは、 図 10に示すような機能割り付けとなってお り、 74本の入出力端子、 8本の入力端子となっている。  In this chip MF, the functions are assigned as shown in Fig. 8 as the external connection terminal I ZO, with 98 input / output terminals and 8 input terminals. The functions of 〇 are as shown in the list of examples of terminal functions corresponding to the classification, symbols, input / output, and names, as shown in Fig. 15 to Fig. 18. The MF is assigned functions as shown in Fig. 10, and has 74 input / output terminals and 8 input terminals.
図 1 1はチップ ADの内部構成例を示す機能プロック図、 図 1 2はその端子機 能例を示す説明図である なお、 チップ ADは 1 44ピンの例を示している: このチップ ADは、 DRAMと AS I Cとが形成され、 随時書き込みノ読み出 し可能なメモリ機能とロジック回路による処理機能とを有する回路構成となって おり、 例えば図 1 1に示すように、 電源回路 V S、 複数の D RAMバンク B a n k、 メインアンプ MA、 データ転送回路 DT、 ディジタル信号処理回路 DS P、 ロウアドレスバッファ RAB、 カラムアドレスバッファ CAB、 制御論理, ミング発生回路 CRZTGから構成されている。 なお、 この DRAMとしては、 記憶保持動作が必要な随時書き込み Z読み出し可能な、 単なるダイナミックラン ダムアクセスメモリ D R AM、クロックによる同期式のシンクロナス D R AM ( S DRAM) 、 データ出力時間が長くできるェクステンデイットデータアウト DR A (EDO- DRAM) などがある。 Fig. 11 is a functional block diagram showing an example of the internal configuration of the chip AD, and Fig. 12 is an explanatory diagram showing an example of the terminal functions. Note that the chip AD shows an example of 144 pins: , A DRAM and an ASIC are formed, and have a circuit configuration having a memory function that can be written and read at any time and a processing function by a logic circuit. For example, as shown in FIG. DRAM bank Bank, main amplifier MA, data transfer circuit DT, digital signal processing circuit DSP, row address buffer RAB, column address buffer CAB, control logic, It is composed of a mining generation circuit CRZTG. The DRAM is a dynamic random access memory (DRAM) that can be written and read at any time that requires a memory retention operation, a synchronous synchronous DRAM (SDRAM) using a clock, and an external memory that can lengthen the data output time. Date Data Out DR A (EDO-DRAM).
電源回路 VSは、 外部から電源 V cc、 接地 V ssの電圧を入力として、 複数の DRAMバンク B a n k、 メインアンプ MAに必要な電源を供給する回路である 複数の DRAMバンク B a n kは、 各バンクが独立に動作可能であり、 各バン クは、 例えばメモリセル、 ワードデコーダ、 カラムデコーダ、 センスアンプ、 タ イミングジェネレータを含む。 例えば、 これらの D RAMバンク B a n kの容量 は 1バンク当たり 256 kビッ 卜である。  The power supply circuit VS is a circuit for supplying necessary power to the plurality of DRAM banks B ank and the main amplifier MA by using externally supplied voltages of the power supply V cc and the ground V ss. Can operate independently, and each bank includes, for example, a memory cell, a word decoder, a column decoder, a sense amplifier, and a timing generator. For example, the capacity of these DRAM banks B an k is 256 k bits per bank.
メインアンプ MAは、 複数の DRAMバンク B a n kと外部接続端子 DO〜D 3 1とのデータ入出力を行う回路である。 例えば、 各 DRAMバンク B a n kと の間に、 1 28本と多数のグローバルデータ線があり、 それを通してデータのや り取りが行われる。  The main amplifier MA is a circuit that performs data input / output between the plurality of DRAM banks B ank and the external connection terminals DO to D31. For example, between each DRAM bank B ank, there are 128 and many global data lines through which data is exchanged.
データ転送回路 DTは、 DRAMバンク B a n kおよびメインアンプ MAなど からなる DRAMとディジタル信号処理回路 D S Pとの間のデータ転送パターン をリアルタイムに切り換える。 例えば、 隣接したデータのうちの一方を選択した り、 データをクリアしたりすることが可能となっている  The data transfer circuit DT switches a data transfer pattern between a DRAM including a DRAM bank B ank and a main amplifier MA and a digital signal processing circuit D SP in real time. For example, it is possible to select one of the adjacent data or clear the data
デイジタル信号処理回路 D S Pは、 画像、 音声などのデイジタノレ信号の処理を 実行する回路であり、 例えば画像処理の場合には Z比較による陰面を消去する処 理、 ctブレンドによる透明感を与える処理などを実行する。 また、 シリアル出力 ボート SD 0〜SD 23からデータをディスプレイなどの出力機器に出力する。 このディジタル信号処理回路 D S Pとデータ転送回路 DTとは制御信号 C 0〜C 27によって制御される。  Digital signal processing circuit DSP is a circuit that executes digital signal processing such as image and sound processing.For example, in the case of image processing, processing to remove hidden surfaces by Z comparison, processing to give transparency by ct blending, etc. Execute. Also, data is output from the serial output ports SD0 to SD23 to an output device such as a display. The digital signal processing circuit DSP and the data transfer circuit DT are controlled by control signals C0 to C27.
口ゥァドレスバッファ RABおよびカラムァドレスバッファ CABは、 外部ァ ドレス信号入力端子 AO〜A 1 0からア ドレス信号を取り込み、 内部ア ドレス信 号を生成して各 DRAMバンク B a n kに供給する回路である。 バー RASのタ イミングロウアドレスで、 バー CAS L、 バー CASH、 バー CASHL、 バ— C A S H Hのタイミングでカラムア ドレスを取り込む。 The address address buffer RAB and the column address buffer CAB are circuits that take in address signals from the external address signal input terminals AO to A10, generate internal address signals, and supply the signals to each DRAM bank Bank. . Bar RAS timing row address, bar CAS L, bar CASH, bar CASHL, bar Capture column address at CASHH timing.
制御論理/タイミング発生回路 C R/TGは、 D RAMの動作に必要な各種タ イミング信号を発生する回路である。 入力されるバー CSはチップセレク ト信号、 バー R ASはロウア ドレスス トローブ信号、 バー CAS L、 バ一 CASH、 バー CASHL、 バー CASHHはカラムア ドレスス トローブ信号、 RD /バー WR は読み出し/書き込み信号 (高レベルなら読み出し、 低レベルなら書き込みを示 す) である。 4つのカラムア ドレスス トローブ信号は、 バイ トコントロール (各 バイ ト毎の読み出し /書き込み制御) を可能にするためであり、 バー CAS Lが 最下位のバイ ト D0〜D 7、 バー CASHが最下位から 2番目のバイ ト D8〜D 1 5、 バー CASHLが最下位から 3番目のバイ ト D 16〜D 23、 バー CAS HHが最上位のバイ ト D 24〜D 3 1用である。  The control logic / timing generation circuit CR / TG is a circuit that generates various timing signals necessary for the operation of the DRAM. The input bar CS is the chip select signal, bar RAS is the row address strobe signal, bar CAS L, bar CASH, bar CASHL, bar CASHH is the column address strobe signal, and RD / bar WR is the read / write signal (high). Level indicates read, low level indicates write). The four column address strobe signals are used to enable byte control (read / write control for each byte), with CAS L being the lowest byte D0 to D7 and CASH being the lowest. The second byte D8 to D15, the bar CASHL is for the third byte D16 to D23 from the bottom, and the bar CASHH is for the top byte D24 to D31.
以上のように構成されるチップ ADの内部回路において、 複数の DRAMバン ク B a n kとロウァドレスバッファ RAB、 カラムァドレスバッファ CABとの 相互間は内部ァ ドレスバス BUSA Iにより接続され、 さらにロウァ ドレスバッ ファ R A B、 カラムア ドレスバッファ C A Bと外部接続端子 I /Oとの間は周辺 ァドレスバス BUS AO、 メインアンプ IAと外部接続端子 I /Oとの間は周辺 データバス BUS DOによりそれぞれ接続されている:  In the internal circuit of the chip AD configured as described above, the plurality of DRAM banks Bank, the row address buffer RAB, and the column address buffer CAB are connected to each other by the internal address bus BUSA I, and further, the row address buffer is used. The peripheral address bus BUS AO connects the RAB and column address buffer CAB to the external connection terminal I / O, and the peripheral data bus BUS DO connects the main amplifier IA to the external connection terminal I / O:
また、 データ転送回路 DTとディジタル信号処理回路 D S Pとの相互間はァド レスバスおよびデータの内部バス BUS Iにより接続され、 さらにデータ転送回 路 D T、 ディジタル信号処理回路 D S Pと外部接続端子 I / Oとの間はデータお よび制御信号の周辺バス B U S Oにより接続されている。  The data transfer circuit DT and the digital signal processing circuit DSP are connected to each other by an address bus and an internal data bus BUS I. The data transfer circuit DT, the digital signal processing circuit DSP and the external connection terminal I / O Are connected by a peripheral bus BUSO for data and control signals.
このチップ ADにおいては、 外部接続端子として、 図 1 2に示すように、 電源 V cc、 接地 V ssの電圧端子 V cc、 V ss、 ァ ドレス端子 AO〜A 1 0、 デ一タ入 出力端子 D0〜D3 1、 チップセレク ト端子バー C S、 ロウア ドレスス トローブ 端子バー RAS、 カラムアドレスス トローブ端子バー CAS L、 バー CASH、 バー CASH L、 バー CASHH、 読み出し /書き込み端子 R D/バー WR、 ク ロック端子 CK:、 シリアルデータ出力端子 SD0〜SD23、 AS I C制御信号 端子 C 0〜C 27が設けられている。  In this chip AD, as external connection terminals, as shown in Fig. 12, power supply Vcc, ground Vss voltage terminals Vcc, Vss, address terminals AO to A10, data input / output terminals D0 to D31 1, Chip select pin bar CS, row address strobe pin bar RAS, column address strobe pin bar CAS L, bar CASH, bar CASH L, bar CASHH, read / write pin RD / bar WR, clock pin CK: Serial data output terminals SD0 to SD23 and AS IC control signal terminals C0 to C27 are provided.
図 1 3はチップ Dの内部構成例を示す機能ブロック図、 図 14はその端子機能 例を示す説明図である。 なお、 チップ Dは 50ピンの例を示している。 Fig. 13 is a functional block diagram showing an example of the internal configuration of chip D, and Fig. 14 is its terminal functions. It is explanatory drawing which shows an example. Note that chip D shows an example of 50 pins.
このチップ Dは、 DRAMのみが形成され、 随時書き込み Z読み出し可能なメ モリ機能を有する回路構成となっており、 例えば図 1 3に示すように、 電源回路 VS、 複数の D RAMバンク B a n k、 メインアンプ MA、 ロウアドレスバッフ ァ RAB、 カラムアドレスバッファ CAB、 制御論理 Zタイミング発生回路 CR ZTGから構成されている。  This chip D has a circuit configuration having only a DRAM and a memory function that can be written and read at any time. For example, as shown in FIG. 13, a power supply circuit VS, a plurality of DRAM banks Bank, It consists of a main amplifier MA, a row address buffer RAB, a column address buffer CAB, and a control logic Z timing generator CR ZTG.
このチップ Dは、 前記図 1 1に示すチップ ADのデータ転送回路 DTとデイジ タル信号処理回路 D S Pとのロジック回路が取り除かれた D R AMのみの回路構 成となっており、 従ってチップ Dを構成する内部回路については前記チッブ AD の内部回路と同じなので、 ここでの機能的な説明は省略する。  The chip D has a circuit configuration of only the DRAM in which the logic circuit of the data transfer circuit DT and the digital signal processing circuit DSP of the chip AD shown in FIG. Since the internal circuit to be used is the same as the internal circuit of the chip AD, the functional description is omitted here.
このチップ Dにおいては、 外部接続端子として、 図 14に示すように、 電源 V cc、 接地 V ssの電圧端子 V cc、 V ss、 アドレス端子 ΑΟ〜Α1 1、 データ入出 カ端子0<30〜0<33 1、 ロウアドレスストローブ端子バー RAS、 カラムアド レスス トローブ端子バー L C AS、 バー UCAS、 書き込みィネーブル端子バー WE、 出カイネーブル端子バー OEが設けられている。  In this chip D, as external connection terminals, as shown in FIG. 14, power supply Vcc, ground Vss voltage terminals Vcc, Vss, address terminals ΑΟ to Α11, data input / output terminals 0 <30 to 0 <331 1, Row address strobe pin bar RAS, column address strobe pin bar LCAS, bar UCAS, write enable pin bar WE, output enable pin bar OE.
以上のような、 チップ MF、 チップ MFAと、 1つまたは複数のチップ AD、 チップ Dとの組み合わせにより構成される本実施の形態の半導体装置においては、 特に本発明の一つの特徴として、 チッブ M Fまたはチップ M F Aの接続端子と、 チッブ A Dまたはチップ Dの接続端子とに互レ、に共通の信号端子は同一の外部接 続端子に共通に割り当てている。 以下に、 同一の外部接続端子に共通に割り当て られている接続端子について詳細に説明する。  In the semiconductor device of the present embodiment configured by combining the chip MF and the chip MFA with one or a plurality of chips AD and the chip D as described above, the chip MF is one of the features of the present invention. Alternatively, the signal terminal common to the chip MFA connection terminal and the chip AD or chip D connection terminal is commonly assigned to the same external connection terminal. Hereinafter, the connection terminals commonly assigned to the same external connection terminal will be described in detail.
図 1 9は、 前記図 7、 図 8に示した 144ピンのチップ M Fと、 前記図 1 3、 図 14に示した 50ピンの 2つのチップ Dとの接続例を示す接続図である- なお、 図 1 9においては、 チッブ M Fの接続端子とチップ Dの接続端子とに共通の信号 端子と外部接続端子との間の接続のみを示しており、 実際にはチップ MFにのみ 独立の信号端子である接続端子も外部接続端子に接続されている。  FIG. 19 is a connection diagram showing an example of connection between the 144-pin chip MF shown in FIGS. 7 and 8 and the two 50-pin chips D shown in FIGS. 13 and 14. In FIG. 19, only the connection between the signal terminal common to the connection terminal of the chip MF and the connection terminal of the chip D and the external connection terminal is shown. In practice, the signal terminal independent only to the chip MF is shown. Is also connected to the external connection terminal.
この 1 44ピンのチップ MFと 50ピンの 2つのチップ Dとの接続において、 チップ MFのァドレス端子 AO〜A 1 1は 2つのチップ Dのァドレス端子 AO〜 A 1 1に接続されると共に同じ外部接続端子 A 0〜 A 1 1に接続され、 チッブ M Fのデータ入出力端子 D 0〜D 3 1はそれぞれのチップ Dのデータ入出力端子 D Q0〜DQ 1 5に分割して接続されると共に同じ外部接続端子 DO〜D 3 1に接 れ、レヽ In the connection between the 144-pin chip MF and the two 50-pin chips D, the address terminals AO to A11 of the chip MF are connected to the address terminals AO to A11 of the two chips D and the same external terminals. Connected to connection terminals A 0 to A 1 1 and chip M The data input / output terminals D 0 to D 31 of the F are divided and connected to the data input / output terminals D Q0 to DQ 15 of the respective chips D and connected to the same external connection terminals DO to D 31, and
また、 チップ MFの電源端子 V CC、 接地端子 V ssはそれぞれのチップ Dの電 源端子 V cc、 接地端子 V ssにそれぞれ接続されると共に同じ外部接続端子 V cc、 V ssにそれぞれ接続されている。 なお、 この電圧端子は、 実際にはチップ MF、 チップ D、 外部接続端子の複数の端子に割り当てられているので、 それぞれが同 じ端子同士で接続される。 In addition, the power supply terminal V CC and the ground terminal V ss of the chip MF are connected to the power terminal V cc and the ground terminal V ss of the respective chip D and also connected to the same external connection terminal V cc and V ss, respectively. I have. Since these voltage terminals are actually assigned to a plurality of terminals such as a chip MF, a chip D, and an external connection terminal, each is connected by the same terminal.
さらに、 制御信号にっレ、ては、 チップ M Fのロウアドレスス トローブ端子バー R A Sは 2つのチップ Dに共通に接続されると共に外部接続端子バー R A Sに接 続され、 チップ MFのカラムアドレスス トローブ端子バー C AS L、 バー CAS Hは一方のチップ Dのカラムァドレスストローブ端子バー L CAS、 バー UCA Sに接続されると共に外部接続端子バー C AS L、 バー CASHに接続され、 チ ップ MFのカラムァドレスストローブ端子バー CASHL、 バー CAS HHは他 方のチップ Dのカラムアドレスス トローブ端子バー L CAS、 バー UCASに接 続されると共に外部接続端子バー CASHL、 バ一 CASHHに接続されている。 また、 チップ M Fの読み出し/書き込み端子 RDZバー WRは 2つのチップ D の書き込みィネーブル端子バー WEに共通に接続されると共に外部接続端子 RD /バー WRに接続され、 チップ MFのチップセレク ト端子バー C S 3は 2つのチ ップ Dの出カイネーブル端子バー OEに共通に接続されると共に外部接続端子バ 一 C S 3に接続されている。  Further, according to the control signal, the row address strobe terminal bar RAS of the chip MF is commonly connected to the two chips D and connected to the external connection terminal bar RAS, and the column address strobe of the chip MF is provided. Terminal bar CAS L and bar CAS H are connected to column dress strobe terminal bar L CAS and bar UCAS of chip D, and are also connected to external connection terminal bar CAS L and bar CASH and chip MF The column address strobe terminals CASHL and CAS HH are connected to the column address strobe terminals L CAS and UCAS of the other chip D, and to the external connection terminals CASHL and CASHH. Also, the read / write terminal RDZ bar WR of the chip MF is connected to the write enable terminal bar WE of the two chips D in common, and is also connected to the external connection terminal RD / bar WR, and the chip select terminal bar CS of the chip MF Numeral 3 is commonly connected to the output enable terminal bar OE of the two chips D and to the external connection terminal bar CS3.
このように、 チップ MFとチップ Dと外部接続端子との接続においては、 チッ プ Dの全ての接続端子がチップ MFの接続端子と共通になってそれぞれ同一の外 部接続端子に接続される。 なお、 このチップ MFとチップ Dとによる半導体装置 においては、 実際にはチップ \1Fにのみ独立の信号端子である接続端子も存在す るので、 この独立の接続端子に接続される外部接続端子も外部と接続可能に設け られている 3 As described above, in the connection between the chip MF, the chip D, and the external connection terminal, all the connection terminals of the chip D are common to the connection terminals of the chip MF and are connected to the same external connection terminals. Note that, in the semiconductor device including the chip MF and the chip D, there are actually connection terminals which are independent signal terminals only on the chip \ 1F, so that external connection terminals connected to the independent connection terminals are also included. Provided so that it can be connected to the outside 3
図 20は、 前記図 7、 図 8に示した 144ピンのチップ MFと、 前記図 1 1、 図 1 2に示した 144ピンのチップ ADとの接続例を示す接続図である。 なお、 図 20においても、 前記図 1 9と同様にチップ M Fの接続端子とチッブ ADの接 続端子とに共通の信号端子と外部接続端子との間の接続のみを示しており、 実際 にはチップ I F、 チップ A Dにのみ独立の信号端子である接続端子も外部接続端 子に接続されている。 FIG. 20 is a connection diagram showing a connection example between the 144-pin chip MF shown in FIGS. 7 and 8 and the 144-pin chip AD shown in FIGS. 11 and 12. In addition, FIG. 20 also shows only the connection between the signal terminal common to the connection terminal of the chip MF and the connection terminal of the chip AD and the external connection terminal, as in FIG. The connection terminal, which is an independent signal terminal only for the chip AD, is also connected to the external connection terminal.
この 144ピンのチップ MFと 144ビンのチップ ADとの接続において、 チ ップ MFのァドレス端子 AO〜A 1 0はチップ ADのァドレス端子 AO〜A 1 0 に接続されると共に同じ外部接続端子 AO〜A1 0に接続され、 チップ MFのデ ータ入出力端子 D 0〜D 3 1はチップ ADのデータ入出力端子 D 0〜D 31に接 続されると共に同じ外部接続端子 DO〜D 3 1に接続されている。  In the connection between the 144-pin chip MF and the 144-bin chip AD, the address terminals AO to A10 of the chip MF are connected to the address terminals AO to A10 of the chip AD and the same external connection terminal AO. To A10, and the data input / output terminals D0 to D31 of the chip MF are connected to the data input / output terminals D0 to D31 of the chip AD and the same external connection terminals DO to D31 It is connected to the.
また、チップ MFの電源端子 V cc、接地端子 V ssはチップ ADの電源端子 V c c、 接地端子 V ssにそれぞれ接続されると共に同じ外部接続端子 V cc、 V ssに それぞれ接続されている。 なお、 この電圧端子は、 実際にはチップ MF、 チップ AD、 外部接続端子の複数の端子に割り当てられているので、 それぞれが同じ端 子同士で接続される。  The power supply terminal Vcc and the ground terminal Vss of the chip MF are connected to the power supply terminal Vcc and the ground terminal Vss of the chip AD, respectively, and are also connected to the same external connection terminals Vcc and Vss, respectively. Note that these voltage terminals are actually assigned to multiple terminals of the chip MF, chip AD, and external connection terminal, so each is connected by the same terminal.
さらに、 制御信号については、 チップ MFのロウアドレスス ト口一ブ端子バー RAS、 カラムアドレスス トローブ端子バー CAS L、 バー CASH、 バー CA SHL、 バー CASHH、 読み出し Z書き込み端子 RD/バー WR、 チップセレ ク ト端子バー C S 3、 クロック端子 CKはチップ ADのロウァドレスストロ一ブ 端子バー RAS、 カラムア ドレスス トローブ端子バー CAS L、 バー CASH、 バー CASH L、 バー CASHH、 読み出し/書き込み端子 RDZバ一 WR、 チ ップセレク ト端子バー CS 3、 クロック端子 CKにそれぞれ接続されると共に、 それぞれ同じ外部接続端子のロウァドレスストローブ端子バー RAS、 カラムァ ドレスス ト口一ブ端子バー C AS L、 バー CASH、 バー CASHL、 バー CA SHH、 読み出し /書き込み端子 RD/バー WR、 チップセレク ト端子バ一 CS 3、 クロック端子 CKに接続されている。  In addition, the control signals are as follows: row address strobe terminal bar RAS of chip MF, column address strobe terminal bar CAS L, bar CASH, bar CA SHL, bar CASHH, read Z write terminal RD / bar WR, chip select CTS terminal bar CS 3 and clock terminal CK are the chip AD row address strobe terminal bar RAS, column address strobe terminal bar CAS L, CASH, CASH L, CASHH, read / write terminal RDZ, WR, Chip select terminal bar CS 3 and clock terminal CK are connected to each other, and the same external connection terminal, row address strobe terminal bar RAS, column address port terminal bar CASL, bar CASH, bar CASHL, bar CA SHH, read / write terminal RD / bar WR, chip select terminal CS3, clock terminal CK ing.
このように、 チップ MFとチップ ADとによる半導体装置においては、 実際に はチップ ADにのみ特有の信号であるシリアルデータ出力 SD 0〜SD 23、 A S I C制御信号端子 C0〜C 27が独立となる他、 チップ MFにのみ独立の信号 端子である接続端子も存在するので、 これらの独立の接続端子に接続される外部 接続端子も外部と接続可能に設けられている。 As described above, in the semiconductor device including the chip MF and the chip AD, the serial data outputs SD0 to SD23, which are signals specific to only the chip AD, and the ASIC control signal terminals C0 to C27 are independent. Since there are also connection terminals that are independent signal terminals only in the chip MF, external terminals connected to these independent connection terminals The connection terminal is also provided so as to be connectable to the outside.
なお、 前記半導体装置において、 チップ AD、 チップ Dの DRAMをシンクロ ナス DRAMとする場合には、 さらに半導体装置の内部で同期を取る必要がある ので、 この同期を取るための制御信号であるクロック信号が割り当てられている クロック端子も共通の接続端子として同一の外部接続端子に接続されることにな る。  In the semiconductor device, when the DRAM of the chip AD and the chip D is a synchronous DRAM, it is necessary to further synchronize inside the semiconductor device. Therefore, a clock signal which is a control signal for this synchronization is required. The clock terminal to which is assigned is also connected to the same external connection terminal as a common connection terminal.
次に、 本実施の形態の作用について、 チップ MF、 チップ MFAと、 1つまた は複数のチップ AD、 チップ Dとの組み合わせにより構成される半導体装置にお いて、 チップ MF (チップ IF A) のプロセッサ C PUからチップ AD (チップ D) の DRAMに対する読み出し動作、 書き込み動作、 リフレッシュ動作の概要 を説明する。  Next, regarding the operation of the present embodiment, in a semiconductor device configured by combining the chip MF and the chip MFA with one or more chips AD and the chip D, the chip MF (chip IF A) The outline of read, write, and refresh operations from the processor CPU to the DRAM of chip AD (chip D) is described.
( 1 ) 読み出し動作  (1) Read operation
例えば、 ァドレスマルチブレタスではァドレス信号は時分割で入力するため、 プロセッサ C PUからのロウアドレスストローブ信号バー R ASとカラムァドレ スス トローブ信号バー CASの 2つの同期信号が必要である。 バー RASが高レ ベル (H) の期間は、 R AS系回路がブリチャージされる期間で、 この間はチッ プ内部ではいかなるメモリ動作も行われない。 一方、 バ一 C A Sが Hの期間は、 データ出力バッファゃデータ入カバッファなどの C A S系回路がプリチヤ一ジさ れる期間で、 この間はチップ ADの外部との読み出し動作、 書き込み動作は行わ れない  For example, in the addressless bretas, since the address signal is input in a time-division manner, two synchronous signals of a row address strobe signal RAS and a column address strobe signal CAS from the processor CPU are required. The period when RAS is high (H) is the period during which the RAS circuit is precharged, and no memory operation is performed inside the chip during this period. On the other hand, the period when the bus CAS is H is a period in which the CAS circuits such as the data output buffer and the data input buffer are precharged, and during this period, the read operation and the write operation with the outside of the chip AD are not performed.
バー R ASが低レベル (L) になると、 RAS系回路が活性化され、 メモリ動 作が始まる。 続いて、 バー CASが Lになると読み出し動作あるいは書き込み動 作が始まり、 チップ ADの外部のチップ MFとのデータの授受が行われる。 この ようにチップ ADの DRAMでは、 プリチャージ期間と活性期間が交互に繰り返 される。 通常、 バー R ASのサイクル時間がチップ ADのサイクル時間となる: 読み出し動作の指定は、 書き込みィネーブル信号バー WEをバー C ASの立ち 下がり時点よりも前に Hにして、 バー C ASが立ち上がるまでそれを保持するこ とによって行う。 データがいったん出力されると、 バ一C ASが立ち上がるまで データを保持する。 ここでアクセス時間には 3種類あって、 バー RASおよびバ 一 C A Sの立ち下がり時点からデータ出力端子にデータが出力されるまでの時間 を、 それぞれバー RASアクセス時間、 バー C A Sアクセス時間と呼び、 カラム ァドレスが確定された時点からデータが出力されるまでの時間をァドレスァクセ ス時間と呼ぶ。 When RAS goes low (L), the RAS circuitry is activated and memory operation begins. Subsequently, when the bar CAS becomes L, the read operation or the write operation starts, and data is exchanged with the chip MF outside the chip AD. As described above, in the DRAM of the chip AD, the precharge period and the active period are alternately repeated. Normally, the cycle time of RAS is the cycle time of chip AD. The read operation is specified by setting the write enable signal WE to H before the falling edge of CAS, until the CAS rises. Do it by holding it. Once the data is output, the data is held until the basic CAS starts. There are three types of access time, bar RAS and bar The time from the falling edge of one CAS until the data is output to the data output terminal is called the RAS access time and the CAS access time, respectively.The time from when the column address is determined until the data is output Is called the address access time.
(2) 書き込み動作  (2) Write operation
アドレス信号とバー RAS、 バー CASとの関係は、 読み出し動作と同じなの でここでは説明を省略する。 また、 サイクル時間などのバー R A S、 バー CAS のタイミング規格も読み出し動作と同じである。 ただし、 バー WEをバ一 CAS の立ち下がり時点よりも前に Lにすることによって書き込み動作を指定する。 こ のサイクル中は、 データ出力端子は高インピーダンス状態に保持される。 なお、 バ一 R A Sを Lのままの状態で、 いったんチップ A Dの外部のチップ M Fに読み 出したデータをチップ MFで変更し、 再び同じメモリセルに書き込むという R e a d o d i f y Wr i t e動作の仕様もある。  The relationship between the address signal and RAS and CAS is the same as in the read operation, so the description is omitted here. The timing specifications of RAS and CAS, such as the cycle time, are the same as in the read operation. However, the write operation is specified by setting WE low before the fall of CAS. During this cycle, the data output terminal is kept in the high impedance state. It should be noted that there is also a specification of a Read-a-write Write operation in which data once read out to the chip MF outside the chip AD is changed by the chip MF while the base R AS is kept at L, and the data is written again to the same memory cell.
(3) リフレッシュ動作  (3) Refresh operation
読み出し、 書き込みといったランダムアクセス動作中に割り込んで行うリフレ ッシュ動作と、 電池バックアップ期間中のようにチップ ADの内部の記憶情報を 保持するためだけに行うリフレッシュ動作がある。 前者はバー R A S o n l y リフレッシュと、 CBR (バー CAS b e f o r バー RAS) リフレツシ ュが、 また後者ではセルフリフレッシュが標準になっている。  There are two types of refresh operations: interrupt operations during random access operations such as read and write operations, and refresh operations that are performed only to retain information stored inside the chip AD during the battery backup period. The former is standard for RASonely refresh and CBR (RAS for RAS) refresh, and the latter is standard for self-refresh.
例えば、 バー RAS o n l y リフレッシュは、 読み出し動作、 書き込み動 作と同じタイミング規格のバー RASの 1サイクル中に、 1行 (ワード線) の全 メモリセルが同時にリフレッシュされる。 ただし、 バ一 CASを Hにしてチップ ADの外部のチップ MFからリフレッシュァドレスを与えなければならない。 このリフレッシュの仕方には、 集中リフレッシュと分散リフレッシュとがあるつ 集中リフレッシュは、 最小サイクルでリフレッシュを繰り返し、 この期間はチッ プ ADの外部のチップ MFからメモリアクセスはできないが、 残りの期間はリフ レッシュを割り込ませず、 外部からメモリアクセスを受け付ける方法である。 分 散リフレッシュは、 リフレッシュ動作の 1サイクルを最大リフレッシュの期間中 に等しく分散したものである。 実際には分散リフレッシュが多用されるので、 リ フレッシュ動作の 1サイクルが通常の読み出し .書き込み動作のサイクルに割り 込んだタイミングとなる。 For example, in RAS only refresh, all memory cells in one row (word line) are refreshed simultaneously during one cycle of RAS with the same timing standard as read operation and write operation. However, the bus CAS must be set to H and the refresh address must be given from the chip MF outside the chip AD. There are two types of refresh: centralized refresh and distributed refresh. Centralized refresh repeats the refresh in the minimum cycle. During this period, the memory cannot be accessed from the chip MF outside the chip AD, but the rest of the period is the refresh. This is a method that accepts external memory access without interrupting the refresh. Distributed refresh is one in which one refresh operation is evenly distributed over the maximum refresh period. In practice, distributed refresh is often used, One cycle of the fresh operation is the timing that interrupts the normal read / write operation cycle.
また、 CBRリフレッシュは、 バー C ASをバー RASに先行させて Lにする ことによって、 リフレッシュ動作であることを内部で判定する。 この判定パルス によって内部のリフレッシュアドレスカウンタからアドレスが発生し、 ワード線 が選ばれ、 リフレッシュされる。 従って、 チップ ADの外部からアドレスを与え る必要はない。  The CBR refresh is internally determined to be a refresh operation by setting the CAS to L before the RAS. With this determination pulse, an address is generated from the internal refresh address counter, and the word line is selected and refreshed. Therefore, it is not necessary to give an address from outside the chip AD.
さらに、 セルフリフレッシュは、 通常のメモリサイクル終了後、 CBRタイミ ングにしてバー RASのパルス幅を、 例えば 1 00 μ s以上に設定する。 内部で はこの時間以上になると、 リフレッシュアドレスカウンタとリフレッシュタイマ を用いたリフレッシュ動作が始まり、 バー RAS、 バー CASがともに Lである 限りセルフリフレッシュが続く。 リフレッシュされる頻度が少ないほどチップ A Dの消費電力は低くなるが、 この頻度はチップ ADの内部の温度を検出するタイ マによって自動的に調整される。 なお、 セルフリフレッシュから通常サイクルに 移る場合には、 バー R ASのプリチャージ期間が必要である。  Further, in the self-refresh, after the normal memory cycle is completed, the pulse width of RAS is set to, for example, 100 μs or more by performing CBR timing. Internally, when this time is exceeded, the refresh operation using the refresh address counter and refresh timer starts, and self-refresh continues as long as both RAS and CAS are low. The less frequently refreshed, the lower the power consumption of chip AD, but this frequency is automatically adjusted by a timer that detects the internal temperature of chip AD. When shifting from the self-refresh to the normal cycle, a precharge period of RAS is required.
以上のようにして、 チップ MFのプロセッサ C PUからチップ A Dの DRAM に対する読み出し動作、 書き込み動作、 リフレッシュ動作が行われ、 特にこのリ フレッシュのセルフリフレッシュ動作時に、 本発明の一つの特徴として、 チップ ADの内部のロジック回路がリフレツシュ動作/ァクセス動作を実行することが できる回路構成となっている。 以下に、 セルフリフレッシュ動作時にリフレツシ ュ動作/アクセス動作が実行可能となることを詳細に説明する。  As described above, the read operation, the write operation, and the refresh operation are performed from the processor CPU of the chip MF to the DRAM of the chip AD. In particular, at the time of the refresh self-refresh operation, one feature of the present invention is that the chip AD The internal logic circuit has a circuit configuration capable of executing a refresh operation / access operation. Hereinafter, it will be described in detail that the refresh operation / access operation can be performed during the self-refresh operation.
図 21は、 前記図 1 1に示したチップ ADの内部機能例を概略的に示した概略 構成図である。 このチップ ADは、 ダイナミックランダムアクセスメモリ DRA M、 メモリ内蔵ロジック L o g i c、 DRAMアクセス制御回路 DACとから構 成されている。 なお、 図 2 1における DRAM、 メモリ内蔵ロジック L o g i c、 DRAMアクセス制御回路 DACは、 それぞれ前記図 1 1に示した複数の DRA Mバンク B a n kおよびメインアンプ MAなどによる D RAM部分と、 データ転 送回路 DTおよびディジタル信号処理回路 DS Pによる AS I C部分と、 ロウァ ドレスバッファ R A Bおよび力ラムアドレスバッファ C A Bなどによるアクセス 制御部分とに対応している。 また、 入力バッファ I Bおよび出力バッファ〇Bは、 前記図 1 1に示したメインアンプ MAと外部接続端子 D O〜D 3 2とのデータ入 出力を行う回路 I / Oおよびデイジタル信号処理回路 D S Pと接続される回路 I /Oに対応している。 FIG. 21 is a schematic configuration diagram schematically showing an example of internal functions of the chip AD shown in FIG. This chip AD is composed of a dynamic random access memory DRAM, a memory logic Logic, and a DRAM access control circuit DAC. Note that the DRAM, logic logic with built-in memory, and DRAM access control circuit DAC in FIG. 21 correspond to a DRAM section by a plurality of DRAM banks and a main amplifier MA shown in FIG. Circuit DT and digital signal processing circuit AS AS part by DSP and access by low address buffer RAB and dynamic RAM address buffer CAB etc. It corresponds to the control part. The input buffer IB and the output buffer 〇B are connected to the circuit I / O for performing data input / output between the main amplifier MA and the external connection terminals DO to D32 shown in FIG. 11 and the digital signal processing circuit DSP. It corresponds to the circuit I / O to be performed.
このチップ ADにおいては、 チップセレク ト信号バー C S、 ロウアドレススト ローブ信号バー RAS、 カラムアドレスス トローブ信号バー C ASが制御信号端 子、 ァドレス信号がァドレス端子を介して DRAMアクセス制御回路 D ACに入 力され、 またデータ信号がデータ入出力端子を介して入出力可能となっている。 さらに、 チップ ADの内部においては、 D RAMと DRAMアクセス制御回路 D ACとの間はアドレスバス BUS Aにより接続され、 また DRAMとメモリ内蔵 ロジック L o g i cとデータ入出力端子との間はデータバス BUS Dにより接続 されている。 例えば、 この内部のデータバス BUS Dは、 データ入出力端子が例 えば 8ビット対応であるのに対して、 それよりも広い 64ビットのバス幅となつ ている:  In this chip AD, the chip select signal CS, the row address strobe signal RAS, and the column address strobe signal CAS are used as control signal terminals, and address signals are sent to the DRAM access control circuit DAC via address terminals. Input and data signals can be input / output via the data input / output terminal. Further, inside the chip AD, the DRAM and the DRAM access control circuit DAC are connected by an address bus BUS A, and the DRAM and a logic built in the memory Logic and a data bus BUS are connected between the data input / output terminals. Connected by D. For example, the internal data bus BUS D has a wider 64-bit bus width than the 8-bit data input / output terminals, for example:
また、 チップ ADの内部においては、 メモリ内蔵ロジック L o g i cと DRA Mアクセス制御回路 D ACとの間がァドレスバスおょぴ制御信号線により接続さ れ、 D R AMァクセス制御回路 D A Cからメモリ内蔵ロジック L o g i cに対し てセルフリフレッシュ動作の許可信号が出力され、 メモリ内蔵ロジック L o g i cから D R AMァクセス制御回路 D A Cに対して読み出し Z書き込み信号 R/W、 アドレス信号が出力されている。 なお、 この読み出し Z書き込み信号 RZWは、 読み出し信号 Rと書き込み信号 Wとに分けて出力することも可能である。 セルフ リフレッシュ期間は、 D RAMアクセス制御回路 D ACから、 データ入出力禁止 信号 D I Sが入力バッファ I Bおよび出力バッファ OBに出力される。 データ入 出力禁止信号 D I Sによってセルフリフレッシュ期間中、 入力バッファ I Bは、 チップ ADの外部からのデータ入力を禁止し、 さらに出力バッファ回路 OBは、 データバス BU S Dのデータをチップ ADの外部に出力することを禁止する。 図 2 2は、 DRAMアクセス制御回路 DACの詳細例を示す構成図である。 こ の DRAMアクセス制御回路 D ACは、 内部制御信号生成回路 C SG、 複数のセ レクタ回路 S Cなどにより構成され、 内部制御信号生成回路 C SGに入力される チップセレク ト信号バー C S、 ロウアドレスストローブ信号バー RAS、 カラム アドレスストローブ信号バー C ASに基づいて、 ァドレスを選択する制御信号な どを生成すると共に、 セルフリフレッシュ動作の許可信号を生成してメモリ内蔵 ロジック L o g i cに対して出力する。 Also, inside the chip AD, the logic logic with built-in memory and the DRAM access control circuit DAC are connected by an address bus control signal line, and the logic logic with built-in memory is connected from the DRAM access control circuit DAC. In response to this, a self-refresh operation enable signal is output, and a read / write Z write signal R / W and an address signal are output from the logic inside the memory to the DRAM access control circuit DAC. Note that the read Z write signal RZW can also be output separately for the read signal R and the write signal W. During the self-refresh period, the data input / output inhibit signal DIS is output from the DRAM access control circuit DAC to the input buffer IB and the output buffer OB. During the self-refresh period by the data input / output inhibit signal DIS, the input buffer IB inhibits data input from outside the chip AD, and the output buffer circuit OB outputs data on the data bus BU SD to the outside of the chip AD. Prohibit that. FIG. 22 is a configuration diagram showing a detailed example of the DRAM access control circuit DAC. The DRAM access control circuit DAC includes an internal control signal generation circuit CSG, a plurality of selector circuits SC, and the like, and is input to the internal control signal generation circuit CSG. Based on the chip select signal bar CS, row address strobe signal bar RAS, and column address strobe signal bar CAS, it generates a control signal to select an address, etc., and also generates a self-refresh operation enable signal and incorporates memory. Output to logic.
この許可 ί言号を受けたメモリ内蔵ロジック L o g i cは、 DRAMに対してァ クセス可能となり、 DRAMアクセス制御回路 D ACに対して読み出しノ書き込 み信号 R/Wを出力して読み出しノ書き込みの要求を行い、 ァドレス信号を DR AMアクセス制御回路 D A Cに出力して任意のメモリセルを選択し、 この選択さ れたメモリセルとメモリ内蔵ロジック L o g i cとの間でデータの読み出し/書 き込みを行うことができる。 なお、 この読み出し/書き込みの要求は、 読み出し の要求を行う場合に読み出し信号 Rを出力し、 書き込み要求を行う場合に書き込 み信号 Wを出力して行うことも可能である。  The logic in the memory that has received the permission signal becomes accessible to the DRAM, and outputs a read / write signal R / W to the DRAM access control circuit DAC to read / write data. Makes a request, outputs an address signal to the DRAM access control circuit DAC, selects an arbitrary memory cell, and reads / writes data between the selected memory cell and the logic with built-in memory. It can be carried out. Note that this read / write request can be made by outputting a read signal R when making a read request and outputting a write signal W when making a write request.
この内部制御信号生成回路 CSGにより生成されたァドレスの制御信号は、 チ ップ A Dの外部のチッブ M Fのプロセッサ CPUからのァクセス動作と、 チップ ADの内部のメモリ内蔵ロジック L o g i cからのアクセス動作とに対して、 セ レクタ回路 S Cを介して一方を選択して DRAMの任意のメモリセルを選択する ァドレス制御信号として用いられる。  The address control signal generated by the internal control signal generation circuit CSG is used for access operations from the processor CPU of the chip MF outside the chip AD and access operations from the logic Logic inside the chip AD internal memory. In contrast, one is selected via a selector circuit SC and used as an address control signal for selecting an arbitrary memory cell of the DRAM.
図 23は、 内部制御信号生成回路 CSGによる動作モードの遷移状態例を示す 説明図である。 この動作モードは、 通常の DRAMに対するアクセス動作モード と、 DRAMのセノレフリフレッシュ動作モードと、 内部のメモリ内蔵ロジック L o g i cによるアクセス動作モードとに分けることができ、 通常 DRAMァクセ ス動作モードからセルフリフレッシュ動作モードへはメモリ内蔵ロジック L o g i cからの読み出し/書き込み信号 R/Wによる読み出し 書き込みの要求なし に遷移し、 通常 DRAMアクセス動作モードへの復帰はリフレッシュを解除する ことにより行われる。  FIG. 23 is an explanatory diagram showing an example of a transition state of the operation mode by the internal control signal generation circuit CSG. This operation mode can be divided into a normal DRAM access operation mode, a DRAM senoref refresh operation mode, and an access operation mode using the internal logic logic of the internal memory. A transition to the operation mode is made without a read / write request by the read / write signal R / W from the logic inside the memory Logic. Return to the normal DRAM access operation mode is performed by releasing the refresh.
また、 セルフリフレッシュ動作モードから内部アクセス動作モードへはメモリ 内蔵ロジック L o g i cからの読み出し/書き込みの要求があった場合に遷移し、 セルフリフレッシュ動作モードへの復帰は読み出し/書き込みの完了により行わ れる 同じく、 通常 DRAMアクセス動作モードから内部アクセス動作モードへ はメモリ内蔵ロジック L o g i cからの読み出し/書き込みの要求があった場合 に遷移し、 通常 DRAMアクセス動作モードへの復帰はリフレッシュを解除する ことにより行われる。 In addition, transition from the self-refresh operation mode to the internal access operation mode is made when a read / write request is made from the logic inside the memory, and the return to the self-refresh operation mode is performed by the completion of the read / write. From normal DRAM access operation mode to internal access operation mode Transitions when there is a read / write request from the logic inside the memory, and the normal return to the DRAM access operation mode is performed by releasing the refresh.
図 24は、 D RAMに対する内部制御信号生成回路 CSGを含む DRAMァク セス制御回路 DACの制御例を示す動作タイミング図である。 この DRAMに対 する動作制御においては、 図 24 (a) に示すように、 通常の DRAMアクセス を実行可能な通常 D R AMァクセス期間と、 この通常 D R AMァクセス期間と通 常 DRAMアクセス期間との間の、 DRAMのセルフリフレッシュを実行可能な DRAMセルフリフレッシュ期間とがある この DRAMセルフリフレッシュ期 間は、 DRA-V [に対するチップ MFからの通常のアクセス動作が行われていない 期間である。  FIG. 24 is an operation timing chart showing a control example of the DRAM access control circuit DAC including the internal control signal generation circuit CSG for the DRAM. In the operation control for this DRAM, as shown in FIG. 24 (a), a normal DRAM access period during which normal DRAM access can be performed, and a period between the normal DRAM access period and the normal DRAM access period. There is a DRAM self-refresh period in which DRAM self-refresh can be performed. This DRAM self-refresh period is a period in which normal access operation from the chip MF to DRA-V [is not performed.
この DRAMセルフリフレッシュ期間には、 クロック信号 CKに同期して、 口 ゥァドレスス トローブ信号バー RAS、 カラムァドレスス トローブ信号バー CA Sに基づいて、 セルフリフレッシュ動作の許可信号がメモリ内蔵口ジック L 0 g i cに対して出力され、 このメモリ内蔵ロジック L o g i cから DRAMに対す る制御信号 RZWによる読み出しノ書き込みのためのアクセス動作の要求があつ た場合にのみリフレッシュ動作を解除し、 DRAMに対するメモリ内蔵ロジック L o g i c (ディジタル信号処理回路 D S P) からのアクセス動作を可能として いる。  During the DRAM self-refresh period, a self-refresh operation enable signal is applied to the internal memory logic L 0 gic based on the address strobe signal RAS and the column address strobe signal CAS in synchronization with the clock signal CK. The refresh operation is released only when there is a request for an access operation for read / write by the control signal RZW to the DRAM from the logic Logic of the memory and the logic Logic of the DRAM. Access operation from digital signal processing circuit (DSP) is possible.
このセルフリフレッシュ期間におけるリフレッシュ動作 Zアクセス動作の実行 は、 例えば実際には図 24 (b) に示すように、 制御信号 Rによる読み出し要求 に従って読み出し動作を繰り返すことができると共に、 この読み出しと読み出し との間の期間にリフレツシュ動作を実行したり、 制御信号 Wによる書き込み要求 に従って読み出し動作を繰り返すことができると共に、 この書き込みと書き込み との間の期間にリフレッシュ動作を実行したり、 さらに制御信号 Rによる読み出 し要求と制御信号 Wによる書き込み要求とに従って読み出し、 書き込みのァクセ ス動作を繰り返すことができると共に、 このァクセス動作の間の期間にリフレツ シュ動作を実行することができる:  The execution of the refresh operation Z access operation during the self-refresh period can be repeated in accordance with a read request by the control signal R, for example, as shown in FIG. The refresh operation can be executed during the period between the two, and the read operation can be repeated according to the write request by the control signal W. The refresh operation can be executed during the period between the write and the write, and the read operation by the control signal R can be performed. The read and write access operations can be repeated according to the output request and the write request by the control signal W, and the refresh operation can be executed during the access operation:
以上のようにして、 チップ -VI Fのプロセッサ C Pじによるチップ A Dの D R A Mに対するセルフリフレッシュ動作時に、 チップ ADのメモリ内蔵ロジック L o g i cが D R AMに対してァクセス動作が可能となり、 メモリ内蔵口ジック L o g 1 cからの書き込み要求により DRAMにデータの書き込みを行うことができ、 また読み出し要求により DRAMからデータの読み出しを行うことができる。 なお、 このセルフリフレッシュ動作時におけるチップ ADのメモリ内蔵ロジッ ク L o g i cによる DRAMに対するアクセス動作は、 チップ A Dに他のチップ が接続される場合も同様であり、 例えば前記のチップ MF Aや、 単に CPUを含 む他の半導体チップについても同様の効果が期待できる。 すなわち、 外部からチ ッブ ADの DRAMに対するアクセス動作と、 この DRAMのセルフリフレツシ ュ動作とが可能とされるパッケ一ジ構造の半導体装置について適用することがで さる。 As described above, the chip AD DRA by the chip-VI F processor CP During the self-refresh operation for M, the logic inside the memory of the chip AD can access the DRAM, and data can be written to the DRAM in response to a write request from the logic inside the memory. Also, data can be read from the DRAM in response to a read request. Note that the access operation to the DRAM by the logic built into the memory of the chip AD during the self-refresh operation is the same when the other chip is connected to the chip AD. For example, the chip MFA or the CPU Similar effects can be expected for other semiconductor chips including. That is, the present invention can be applied to a semiconductor device having a package structure capable of performing an access operation to a chip AD DRAM from the outside and a self-refresh operation of the DRAM.
次に、 本実施の形態のパッケージの具体的な構造を詳細に説明する。 図 25は 本実施の形態のパッケージの全体斜視図、 図 26はこのバッケージの断面図であ る  Next, a specific structure of the package according to the present embodiment will be described in detail. FIG. 25 is an overall perspective view of the package of the present embodiment, and FIG. 26 is a cross-sectional view of the package.
本実施の形態のパッケージは、 マイクロコンピュータとフラッシュメモリとが 形成された前記第 1のチップ M F (フラッシュメモリ搭載マイクロコンピュー タ) を第 1の TCP (Tape Carrier Package) 1 Aに封止すると共に、 DRAM と AS I Cとが形成された前記第 2のチップ AD (D RAMオンチップロジッ ク) を第 2の TC P 1 Bに封止し、 これら 2個の TC P 1 A、 I Bを上下方向に 重ね合わせて一体に接合した積層型 TCP構造を有している。  The package of the present embodiment seals the first chip MF (microcomputer equipped with flash memory) on which a microcomputer and a flash memory are formed in a first TCP (Tape Carrier Package) 1A and The second chip AD (DRAM on-chip logic) on which DRAM and AS IC are formed is sealed in a second TCP 1B, and these two TCP 1A and IB are vertically It has a stacked TCP structure that is superimposed and bonded together.
第 1の TC P 1 Aに封止された第 1のチップ MFは、 テープキヤリア 2 aの中 央部に開孔されたデバイスホール 3 a内にその主面 (素子形成面) を下に向けて 配置されており、 その主面の周辺部に形成されたバンプ電極 4を介して、 テープ キャリア 2 aの一面に形成されたリード 5 aの一端 (インナーリード部) と電気 的に接続されている。 チップ MFの主面には、 この主面に形成された L S I (フ ラッシュメモリ搭載マイク口コンピュータ) を外部環境から保護するポッティン グ樹脂 6が被着されている。  The first chip MF sealed in the first TCP 1A has its main surface (element formation surface) facing down in the device hole 3a opened in the center of the tape carrier 2a. And electrically connected to one end (inner lead portion) of a lead 5a formed on one surface of the tape carrier 2a via a bump electrode 4 formed on the periphery of the main surface. I have. The main surface of the chip MF is covered with a potting resin 6 for protecting the LSI (microphone computer with flash memory) formed on the main surface from the external environment.
テープキャリア 2 aの一面に形成されたリード 5 aは、 図 27に示すようなパ ターンを有している。 これらのリード 5 aの表面は、 デバイスホール 3 a内に突 出する一端部 (インナーリード部) を除き、 ソルダーレジス ト 7で被覆されてい る。 各リード 5 aの他端は、 テープキヤリア 2 aの一面から他面に貫通するスル 一ホール 8 aと電気的に接続されている。 これらのスルーホール 8 aは、 テープ キャリア 2 aの 4辺に沿って 2列に配置されており、 それぞれのスル一ホール 8 aの表面には、 図 2 6に示すように、 この積層型 T C Pをブリント配線基板に実 装する際の外部接続端子となる半田バンプ 9が接合されている。 The lead 5a formed on one surface of the tape carrier 2a has a pattern as shown in FIG. The surfaces of these leads 5a project into the device holes 3a. Except for the one end (inner lead part) that protrudes, it is covered with solder resist 7. The other end of each lead 5a is electrically connected to a through hole 8a penetrating from one surface of the tape carrier 2a to the other surface. These through holes 8a are arranged in two rows along the four sides of the tape carrier 2a, and the surface of each through hole 8a is provided with the stacked TCPs as shown in Fig. 26. Solder bumps 9, which are external connection terminals when mounting the printed circuit board on a printed wiring board, are joined.
第 2の T C P I Bは、 上記第 1の T C P 1 Aの上部に積層されている。 T C P 1 Aと T C P I Bは、 両者の合わせ面に被着された接着剤 1 0によって密に接合 されている。 この T C P 1 Bに封止された第 2のチップ A Dは、 テープキャリア 2 bの中央部に開孔されたデバイスホール 3 b内にその主面を下に向けて配置さ れており、 その主面の周辺部に形成されたバンプ電極 4を介して、 テープキヤリ ァ 2 bの一面に形成されたリード 5 bの一端 (インナーリード部) と電気的に接 続されている。 チップ A Dの主面には、 この主面に形成された L S I (D R AM オンチップロジック) を外部環境から保護するポッティング樹脂 6が被着されて レヽる 3 The second TCPIB is stacked on the first TCP 1A. TCP 1A and TCPIB are tightly joined by an adhesive 10 applied to the mating surface of both. The second chip AD sealed in the TCP 1B is disposed with its main surface facing downward in a device hole 3b opened in the center of the tape carrier 2b. It is electrically connected to one end (inner lead portion) of a lead 5b formed on one surface of the tape carrier 2b via a bump electrode 4 formed on a peripheral portion of the surface. The main surface of the chip AD, potting resin 6 to protect LSI formed on the main surface (DR AM on-chip logic) from the external environment is deposited Rereru 3
T C P 1 Bのテ一ブキヤリア 2 bの外径寸法は、 T C P 1 Aのテープキヤリァ 2 aと同じである。 テープキャリア 2 bのデバイスホール 3 bの寸法は、 チップ A Dの外径寸法がチップ M Fよりも小さいので、 その分、 テープキャリア 2 aの デバイスホール 3 aよりも小さくなっている。  The outer diameter of the tape carrier 2b of the TCP 1B is the same as the tape carrier 2a of the TCP 1A. The dimension of the device hole 3b of the tape carrier 2b is smaller than that of the device hole 3a of the tape carrier 2a because the outer diameter of the chip AD is smaller than that of the chip MF.
テープキヤリア 2 bの一面に形成されたリード 4 bは、 図 2 8に示すようなパ ターンを有している。 各リード 5 bの他端は、 テープキャリア 2 bの一面から他 面に貫通するスルーホール 8 bと電気的に接続されている。 これらのスルーホー ノレ 8 bは、 前記テープキャリア 2 aのスルーホール 8 aと同じく、 テープキヤリ ァ 2 bの 4辺に沿って 2列に配置されている。 テープキヤリア 2 aのスルーホ一 ノレ 8 aとテープキヤリア 2 bのスルーホール 8 bはそれぞれ同数、 かつ同一ビッ チで形成されており、 テープキャリア 2 a、 2 bを重ね合わせたときに向かい合 つたスルーホール 8 a、 8 b同士が正確に重なり合うように配置されている。 ス ルーホール 8 a、 8 bの内部には半田 1 1が充填されており、 この半田 1 1を介 して向かい合ったスルーホール 8 a、 8 b同士が電気的に接続されている。 本実施の形態の積層型 TC Pは、 上記 2つのチップ MF、 ADの共通する (す なわち同一機能を有する) 接続端子 (ピン) をテープキャリア 2 a、 2 bの同じ 位置に配置されたスルーホール 8 a、 8 bを通じて電気的に接続し、 スル一ホ一 ノレ 8 aの一端に接合された前記半田バンプ 9を介して外部 (プリント配線基板) に共通に引き出す構造になっている。 The lead 4b formed on one surface of the tape carrier 2b has a pattern as shown in FIG. The other end of each lead 5b is electrically connected to a through hole 8b penetrating from one surface of the tape carrier 2b to the other surface. These through holes 8b are arranged in two rows along the four sides of the tape carrier 2b, like the through holes 8a of the tape carrier 2a. The through holes 8a of the tape carrier 2a and the through holes 8b of the tape carrier 2b are formed with the same number and the same bit, respectively, and they face each other when the tape carriers 2a and 2b are overlapped. The through holes 8a and 8b are arranged so as to overlap each other exactly. The inside of the through holes 8a and 8b is filled with solder 11, and the facing through holes 8a and 8b are electrically connected to each other via the solder 11. In the laminated TCP of the present embodiment, connection terminals (pins) common to the two chips MF and AD (that is, having the same function) are arranged at the same position on the tape carriers 2a and 2b. It is electrically connected through the through holes 8a and 8b, and is connected to the outside (printed wiring board) through the solder bump 9 joined to one end of the through hole 8a.
図 27には、 チップ MFに形成された接続端子の番号 (1〜1 44) とテープ キャリア 2 aに形成されたスルーホール 8 aの番号 (1〜200) とが付してあ る。 また、 図 28には、 チップ ADに形成された接続端子の番号 (1〜144) とテープキャリア 2 bに形成されたスルーホール 8 bの番号 (1〜200) とが 付してある。 テープキャリア 2 a、 2 bの同じ位置に配置されたスルーホール 8 a、 8 bには、 同じ番号が付してある。  In FIG. 27, the numbers (1 to 144) of the connection terminals formed on the chip MF and the numbers (1 to 200) of the through holes 8a formed on the tape carrier 2a are given. In FIG. 28, the numbers (1 to 144) of the connection terminals formed on the chip AD and the numbers (1 to 200) of the through holes 8b formed on the tape carrier 2b are given. The same numbers are given to the through holes 8a and 8b arranged at the same position on the tape carriers 2a and 2b.
チップ MF、 ADの接続端子とスルーホール 8 a、 8 bの割り付けの一例を表 1に示す。 表中、 MF p i n #の欄の番号 (1〜1 44) は、 図 27に示したチ ップ MFの接続端子番号 (1〜144) に対応し、 ADp i n #の欄の番号 (1 〜144) は、 図 28に示したチップ ADの接続端子番号 (1〜144) に対応 しているつ また、 V i a #の欄の番号は、 図 27、 図 28に示したスルーホール 8 a、 8 bの番号 ( 1〜 200 ) のうち、 チッブ M F、 A Dのいずれかまたは両 者に共通の接続端子に割り付けられた番号である。 Table 1 shows an example of the assignment of the connection terminals for the chips MF and AD and the through holes 8a and 8b. In the table, the numbers (1 to 144) in the MF pin # column correspond to the connection terminal numbers (1 to 144) of the chip MF shown in FIG. 27, and the numbers (1 to 144) in the AD pin # column. 144) correspond to the connection terminal numbers (1 to 144) of the chip AD shown in FIG. 28. The numbers in the Via # column are the through-holes 8a, Of the numbers in 8b (1 to 200), these are the numbers assigned to the connection terminal common to one or both of the chip MF and AD.
Z2 Z2
Figure imgf000034_0001
Figure imgf000034_0001
L 9£OI96d£ll3d 図 2 7、 図 2 8に示すように、 チップ MF、 ADに共通の接続端子は、 チップ MF、 ADのほぼ同じ位置に配置されている。 これにより、 テープキャリア 2 a、 2 bのリード 5 a、 5 bの引き回しが容易になり、 リード長が短縮できるので、 チップ MF、 ADのデータ転送を高速化することができる。 また、 必要なスルー ホール 8 a、 8 bの数を最小限にすることができるので、 テープキャリア 2 a、L 9 £ OI96d £ ll3d As shown in FIGS. 27 and 28, the connection terminals common to the chips MF and AD are arranged at substantially the same positions on the chips MF and AD. As a result, the leads 5a and 5b of the tape carriers 2a and 2b can be easily routed and the lead length can be reduced, so that the data transfer of the chips MF and AD can be speeded up. Also, since the number of required through holes 8a and 8b can be minimized, the tape carrier 2a,
2 bの外径寸法を縮小してパッケージサイズを小型化することができる。 The package size can be reduced by reducing the outer diameter of 2b.
特に限定はされないが、 本実施の形態の積層型 TC Pを構成する各部材は、 次 のような材料および寸法で構成されている。  Although not particularly limited, each member constituting the laminated TCP of the present embodiment is formed of the following materials and dimensions.
テープキヤリア 2 a、 2 bは、 厚さ 7 5 μ mのボリィミ ド樹脂フィルムで構成 されている。 リード 5 a、 5 bは厚さ 1 8 mの C u (銅) 箔で構成され、 それ らの一端部 (インナ一リード部) の表面には、 Au (金) または S n (錫) のメ ツキが施されている。 接着剤 1 0はポリイミ ド樹脂で構成され、 その膜厚は 1 2 μ mである。 ソルダーレジスト 7はエポキシ樹脂で構成され、 その膜厚は 2 0 μ mである。 外部接続端子である半田バンプ 9とスルーホール 8 a、 8 b内の半田 1 1は鉛 (P b) —錫 (S n) 合金で構成されている:: チップ MFおよびチップ ADは厚さ 5 0 mの単結晶シリコンで構成されており、 それらの主面を保護す るボッティング樹脂 6はェボキシ樹脂で構成されてレ、る。 チップ M Fおよびチッ プ ADの主面に形成されたバンプ電極 4は A uで構成され、 その高さは 2 0 μ π\ である:, すなわち、 この積層型 TC Pは、 チップ MFとバンプ電極 4の合計の厚 さがテープキヤリア 2 aの厚さよりも薄く、 チップ ADとバンプ電極 4の合計の 厚さがテープキャリア 2 bの厚さよりも薄く構成されているので、 半田バンプ 9 を除いた部分の積層方向の厚さが 2 1 8 μ ιηという超薄型のパッケージになって いる。  The tape carriers 2a and 2b are made of a 75-μm-thick polyimide resin film. Leads 5a and 5b are made of 18m thick Cu (copper) foil, and the surface of one end (inner lead) is made of Au (gold) or Sn (tin). Meshes are applied. The adhesive 10 is made of polyimide resin and has a thickness of 12 μm. The solder resist 7 is made of an epoxy resin and has a thickness of 20 μm. Solder in the external connection terminal solder bump 9 and through hole 8a, 8b 1 1 is made of lead (Pb) -tin (Sn) alloy :: Chip MF and chip AD have thickness 5 It is composed of 0 m single crystal silicon, and the botting resin 6 for protecting the main surfaces thereof is composed of epoxy resin. The bump electrode 4 formed on the main surface of the chip MF and the chip AD is made of Au and has a height of 20 μπ \: That is, the stacked TCP is composed of the chip MF and the bump electrode. 4 is smaller than the thickness of the tape carrier 2a, and the total thickness of the chip AD and the bump electrode 4 is smaller than the thickness of the tape carrier 2b. It is an ultra-thin package with a thickness of 218 μιη in the stacking direction.
次に、 本実施の形態の積層型 T C Pの製造方法を図 2 9〜図 3 7を用いて説明 する。 なお、 図 2 9〜図 3 3の (a ) は T C P I Bの断面図、 (b) は TC P 1 Aの断面図である。  Next, a method of manufacturing the laminated TCP of the present embodiment will be described with reference to FIGS. 29A to 33 are (a) a cross-sectional view of TCPIB, and (b) a cross-sectional view of TCP1A.
まず、 図 2 9に示すように、 ボリイミ ド樹脂フィルムからなるテープキャリア 2 a、 2 bを用意し、 それらを打ち抜いてテープキャリア 2 aにデバイスホール First, as shown in Fig. 29, tape carriers 2a and 2b made of a polyimide resin film are prepared, punched out, and device holes are placed in the tape carrier 2a.
3 aとスルーホール 8 aとを形成し、 テープキャリア 2 bにデバイスホール 3 b とスルーホール 8 bとを形成する。 なお、 これらのテープキャリア 2 a、 2 bは、 リールに卷かれた長尺のフィルムになっているが、 図にはその一部分 (T C P 1 A、 1 13各1個分) のみを示す。 3a and through hole 8a are formed, and device hole 3b is formed in tape carrier 2b. And a through hole 8b. Note that these tape carriers 2a and 2b are long films wound on reels, and only a part (one for TCP 1A and one for TCP 113) is shown in the figure.
次に、 図 3 0に示すように、 テ一ブキャリア 2 a、 2 bのそれぞれの一面に C u箔をラミネートした後、 この C u箔をウエットエッチングしてテープキャリア 2 aにリード 5 aを形成し、 テープキヤリア 2 bにリード 5 bを形成する。 また 同時に、 スルーホール 8 aの一端部に C u箔ホール 1 2 aを形成し、 スルーホー ノレ 8 bの一端部に C u箔ホール 1 2 bを形成する。 後の工程でスルーホール 8 a、 8 bの内部に充填する半田 (1 1 ) とリード 5 a、 5 bとの接触面積を確保して スルーホール断線を防止するため、 C u箔ホール 1 2 aの径はスル一ホール 8 a よりも小さく し、 C u箔ホール 1 2 bの径はスルーホール 8 よりも小さくする。 また、 C u箔はポリイミ ド樹脂製のテープキヤリア 2 a、 2 bに比べて熱膨張係 数が小さく、 寸法安定性が高いので、 C u箔ホール 1 2 a、 1 2 bの径をスルー ホール 8 a、 8 bよりも小さく しておくと、 後の工程でスルーホール 8 a、 8 b を利用してテープキヤリア 2 aとテープキヤリア 2 bとを重ね合わす際の位置決 めを高精度に行うことができる。  Next, as shown in FIG. 30, after laminating a Cu foil on one surface of each of the table carriers 2 a and 2 b, the Cu foil is wet-etched to form a lead 5 a on the tape carrier 2 a. The lead 5b is formed on the tape carrier 2b. At the same time, a Cu foil hole 12a is formed at one end of the through hole 8a, and a Cu foil hole 12b is formed at one end of the through hole 8b. In order to secure the contact area between the solder (1 1) that fills the inside of the through holes 8 a and 8 b and the leads 5 a and 5 b in the later process and prevent disconnection of the through holes, a Cu foil hole 1 2 The diameter of a is smaller than the through hole 8a, and the diameter of the Cu foil hole 12b is smaller than the through hole 8. In addition, Cu foil has a smaller thermal expansion coefficient and higher dimensional stability than tape carriers 2a and 2b made of polyimide resin, so it passes through the diameter of Cu foil holes 12a and 12b. If the holes are smaller than the holes 8a and 8b, the positioning of the tape carrier 2a and the tape carrier 2b when using the through holes 8a and 8b in the subsequent process will be highly accurate. Can be done.
次に、 図 3 1に示すように、 テープキャリア 2 aのデバイスホール 3 a内に突 出するリード 5 aの一端部 (インナーリード部) の表面と、 テープキャリア 2 b のデバイスホール 3 b内に突出するリード 5 bの一端部 (インナーリード部) の 表面とに電解メツキ法で A uまたは S nのメツキを施した後、 テープキャリア 2 aの下面にソルダーレジスト 7を被着し、 テープキヤリア 2 bの下面に接着剤 1 0を被着する。  Next, as shown in FIG. 31, the surface of one end (inner lead portion) of the lead 5a protruding into the device hole 3a of the tape carrier 2a and the device hole 3b of the tape carrier 2b. After applying Au or Sn plating to the surface of one end (inner lead part) of the lead 5 b that protrudes from the tape carrier 2 a, apply solder resist 7 to the lower surface of the tape carrier 2 a, and tape The adhesive 10 is applied to the lower surface of the carrier 2b.
次に、 図 3 2に示すように、 チップ M Fの接続端子に形成しておいたバンプ電 極 4とテープキャリア 2 aのリード 5 aをギャングボンディング方式で一括して 接続する: また、 チップ A Dの接続端子に形成しておいたバンプ電極 4とテープ キャリア 2 bのリ一ド 5 bをギャングボンディング方式で一括して接続する。 チ ップ M Fおよびチップ A Dは、 あらかじめウェハ状態で裏面を研磨した後、 スピ ンエッチング法で厚さを 5 Ο μ πιまで薄くしておく。 バンプ電極 4は、 スタツド バンプボンディング法を用い、 ウェハプロセスの最終工程で形成する。 リード 5 a、 5 bのィンナーリ一ド部には A uまたは S nのメツキが施されているので、 リード 5 aとバンプ電極 4およびリード 5 bとバンプ電極 4は、 Au— Au接合 または Au— S n共晶接合により接合される。 リード 5 a、 5 bとバンプ電極 4 との接合は、 ギャングボンディング方式に代えてシングルポィントボンディング 方式で行ってもよい。 Next, as shown in Fig. 32, the bump electrodes 4 formed on the connection terminals of the chip MF and the leads 5a of the tape carrier 2a are collectively connected by a gang bonding method. The bump electrodes 4 formed on the connection terminals of the above and the leads 5b of the tape carrier 2b are collectively connected by a gang bonding method. After the back surface of the chip MF and the chip AD is polished in advance in a wafer state, the thickness is reduced to 5 μμπι by spin etching. The bump electrode 4 is formed in the final step of the wafer process by using a stud bump bonding method. Lead 5 Since the inner leads of a and 5b are plated with Au or Sn, the lead 5a and the bump electrode 4 and the lead 5b and the bump electrode 4 are connected by Au—Au bonding or Au—S Bonded by n-eutectic bonding. The bonding between the leads 5a and 5b and the bump electrode 4 may be performed by a single point bonding method instead of the gang bonding method.
次に、 図 33に示すように、 樹脂ポッティング用のデイスべンサを使用してチ ップ MFの主面およびテープキャリア 2 aとデバイスホール 3 aとの隙間にボッ ティング樹脂 6を被着する。 同様に、 チップ ADの主面およびテープキャリア 2 bとデバイスホ一ル 3 bとの隙間にポッティング樹脂 6を被着する。  Next, as shown in FIG. 33, using a resin potting dispenser, apply the botting resin 6 to the main surface of the chip MF and the gap between the tape carrier 2a and the device hole 3a. . Similarly, a potting resin 6 is applied to the main surface of the chip AD and the gap between the tape carrier 2b and the device hole 3b.
次に、 切断金型を使用して長尺のテープキヤリア 2 a、 2 bを個片化した後、 個々のテープキヤリア 2 a、 2 bをソケットに装着してエージング検査に付し、 良品を選別する。 テープキヤリア 2 a、 2 bのエージングは、 テープキヤリア 2 a、 2 bの各一部に形成しておいたテスト用のパッドにソケットのピンを当てて 行う。 ここまでの工程で、 チップ M Fを封止した T C P 1 Aおよびチップ ADを 封止した TC P 1 Bが略完成する。  Next, the long tape carriers 2a and 2b are separated into individual pieces using a cutting die, and then the individual tape carriers 2a and 2b are mounted in sockets and subjected to an aging inspection. Sort out. Aging of tape carriers 2a and 2b is performed by applying socket pins to the test pads formed on each part of tape carriers 2a and 2b. By the steps up to this point, TCP 1A encapsulating the chip MF and TCP 1B encapsulating the chip AD are almost completed.
次に、 図 34に示すように、 向かい合ったスルーホール 8 a、 8 bの位置が正 確に一致するようにテープキヤリア 2 a、 2 bを重ね合わせて加熱圧着し、 接着 剤 1 0で両者を接合することにより、 TCP 1 A、 1 Bをワンパッケージ化する: 前述したように、 チップ MFはテープキヤリア 2 aよりも薄く、 チップ ADはテ —プキャリア 2 bよりも薄いので、 TCP 1 Aと TCP 1 Bを密に接合すること ができる。 スルーホール 8 aとスルーホール 8 bとの位置決めには、. 前述した C u箔ホール 1 2 a、 1 2 bを利用する。 あるレ、は、 テープキャリア 2 a、 2 bの 各一部に形成しておいたテスト用のパッドを利用してもよレ、。  Next, as shown in Fig. 34, the tape carriers 2a and 2b are overlapped so that the positions of the through holes 8a and 8b facing each other exactly match, and then heat-pressed. To form a single package of TCPs 1A and 1B: as described above, the chip MF is thinner than the tape carrier 2a, and the chip AD is thinner than the tape carrier 2b. A and TCP 1 B can be tightly joined. For positioning the through hole 8a and the through hole 8b, the above-described Cu foil holes 12a and 12b are used. There is a test pad that is formed on each part of the tape carriers 2a and 2b.
次に、 図 35に示すように、 鉛 (P b) —錫 (S n) 合金からなる半田ペース トをスルーホール 8 a、 8 bの内部にスクリーン印刷法で埋め込んだ後、 この半 田ペーストをリフローして半田 1 1を形成する。  Next, as shown in Fig. 35, a solder paste made of a lead (Pb) -tin (Sn) alloy is embedded in the through holes 8a and 8b by screen printing, and the paste Is reflowed to form solder 11 1.
その後、 テープキヤリア 2 aのスルーホール 8 aの一端部に半田バンプ 9を形 成することにより、 前記図 1、 図 2に示す積層型 TCPが完成する。 半田バンプ 9は、 テープキャリア 2 aの半田バンプ形成面を上向きにした状態で、 あらかじ め形成しておいた半田ボールをスルーホール 8 aの上に位置決めし、 その後、 こ の半田ボールをリフローして形成する。 あるいは、 ガラス基板の表面に並べた半 田バンプをスルーホール 8 aの表面に転写して形成してもよい。 半田バンプ 9は、 スルーホール 8 a、 8 bの内部に充填した半田 1 1よりも低融点の鉛 (P b) ― 錫 (S n) 合金で構成する。 Thereafter, a solder bump 9 is formed at one end of the through hole 8a of the tape carrier 2a, whereby the stacked TCP shown in FIGS. 1 and 2 is completed. Solder bumps 9 are placed beforehand with the solder bump forming surface of tape carrier 2a facing up. The solder ball formed above is positioned on the through hole 8a, and then the solder ball is formed by reflow. Alternatively, the solder bumps arranged on the surface of the glass substrate may be transferred to the surface of the through hole 8a. The solder bump 9 is made of a lead (Pb) -tin (Sn) alloy having a lower melting point than the solder 11 filled in the through holes 8a and 8b.
このようにして製造された積層型 TCPをプリント配線基板に実装するには、 図 36に示すように、 上記半田バンプ 9をプリント配線基板 14の電極 1 5上に 位置決めし、 その後、 半田バンプ 9をリフ口一すればよレ、。  In order to mount the thus manufactured laminated TCP on a printed wiring board, as shown in FIG. 36, the solder bumps 9 are positioned on the electrodes 15 of the printed wiring board 14, and then the solder bumps 9 are formed. I'll make a riff.
本実施の形態の積層型 TC Pは、 チップ MF、 ADから発生した熱が主に半田 バンプ 9を通じて基板に逃げるので、 TC P 1 A、 1 Bを積層する場合は、 発熱 量がより多いチップを下側 (基板に近い側) に配置する。 上記の例では、 フラッ シュメモリ搭載マイク口コンピュータを形成したチップ MFの方が DRAMオン チップロジックを形成したチップ ADに比べて機能ブロックの数が多く、 発熱量 も多いので、 チップ ADの下側にチップ MFが配置されている。 また、 接続端子 数が多いチップを下側 (基板側) に配置することにより、 チップの接続端子と外 部接続端子とを接続する配線の引き回しが容易になる。  In the laminated TCP of the present embodiment, since heat generated from the chips MF and AD mainly escapes to the substrate through the solder bumps 9, when the TCPs 1 A and 1 B are laminated, a chip that generates a larger amount of heat is used. On the lower side (closer to the substrate). In the above example, the chip MF, which forms the computer with the microphone port with flash memory, has more functional blocks and generates more heat than the chip AD, which forms the DRAM on chip logic. Chip MF is arranged. In addition, arranging a chip having a large number of connection terminals on the lower side (substrate side) facilitates routing of wiring connecting the chip connection terminals and external connection terminals.
また、 このように発熱量が大きい、 システムオンチップ化を図った積層型モジ ユールにおいては、 チップ ADに形成される DRAMのメモリセルは、 積層型キ ャパシタ (STC) 構造を採用することが好ましい。 積層型キャパシタ構造は、 ブレーナ型キャパシタ構造に比べて熱的リーク電流が少なく、 熱的信頼性が高い からであるつ さらに、 積層型キャパシタ構造は、 リフレッシュサイクルを長くす ることができるので、 発熱量を抑えることも可能である。  In addition, in a stacked module that generates a large amount of heat and is designed to be a system-on-chip, it is preferable that the DRAM memory cells formed in the chip AD adopt a stacked capacitor (STC) structure. . The multilayer capacitor structure has a lower thermal leakage current and higher thermal reliability than the Braina capacitor structure.In addition, the multilayer capacitor structure can prolong the refresh cycle and generate heat. It is also possible to reduce the amount.
チップの発熱量が非常に多い場合は、 図 37に示すように、 積層型 TCPの上 部に A 1のような熱伝導率の高い金属で構成した放熱フィン 1 6を取り付けても よい。 この場合は、 チップ ADの上部 (放熱フィン 1 6に近い側) に発熱量が多 いチップ を配置する.  If the heat generated by the chip is very large, a radiation fin 16 made of a metal having high thermal conductivity such as A1 may be attached to the upper part of the stacked TCP as shown in FIG. In this case, a chip that generates a large amount of heat is placed above the chip AD (closer to the radiation fins 16).
次に、 本発明のパッケージの他の実施の形態について説明する。  Next, another embodiment of the package of the present invention will be described.
前述した製造方法では、 TCP 1 Aと TCP 1 Bを重ね合わせた後、 向力レヽ合 つたスルーホール 8 a、 8 bの内部に半田 1 1を埋め込んだ (図 34、 35参照) 力 S、 次のような方法で T C P 1 A、 1 Bをワンバッケージ化してもよレ、。 In the manufacturing method described above, after TCP 1A and TCP 1B are overlapped, solder 11 is embedded in the through holes 8a and 8b where the directional force is combined (see Figs. 34 and 35). Force S, TCP 1 A, 1 B can be made into one package by the following method.
まず、 図 38に示すように、 前述した方法に従って TCP 1 Aと TCP 1 Bを 個別に形成する。 次に、 図 39に示すように、 TC P 1 Aのスル一ホール 8 aの 内部に半田ペース l i pを埋め込み、 TC P 1 Bのスルーホール 8 bの内部に 半田ペース ト 1 1 pを埋め込む。 半田ペースト 1 1 pの埋め込みには、 スクリー ン印刷法を用いる。  First, as shown in FIG. 38, TCP 1 A and TCP 1 B are individually formed according to the method described above. Next, as shown in FIG. 39, the solder paste l ip is embedded in the through hole 8a of the TCP 1A, and the solder paste 11 p is embedded in the through hole 8b of the TCP 1B. Screen printing is used for embedding the solder paste.
次に、 図 40に示すように、 テープキャリア 2 a、 2 bを重ね合わせて加熱圧 着し、 接着剤 1 0で両者を接合すると共に、 半田ペースト l i pをリフローして スルーホール 8 a、 8 bの内部に半田 1 1を形成する。 その後の工程は、 前記の 製造方法と同じである。  Next, as shown in FIG. 40, the tape carriers 2a and 2b are overlapped and heated and pressed, and the two are joined with an adhesive 10 and the solder paste lip is reflowed to form the through holes 8a and 8b. Solder 11 is formed inside b. Subsequent steps are the same as the above-mentioned manufacturing method.
二の製造方法は、 TCP 1 Aと TCP 1 Bが半田ペースト 1 1 pの粘着力で仮 付けされるため、 重ね合わせた T C P 1 A、 I Bを加熱炉などに搬送して両者を 加熱圧着するまでの間、 向かい合ったスルーホール 8 a、 8 bの位置ずれを防止 することができる。  In the second manufacturing method, TCP 1A and TCP 1B are temporarily attached with the adhesive force of solder paste 11p, so the stacked TCP 1A and IB are transported to a heating furnace, etc., and both are heated and pressed. In the meantime, the displacement of the facing through holes 8a and 8b can be prevented.
スルーホール 8 a、 8 bの他の形成方法として、 テープキャリア 2 a、 2 bを 重ね合わせて TCP 1 A、 1 Bをワンパッケージ化した後、 ドリルを使ってテー プキャリア 2 a、 2 bに孔を形成し、 次いで孔の内部に無電解メッキ法で導電層 を形成してもよレ、。  As another method of forming through holes 8a and 8b, tape carriers 2a and 2b are overlapped to form TCP 1A and 1B into one package, and then tape carriers 2a and 2b are drilled. Alternatively, a conductive layer may be formed inside the hole by an electroless plating method.
また、 チップ MF、 ADの封止は、 前記のボッティング方式に代えてトランス ファモールド方式で行うこともできるつ この場合は、 まず図 41に示すように、 前述した方法に従ってチップ M Fのバンブ電極 4とテープキャリア 2 aのリード 5 aを電気的に接続し、 チップ ADのバンプ電極 4とテープキャリア 2 bのリー ド 5 bを電気的に接続するつ  In addition, the chips MF and AD can be sealed by a transfer molding method instead of the botting method. In this case, first, as shown in FIG. 41, the bump electrode of the chip MF is formed according to the method described above. 4 and the leads 5a of the tape carrier 2a are electrically connected, and the bump electrodes 4 of the chip AD and the leads 5b of the tape carrier 2b are electrically connected.
次に、 図 42に示すように、 チップ MF、 ADをモールド樹脂 1 7で封止するつ チップ MF、 ADを封止するには、 テープキャリア 2 a、 2 bをそれぞれモール ド金型に装着し、 複数個のチップ MF、 ADをそれぞれ多連で一括して封止する。 モールド樹脂 1 7には、 エポキシ系の樹脂を使用する。  Next, as shown in Fig. 42, the chips MF and AD are sealed with the mold resin 17. To seal the chips MF and AD, the tape carriers 2a and 2b are attached to the molds, respectively. Then, a plurality of chips MF and AD are respectively sealed in multiple units. Epoxy resin is used for the mold resin 17.
図示の例では、 チップ MF、 ADの全面をモールド樹脂 1 7で被覆しているが、 チップ MF、 ADの裏面をモールド樹脂 1 7から露出させる構造にしてもよい。 その場合、 通常のトランスファモールド方式ではなく、 シート状に加工した樹脂 をテープキャリア 2 a、 2 bの上面に当てて加熱圧着することにより、 チップ M F、 A Dの主面および側面に樹脂を流し込むこともできる。 ただし、 この方式で は、 テーブキャリア 2 a、 2 bの上面から樹脂がはみ出すことがないよう、 樹脂 の流し込み量を高精度に制御する必要がある。 In the illustrated example, the entire surface of the chips MF and AD is covered with the mold resin 17, but a structure in which the back surfaces of the chips MF and AD are exposed from the mold resin 17 may be employed. In this case, instead of the usual transfer molding method, the resin processed into a sheet is applied to the upper surfaces of the tape carriers 2a and 2b and heated and pressed, so that the resin flows into the main and side surfaces of the chips MF and AD. Can also. However, in this method, it is necessary to control the resin pouring amount with high precision so that the resin does not protrude from the upper surfaces of the table carriers 2a and 2b.
なお、 本発明のパッケージは、 チップ M F、 A Dを封止するモールド樹脂 1 7 の厚みが極めて薄いので、 チップ M F、 A Dの裏面をモールド樹脂 1 7から露出 させる場合や、 チッブ M F、 A Dの全面をモールド樹脂 1 7で被覆する構造で、 チップ M F、 A Dの主面と裏面とでモールド樹脂 1 7の厚さに偏りがある場合に は、 チップ\1 F、 A Dとモールド樹脂 1 Ίの熱膨張係数に差があると T C P 1 A、 1 Bに反りが発生し、 チップクラックや基板実装時の接続不良を引き起こす。 従 つて、 モールド樹脂 1 7は熱膨張係数が低く、 チップ M F、 A Dの熱膨張係数に 近レ、材料を選定する必要がある。  In the package of the present invention, since the thickness of the mold resin 17 for sealing the chips MF and AD is extremely small, the case where the back surface of the chips MF and AD is exposed from the mold resin 17 or the entire surface of the chips MF and AD is used. If the thickness of the mold resin 17 is not uniform between the main surface and the back surface of the chip MF, AD, the heat of the chip \ 1F, AD and the mold resin 1Ί If there is a difference in expansion coefficient, TCP 1A and 1B will warp, causing chip cracks and poor connection during board mounting. Accordingly, the mold resin 17 has a low coefficient of thermal expansion, and it is necessary to select a material close to the coefficient of thermal expansion of the chips MF and AD.
次に、 切断金型を使用してテープキャリア 2 a、 2 bを個片化し、 個々の T C P 1 A、 1 Bをエージング検査に付して良品を選別した後、 図 4 3に示すように、 向かい合ったスルーホール 8 a、 8 bの位置が正確に一致するようにテープキヤ リア 2 a、 2 bを重ね合わせて加熱圧着し、 接着剤 1 0で両者を接合する その 後、 前述した方法に従ってスルーホール 8 a、 8 bの内部に半田 1 1を形成し、 さらにテープキヤリア 2 aのスルーホール 8 aの一端部に半田バンプ 9を形成す ることにより、 積層型 T C Pが完成する。 あるいは、 図 4 4に示すように、 T C P 1 Aのスルーホーノレ 8 aの内部と T C P 1 Bのスルーホール 8 bの内部にそれ ぞれ半田 1 1を充填した後に T C P 1 A、 1 Bを積層してワンパッケージ化して もよレ、。  Next, using a cutting die, the tape carriers 2a and 2b are singulated, and each TCP 1A and 1B is subjected to an aging inspection to select non-defective products, and as shown in Fig. 43. The tape carriers 2a and 2b are superimposed and heated and pressed together so that the positions of the facing through holes 8a and 8b exactly match, and the two are joined with an adhesive 10.Then, according to the method described above. Solder 11 is formed inside through-holes 8a and 8b, and solder bump 9 is formed at one end of through-hole 8a of tape carrier 2a to complete the laminated TCP. Alternatively, as shown in Fig. 44, TCPs 1A and 1B are stacked after filling solder 11 inside TCP 1A through hole 8a and TCP 1B through hole 8b, respectively. You can make one package.
チッブ M Fとチップ A Dは、 両者を同時に一括してモールド樹脂 1 7で封止し てもよレ、: この場合は、 まず図 4 5に示すように、 前述した方法に従ってチップ M Fのバンプ電極 4とテープキャリア 2 aのリード 5 aを電気的に接続し、 チッ プ A Dのバンプ電極 4とテープキヤリア 2 bのリード 5 bを電気的に接続した後、 テープキヤリア 2 a、 2 bを重ね合わせて加熱圧着し、 接着剤 1 0で両者を接合 する: 次に、 図 4 6に示すように、 チップ I F、 A Dをモールド樹脂 1 7で同時 に封止した後、 図 47に示すように、 前述した方法に従ってスルーホール 8 a、 8 bの内部に半田 1 1を形成し、 さらにテープキヤリア 2 aのスルーホール 8 a の一端部に半田バンプ 9を形成する c: The chip MF and the chip AD may be sealed simultaneously with the mold resin 17 at the same time. In this case, first, as shown in FIG. After electrically connecting the leads 5a of the tape carrier 2a and the bump electrodes 4 of the chip AD and the leads 5b of the tape carrier 2b, the tape carriers 2a and 2b are superimposed. And then heat and pressure-bond and bond them with adhesive 10: Then, as shown in Fig. 46, chips IF and AD are simultaneously coated with mold resin 17 After soldering, as shown in Fig. 47, solder 11 is formed inside through holes 8a and 8b according to the method described above, and solder bumps are attached to one end of through hole 8a of tape carrier 2a. C to form 9 :
チップ IF、 ADをモールド樹脂 1 7で封止する上記の方式によれば、 チップ MF、 ADをボッティング樹脂 6で封止する方式に比べて、 封止部の外径寸法精 度が向上するため、 寸法安定性の高い均一な形状の積層型 TCPを製造すること ができる 3 また、 複数個のチップ MF、 ADを多連で一括して封止することによ り、 封止時間を短縮することができる。 さらに、 モールド樹脂 1 7の厚みをテー プキャリア 2 a、 2 bと同じにすることにより、 TC P 1 Aと TCP 1 Bの間に 隙間ができないので、 TC P 1 Aと TC P 1 Bの間に水分が溜まるなどの不具合 を防止することができ、 信頼性の高い積層型 T C Pを製造することができる- 本発明の積層型 TCPは、 半田バンプ 9で外部接続端子を構成する方式に代え て、 リード 5 a、 5 bで外部接続端子を構成することもできる。 この積層型 T C Pの製造方法を図 48〜図 53を用いて説明する。 According to the above method of sealing the chips IF and AD with the molding resin 17, the outer diameter dimension accuracy of the sealing portion is improved compared to the method of sealing the chips MF and AD with the botting resin 6. Therefore, also 3 can be manufactured multilayer TCP of uniform shape with high dimensional stability, Ri by the be sealed collectively plurality of chip MF, the AD in multiple-shortened sealing time can do. Furthermore, by making the thickness of the mold resin 17 the same as that of the tape carriers 2a and 2b, there is no gap between TCP 1A and TCP 1B. It is possible to prevent problems such as accumulation of moisture between the layers, and it is possible to manufacture a highly reliable laminated TCP.- The laminated TCP of the present invention is replaced with a method in which external connection terminals are formed by solder bumps 9. Thus, the external connection terminals can be formed by the leads 5a and 5b. A method of manufacturing the stacked TCP will be described with reference to FIGS.
まず、 図 48に示すように、 ポリイミ ド樹脂フィルムからなるテープキャリア 2 a、 2 bを打ち抜いてテープキャリア 2 aにデバイスホール 3 aを形成し、 テ ーブキヤリア 2 bにデバイスホール 3 bを形成する。 これらのテープキヤリア 2 a、 2 bには、 前記のようなスルーホール 8 a、 8 bは形成しない。  First, as shown in FIG. 48, a tape carrier 2a, 2b made of polyimide resin film is punched out to form a device hole 3a in the tape carrier 2a, and a device hole 3b in the tape carrier 2b. . The tape carriers 2a and 2b do not have the through holes 8a and 8b as described above.
次に、 図 49に示すように、 前述した方法に従ってテープキャリア 2 aにリ一 ド 5 aを形成すると共に、 テーフキャリア 2 bにリード 5 bを形成し、 それらの 一端部 (インナ一リード部) の表面に A uまたは S nのメツキを施した後、 テー プキャリア 2 aの一面にソルダーレジスト 7を被着し、 テープキャリア 2 bの一 面に接着剤 1 0を被着する。 リード 5 a、 5 bは、 それらの他端部 (アウターリ 一ド部) が外部接続端子として利用できるような長さに形成する。  Next, as shown in FIG. 49, a lead 5a is formed on the tape carrier 2a according to the above-described method, and a lead 5b is formed on the tape carrier 2b, and one end (inner lead portion) is formed. After applying Au or Sn plating to the surface of the tape carrier 2a, a solder resist 7 is applied to one surface of the tape carrier 2a, and an adhesive 10 is applied to one surface of the tape carrier 2b. The leads 5a and 5b are formed in such a length that their other ends (outer leads) can be used as external connection terminals.
次に、 図 50に示すように、 前述した方法に従ってチップ MFのバンプ電極 4 とテープキャリア 2 aのリード 5 aを電気的に接続し、 チップ ADのバンプ電極 4とテ一ブキャリア 2 bのリード 5 bを電気的に接続した後、 チップ MF、 AD をボッティング樹脂 6で封止するつ 続いて、 テープキャリア 2 a、 2 bを個片化 し、 個々の TCP 1 A、 1 Bをエージング検査に付して良品を選別する。 次に、 図 5 1に示すように、 前述した方法に従ってテープキャリア 2 a、 2 b を重ね合わせて接合することにより、 TCP 1 A、 1 Bをワンパッケージ化した 後、 図 52に示すように、 リード 5 a、 5 bの他端部 (アウターリード部) を支 持しているテープキャリア 2 a、 2 bを切断除去する。 Next, as shown in FIG. 50, the bump electrode 4 of the chip MF and the lead 5a of the tape carrier 2a are electrically connected according to the method described above, and the bump electrode 4 of the chip AD and the lead of the table carrier 2b are electrically connected. After electrically connecting 5b, the chips MF and AD are sealed with botting resin 6.Then, tape carriers 2a and 2b are singulated, and each TCP 1A and 1B is aged. Good products are selected by inspection. Next, as shown in FIG. 51, the TCPs 1A and 1B are made into one package by overlapping and joining the tape carriers 2a and 2b according to the method described above, and then, as shown in FIG. The tape carriers 2a and 2b supporting the other ends (outer lead portions) of the leads 5a and 5b are cut and removed.
次に、 リード 5 a、 5 bの他端部 (アウターリード部) の表面に半田メツキを 施した後、 図 53に示すように、 リード 5 a、 5 bの他端部 (アウターリード部) をリード成形金型を使ってガルゥィング状に成形する。 リード 5 a、 5 bは、 同 じ金型を使って同時に成形する。  Next, after soldering the surfaces of the other ends (outer lead portions) of the leads 5a and 5b, as shown in FIG. 53, the other ends of the leads 5a and 5b (outer lead portions) Is formed into a galling shape using a lead molding die. Leads 5a and 5b are molded simultaneously using the same mold.
このようにして製造された積層型 TCPをプリント配線基板に実装するには、 図 54に示すように、 上記リード 5 a、 5 bの他端部 (アウターリード部) をブ リント配線基板 1 4の電極 1 5上に重ね合わせた後、 半田メツキをリフ口一する :: その際、 2つのチップ MF、 ADの共通する接続端子に接続されたリード 5 a、 5 bは、 プリント配線基板 1 4の同じ電極 1 5に接続する。 すなわち、 この積層 型 TC Pは、 2つのチップ MF、 ADの共通する接続端子をリード 5 a、 5 bを 通じて電気的に接続し、 このリード 5 a、 5 bを介して外部 (プリント配線基板) に共通に引き出す構造になっている。 To mount the multilayer TCP manufactured as described above on a printed wiring board, as shown in FIG. 54, connect the other ends (outer leads) of the leads 5a and 5b to a printed wiring board. After superimposing on the electrodes 1 5 of the lead, the solder plating is lifted . : At this time, the leads 5 a and 5 b connected to the common connection terminal of the two chips MF and AD are connected to the printed wiring board 1. Connect to 4 same electrodes 15. In other words, this laminated TCP electrically connects the common connection terminals of the two chips MF and AD through the leads 5a and 5b, and externally (printed wiring) through the leads 5a and 5b. Board).
図示の積層型 TCPは、 チップ MF、 ADの主面を上に向けて配置しているが、 下に向けて配置してもよい。 また、 チップ MF、 ADをボッティング樹脂 6で封 止している力 図 55に示すように、 チップ MF、 ADをモールド樹脂 1 7で封 止してもよレヽ。  Although the illustrated stacked TCP has the main surfaces of the chips MF and AD facing upward, it may be placed facing downward. Also, the force of sealing the chips MF and AD with the botting resin 6 As shown in FIG. 55, the chips MF and AD may be sealed with the molding resin 17.
外部接続端子をリード 5 a、 5 bで構成する上記の積層型 T C Ρによれば、 外 部接続端子を半田バンプ 9で構成する前記の積層型 T C Ρに比べて、 製造工程を 簡略化することができるので、 積層型 TCPの製造コストを低減することができ る。 また、 テープキャリア 2 a、 2 bにスルーホール 5 a、 5 bを設けなくとも よいので、 リード 5 a、 5 bの引き回しが容易になると共に、 テープキャリア 2 a、 2 bの製造コス トを低減することもできる。  According to the above-mentioned laminated TC # in which the external connection terminals are constituted by the leads 5a and 5b, the manufacturing process is simplified as compared with the above-mentioned laminated TC # in which the external connection terminals are constituted by the solder bumps 9. Therefore, the manufacturing cost of the stacked TCP can be reduced. Also, since it is not necessary to provide the through holes 5a and 5b in the tape carriers 2a and 2b, the leads 5a and 5b can be easily routed and the manufacturing cost of the tape carriers 2a and 2b can be reduced. It can also be reduced.
さらに、 テープキヤリア 2 aのリード 5 aとテープキヤリア 2 bのリード 5 b を同じ金型で同時に成形することにより、 外部接続端子の形成に要する時間を短 縮することができる。 また、 リード 5 a、 5 bの他端部 (アウターリード部) を プリント配線基板 14の電極 1 5上に重ね合わせて接続することにより、 ブリン ト配線基板 1 4の表面に占める電極 1 5の面積を小さくすることができると共に、 積層型 T C Pの実装 (リード 5 a、 5 bと電極 1 5の接続) を 1回で行うことが できる。 Furthermore, by simultaneously forming the leads 5a of the tape carrier 2a and the leads 5b of the tape carrier 2b with the same mold, the time required for forming the external connection terminals can be reduced. Also, connect the other ends (outer leads) of the leads 5a and 5b. By overlapping and connecting the electrodes 15 on the printed wiring board 14, the area of the electrodes 15 occupying the surface of the printed wiring board 14 can be reduced, and the mounting of the stacked TCP (lead 5 a , 5b and the electrode 15) can be performed once.
外部接続端子を構成する上記リード 5 a、 5 bは、 2つの金型を使って個別に 成形してもよレ、。 この場合も、 図 56 (チップ MF、 ADをポッティング樹脂 6 で封止した構造) および図 57 (チップ M F、 A Dをモールド樹脂 1 7で封止し た構造) に示すように、 2つのチップ MF、 ADの共通する接続端子に接続され たリード 5 a、 5 bをプリント配線基板 14の同じ電極 1 5に接続する。  The leads 5a and 5b, which constitute the external connection terminals, may be individually molded using two dies. In this case, as shown in Fig. 56 (chip MF, AD sealed with potting resin 6) and Fig. 57 (chip MF, AD sealed with molding resin 17), two chips MF and AD are sealed. The leads 5 a and 5 b connected to the common connection terminal of AD and AD are connected to the same electrode 15 of the printed wiring board 14.
図 58に示す積層型 T C Pは、 下層の T C P 1 Aに形成したリード 5 aの他端 部 (アウターリード部) をガルウィング状に成形して外部接続端子を構成し、 T CP 1 Aと TCP 1 Bとの電気的な接続は、 テープキヤリア 2 a、 2 bに形成し たスルーホール 8 a、 8 bの内部に埋め込んだ半田 1 1を通じて行っている c ガルウイング状に成形したリ一ドで外部接続端子を構成する上記の構造は、 積 層型 TCPとプリント配線基板との熱膨張係数差に起因して両者の接続部に加わ る応力がフレキシブルなリードの変形によって吸収 ·緩和されるため、 半田バン プで外部接続端子を構成する構造に比べて、 基板との接続信頼性が高い。 In the stacked TCP shown in Fig. 58, the external connection terminal is formed by forming the other end (outer lead) of the lead 5a formed on the lower TCP 1A into a gull-wing shape, and the TCP 1A and TCP 1A The electrical connection with B is made through a c- gull wing-shaped lead that is made through solder 11 embedded in the through holes 8a and 8b formed in the tape carriers 2a and 2b. In the above structure that forms the connection terminals, the stress applied to the connection between the stacked TCP and the printed wiring board due to the difference in thermal expansion coefficient between them is absorbed and relaxed by the deformation of the flexible lead. The connection reliability with the board is higher than the structure where the external connection terminals are composed of solder bumps.
本発明のパッケージは、 図 59に示すように、 TC P 1 Aと TC P 1 Bをワン ハッケージ化せず、 個別にプリント配線基板 14に実装することもできる。 この 場合は、 TCP 1 A、 1 Bをワンパッケージ化した積層型 TC Pに比べて実装密 度は低下するが、 TCP 1 A、 1 Bを積層してワンパッケージ化する工程が不要 となるので、 パッケージの製造コストを低減することができる。  As shown in FIG. 59, the package of the present invention can be individually mounted on the printed wiring board 14 without forming the TCP 1A and the TCP 1B into one package. In this case, although the mounting density is lower than that of the stacked TCP in which TCPs 1A and 1B are packaged in one package, the process of stacking TCPs 1A and 1B into one package is unnecessary. The manufacturing cost of the package can be reduced.
本発明の積層型 TCPは、 半田バンプ 9やリード 5 a、 5 bで外部接続端子を 構成する方式に代えて、 図 60に示すように、 PGA(Pin Grid Array)型パッケ 一ジで使用されるピン 1 8で外部接続端子を構成することもできる。 ビン 1 8の 表面には S n (錫) などのメツキが施され、 スルーホール 8 a、 8 bの内部にお いてリード 5 aおよび Zまたはリード 5 bと電気的に接続される 3 The stacked TCP of the present invention is used in a PGA (Pin Grid Array) type package as shown in FIG. 60, instead of a method in which external connection terminals are formed by solder bumps 9 and leads 5a and 5b. The external connection terminal can also be configured with pin 18. The surface of the bottle 1 8 is decorated plated such as S n (tin), the through-hole 8 a, 8 b leads have you inside of 5 a and Z or the lead 5 b and 3 electrically connected
また、 本発明の積層型 TCPは、 異方導電性フィルムを使ってチップ MFとリ ード 5 aおよびチップ ADとリード 5 bを接続することもできる。 異方導電性フィルムを使って積層型 T C Pを製造するには、 まず、 図 6 1に示 すように、 前述した方法に従ってテープキャリア 2 aにデバイスホール 3 a、 ス ルーホール 8 aおよびリード 5 aを形成し、 テープキャリア 2 bにデバイスホー ノレ 3 b、 スルーホール 8 aおよびリード 5 bを形成した後、 テープキャリア 2 a の一面にソルダーレジス ト 7を被着し、 テープキャリア 2 bの一面に接着剤 1 0 を被着する。 Further, in the laminated TCP of the present invention, the chip MF and the lead 5a and the chip AD and the lead 5b can be connected by using an anisotropic conductive film. To manufacture a laminated TCP using an anisotropic conductive film, first, as shown in Fig. 61, the device hole 3a, the through hole 8a and the lead 5a are formed in the tape carrier 2a according to the method described above. After forming device holes 3b, through holes 8a and leads 5b on the tape carrier 2b, a solder resist 7 is applied on one side of the tape carrier 2a, and one side of the tape carrier 2b is formed. Adhesive 10 is applied to the substrate.
次に、 図 6 2に示すように、 あらかじめテープキャリア 2 aのデバイスホール 3 aとほぼ同じ寸法に裁断しておいた異方導電性フィルム 1 9 aをデバイスホー ル 3 aの内部に突出するリード 5 aの一端部 (インナーリード部) の上に位置決 めする。 同様に、 あらかじめテープキャリア 2 bのデバイスホール 3 bとほぼ同 じ寸法に裁断しておいた異方導電性フィルムを 1 9 bをデバイスホール 3 bの内 部に突出するリード 5 bの一端部 (インナ一リード部) の上に位置決めする。 次に、 図 6 3に示すように、 バンプ電極 4が形成されたチップ M Fの主面を下 向きにして異方導電性フィルム 1 9 aの上に位置決めした後、 異方導電性フィル ム 1 9 aを加熱加圧することにより、 異方導電性フィルム 1 9 a中の導電粒子を 介してバンプ電極 4とリード 5 aを電気的に接続する。 同様に、 バンプ電極 4が 形成されたチップ A Dの主面を下向きにして異方導電性フィルム 1 9 bの上に位 置決めした後、 異方導電性フィルム 1 9 bを加熱加圧することにより、 異方導電 性フィルム 1 9 b中の導電粒子を介してバンプ電極 4とリード 5 bを電気的に接 続する, 続いて、 テープキャリア 2 a、 2 bを個片化し、 個々の T C P 1 A、 1 Bをエージング検査に付して良品を選別する。  Next, as shown in FIG. 62, the anisotropic conductive film 19a, which has been cut to the same size as the device hole 3a of the tape carrier 2a in advance, is projected into the device hole 3a. Position it on one end (inner lead part) of lead 5a. Similarly, an anisotropic conductive film 19b, which has been cut to the same size as the device hole 3b of the tape carrier 2b in advance, is provided with one end 19b of the lead 5b protruding into the inside of the device hole 3b. (Inner lead part). Next, as shown in FIG. 63, the chip MF on which the bump electrodes 4 are formed is positioned on the anisotropic conductive film 19 a with the main surface facing down, and then the anisotropic conductive film 1 is positioned. By heating and pressurizing 9a, bump electrode 4 and lead 5a are electrically connected via conductive particles in anisotropic conductive film 19a. Similarly, after the chip AD on which the bump electrode 4 is formed is positioned on the anisotropic conductive film 19 b with the main surface facing downward, the anisotropic conductive film 19 b is heated and pressed. Then, the bump electrode 4 and the lead 5b are electrically connected via conductive particles in the anisotropic conductive film 19b. Subsequently, the tape carriers 2a and 2b are separated into individual pieces, and each TCP 1 A, 1 B is subjected to aging inspection to select good products.
次に、 図 6 4に示すように、 前述した方法に従ってテープキャリア 2 a、 2 b を重ね合わせて T C P 1 A、 1 Bをワンパッケージ化した後、 図 6 5に示すよう に、 スノレーホ一ノレ 8 a、 8 bの内部に半田 1 1を充填し、 さらにスノレーホ一ル 8 aの一端部に半田バンプ 9を形成する。  Next, as shown in Fig. 64, the tape carriers 2a and 2b are superimposed according to the above-described method to form TCPs 1A and 1B into one package, and then, as shown in Fig. 65, Solder 11 is filled in 8a and 8b, and solder bump 9 is formed at one end of snorkel hole 8a.
上述した本発明の各種積層型 T C Pは、 チップ M Fとチップ A Dを組み合わせ る場合だけでなく、 前述したチップ M F A +チップ D、 チップ M F A +チップ A D、 チップ I F +チップ Dなどの構成例にも適用できることは勿論である。 また、 本発明の積層型 T C Pは、 3個以上のチップを積層する場合にも適用することが できる、、 The various stacked TCPs of the present invention described above are applicable not only to the case where the chip MF and the chip AD are combined, but also to the above-described configuration examples of the chip MFA + chip D, the chip MFA + chip AD, the chip IF + chip D, and the like. Of course, you can. The stacked TCP of the present invention can also be applied to a case where three or more chips are stacked. it can,,
図 66に示す積層型 T C Ρは、 マイクロコンピュータとフラッシュメモリを形 成したチップ MFを TC Ρ 1 Αに封止すると共に、 DRAMのみを形成した 2個 のチップ Dい 02を2個の丁〇 1じ、 TCP 1 Dに封止し、 これら 3個の TC P 1 A、 1 C、 1 Dを上下方向に重ね合わせて一体に接合した積層型 TCP構造 を有している。 The stacked TC II shown in Fig. 66 has a chip MF that forms a microcomputer and a flash memory encapsulated in a TC II, and two chips D 0 2 that form only DRAM are connected to two chips. (1) It has a stacked TCP structure in which it is sealed in TCP 1D, and these three TCPs 1A, 1C, and 1D are vertically overlapped and joined together.
最下層の TCP 1 Aに封止されたチップ MFは、 テープキャリア 2 aのデバイ スホール 3 a内にその主面 (素子形成面) を上に向けて配置されており、 その主 面の周辺部に形成されたバンプ電極 4を介して、 テープキャリア 2 aの一面に形 成されたリード 5 aの一端 (インナーリード部) と電気的に接続されている。 チ ッブ は、 モールド樹脂 1 7で封止されている。 テープキャリア 2 aの一面に 形成されたリード 5 aは、 図 67に示すようなパターンを有している。  The chip MF sealed in the lowermost layer TCP 1A is placed in the device hole 3a of the tape carrier 2a with its main surface (element forming surface) facing upward, and the peripheral portion of the main surface. The tape carrier 2a is electrically connected to one end (inner lead portion) of a lead 5a formed on one surface of the tape carrier 2a via a bump electrode 4 formed on the tape carrier 2a. The chip is sealed with a mold resin 17. The lead 5a formed on one surface of the tape carrier 2a has a pattern as shown in FIG.
TCP 1 Aの上部には、 チップ D ,を封止した TC P 1 Cが積層されており、 さらにその上部にはチップ D 2を封止した TC P 1 Dが積層されている。 TC P 1 Cに封止されたチップ D !は、 テープキヤリア 2 cの中央部に開孔されたデバ イスホール 3 c内にその主面を上に向けて配置されており、 その主面の中央部に 形成されたバンプ電極 4を介して、 テープキャリア 2 cの一面に形成されたリー ド 5 cの一端 (インナ一リード部) と電気的に接続されている。 同様に、 TCP 1 Dに封止されたチップ D2は、 テープキャリア 2 dの中央部に開孔されたデバ イスホール 3 d内にその主面を上に向けて配置されており、 その主面の中央部に 形成されたバンプ電極 4を介して、 テープキャリア 2 dの一面に形成されたリー ド 5 dの一端 (インナーリード部) と電気的に接続されている。 これらのチップ Dい D 2もモールド樹脂 1 7で封止されている。 テープキャリア 2 cの一面に形 成されたリード 5 cは、 図 68に示すようなパターンを有しており、 テープキヤ リア 2 dの一面に形成されたリード 5 dは、 図 69に示すようなパターンを有し ている。 On top of TCP 1 A, TCP 1 C sealing chip D, is laminated, and further on top, TCP 1 D sealing chip D 2 is laminated. Tip D sealed in TC P 1 C! Is disposed in a device hole 3c opened in the center of the tape carrier 2c with its main surface facing upward, and via a bump electrode 4 formed in the center of the main surface of the tape carrier 2c. It is electrically connected to one end (inner-lead portion) of a lead 5c formed on one surface of the tape carrier 2c. Similarly, the chip D 2 sealed in the TCP 1 D is arranged with its main surface facing upward in a device hole 3 d opened in the center of the tape carrier 2 d. It is electrically connected to one end (inner lead portion) of a lead 5d formed on one surface of the tape carrier 2d via a bump electrode 4 formed at the center of the tape carrier 2d. These chips D and D 2 are also sealed with the mold resin 17. The lead 5c formed on one surface of the tape carrier 2c has a pattern as shown in FIG. 68, and the lead 5d formed on one surface of the tape carrier 2d is formed as shown in FIG. It has a pattern.
この積層型 TCPは、 上記 3つのチップ MF、 D„ D 2の共通する (すなわち 同一機能を有する) 接続端子 (ピン) をテープキャリア 2 a、 2 c、 2 dの同じ 位置に配置されたスルーホール 8 a、 8 c、 8 dを通じて電気的に接続し、 テー プキャリア 2 aに形成されたリード 5 aの他端部 (アウターリード部) を通じて 外部 (ブリント配線基板) に共通に引き出す構造になっている。 外部接続端子は、 リ一ドの他、 前述した半田バンプやピンなどで構成できることは勿論である c 図 6 7には、 チップ MFに形成された接続端子の番号 (1〜144) とテープ キャリア 2 aに形成されたスルーホール 8 aの番号 ( 1〜 144) とが付してあ る。 また、 図 68には、 チップ D ,に形成された接続端子の番号 (1〜46) と テープキャリア 2 cに形成されたスルーホール 8 cの番号 (1〜144) とが付 してあり、 図 69には、 チップ D2に形成された接続端子の番号 (1〜46) と テープキャリア 2 dに形成されたスルーホール 8 dの番号 (1〜144) とが付 してある。 テープキャリア 2 a、 2 c、 2 dの同じ位置に配置されたスルーホー ノレ 8 a、 8 c、 8 dには、 同じ番号が付してある:: The multilayer TCP is the three-chip MF, D "common D 2 to (i.e. having the same function) through a connection terminal (pin) disposed at the same position of the tape carrier 2 a, 2 c, 2 d Electrical connection through holes 8a, 8c, 8d The lead 5a formed on the carrier 2a has a structure in which the lead 5a is commonly drawn to the outside (blind wiring board) through the other end (outer lead). The external connection terminals can be composed of solder bumps, pins, etc., in addition to the leads. C FIG. 67 shows the connection terminal numbers (1 to 144) formed on the chip MF and the tape carrier. The number (1 to 144) of the through hole 8a formed in 2a is given. In FIG. 68, the numbers (1 to 46) of the connection terminals formed on the chip D, and the numbers (1 to 144) of the through holes 8c formed on the tape carrier 2c are given. Figure 69 is a number of connection terminals formed on the chip D 2 (1-46) and a tape carrier 2 d to form through holes 8 d number (1 to 144) are then Togazuke. The same numbers are assigned to the through horns 8a, 8c, and 8d arranged at the same position on the tape carriers 2a, 2c, and 2d ::
チップ Dい D 2の面積がいずれもチップ MFの面積の半分以下である場合は、 図 70に示すように、 チップ D ,、 D 2を横に並べて配置し、 チップ D t、 D 2の共 通する接続端子を共通のリード 5 eで接続することができる。 このようにすると、 2個のチップ MF、 ADを搭載した前記の積層型 TC Pと同様、 超薄型のパッケ ージを実現することができる。 If the area of the chip D have D 2 is less than half of the area of any chip MF, as shown in FIG. 70, are arranged side by side and tip D ,, D 2 laterally, chip D t, co of D 2 Connection terminals to be connected can be connected by the common lead 5e. In this way, an ultra-thin package can be realized as in the case of the above-described stacked TCP mounting two chips MF and AD.
本発明のパッケージは、 上記した構造に限定されるものではなく、 その細部に 種々の設計変更を加えることができる。 例えば図 7 1に示すように、 T C P 1 A に封止されたチップ λ'Ι Fとテ一ブキャリア 2 aに形成されたリード 5 aを A uの ワイヤ 20で電気的に接続する構造を採用することもできる。  The package of the present invention is not limited to the above-described structure, and various design changes can be made to its details. For example, as shown in Fig. 71, a structure is adopted in which the chip λ'ΙF sealed in TCP 1A and the lead 5a formed in the table carrier 2a are electrically connected by the Au wire 20. You can also.
また、 積層型 T C P構造以外にも、 例えば図 72に示すように、 チッブ M Fと チップ ADをワンパッケージ化せず、個別に QF P (Quad Flat package)型のパッ ケージに封止してプリント配線基板 1 4に実装することもできる。  In addition to the stacked TCP structure, for example, as shown in Fig. 72, the chip MF and chip AD are not packaged in one package, but are individually sealed in a QFP (Quad Flat package) type package and printed wiring It can also be mounted on the substrate 14.
本発明のパッケージは、 マルチメディア機器、 情報家電などの機器、 システム、 例えば図 73に示すような力一ナビゲーシヨンシステム、 図 74に示すようなじ D— ROM (Compact Disk ROM) 駆動装置、 図 75に示すようなゲーム機器、 図 76に示すような PDA (Personal Digital Assistance) 、 図 77に示すような 移動体通信機器などに用いられ、 以下において、 それぞれの概要を説明する。 図 73は、 カーナビゲーシヨンシステムの内部構成例を示す機能ブロック図で ある。 このカーナビゲーシヨンシステムは、 制御部と、 この制御部に接続された 表示部、 G P Sおよび CD— ROMとから構成されている。 制御部は、 メイン C PU、 プログラム E PROM (4M) 、 ワーク RAM (SRAM : 1 M) 、 I / O制御回路、 ARTOP、 画像用 RAM (DRAM : 4M) 、 C G (Computer Gr aphics)用 ROM (マスク ROM : 4 M) 、 ゲートアレイなどからなり、 また表示 部はスレーブマイクロコンピュータ、 T FTなどから構成されている。 The package according to the present invention includes devices and systems such as multimedia devices and information home appliances, for example, a force navigation system as shown in FIG. 73, a D-ROM (Compact Disk ROM) driving device as shown in FIG. 74, and FIG. It is used for a game device as shown in FIG. 1, a PDA (Personal Digital Assistance) as shown in FIG. 76, a mobile communication device as shown in FIG. Figure 73 is a functional block diagram showing an example of the internal configuration of the car navigation system. is there. This car navigation system includes a control unit, a display unit connected to the control unit, a GPS and a CD-ROM. The control unit consists of a main CPU, program EPROM (4M), work RAM (SRAM: 1M), I / O control circuit, ARTOP, image RAM (DRAM: 4M), CG (Computer Graphics) ROM ( It consists of a mask ROM: 4M), a gate array, and the like, and the display unit consists of a slave microcomputer, TFT, and so on.
このカーナビゲーシヨンシステムにおいて、 制御部のメイン CPUは、 プログ ラム E PROMに格納されている制御プログラムに従って制御する。 まず、 制御 部は、 衛星と地上局との間で車の位置を測定する GPSによる位置情報と、 CD —ROMに格納されている地図情報とを I /O制御回路、 ゲートアレイを介して それぞれ入力し、 これらの情報をワーク RAMに格納する。  In this car navigation system, the main CPU of the control unit controls according to a control program stored in a program EPROM. First, the control unit compares the position information by GPS, which measures the position of the car between the satellite and the ground station, and the map information stored on the CD-ROM via the I / O control circuit and the gate array. Input and store this information in work RAM.
そして、 CG用 ROMに格納されている処理プログラムに従い、 ワーク RAM に格納されている位置情報と地図情報とに基づいて車の位置を地図上に配置する 処理などを ARTOPにより行い、 この画像情報を画像用 RAMに格納する。 そ の後、 画像用 RAMに格納されている画像情報を表示部に渡し、 表示部において は、 スレーブマイク口コンピュータの制御に基づいて T FTによる画面上に画像 情報を表示させることにより、 車の位置が地図上に配置された画像を表示させる ことができる。  Then, according to the processing program stored in the CG ROM, the processing of arranging the position of the car on the map based on the position information and the map information stored in the work RAM is performed by ARTOP, and this image information is obtained. Store in image RAM. After that, the image information stored in the image RAM is passed to the display unit, and the display unit displays the image information on a TFT screen based on the control of the computer with the slave microphone, so that the vehicle information is displayed. An image whose position is arranged on a map can be displayed.
このカーナビゲーシヨンシステムにおいては、 メイン C PLをプロセッサ、 プ ログラム E P ROMをフラッシュメモリ、 ART〇 Pなどを AS I Cによるロジ ック回路で構成することにより、 このブロック部分に本実施の形態のチップ M F Aを使用し、 また画像用 RAMを DRA 1、 ゲートアレイを A S I Cによるロジ ック回路で構成することにより、 このプロック部分に本実施の形態のチップ A D を使用することができる。 また単に、 メイン CPU、 プログラム E PROMの部 分にチップ MF、 画像用 RAMの部分にチップ Dを使用することなどもできる、、 図 74は、 CD— ROM駆動装置の内部構成例を示す機能プロック図である。 この CD— ROM駆動装置は、 フラッシュメモリを含むマイクロコンピュータと、 このマイクロコンピュータに双方向で接続されたプリサーボ回路、 信号処理回路、 ROMデコーダ、 ホスト I ZFと、 プリサーボ回路、 信号処理回路にそれぞれ双 方向で接続されたピックアップ、 SRAMと、 ROMデコーダに接続された D/ Aと、 ホスト I / Fに接続されたバッファ R AMとなどから構成されてレ、る。 また、 信号処理回路には CD— ROMを駆動するモータ Mが接続され、 また C D— ROMの信号はピックアップにより読み取られる。 このモータの回転はブリ サーボ回路、 信号処理回路の信号により制御される。 さらに、 DZAにはスビ一 力が接続されている。 また、 この CD— ROM駆動装置はホスト I ZFを介して ホストコンピュータに接続されるようになっている。 In this car navigation system, the main CPL is configured by a processor, the program EP ROM is configured by a flash memory, and the ART〇P is configured by a logic circuit using an ASIC. The chip AD of the present embodiment can be used for this block by using an MFA, configuring the image RAM with DRA 1 and the gate array with a logic circuit using an ASIC. It is also possible to simply use a chip MF for the main CPU and program EPROM, and a chip D for the image RAM. Fig. 74 is a functional block diagram showing an example of the internal configuration of a CD-ROM drive. FIG. This CD-ROM drive has a microcomputer including a flash memory, a pre-servo circuit, a signal processing circuit, a ROM decoder, a host IZF, a pre-servo circuit, and a signal processing circuit, which are bidirectionally connected to the microcomputer. It consists of a pickup, SRAM connected in the direction, a D / A connected to the ROM decoder, and a buffer RAM connected to the host I / F. A motor M for driving a CD-ROM is connected to the signal processing circuit, and signals from the CD-ROM are read by a pickup. The rotation of this motor is controlled by the signals of the mini servo circuit and the signal processing circuit. In addition, DZA is connected to the slipper. The CD-ROM drive is connected to the host computer via the host IZF.
この CD— ROM駆動装置においては、 マイクロコンピュータの制御に基づい て、 CD— ROMの信号をピックアップにより読み取り、 この読み取り情報の処 理を信号処理回路により行い、 この処理された情報を S RAMに格納する さら に、 S RA\iに格納されている情報を R〇 VIデコーダによりデコードして、 D/ Aを介してアナログ信号に変換した後にスピーカから出力することができると共 に、 バッファ RAMに一時的に格納した後にホスト I 7 Fを介してホストコンピ ユータに出力することができる。  In this CD-ROM drive, the signal of the CD-ROM is read by a pickup under the control of a microcomputer, the read information is processed by a signal processing circuit, and the processed information is stored in an SRAM. In addition, the information stored in SRA \ i can be decoded by the R〇VI decoder, converted to an analog signal via D / A, output from the speaker, and stored in the buffer RAM. After storing temporarily, it can be output to the host computer via the host I7F.
この CD— ROM駆動装置においては、 フラッシュメモリを含むマイクロコン ピュータ、 信号処理回路などのプロック部分に本実施の形態のチップ MF Aを使 用し、 またバッファ RAM、 ホスト I /Fのブロック部分に本実施の形態のチッ プ A Dを使用することができる また単に、 フラッシュメモリを含むマイクロコ ンピュータの部分にチップ MF、 バッファ RAMの部分にチップ Dを使用する二 となどもできる  In this CD-ROM drive device, the chip MFA of the present embodiment is used for a block portion of a microcomputer including a flash memory, a signal processing circuit, and the like, and a block portion of a buffer RAM and a host I / F. The chip AD of the present embodiment can be used. Alternatively, the chip MF can be simply used for a microcomputer part including a flash memory, and the chip D can be used for a buffer RAM part.
図 75は、 ゲーム機器の内部構成例を示す機能ブロック図である。 このゲーム 機器は、 本体制御部と、 本体制御部に接続されたスピーカ、 CD— R〇M、 RO Mカセット、 C RTが接続された表示 RAM (SDRAM : 4 M) 、 ノくッファ R AM (DRAM: 4M) およびキーボードとから構成されている。 本体制御部は、 メイン C Pじ、 システム ROM (マスク ROM : 1 6 M) 、 DRAM (SDRA -VI: 4M) 、 RAM (S RAM: 256 k) 、 サウンドプロセッサ、 グラフイツ クプロセッサ、 画像圧縮プロセッサ、 Iダ〇制御回路などから構成されている。 このゲ一ム機器において、 本体制御部のメイン C PUは、 システム ROMに格 納されている制御プログラムに従って制御する。 CD-ROM, ROMカセット に格納されている画像 ·音声情報と、 キーボードからの指示情報とを I Z〇制御 回路を介してそれぞれ入力し、 これらの情報を DRAM、 RAMに格納する- そして、 DRAM、 RAMに格納されている情報をサウンドプロセッサ、 グラ フィックプロセッサを用いてそれぞれオーディオ、 ビデオ信号に処理して、 ォー ディォ信号はスピーカーから音声として出力し、 またビデオ信号は表示 RAMに 一時的に格納した後に CRTの画面上に画像として表示させることができる。 こ の際に、 ビデオ信号は画像圧縮プロセッサにより情報量が圧縮されてバッファ R AMに格納されて用いられる。 FIG. 75 is a functional block diagram showing an example of the internal configuration of the game device. This game machine has a main unit control unit, a speaker connected to the main unit control unit, a display RAM (SDRAM: 4 M) connected to a CD-R〇M, ROM cassette, and CRT, DRAM: 4M) and keyboard. The main unit controls are the main CP, system ROM (mask ROM: 16M), DRAM (SDRA-VI: 4M), RAM (SRAM: 256k), sound processor, graphics processor, image compression processor, I It is composed of a DA control circuit. In this game machine, the main CPU of the main unit control unit is controlled according to a control program stored in the system ROM. CD-ROM, ROM cassette Image and audio information and instruction information from the keyboard are input via the IZ〇 control circuit, and these information are stored in DRAM and RAM. The information is processed into audio and video signals using a sound processor and a graphic processor, respectively. The audio signals are output as audio from speakers, and the video signals are temporarily stored in the display RAM and then displayed on the CRT screen. Can be displayed as an image. At this time, the video signal is used by being compressed in the amount of information by an image compression processor and stored in a buffer RAM.
このゲーム機器においては、 メイン CPU、 システム ROM、 サウンドプロセ ッサ、 グラフィックプロセッサなどのブロック部分に本実施の形態のチップ MF Aを使用し、 また DRAM、 画像圧縮プロセッサなどのブロック部分に本実施の 形態のチップ ADを使用することができるつ また単に、 メイン CPU、 システム R OMの部分にチップ M F、 D R AM、 R Αλ1、 バッファ R AMなどの部分にチ ップ I)を使用することなどもできる。  In this game device, the chip MFA of the present embodiment is used for blocks such as a main CPU, a system ROM, a sound processor, and a graphic processor, and the present embodiment is used for blocks such as a DRAM and an image compression processor. It is also possible to use chip AD in the form of chip MF, DRAM, RΑλ1 for the part of main CPU, system ROM, chip I) for the part of buffer RAM, etc. it can.
図 76は、 PDAの内部構成例を示す機能ブロック図である。 この PDAは、 グラフィック制御回路、 手書き入力回路、 メモリ制御回路、 セキュリティ管理回 路、 通信制御回路からなるフラッシュメモリを含むマイクロコンピュータと、 こ のマイクロコンピュータのグラフィック制御回路に接続された LCD、 手書き入 力回路に接続された A/Dを介したディジタイザ、 メモリ制御回路に接続された システムメモリ (マスク ROM : 1 6 ) 、 セキュリティ管理回路に接続された I Cカード、 通信制御回路に接続された I R— I F、 RS— 232 C、 P CMC I A制御回路を介した P CMC I Aカードとから構成されている。 このマイクロ コンピュータは、 通信制御回路からネットワークを介して. PHS、 GSM、 AD Cなどに接続されるようになっている。  FIG. 76 is a functional block diagram showing an example of the internal configuration of the PDA. This PDA consists of a microcomputer including a flash memory consisting of a graphic control circuit, a handwriting input circuit, a memory control circuit, a security management circuit, and a communication control circuit; an LCD connected to the microcomputer's graphic control circuit; Digitizer via A / D connected to power circuit, system memory (mask ROM: 16) connected to memory control circuit, IC card connected to security management circuit, IR connected to communication control circuit It consists of IF, RS-232C, PCMCIA card via PCMCIA control circuit. This microcomputer is connected to PHS, GSM, ADC, etc. from a communication control circuit via a network.
この PDAにおいては、 システムメモリに格納されている制御プログラムに従 つてメモリ制御回路により制御し、 ディジタイザを用いて書かれた情報を A/D によりディジタル信号に変換した後、 手書き入力回路に格納する。 この手書き入 力回路に格納されている情報は、 グラフィック制御回路を用いて信号処理した後 に LCDの画面上に表示させることができる、、 他に、 外部との通信情報、 セキュ リティ管理情報などもグラフィック制御回路を介して L C Dの画面上に表示させ ることができる。 This PDA is controlled by a memory control circuit according to a control program stored in a system memory, converts information written using a digitizer into digital signals by A / D, and stores it in a handwriting input circuit. . The information stored in the handwriting input circuit can be displayed on an LCD screen after signal processing using a graphic control circuit. Information such as quality management information can also be displayed on the LCD screen via the graphic control circuit.
さらに、 PHS、 GS , ADCなどとの通信は、 ネッ トワークを介して通信 制御回路の制御により行うことができ、 また I R— I F、 RS_232 C、 PC MC I A制御回路を介した P CMC I Aカードなどからの情報もマイクロコンビ ユータに取り込むことができる。 また、 I Cカードの情報は、 セキュリティ管理 回路によるセキュリティ管理のために用いられる 3 Furthermore, communication with PHS, GS, ADC, etc. can be performed by controlling a communication control circuit via a network, and a PCMCIA card via an IR-IF, RS_232C, PCMCIA control circuit, etc. Can also be imported into the micro-computer. Further, information of the IC card is used for security management by the security management circuit 3
この PDAにおいては、 グラフィック制御回路、 手書き入力回路、 メモリ制御 回路、 セキュリティ管理回路、 通信制御回路からなるフラッシュメモリを含むマ イク口コンピュータのブロック部分に本実施の形態のチップ M F Aを使用するこ とができる; また単に、 グラフィック制御回路、 手書き入力回路などの部分にチ ッブ Dを使用することなどもできる c In this PDA, the chip MFA of the present embodiment is used for a block portion of a micro computer including a flash memory including a graphic control circuit, a handwriting input circuit, a memory control circuit, a security management circuit, and a communication control circuit. it is; also simply, c can also such as by using Chi Tsu Bed D graphic control circuit, a part of the handwritten input circuit
図 77は、 移動体通信機器の内部構成例を示す機能ブロック図である。 この移 動体通信機器は、 フラッシュメモリを含む C P Uと、 この C P Uに接続された C Hコーデック、 LCDコント口一ラ/ドライバ、 I Cカードと、 CHコーデック に接続され、 モデムを介して接続された RF/ I F、 スピ一チコ一デックと、 L CDコントローラ/ドライバに接続された L C Dとから構成され、 R F/ I Fに はアンテナ、 スピーチコーデックにはスピーカ、 マイクがそれぞれ接続されてい る。  FIG. 77 is a functional block diagram showing an example of the internal configuration of the mobile communication device. This mobile communication device consists of a CPU including flash memory, a CH codec, LCD controller / driver, and IC card connected to this CPU, and an RF / RF card connected to the CH codec and connected via a modem. It consists of an IF, a speech codec, and an LCD connected to the LCD controller / driver. An antenna is connected to the RF / IF, and a speaker and a microphone are connected to the speech codec.
この移動体通信機器において、 C PUのフラッシュメモリに格納されているプ ログラムにより制御し、 信号の受信時には、 アンテナからの信号を RF/ I Fを 介して受信して、 モデムを用いて変調する。 そして、 変調した信号を CHコ一デ ック、 スピーチコ一デックを用いて音声信号に変換し、 スピーカから音声として 出力することができる。  In this mobile communication device, control is performed by a program stored in a flash memory of a CPU, and when a signal is received, a signal from an antenna is received via RF / IF and modulated using a modem. Then, the modulated signal is converted into an audio signal using a CH codec and a speech codec, and can be output as audio from a speaker.
また、 信号の送信時には、 受信時とは逆に、 マイクからの音声信号をスピーチ コーデック、 CHコ一デックを用いて変換し、 モデムを用いて復調した後に、 R F/ I Fを介してアンテナから送信することができる。  Also, when transmitting a signal, contrary to the reception, the voice signal from the microphone is converted using a speech codec and CH codec, demodulated using a modem, and then transmitted from the antenna via RF / IF. can do.
この移動体通信機器においては、 CPじ、 CHコ一デックなどのブロック部分 に本実施の形態のチップ M F Aを使用し、 また L C Dコントローラ /ドライバな どの部分に本実施の形態のチップ ADを使用することができる。 また単に、 CP Uの部分にチッブ M Fを使用することなどもできる。 In this mobile communication device, the chip MFA of the present embodiment is used for a block portion such as a CP controller and a CH codec, and an LCD controller / driver is provided. In any part, the chip AD of the present embodiment can be used. It is also possible to simply use a chip MF for the CPU part.
以上のように、 本実施の形態のチップ MF、 チップ 1FA、 チップ AD、 チッ ブ Dなどの組み合わせにより構成される半導体装置は、 力ーナピゲ一ションシス テム、 CD— ROM駆動装置、 ゲーム機器、 PDA、 移動体通信機器などのマル チメディア機器、 情報家電などの機器、 システムなどに広く適用することができ る。  As described above, the semiconductor device composed of the combination of the chip MF, the chip 1FA, the chip AD, the chip D, and the like according to the present embodiment includes a power acquisition system, a CD-ROM drive, a game device, a PDA, It can be widely applied to multimedia devices such as mobile communication devices, devices and systems such as information home appliances.
従って、 本発明によれば、 以下のような効果を得ることができる。  Therefore, according to the present invention, the following effects can be obtained.
(1) 回路的なコスト面においては、 C PUおよびフラッシュメモリなどによる チップ M Fと D R AMによるチップ Dとの 2種類のチップをヮンパッケージ化し たパッケージ構造とすることで、 外部接続端子数の低減、 2種類のチップのワン パッケージ化による実装面積の縮小を図り、 半導体装置のコストダウンを図るこ とができる: さらに、 この半導体装置を用いた機器、 システムなどにおける低コ スト化も可能となる。  (1) In terms of circuit cost, the number of external connection terminals is reduced by using a package structure in which two types of chips, a chip MF using a CPU and a flash memory, and a chip D using a DRAM, are packaged separately. In addition, the mounting area can be reduced by integrating two types of chips into a single package, and the cost of semiconductor devices can be reduced: In addition, the cost of equipment and systems using this semiconductor device can be reduced. .
( 2 ) チップ M F、 チップ Dのそれぞれに A S I Cなどのロジック回路を内蔵す るチップ MFA、 チップ ADとする場合、 DRAMをシンクロナス DRAMとす る場合には、 さらに外部接続端子を共通にすることができるので、 より一層、 外 部接続端子数を低減してコス トダウンを図ることができる。  (2) If the chip MF and chip D each have a chip MFA or chip AD with a built-in logic circuit such as an ASIC, and if the DRAM is a synchronous DRAM, the external connection terminals must be shared. Therefore, the number of external connection terminals can be further reduced and cost can be reduced.
(3) 回路的な動作面においては、 DRAMと AS I Cなどのロジック回路とが 搭載されたチップ ADとする二とで、 ウェイ ト制御を不要にして、 外部からみた (3) In terms of circuit operation, weight control is unnecessary by using a chip AD equipped with a DRAM and a logic circuit such as ASIC, so that external
D R AMのセルフリフレッシュ期間にロジック回路から D R AMに対するァクセ ス動作を行うことができるので、 外部とチップ A Dとの間のデータ転送の高速化 を実現することができる。 Since the access operation from the logic circuit to the DRAM can be performed during the DRAM self-refresh period, the speed of data transfer between the external device and the chip AD can be increased.
特に、 C PU自身が時間をコントロールして 1クロックサイクルを実現するこ とにより、 ウェイ ト信号のやり取りをしないで済むので、 高速アクセスを行うこ とができる。 さらに、 この半導体装置を用いた機器、 システムなどにおける処理 の高速化も可能となる。  In particular, since the CPU itself controls the time and realizes one clock cycle, it is not necessary to exchange wait signals, so that high-speed access can be performed. Further, the speed of processing in equipment and systems using the semiconductor device can be increased.
(4) DRAMとロジック回路とが搭載されたチップ ADと、 CPUとフラッシ ュメモリとなどが搭載されたチップ M F、 チップ M F Aとの 2種類のチップをヮ ッケージ化したパッケージ構造においても、 C PUから見た D R AMのセル フリフレッシュ期間にロジック回路から D RAMに対するアクセス動作が可能に なるので、 チップ ADとチップ MF、 チップ MF Aとの間のデータ転送の高速化 を実現することができる。 (4) There are two types of chips: a chip AD on which DRAM and logic circuits are mounted, a chip MF on which CPU and flash memory are mounted, and a chip MFA. Even in the packaged package structure, the logic circuit can access the DRAM during the DRAM self refresh period as seen from the CPU, so data transfer between chip AD and chip MF and chip MF A is possible. Can be realized at high speed.
(5) ウエイ ト信号のやり取りをするウェイト制御が不要となるので、 処理のタ ィミング自身を C PUからコントロールすることができる、 すなわち処理をする タイミング自身を C PUのプログラムの中で分かるので、 半導体装置のプログラ ム作成を容易にすることができる。  (5) Since wait control for exchanging weight signals is not required, the processing timing itself can be controlled from the CPU, that is, the processing timing itself can be known in the CPU program. This makes it easy to create a semiconductor device program.
(6) 汎用の DRAMインタフェースを使用することにより、 DRAMとロジッ ク回路とが搭載されたチップ ADと、 C PUとフラッシュメモリとなどが搭載さ れたチップ M F、 チップ M F Aとを高速動作可能に直結することができる。  (6) Using a general-purpose DRAM interface enables high-speed operation of chip AD with DRAM and logic circuits, chip MF and chip MFA with CPU and flash memory, etc. Can be directly connected.
(7) 電源レベルの異なる DRAM、 ロジック、 フラッシュメモリなどを 2以上 のチップに分けて形成することにより、 プロセス上の負担が低減されるため、 こ れらをワンチップに混載して形成する場合に比べてチップの製造コストを大幅に 低減することができる。  (7) The process load is reduced by dividing DRAM, logic, flash memory, etc. with different power levels into two or more chips, so that these are mixedly mounted on one chip. As a result, the manufacturing cost of the chip can be significantly reduced.
(8) C PUおよぴフラッシュメモリなどによるチップ MFと DRAMによるチ ップ Dとの 2種類のチッブを超薄型の積層パッケージに搭載してヮンパッケージ 化したことにより、 チップの実装面積を大幅に縮小することができる。  (8) The chip mounting area is reduced by mounting two types of chips, a chip MF using a CPU and a flash memory, and a chip D using a DRAM, in an ultra-thin stacked package to form a single package. It can be significantly reduced.
以上、 本発明者によってなされた発明を発明の実施の形態に基づき具体的に説 明したが、 本発明は前記実施の形態に限定されるものではなく、 その要旨を逸脱 しなレ、範囲で種々変更可能であることはいうまでもなレ、。 産業上の利用可能性  Although the invention made by the inventor has been specifically described based on the embodiments of the present invention, the present invention is not limited to the above embodiments, and the present invention is not limited to the scope and scope thereof. Needless to say, various changes are possible. Industrial applicability
以上のように、 本発明にかかる半導体装置は、 MCVI的なアプローチから、 C PUを含むマイクロコンピュ一タにフラッシュメモリ、 さらに AS I Cなどの口 ジック回路を形成した第 1のチップと、 DRAM、 さらに AS I Cなどのロジッ ク回路を形成した 1つまたは複数の第 2のチップとなどの複数種類の半導体チッ ブを互いに信号の入出力が可能に同一のパッケージの内部に収納したパッケージ 構造において、 機能ブロック構成による回路的にも、 外部接続端子数の低減、 2 種類のチップの 1パッケージ化による実装面積の縮小を図り、 コストダウンを可 能とすることができる半導体装置に有用であり、 さらにこの半導体装置を用いた マルチメディア機器、 情報家電などの機器、 システムなどに広く適用することが できる。 As described above, the semiconductor device according to the present invention employs, from an MCVI approach, a first chip in which a flash memory is further formed on a microcomputer including a CPU, and further a logic circuit such as an AS IC, a DRAM, Furthermore, in a package structure in which a plurality of types of semiconductor chips, such as one or more second chips forming a logic circuit such as an AS IC, are housed in the same package so that signals can be input / output to each other, In terms of circuit, the number of external connection terminals is reduced by the functional block configuration. It is useful for semiconductor devices that can reduce the mounting area by making one type of chip into one package and can reduce costs. Furthermore, multimedia devices, information home appliances, and other devices and systems using this semiconductor device It can be widely applied to such applications.

Claims

請 求 の 範 囲 The scope of the claims
1 . 以下の工程を含むことを特徴とする半導体装置の製造方法; 1. A method for manufacturing a semiconductor device, comprising the following steps:
( a ) 複数のテープキャリァのそれぞれにデバイスホールとスルーホールとを形 成した後、 前記テープキヤリァの一面に形成した導電層をパターニングすること により、 一端が前記デバイスホール内に突出し、 他端が前記スルーホールに接続 されるリードを形成する工程、  (a) After forming a device hole and a through hole in each of the plurality of tape carriers, by patterning a conductive layer formed on one surface of the tape carrier, one end protrudes into the device hole and the other end protrudes into the device hole. Forming leads connected to the through holes,
( b ) 前記複数のテープキヤリアのそれぞれのデバイスホールに配置した半導体 チップの接続端子に前記リ一ドをボンディングして両者を電気的に接続した後、 前記半導体チップを樹脂封止することにより、 複数のテープキヤリァを形成する 工程、  (b) bonding the lead to a connection terminal of the semiconductor chip arranged in each device hole of the plurality of tape carriers to electrically connect them, and then sealing the semiconductor chip with resin. A process of forming a plurality of tape carriers,
( c ) 前記複数のテープキャリアを、 前記スル一ホールが互いに重なり合うよう に上下方向に積層した後、 前記スルーホールの内部に導体層を形成して前記スル 一ホール間を電気的に接続することにより、 積層型 T C Pを形成する工程、 (c) stacking the plurality of tape carriers in the vertical direction such that the through holes overlap each other, and then forming a conductor layer inside the through holes to electrically connect the through holes. The process of forming a stacked TCP,
( d ) 前記スルーホールの一端部に前記積層型 T C Pの外部接続端子を形成する 工程 (d) forming an external connection terminal of the laminated TCP at one end of the through hole;
2 . 請求項 1記載の半導体装置の製造方法であって、 前記複数のテープキヤリァ に搭載された複数の半導体チップに共通の接続端子を、 前記複数のテープキヤリ ァの同一箇所に形成された前記スルーホールを通じて同一の外部接続端子に引き 出すことを特徴とする半導体装置の製造方法- 2. The method for manufacturing a semiconductor device according to claim 1, wherein a connection terminal common to a plurality of semiconductor chips mounted on the plurality of tape carriers is formed at the same position of the plurality of tape carriers. Method for manufacturing a semiconductor device, characterized in that
3 . 請求項 1記載の半導体装置の製造方法であって、 前記外部接続端子は、 最下 層のテーブキヤリァのスルーホールの一端部に形成された半田バンプであること を特徴とする半導体装置の製造方法。 3. The method for manufacturing a semiconductor device according to claim 1, wherein the external connection terminal is a solder bump formed at one end of a through hole of a lowermost table carrier. Method.
4 . 請求項 1記載の半導体装置の製造方法であって、 前記外部接続端子は、 最下 層のテープキヤリァの一面に形成され、 一端が前記テープキヤリァの外方に突出 するリ一ドであることを特徴とする半導体装置の製造方法。  4. The method for manufacturing a semiconductor device according to claim 1, wherein the external connection terminal is formed on one surface of a lowermost tape carrier, and one end is a lead protruding outward from the tape carrier. A method for manufacturing a semiconductor device.
5 . 請求項 1記載の半導体装置の製造方法であって、 前記外部接続端子は、 一部 が前記スルーホール内に挿入され、 他部が前記テープキヤリァの外方に突出する 導電ビンであることを特徴とする半導体装置の製造方法。  5. The method of manufacturing a semiconductor device according to claim 1, wherein a part of the external connection terminal is a conductive bin that is inserted into the through hole and another part protrudes outward from the tape carrier. A method for manufacturing a semiconductor device.
6 . 請求項 1記載の半導体装置の製造方法であって、 前記複数個の半導体チップ に共通の接続端子から引き出された複数のリ一ドを、 前記テープキヤリァの外方 において互いに重ね合わせた状態で一括成形することにより、 外部接続端子を形 成することを特徴とする半導体装置の製造方法。 6. The method for manufacturing a semiconductor device according to claim 1, wherein the plurality of semiconductor chips are provided. Manufacturing a plurality of leads drawn out from a common connection terminal to form an external connection terminal by collectively molding the leads outside of the tape carrier in a state of being superimposed on each other. Method.
7 . 請求項 1記載の半導体装置の製造方法であって、 前記半導体チップは、 あら かじめウェハ状態で裏面を研磨した後、 スピンエッチング法でその厚さを前記テ ープキャリアよりも薄くすることを特徴とする半導体装置の製造方法。  7. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor chip has a thickness smaller than that of the tape carrier by a spin etching method after polishing a back surface in a wafer state in advance. A method for manufacturing a semiconductor device.
8 . 請求項 1記載の半導体装置の製造方法であって、 前記スル一ホールの内部に 印刷法で半田ペーストを埋め込んだ後、 前記半田ペーストをリフローして前記ス ルーホールの内部に導体層を形成することを特徴とする半導体装置の製造方法。  8. The method of manufacturing a semiconductor device according to claim 1, wherein after embedding a solder paste in the through hole by a printing method, the solder paste is reflowed to form a conductor layer inside the through hole. A method of manufacturing a semiconductor device.
9 . 請求項 1記載の半導体装置の製造方法であって、 前記スルーホールの内部に 無電解メツキを施して導体層を形成することを特徴とする半導体装置の製造方法。9. The method for manufacturing a semiconductor device according to claim 1, wherein an electroless plating is performed inside the through hole to form a conductor layer.
1 0 . 請求項 1記載の半導体装置の製造方法であって、 前記半導体チップをボッ ティング樹脂で封止することを特徴とする半導体装置の製造方法。 10. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor chip is sealed with a boting resin.
1 1 . 請求項 1記載の半導体装置の製造方法であって、 前記半導体チップをモー ノレド樹脂で封止することを特徴とする半導体装置の製造方法。  11. The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor chip is sealed with a monolithic resin.
1 2 . 請求項 1記載の半導体装置の製造方法であって、 少なくとも C P Uとフラ ッシュメモリとが形成された半導体チップと、 少なくとも D R AMが形成された 一または複数の半導体チップとを含んでいることを特徴とする半導体装置の製造 方法 c 12. The method for manufacturing a semiconductor device according to claim 1, comprising at least a semiconductor chip on which a CPU and a flash memory are formed, and at least one or more semiconductor chips on which a DRAM is formed. Manufacturing method c of semiconductor device characterized by the above-mentioned.
PCT/JP1996/003547 1996-12-04 1996-12-04 Method for manufacturing semiconductor device WO1998025305A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP52542998A JP4025372B2 (en) 1996-12-04 1996-12-04 Semiconductor device
PCT/JP1996/003547 WO1998025305A1 (en) 1996-12-04 1996-12-04 Method for manufacturing semiconductor device
AU10401/97A AU1040197A (en) 1996-12-04 1996-12-04 Method for manufacturing semiconductor device
TW085116158A TW326559B (en) 1996-12-04 1996-12-27 The manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/003547 WO1998025305A1 (en) 1996-12-04 1996-12-04 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO1998025305A1 true WO1998025305A1 (en) 1998-06-11

Family

ID=14154176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003547 WO1998025305A1 (en) 1996-12-04 1996-12-04 Method for manufacturing semiconductor device

Country Status (4)

Country Link
JP (1) JP4025372B2 (en)
AU (1) AU1040197A (en)
TW (1) TW326559B (en)
WO (1) WO1998025305A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183914A (en) * 2003-12-15 2005-07-07 Hynix Semiconductor Inc Method of manufacturing flash memory device
JP2006303079A (en) * 2005-04-19 2006-11-02 Akita Denshi Systems:Kk Stacked semiconductor device and manufacturing method thereof
US7442959B2 (en) 2000-12-15 2008-10-28 Hitachi, Ltd. Semiconductor device having identification number, manufacturing method thereof and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481348A (en) * 1987-09-24 1989-03-27 Hitachi Maxell Manufacture of semiconductor device
JPH0286159A (en) * 1988-09-22 1990-03-27 Hitachi Ltd Semiconductor device
JPH02198148A (en) * 1989-01-27 1990-08-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPH04280667A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device
JPH06151683A (en) * 1992-04-08 1994-05-31 Hitachi Maxell Ltd Laminated semiconductor device and manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481348A (en) * 1987-09-24 1989-03-27 Hitachi Maxell Manufacture of semiconductor device
JPH0286159A (en) * 1988-09-22 1990-03-27 Hitachi Ltd Semiconductor device
JPH02198148A (en) * 1989-01-27 1990-08-06 Hitachi Ltd Semiconductor device and manufacture thereof
JPH04280667A (en) * 1991-03-08 1992-10-06 Hitachi Ltd High integrated semiconductor device
JPH06151683A (en) * 1992-04-08 1994-05-31 Hitachi Maxell Ltd Laminated semiconductor device and manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442959B2 (en) 2000-12-15 2008-10-28 Hitachi, Ltd. Semiconductor device having identification number, manufacturing method thereof and electronic device
JP2005183914A (en) * 2003-12-15 2005-07-07 Hynix Semiconductor Inc Method of manufacturing flash memory device
JP2006303079A (en) * 2005-04-19 2006-11-02 Akita Denshi Systems:Kk Stacked semiconductor device and manufacturing method thereof
JP4704800B2 (en) * 2005-04-19 2011-06-22 エルピーダメモリ株式会社 Multilayer semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP4025372B2 (en) 2007-12-19
TW326559B (en) 1998-02-11
AU1040197A (en) 1998-06-29

Similar Documents

Publication Publication Date Title
JP3619523B2 (en) Semiconductor device
US6492719B2 (en) Semiconductor device
JP4381779B2 (en) Multi-chip module
CN100592509C (en) Semiconductor device and capsule type semiconductor package
US9355976B2 (en) Semiconductor memory chips and stack-type semiconductor packages including the same
EP1001465A2 (en) Multi-chip memory apparatus and associated method
JP2004221215A (en) Semiconductor device
CN103270588A (en) Substrate with embedded stacked through-silicon via die
JP4836110B2 (en) Multi-chip module
CN106971991A (en) The semiconductor devices and its manufacture method of stacking
JP2003124432A (en) Semiconductor device and electronic device integrating the semiconductor device
US10388630B2 (en) Semiconductor devices with duplicated die bond pads and associated device packages and methods of manufacture
WO1998025271A1 (en) Semiconductor integrated circuit device
JP3942198B2 (en) Semiconductor integrated circuit device
WO1998025305A1 (en) Method for manufacturing semiconductor device
JP4410380B2 (en) Application-specific semiconductor integrated circuit design method and circuit block library for application-specific semiconductor integrated circuit design
JP5539156B2 (en) Semiconductor integrated circuit device
JP2007134686A (en) Semiconductor integrated circuit device
JP2006155650A (en) Apparatus of semiconductor integrated circuit
JP2006114920A (en) Semiconductor integrated circuit device
TWI589032B (en) System-in-package module with memory
Koh Memory device packaging-from leadframe packages to wafer level packages
JP2002237567A (en) Semiconductor device
TW200905835A (en) Connector with build-in control unit and its application
TW436948B (en) A multi-chips semiconductor package and fabrication method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE HU IL IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase