WO1998022958A1 - Electrode for field control - Google Patents
Electrode for field control Download PDFInfo
- Publication number
- WO1998022958A1 WO1998022958A1 PCT/SE1997/001953 SE9701953W WO9822958A1 WO 1998022958 A1 WO1998022958 A1 WO 1998022958A1 SE 9701953 W SE9701953 W SE 9701953W WO 9822958 A1 WO9822958 A1 WO 9822958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- conducting layer
- electrode according
- conducting
- inner electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02B—BOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
- H02B13/00—Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
- H02B13/02—Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
- H02B13/035—Gas-insulated switchgear
- H02B13/0356—Mounting of monitoring devices, e.g. current transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249971—Preformed hollow element-containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249971—Preformed hollow element-containing
- Y10T428/249972—Resin or rubber element
Definitions
- the present invention relates to an electrode for control of an electric field in a gaseous electrically insulating medium.
- Electric breakdowns must inevitably be prevented since they entail an electric short-circuit of the equipment, where the electrodes are included.
- partial discharges are undesirable, since, among other things, they give rise to radio interference, energy losses and chemical degradation of material in that the partial discharges generate chemically aggressive and poisonous substances such as ozone and nitric oxides in air and a number of fluorine and sulphur compounds in the technical insulating gas sulphur hexafluoride . Partial discharges, which are harmless per se, may make the measurement of partial discharges of other parts of the equipment impossible.
- Commonly used methods of reducing the electric field strength in the vicinity of electrically conducting objects comprise selecting, in the entire design and dimensioning of devices intended for high electric vol- tages, mutual distances between electrically conducting objects and radii of curvature on the surfaces thereof, such that the dielectric strength of the medium is not attained at any place in the device.
- a large screening electrode reduces the maximum electric field strength in its vicinity. However, it causes a higher field strength at larger distances than a smaller electrode, which is often disturbing, since maximum field strength outside a device are often specified and must no"t be exceeded.
- the capacitance C of the electrode is
- ⁇ r is the relative dielectric permittivity of the medium and ⁇ 0 is the dielectric constant. Also the capacitance thus increases proportionally to the radius r 0 of the electrode .
- FIG. 2 A typical embodiment of screening electrodes according to the state of the art is shown in Figure 2, where a high- voltage apparatus 3, for example a capacitor, terminates in a toroidal screening electrode 1.
- a high- voltage apparatus for example a capacitor
- composite screening electrodes are often used, a typical embodiment being shown in Figures 3a, 3b and 3c from EP patent specification EP 0 075 884 Bl, where Figure 3a shows a screening electrode 1 composed of 12 disc-shaped electrode segments la which are fixed to an icosahedron- shaped frame 5 composed of rods 6 according to Figure 3b, with the fixing elements placed in a depression 4 in the electrode element to fix the electrodes to the icosahedron corners 7.
- An electrode segment la with the depression 4 is shown in cross section in Figure 3c.
- a composite electrode according to EP 0 075 884 is lighter and simpler to manufacture than a corresponding electrode which is made up of a coherent electrode, but its dimensions have not" be ⁇ diminished.
- FIG. 7 shows a 90° line bend for GIS according to the state of the art.
- the cylinder-shaped inner conductor 10 has the radius rc,* the tubular outer conductor/screen 11 has the radius
- the screen assumes the shape of a sphere 12 with the radius R s and the inner conductor, the electrode, becomes a sphere 1 with the radius r s .
- the following must apply, namely that, r s > r c and R s > R c ; usually, the radii at the line bend are about 50% larger than in the straight lines .
- Electrodes It is also known to provide the electrodes with an electric non-conducting covering, for example to make difficult the emission of photoelectrons from the electrode surface, or as corrosion protection.
- these coverings are thin compared with the dimensions of the electrode, and their influence on the electric field around the electrode is therefore negligible. In this way, the dimensions of the electrode cannot be reduced.
- An electrode for field control solves the task of preventing breakdown or partial discharges in a gaseous insulating medium with reduced exter- nal dimensions and reduced capacitance.
- An electrode for field control comprises an inner electrode with an electrically conducting surface which is surrounded by a thick layer of an electrically insulating material with a low relative dielectric permittivity, preferably a polymeric foam containing gas bubbles or a matrix in which hollow gas-filled microspheres are embedded.
- a thick layer is here meant a layer in which the ratio of the thickness d of the layer to the diameter 2r of the inner electrode is greater than 0.05, preferably greater than 0.15 and still more preferably 0.25.
- the diameter 2r of the inner electrode is considered to be the mean dia- meter of the electrode.
- a sufficiently good approximation of the mean diameter is here the mean value of the diameter in two directions perpendicular to each other.
- Inner electrode here also means an electrode element in a composite electrode. To achieve the effect of the invention, only those parts of the inner electrode, where a considerable increase of the electric field strength occurs, need to be covered with the non-conducting layer. Preferably, at least that one-third of the surface of the inner electrode is covered which, without covering with the layer, would exhibit the highest field strength.
- the mode of operation of the invention can be most readily illustrated by means of a model according to Figure 4, in which the inner electrode is assumed to be sphere 1' with the radius x 1 and at an electric potential U towards a distant ground plane 2, where the inner electrode is surrounded by a concentric layer 8 of electrically insulating material with a thickness of r 2 - r x where r 2 is the outer radius of the insulating layer and 9 its outer edge.
- an electrode according to the invention may be designed where the field strength at the surface of the inner electrode falls below the dielectric strength k-E 0 of the insulating material, and the field strength at the outer surface of the insulating layer falls below the dielectric strength E 0 of the gaseous medium if the conditions
- r 0 is the radius of an electrode according to the prior art (electrically conducting sphere) where the dielectric strength E 0 of the gaseous medium is attained at the surface of the electrode.
- its relative dielectric constant ⁇ r should be smaller than 3, preferably smaller than 2 and still more preferably smaller than 1.5
- An electrode according to the invention is preferably used in electric equipment for voltages exceeding 1 kV.
- Figure 1 shows an explanatory sketch of a screening electrode according to the prior art as an electrically conducting sphere.
- Figure 2 shows a toroidal screening electrode according to the prior art.
- Figure 3a shows a screening electrode according to the prior art, composed of disc-shaped electrode segments.
- Figure 3b shows an icosahedron-shaped frame to which the electrode segments according to Figure 3a are attached.
- Figure 3c shows a disc-shaped electrode segment of the screening electrode according to Figure 3a.
- Figure 4 shows an explanatory sketch of a screening electrode according to the invention with a concentric non-conducting layer on an electrically conducting sphere.
- Figure 5 shows a toroidal screening electrode with a nonconducting layer according to the invention.
- Figure 6 shows an electrode segment with a non-conducting layer for a composite screening electrode according to the invention.
- Figure 7a shows a GIS line bend according to the prior art.
- Figure 7b shows a GIS line bend comprising a non-conducting layer according to the invention.
- the toroidal screening electrode shown in Figure 2 is improved by providing, as shown in Figure 5, an inner toroidal electrode 1' with a non-conducting layer 8 on a major part of its surface. That part of the electrode which is directed towards the symmetry axis (dash-dotted) is screened from high field strengths by the very toroid shape and hence need not be covered.
- the outside diameter of the toroidal screening electrode according to the invention becomes considerably smaller than in the corresponding toroidal screening electrode according to the prior art .
- the screening electrode composed of electrode segments, shown in Figures 3a-3c is improved in that, as shown in Figure 6, at least one of its electrode segments la' , on the major part of the surface of the inner electrode 1', comprises a nonconducting layer 8.
- the outside diameter of the composite screening electrode according to the invention is considerably smaller than in the corresponding composite screening electrode according to the prior art.
- the depression 4 may be filled with a nonconducting material (not shown) . It may be advantageous to allow the non-conducting layer to constitute the mechanically supporting part of the screening electrode, where the inner electrode is made in the form of an electrically conducting covering on the inner side of the layer.
- the covering may, for example, be applied by painting, deposition of evaporated metal, or chemical precipitation of an electrically conducting substance .
- the GIS line bend shown in Figure 7a is improved, as shown in Figure 7b, by placing a non-conducting material 8 between the spherical inner conductor 1' at the line bend and the outer conductor/the screen 12' at the line bend.
- the radius R s may then be equal to the radius R c of the straight sections, such that the space requirement for the line bend is reduced.
- the inner radius r s may be reduced.
- the inner conductor in the line bend may also have the same shape as an ordinary pipe bend (not shown) .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Installation Of Bus-Bars (AREA)
- Regulation Of General Use Transformers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Insulators (AREA)
- Gas-Insulated Switchgears (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP97946203A EP0941543A1 (en) | 1996-11-22 | 1997-11-21 | Electrode for field control |
JP52358198A JP2001504278A (en) | 1996-11-22 | 1997-11-21 | Electric field control electrode |
US09/297,739 US6432524B1 (en) | 1996-11-22 | 1997-11-21 | Electrode for field control |
CA002272859A CA2272859A1 (en) | 1996-11-22 | 1997-11-21 | Electrode for field control |
AU51422/98A AU5142298A (en) | 1996-11-22 | 1997-11-21 | Electrode for field control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9604282A SE507383C2 (en) | 1996-11-22 | 1996-11-22 | Field control electrode |
SE9604282-5 | 1996-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998022958A1 true WO1998022958A1 (en) | 1998-05-28 |
Family
ID=20404705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE1997/001953 WO1998022958A1 (en) | 1996-11-22 | 1997-11-21 | Electrode for field control |
Country Status (9)
Country | Link |
---|---|
US (1) | US6432524B1 (en) |
EP (1) | EP0941543A1 (en) |
JP (1) | JP2001504278A (en) |
KR (1) | KR20000057207A (en) |
CN (1) | CN1238854A (en) |
AU (1) | AU5142298A (en) |
CA (1) | CA2272859A1 (en) |
SE (1) | SE507383C2 (en) |
WO (1) | WO1998022958A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19950110A1 (en) * | 1999-10-18 | 2001-04-19 | Abb Research Ltd | Supporting insulator has protective body contg. material with lower dielectric constant than insulating body and/or with structure with lower mean dielectric constant |
US6633004B1 (en) | 1999-04-12 | 2003-10-14 | Abb Research Ltd | Support insulator |
WO2008067783A1 (en) * | 2006-12-06 | 2008-06-12 | Siemens Aktiengesellschaft | Arrangement for reducing the field strength in an electrode |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101632137B (en) * | 2007-03-13 | 2012-12-05 | 皇家飞利浦电子股份有限公司 | Insulator material and method for manufacturing thereof |
EP2071342B1 (en) * | 2007-12-10 | 2009-11-25 | Mtronix Precision Measuring Instruments Gmbh | Device and method for creating a defined charge pulse for a partial discharge measurement |
ITRM20080304A1 (en) * | 2008-06-11 | 2009-12-12 | Univ Palermo | PORTABLE DEVICE FOR DETECTION OF PARTIAL DISCHARGES |
EP2390890B1 (en) * | 2010-05-28 | 2015-03-25 | ABB Technology AG | Switching chamber isolation assembly for a circuit breaker |
CN109075550B (en) * | 2016-05-02 | 2020-07-07 | Abb电网瑞士股份公司 | Generator switch with cooling device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2144498A1 (en) * | 1971-09-06 | 1973-03-15 | Messwandler Bau Gmbh | HIGH VOLTAGE SHIELD ELECTRODE |
US3911384A (en) * | 1973-06-20 | 1975-10-07 | Asea Ab | Increasing the dielectric strength in metal electrodes |
EP0075884A1 (en) * | 1981-09-25 | 1983-04-06 | VEB Transformatoren- und Röntgenwerk "Hermann Matern" | High tension shielding electrode |
US4379999A (en) * | 1980-11-05 | 1983-04-12 | Mitsubishi Denki Kabushiki Kaisha | Electrostatic shield for a transformer |
EP0192165A1 (en) * | 1985-02-19 | 1986-08-27 | Asea Ab | Power transformer for converter stations in high voltage direct current installations |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4073712A (en) * | 1976-11-19 | 1978-02-14 | Electrostatic Equipment Company | Electrostatic water treatment |
JPH03229745A (en) * | 1990-02-05 | 1991-10-11 | Junkosha Co Ltd | Insulation material |
US5591317A (en) * | 1994-02-16 | 1997-01-07 | Pitts, Jr.; M. Michael | Electrostatic device for water treatment |
-
1996
- 1996-11-22 SE SE9604282A patent/SE507383C2/en not_active IP Right Cessation
-
1997
- 1997-11-21 CA CA002272859A patent/CA2272859A1/en not_active Abandoned
- 1997-11-21 CN CN97199996A patent/CN1238854A/en active Pending
- 1997-11-21 EP EP97946203A patent/EP0941543A1/en not_active Ceased
- 1997-11-21 KR KR1019990704539A patent/KR20000057207A/en not_active Application Discontinuation
- 1997-11-21 WO PCT/SE1997/001953 patent/WO1998022958A1/en not_active Application Discontinuation
- 1997-11-21 US US09/297,739 patent/US6432524B1/en not_active Expired - Fee Related
- 1997-11-21 AU AU51422/98A patent/AU5142298A/en not_active Abandoned
- 1997-11-21 JP JP52358198A patent/JP2001504278A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2144498A1 (en) * | 1971-09-06 | 1973-03-15 | Messwandler Bau Gmbh | HIGH VOLTAGE SHIELD ELECTRODE |
US3911384A (en) * | 1973-06-20 | 1975-10-07 | Asea Ab | Increasing the dielectric strength in metal electrodes |
US4379999A (en) * | 1980-11-05 | 1983-04-12 | Mitsubishi Denki Kabushiki Kaisha | Electrostatic shield for a transformer |
EP0075884A1 (en) * | 1981-09-25 | 1983-04-06 | VEB Transformatoren- und Röntgenwerk "Hermann Matern" | High tension shielding electrode |
EP0192165A1 (en) * | 1985-02-19 | 1986-08-27 | Asea Ab | Power transformer for converter stations in high voltage direct current installations |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6633004B1 (en) | 1999-04-12 | 2003-10-14 | Abb Research Ltd | Support insulator |
DE19950110A1 (en) * | 1999-10-18 | 2001-04-19 | Abb Research Ltd | Supporting insulator has protective body contg. material with lower dielectric constant than insulating body and/or with structure with lower mean dielectric constant |
WO2008067783A1 (en) * | 2006-12-06 | 2008-06-12 | Siemens Aktiengesellschaft | Arrangement for reducing the field strength in an electrode |
US8129629B2 (en) | 2006-12-06 | 2012-03-06 | Siemens Aktiengesellschaft | Arrangement for reducing the field strength on an electrode |
Also Published As
Publication number | Publication date |
---|---|
JP2001504278A (en) | 2001-03-27 |
EP0941543A1 (en) | 1999-09-15 |
US6432524B1 (en) | 2002-08-13 |
CN1238854A (en) | 1999-12-15 |
SE9604282D0 (en) | 1996-11-22 |
AU5142298A (en) | 1998-06-10 |
SE9604282L (en) | 1998-05-23 |
CA2272859A1 (en) | 1998-05-28 |
SE507383C2 (en) | 1998-05-25 |
KR20000057207A (en) | 2000-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7262367B2 (en) | High voltage bushing with field control material | |
Morcos et al. | Dynamics of metallic particle contaminants in GIS with dielectric-coated electrodes | |
US7148441B2 (en) | Solid dielectric encapsulated interrupter with reduced corona levels and improved BIL | |
US7939752B2 (en) | Elongated member and use thereof | |
US6432524B1 (en) | Electrode for field control | |
Prakash et al. | Movement of particles in compressed SF/sub 6/GIS with dielectric coated enclosure | |
EP2589122A1 (en) | Grading devices for a high voltage apparatus | |
WO2008044986A1 (en) | A high voltage corona grading ring and a high voltage device comprising such ring | |
US8802993B2 (en) | High voltage bushing | |
CN103430047A (en) | An ionization chamber | |
WO2008027007A1 (en) | High voltage dc bushing and device comprising such high voltage bushing | |
DE60024399T2 (en) | Feedthrough insulator with half capacity gradients and with insulating gas filling, such as SF6 | |
US3733521A (en) | Lightning arrester | |
SE445596B (en) | Zinc oxide voltage diverter of the enclosed type | |
CA1127727A (en) | Gas insulated electrical apparatus with dielectric particle trapping barriers | |
CN116438612A (en) | Coated conductor in high voltage apparatus and method for improving dielectric strength | |
Boudissa et al. | AC performance of silicone and glass barriers in clean and polluted atmosphere | |
US4227229A (en) | Lightning arrester device | |
WO1999018582A1 (en) | High-voltage electric device | |
WO2008027010A1 (en) | High voltage shield | |
EP0630030B1 (en) | Tank-type arrester | |
SU1767555A1 (en) | Metering high-voltage current transformer | |
Ming et al. | Behaviour and effect of conducting spiral particles under AC voltage in a gas insulated electrode system | |
Metwally | Theoretical analysis of particle-initiated corona activities in hybrid gas-insulated transmission lines | |
SU1104591A1 (en) | High-voltage cable with vacuum insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97199996.1 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2272859 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997946203 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019997004540 Country of ref document: KR Ref document number: 1019997004539 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 1998 523581 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09297739 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1997946203 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWR | Wipo information: refused in national office |
Ref document number: 1019997004540 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997004540 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997004539 Country of ref document: KR |
|
WWR | Wipo information: refused in national office |
Ref document number: 1997946203 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019997004539 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997946203 Country of ref document: EP |