WO1998013308A1 - Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers (pidra process) - Google Patents

Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers (pidra process) Download PDF

Info

Publication number
WO1998013308A1
WO1998013308A1 PCT/ES1997/000231 ES9700231W WO9813308A1 WO 1998013308 A1 WO1998013308 A1 WO 1998013308A1 ES 9700231 W ES9700231 W ES 9700231W WO 9813308 A1 WO9813308 A1 WO 9813308A1
Authority
WO
WIPO (PCT)
Prior art keywords
waters
metals
solution
acid
resin
Prior art date
Application number
PCT/ES1997/000231
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Valiente Malmagro
Original Assignee
Tecnologias Zero-Red, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES09602016A external-priority patent/ES2112804B1/en
Application filed by Tecnologias Zero-Red, S.L. filed Critical Tecnologias Zero-Red, S.L.
Priority to AU43023/97A priority Critical patent/AU4302397A/en
Publication of WO1998013308A1 publication Critical patent/WO1998013308A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • C05D1/02Manufacture from potassium chloride or sulfate or double or mixed salts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1226Particular type of activated sludge processes comprising an absorbent material suspended in the mixed liquor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention object of the present report refers to an ecologically clean procedure for the integrated treatment and decontamination of acidic waters (Integral Process of Decontamination and Recovery of Acidic Waters (PLDRA Process)) that occur in the spiritual areas , either in exploitation or abandoned deposits, this procedure is also applicable to industrial facilities that produce acid effluents.
  • the process of the invention consists of three stages complementary to each other, such as: a) Selective removal of iron and acidity from the medium by biooxidation of Fe (II) and precipitation with alkalis (Ca (OH) 2 , NaOH, KOH or NH 4 OH) of the compounds of Fe (III). b) Taking advantage of the high sulphate content of mine acid waters for synthesis by ion exchange of K 2 SO 4 or (NH J ⁇ SO ⁇ , free of chlorides that can be used as fertilizers or marketed in other applications. c) Recovery of the metals contained in these waters: Cu 2+ , Al 3+ , Zn 2+ and Mg + .
  • Acid drains from metal sulfide mines constitute one of the most important ecological problems resulting from mining activity.
  • Acid mine waters originate from oxidation of metal sulphides in contact with water and the atmosphere.
  • Fe (II) is oxidized to Fe (III) by oxygen and by the action of bacteria such as Thiobacillus ferrooxidans and Thiobacillus thiooxidans, subsequently hydrolysis of the formed Fe (III) takes place and the subsequent generation of acid.
  • Acid mine waters are characterized by their low pH and high metal ion content and constitute a serious problem for nearby aquifers.
  • the treatment of this type of water is necessary both from an ecological and economic point of view.
  • the most frequently used methods for the treatment of industrial acid effluents with high metal ion content are a) Precipitation.
  • Precipitation is one of the most frequently used methods in industrial acid water treatment processes.
  • the most commonly used agents are alkalis (NaOH, CaCO ?, Ca (OH) 2 , Na 2 CO-, and mixtures thereof), sulphides and phosphates.
  • the main disadvantages of this type of process are '- Incomplete precipitation (especially in the case of soluble hydro-complexes)
  • Losses of solvent and organic reagent are possible both by evaporation and by solubility in the aqueous phase, which given the enormous volumes that are treated, suppose a high economic cost and a potential risk of contamination for e! environment.
  • interfaces are formed that prevent the rapid separation of the organic and aqueous phases c) Liquid membranes.
  • This new separation technique makes it possible to work at the high flows necessary for the treatment of this type of effluent and is suitable for the selective extraction of low metal concentrations.
  • it presents some problems especially related to the stability of the liquid membranes that make this technique inadvisable.
  • the process for the treatment of acidic waters object of the present invention comprises three stages:
  • the compounds of Fe (III) are removed by precipitation (2) separating as sludge (8). This is achieved by raising the pH of the solution to values between 3 and 4, by adding either KOH, K 2 CO 3 , Ca (OH) 2 , NaOH or NH 4 OH, (7) .
  • the second stage consists in taking advantage of the high sulphate content of these waters for the synthesis of K2SO4 or (H ⁇ SO- ,, chloride free by means of the ion exchange technique, products that can be used as fertilizers or marketed for other applications
  • the process is carried out using a cationic exchanger in potassium or ammonium form (3)
  • the passage of acidic water through the resin bed leads to the exchange of potassium or ammonium ions through the metal ions contained in the acidic water, obtaining a solution of K 2 S0 or NH4SO4, pure respectively (l ⁇ ).
  • the last stage consists in the elution of the metal ions retained in the sulfonic resin with a concentrated solution (hereinafter, primary elution solution), either of KC1, of KjSO 4 or of a mixture of both (in the if the sodium or ammonium form of the resin is used, the ammonium will substitute potassium in the chloride and sulfate salts used in the solution of p ⁇ maria elution) (9) and the selective recovery of the metal ions of the acidic water using cationic exchangers weak (carboxylic resin) and chelating resins (4).
  • primary elution solution either of KC1, of KjSO 4 or of a mixture of both (in the if the sodium or ammonium form of the resin is used, the ammonium will substitute potassium in the chloride and sulfate salts used in the solution of p ⁇ maria elution)
  • SUBSTITUTE SHEET (RULE 26) both) (14) in KC1, K 2 SO, medium, or the mixture of both (in the case of having used the ammonium form of the resin, the ammonium will replace potassium in the chloride and sulfate salts of the medium).
  • Magnesium is recovered as Mg (OH) 2 or passes to an additional ion exchange unit for separation along with the calcium remaining in the primary elution solution (5).
  • the elution of resins with H SO 4 (or HCl) allows to obtain liquors of CuSO 4 (1 1), Al 2 (S ⁇ 4) 3 (12) and ZnSO 4 (13), which, in In the case of Cu and Zn and prior adequate conditioning can be subjected to electrolysis to produce electrolytic Cu and Zn.
  • the Mg and Ca metals separated in the ion exchange unit are obtained as a mixture of the corresponding sulfates or chlorides after elution with the selected acid.
  • the spent primary elution solution as a result of the metal recovery stage, has a high potassium (or ammonium) content and a small amount of metal ions such as Mn + that have not been absorbed by the resins.
  • FIGURE 1 Flow chart of the procedure for the treatment of acidic waters.
  • FIGURE 2 Scheme of the arrangement of ion exchange columns for the synthesis of K 2 SO4 (or (NH 4 ) 2 S0 4 ) and the selective recovery of metals.
  • the Fe content of these samples is very high, between 4000 and 9000 ppm.
  • the concentration of Zn 2 " is also high. With cheers between 600 and 1500 ppm.
  • the concentration of Cu 2 * is about 10 times lower, between 60 and 250 ppm.
  • Other metals whose concentration is relatively high are: Al 5" (450 -650 ppm), M 2 (800-900 ppm), Ca 2 * (350-500 ppm) and Mn 2 " (70-100 ppm).
  • the sulfate content varies according to the samples between 18 and 32 g / L.
  • the pH varies between 1.8 and 2.2
  • the content of other metals as well as chlorides is practically negligible, b) Synthesis of K 2 SO 4 or (NEL ⁇ SO. ,, Through the Ionic Exchange Technique It has been used the high sulfate concentration of acidic waters to synthesize
  • the regeneration of the sulfonic resin is carried out with the primary elution solution which, as already described, is a concentrated solution of either KC1, either K 2 SO 4 or one of its mixtures (in the case of using the resin in ammonium form, the ammonium will replace potassium in the primary elution solution), which causes the elution of the metal ions retained in the resin.
  • the primary elution solution which, as already described, is a concentrated solution of either KC1, either K 2 SO 4 or one of its mixtures (in the case of using the resin in ammonium form, the ammonium will replace potassium in the primary elution solution), which causes the elution of the metal ions retained in the resin.
  • a concentrated solution of the different metal ions between 4 and 8 times
  • the wash water is recirculated and used for the preparation of the primary elution solution.
  • the recovery of the different metal ions of the acidic water is carried out using ion exchangers of appropriate selectivity for each case.
  • the carboxylic resin has been highly selective to Al ', + , being very suitable for the recovery of this metal. This selectivity increases dramatically with the increase in temperature of the loading solution, which is a way to achieve greater purity of the recovered aluminum.
  • the resin with iminodiacetic acid has been very selective for Cu 2 * . This resin also allows the recovery of Zn 2+ in the event that Cu 2+ and AT * are previously removed from the solution, since these two metals are preferentially absorbed. d) Integral Treatment of Acid Waters
  • the first stage consists of a pretreatment of acidic waters. This process consists of the biooxidation of Fe (II) by bacteria of the Thiobacillus Ferrooxidans type and subsequent precipitation of Fe (III) compounds by measuring the addition of alkali to a pH between 3 and 4 and adding a suitable flocculant for rapid total precipitation.
  • the next stage consists in the recovery of the different metals eluted from the sulfonic resin in the regeneration stage of said resin. Recovery takes place sequentially using a system of fixed bed columns connected in series (see Fig 2). Each column is tripled (two connected and one in regeneration), so that the process can be developed continuously and the treatment of the solution can be continued while elution and regeneration of the spent resin occurs.
  • Columns 1 and 2 are filter beds to remove suspended fines.
  • the synthesis of K 2 SO 4 (or (NH4) 2 SO 4 ) is carried out in columns 3 and 4 (Lewatit SP1 12) during the charging process with acidic waters.
  • the solution resulting from this process containing virtually pure K SO 4 or (NH4) SO 4 is treated in a reverse osmosis unit to achieve product concentration and a considerable volume of water suitable for irrigation.
  • the separation and recovery of C ⁇ r ⁇ is carried out in columns 5 and 6 (Lewatit TP-207), from the solution obtained during the regeneration process of the resin contained in
  • the removal of residual metal ions in the primary elution solution, after selective recovery of Cu 2+ , Al 3+ , Zn 2+ and Mg 2+ is carried out by precipitation by adjusting the pH between 10 and 12 with alkali appropriate.
  • the precipitate of metal hydroxides removed from the primary elution solution (practically Mn 2+ ) is separated for later recovery or sent to the process head (acid water inlet)

Abstract

Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers, comprising the combination of three specific processes: a) selective removal of iron and of the acidity of the medium through biooxidation of Fe (II) and precipitation with alkalis (Ca(OH2), NaOH, KOH or NH4OH) of Fe (III) compounds; b) taking advantage of the high sulphate content of the acid waters for the synthesis, through ionic exchange, of K2SO4 or NH4SO4, free of chlorides which may be used as fertilizers or commercialised in other applications; c) recovery of the metals contained in such waters: Cu?2+, Al3+, Zn2+ and Mg2+¿. The process may be applied to acid waters originating from various sources: active or inactive mine installations, river basins, water courses, lagoons, etc. which, due to their contact with numeral masses, are contaminated with sulphuric acid and heavy metals, as well as industrial plants which produce acid effluents (for example galvanotechnical industry).

Description

PROCEDIMIENTO PARA EL TRATAMIEN O Y DESCONTAMINACIÓN DE AGUAS ACIDAS QUE CONTIENEN METALES DISUELTOS Y SU CONVERSIÓN EN FERTILIZANTES (PROCESO PIDRA). OBJETO DE LA INVENCIÓN La invención objeto de la presente memoria se refiere a un procedimiento ecológicamente limpio para el tratamiento integrado y descontaminación de las aguas acidas (Proceso Integral de Descontaminación y Recuperación de Aguas Acidas (Proceso PLDRA)) que se producen en las áreas piriticas, ya sea en yacimientos en explotación o abandonados, así mismo este procedimiento es aplicable a instalaciones industriales que produzcan efluentes ácidos. El procedimiento de la invención consta de tres etapas complementarias entre sí, como son: a) Eliminación selectiva del hierro y de la acidez del medio por biooxidación del Fe(II) y precipitación con álcalis (Ca(OH)2, NaOH, KOH o NH4OH) de los compuestos de Fe (III). b) Aprovechamiento del elevado contenido en sulfatos de las aguas acidas de mina para la síntesis mediante intercambio iónico de K2SO4 ó (NHJ^SOÍ, libre de cloruros que pueden ser utilizados como fertilizantes o comercializados en otras aplicaciones. c) Recuperación de los metales contenidos en estas aguas: Cu2+, Al3+, Zn2+ y Mg +.PROCEDURE FOR THE TREATMENT AND DECONTAMINATION OF ACIDED WATERS CONTAINING DISSOLVED METALS AND THEIR CONVERSION IN FERTILIZERS (PIDRA PROCESS). OBJECT OF THE INVENTION The invention object of the present report refers to an ecologically clean procedure for the integrated treatment and decontamination of acidic waters (Integral Process of Decontamination and Recovery of Acidic Waters (PLDRA Process)) that occur in the spiritual areas , either in exploitation or abandoned deposits, this procedure is also applicable to industrial facilities that produce acid effluents. The process of the invention consists of three stages complementary to each other, such as: a) Selective removal of iron and acidity from the medium by biooxidation of Fe (II) and precipitation with alkalis (Ca (OH) 2 , NaOH, KOH or NH 4 OH) of the compounds of Fe (III). b) Taking advantage of the high sulphate content of mine acid waters for synthesis by ion exchange of K 2 SO 4 or (NH J ^ SO Í , free of chlorides that can be used as fertilizers or marketed in other applications. c) Recovery of the metals contained in these waters: Cu 2+ , Al 3+ , Zn 2+ and Mg + .
Cada etapa por separado puede dar lugar a tratamientos específicos de disoluciones acuosas, pero sólo la combinación adecuada de las tres etapas constituye una solución integral al problema que plantean las aguas acidas. ANTECEDENTES DE LA INVENCIÓNEach stage separately can lead to specific treatments of aqueous solutions, but only the proper combination of the three stages constitutes an integral solution to the problem posed by acidic waters. BACKGROUND OF THE INVENTION
Los drenajes ácidos de las minas de sulfuros metálicos constituyen uno de los problemas ecológicos más importantes resultantes de la actividad minera. Las aguas acidas de mina se originan por oxidación de los sulfuros metálicos en contacto con el agua y la atmósfera. El Fe (II) es oxidado a Fe (III) por el oxígeno y por la acción de bacterias tales como Thiobacillus ferrooxidans y Thiobacillus thiooxidans, posteriormente tiene lugar la hidrólisis del Fe (III) formado y la consiguiente generación de ácido. Las aguas acidas de mina se caracterizan por su bajo pH y elevado contenido en iones metálicos y constituyen un grave problema para los acuíferos cercanos. El tratamiento de este tipo de aguas es necesario tanto desde un punto de vista ecológico como económico. Los métodos más f ecuentemente utilizados para el tratamiento de los efluentes ácidos industriales con elevado contenido en iones metálicos son a) Precipitación.Acid drains from metal sulfide mines constitute one of the most important ecological problems resulting from mining activity. Acid mine waters originate from oxidation of metal sulphides in contact with water and the atmosphere. Fe (II) is oxidized to Fe (III) by oxygen and by the action of bacteria such as Thiobacillus ferrooxidans and Thiobacillus thiooxidans, subsequently hydrolysis of the formed Fe (III) takes place and the subsequent generation of acid. Acid mine waters are characterized by their low pH and high metal ion content and constitute a serious problem for nearby aquifers. The treatment of this type of water is necessary both from an ecological and economic point of view. The most frequently used methods for the treatment of industrial acid effluents with high metal ion content are a) Precipitation.
1 La precipitación es uno de los métodos más frecuentemente empleados en los procesos de tratamiento de aguas acidas industriales. Los agentes más comúnmente empleados son álcalis (NaOH, CaCO?, Ca(OH)2, Na2CO-, y mezclas de estos), sulfuros y fosfatos. Los principales inconvenientes de este tipo de procesos son' - Precipitación incompleta (especialmente en el caso de los hidroxocomplejos solubles)one Precipitation is one of the most frequently used methods in industrial acid water treatment processes. The most commonly used agents are alkalis (NaOH, CaCO ?, Ca (OH) 2 , Na 2 CO-, and mixtures thereof), sulphides and phosphates. The main disadvantages of this type of process are '- Incomplete precipitation (especially in the case of soluble hydro-complexes)
Toxicidad de los agentes precipitantes (caso de sulfuros y xantatos). Dificultades técnicas para la mezcla de los reactivos con grandes volúmenes de efluente.Toxicity of precipitating agents (case of sulphides and xanthates). Technical difficulties for mixing reagents with large volumes of effluent.
Dificultades técnicas en los procesos de filtración y decantación - Generación de enormes cantidades de residuos sólidos tóxicos (bombas metálicas) que deben ser aislados en depósitos de seguridad bajo el riesgo de su disolución concentrada, b) Extracción con disolventeTechnical difficulties in the filtration and decantation processes - Generation of huge amounts of toxic solid waste (metal pumps) that must be isolated in safety tanks at the risk of its concentrated dissolution, b) Solvent extraction
Esta técnica es muy adecuada para la extracción selectiva de metales de disoluciones acuosas, sin embargo, en este caso presenta algunos inconvenientes que la hacen desaconsejable:This technique is very suitable for the selective extraction of metals from aqueous solutions, however, in this case it has some drawbacks that make it inadvisable:
No es un método muy adecuado para el tratamiento de grandes volúmenes de efluente y concentraciones de metal relativamente bajas.It is not a very suitable method for the treatment of large volumes of effluent and relatively low metal concentrations.
Es posible las perdidas de disolvente y reactivo orgánico tanto por evaporación como por solubilidad en la fase acuosa, que dado los enormes volúmenes que se tratan, suponen un coste económico elevado y un potencial riesgo de contaminación para e! medio ambiente.Losses of solvent and organic reagent are possible both by evaporation and by solubility in the aqueous phase, which given the enormous volumes that are treated, suppose a high economic cost and a potential risk of contamination for e! environment.
En algunos casos, se forman interfases que impiden las rápida separación de las fases orgánica y acuosa c) Membranas líquidas.In some cases, interfaces are formed that prevent the rapid separation of the organic and aqueous phases c) Liquid membranes.
Esta nueva técnica de separación permite trabajar a los flujos elevados necesarios para el tratamiento de este tipo de efluentes y es adecuada para la extracción selectiva de concentraciones de metal bajas. Sin embargo, presenta algunos problemas especialmente relacionados con la estabilidad de las membranas líquidas que hacen desaconsejable esta técnicaThis new separation technique makes it possible to work at the high flows necessary for the treatment of this type of effluent and is suitable for the selective extraction of low metal concentrations. However, it presents some problems especially related to the stability of the liquid membranes that make this technique inadvisable.
HOJA DE SUSTITUCIÓN (REG.LA 26) EAPLICACTON DE LA INVENCIÓNSUBSTITUTE SHEET (REG.LA 26) EAPLICACTON OF THE INVENTION
El procedimiento para el tratamiento de aguas acidas objeto de la presente invención comprende tres etapas:The process for the treatment of acidic waters object of the present invention comprises three stages:
1) Etapa de eliminación del hierro y la acidez mediante biooxidación en la que se oxida todo el Fe (II) a Fe (HT), este proceso se realiza haciendo percoiar las aguas (6) a través de un reactor biológico (1). Este reactor contiene una población activa de bacterias ferrooxidantes que se encargan de llevar a cabo el proceso de biooxidación.1) Stage of elimination of iron and acidity through biooxidation in which all Fe (II) is oxidized to Fe (HT), this process is carried out by percoiating the waters (6) through a biological reactor (1). This reactor contains an active population of ferrooxidant bacteria that are responsible for carrying out the biooxidation process.
Una vez que todo el Fe (13) a sido oxidado, se eliminan ios compuestos de Fe (III) por precipitación (2) separándose en forma de lodos (8). Esto se consigue elevando el pH de la disolución hasta unos valores entre 3 y 4, mediante la adición bien de KOH, bien de K2 CO3, bien de Ca(OH)2, bien de NaOH o bien de NH4OH, (7).Once all the Fe (13) has been oxidized, the compounds of Fe (III) are removed by precipitation (2) separating as sludge (8). This is achieved by raising the pH of the solution to values between 3 and 4, by adding either KOH, K 2 CO 3 , Ca (OH) 2 , NaOH or NH 4 OH, (7) .
2) La segunda etapa consiste en el aprovechamiento del elevado contenido en sulfatos de estas agu.as para la síntesis de K2SO4 ó ( H ∑SO-,, libre de cloruros mediante ia técnica de intercambio iónico, productos que pueden ser utilizados como fertilizantes ó comercializados para otras aplicaciones. El proceso se lleva a cabo utilizando un intercambiador catiónico en forma potásica ó amónica(3). El paso del agua acida a través del lecho de resina conduce al intercambio de los iones potasio ó amonio por los iones metálicos contenidos en el agua acida, obteniéndose una disolución de K2S0 ó NH4SO4, puro respectivamente(lθ).2) The second stage consists in taking advantage of the high sulphate content of these waters for the synthesis of K2SO4 or (H ∑SO- ,, chloride free by means of the ion exchange technique, products that can be used as fertilizers or marketed for other applications The process is carried out using a cationic exchanger in potassium or ammonium form (3) The passage of acidic water through the resin bed leads to the exchange of potassium or ammonium ions through the metal ions contained in the acidic water, obtaining a solution of K 2 S0 or NH4SO4, pure respectively (lθ).
3) La última etapa consiste en la elución de los iones metálicos retenidos en la resina sulfónica con una disolución concentrada (en adelante, disolución de elución primaria) , bien de KC1, bien de KjSO4 o bien de una mezcla de ambos (en el caso que se utilice la forma sódica o amónica de la resina, el amonio sustituirá al potasio en las sales de cloruro y sulfato empleadas en la disolución de elución pπmaria)(9) y la recuperación selectiva de los iones metálicos del agua acida utilizando intercambiadores catióπicos débiles (resina carboxílica) y resinas quelatantes (4).3) The last stage consists in the elution of the metal ions retained in the sulfonic resin with a concentrated solution (hereinafter, primary elution solution), either of KC1, of KjSO 4 or of a mixture of both (in the if the sodium or ammonium form of the resin is used, the ammonium will substitute potassium in the chloride and sulfate salts used in the solution of pπmaria elution) (9) and the selective recovery of the metal ions of the acidic water using cationic exchangers weak (carboxylic resin) and chelating resins (4).
En esta etapa se lleva a cabo la regeneración de la resina sulfónica, recuperándose la forma potásica ó amónica inicial y quedando la resina lista para la siguiente etapa después de un lavado con agua para eliminar el exceso de sales contenidas en ia disolución de elución prinraria. La recuperación selectiva de los metales se lleva a cabo secuencialmente utilizando columnas conectadas en serie con resinas de select idad adecuada A la salida del sistema de columnas se obtiene una primera fracción de Mg~~ (en forma de cloruro, sulfato o la mezcla deIn this stage the regeneration of the sulfonic resin is carried out, the initial potassium or ammonium form being recovered and the resin being ready for the next stage after a water wash to remove the excess salts contained in the primary elution solution. The selective recovery of metals is carried out sequentially using columns connected in series with resins of suitable selectivity. At the exit of the column system a first fraction of Mg ~~ is obtained (in the form of chloride, sulfate or the mixture of
33
HOJA DE SUSTITUCIÓN (REGLA 26) ambos) (14) en medio KC1, K2SO,, o la mezcla de ambos (en el caso de haber utilizado la forma amónica de la resina, el amonio sustituirá al potasio en las sales de cloruro y sulfato del medio). El magnesio es recuperado como Mg(OH)2 ó bien pasa a una unidad adicional de intercambio iónico para su separación junto con el calcio remanente en la disolución de elución primaria (5). Por otro lado, la elución de las resinas con H SO4 (óHCl) (15) permite obtener unos licores de CuSO4 (1 1), Al2(Sθ4)3 (12) y ZnSO4 (13), que, en el caso de Cu y Zn y previo el acondicionamiento adecuado pueden ser sometidos a electrólisis para producción de Cu y Zn electrolíticos. Los metales Mg y Ca separados en la unidad de intercambio iónico se obtienen como una mezcla de los correspondientes sulfatos ó cloruros después de la elución con el ácido seleccionado.SUBSTITUTE SHEET (RULE 26) both) (14) in KC1, K 2 SO, medium, or the mixture of both (in the case of having used the ammonium form of the resin, the ammonium will replace potassium in the chloride and sulfate salts of the medium). Magnesium is recovered as Mg (OH) 2 or passes to an additional ion exchange unit for separation along with the calcium remaining in the primary elution solution (5). On the other hand, the elution of resins with H SO 4 (or HCl) (15) allows to obtain liquors of CuSO 4 (1 1), Al 2 (Sθ4) 3 (12) and ZnSO 4 (13), which, in In the case of Cu and Zn and prior adequate conditioning can be subjected to electrolysis to produce electrolytic Cu and Zn. The Mg and Ca metals separated in the ion exchange unit are obtained as a mixture of the corresponding sulfates or chlorides after elution with the selected acid.
La disolución de elución primaria agotada, como resultado de la etapa de recuperación de metales, posee un elevado contenido en potasio (ó amonio) y una pequeña cantidad de iones metálicos como Mn + que no han sido absorbidos por las resinas. La eliminación (17) de estos metales (18) con álcali adecuado (7) y el ajuste tanto del pH con ácido como del contenido salino (19), permite la reutilización de esta disolución para la etapa de regeneración de la resina catiónica inicial (disolución de elución primaria).The spent primary elution solution, as a result of the metal recovery stage, has a high potassium (or ammonium) content and a small amount of metal ions such as Mn + that have not been absorbed by the resins. The elimination (17) of these metals (18) with suitable alkali (7) and the adjustment of both the pH with acid and the saline content (19), allows the reuse of this solution for the regeneration stage of the initial cationic resin ( primary elution solution).
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
FIGURA 1 : Diagrama de flujo del procedimiento para el tratamiento de aguas acidas. FIGURA 2: Esquema de la disposición de las columnas de intercambio iónico para la síntesis de K2SO4 (ó (NH4)2S04) y la recuperación selectiva de los metales.FIGURE 1: Flow chart of the procedure for the treatment of acidic waters. FIGURE 2: Scheme of the arrangement of ion exchange columns for the synthesis of K 2 SO4 (or (NH 4 ) 2 S0 4 ) and the selective recovery of metals.
DESCRIPCIÓN DETALLADA Y MODO DE REALIZACIÓN DE LA INVENCIÓNDETAILED DESCRIPTION AND MODE OF EMBODIMENT OF THE INVENTION
El estudio del procedimiento de la invención se ha llevado a cabo en las siguientes etapas: a) Caracterización de las aguas acidas. b) Síntesis de K2SO4 ó (NH4)2Sθ mediante la técnica de intercambio iónico. c) Estudio de la selectividad de diferentes tipos de intercambiadores iónicos. d) Tratamiento integral de las aguas acidas. a) Caracterización de las Aguas acidas Se han estudiado diferentes muestras de aproximadamente 50 L de volumen. Los análisis correspondientes se h.an llevado a cabo utilizando la técnica de ICP (plasma acopiado por inducción) para la determinación de metales y sulfato total, y la técnica potenciométrica p.araThe study of the process of the invention has been carried out in the following stages: a) Characterization of acidic waters. b) Synthesis of K 2 SO 4 or (NH4) 2 Sθ by the ion exchange technique. c) Study of the selectivity of different types of ion exchangers. d) Integral treatment of acidic waters. a) Characterization of Acid Waters Different samples of approximately 50 L volume have been studied. The corresponding analyzes have been carried out using the ICP technique (induction-collected plasma) for the determination of metals and total sulfate, and the potentiometric technique for
44
HOJA DE SUSTITUCIÓN (REGl_A 26) la determinación del pH de las muestras.SUBSTITUTE SHEET (REGl_A 26) the determination of the pH of the samples.
El contenido en Fe de estas muestras es muy elevado, entre 4000 y 9000 ppm. También es elevada la concentración de Zn2". con vídores entre 600 y 1500 ppm. La concentración de Cu2* es unas 10 veces menor, entre 60 y 250 ppm. Otros metales cuya concentración es relativamente elevada son: Al5" ( 450-650 ppm), M 2 (800-900 ppm), Ca2* (350-500 ppm) y Mn2" (70-100 ppm). El contenido en sulfato varia según ias muestras entre 18 y 32 g/L. El pH varia entre 1,8 y 2,2. El contenido de otros metales así como de cloruros es prácticamente despreciable, b) Síntesis de K2SO4 ó (NEL^SO.,, Mediante la Técnica de Intercambio Iónico Se ha aprovechado la elevada concentración de sulfatos de las aguas acidas para sintetizarThe Fe content of these samples is very high, between 4000 and 9000 ppm. The concentration of Zn 2 " is also high. With cheers between 600 and 1500 ppm. The concentration of Cu 2 * is about 10 times lower, between 60 and 250 ppm. Other metals whose concentration is relatively high are: Al 5" (450 -650 ppm), M 2 (800-900 ppm), Ca 2 * (350-500 ppm) and Mn 2 " (70-100 ppm). The sulfate content varies according to the samples between 18 and 32 g / L. The pH varies between 1.8 and 2.2 The content of other metals as well as chlorides is practically negligible, b) Synthesis of K 2 SO 4 or (NEL ^ SO. ,, Through the Ionic Exchange Technique It has been used the high sulfate concentration of acidic waters to synthesize
K2SO4 ó (NϊL,)2SO4 libre de cloruros que pueden ser utilizados como fertiliz.antes o comercializados para otras aplicaciones.K 2 SO 4 or (NϊL,) 2 SO 4 free of chlorides that can be used as fertilizer before or marketed for other applications.
En este estudio se ha utilizado la resina comercial Lewatit SP 1 12 (Bayer). Esta resina es un intercambiador catiónico fuerte de tipo gel con poliestireno entrecru.zado con divinilbenceno siendo el grupo funcional ácido sulfónico. Esta resina se ha acondicionado en forma potásica (ó amoniacal), utilizando la disolución de elución primaria correspondiente (ver el epígrafe de Explicación de la Invención).In this study the commercial resin Lewatit SP 1 12 (Bayer) has been used. This resin is a strong cationic gel-type exchanger with cross-linked polystyrene with divinylbenzene being the sulfonic acid functional group. This resin has been conditioned in potassium (or ammoniacal) form, using the corresponding primary elution solution (see the Explanation of the Invention section).
El paso del agua acida a través del lecho de resina cargada en forma potásica (ó amónica) permite obtener una disolución de K2SO4 ( (NH )2SO4 ), completamente libre de los iones metálicos de la disolución inicial. A partir de esta disolución es posible obtener la correspondiente sal por crist ización o bien por osmosis inversa.The passage of the acidic water through the resin bed charged in potassium (or ammonium) form allows to obtain a solution of K 2 SO 4 ((NH) 2 SO 4 ), completely free of the metal ions of the initial solution. From this solution it is possible to obtain the corresponding salt by christization or by reverse osmosis.
La regeneración de la resina sulfónica se lleva a cabo con la disolución de elución primaria que, como ya se ha descrito, es una disolución concentrada bien de KC1, bien de K2SO4 o bien de una de sus mezclas (en el caso de utilizar la resina en forma amónica, el amonio sustituirá al potasio en la disolución de elución primaria), lo que provoca la elución de los iones metálicos retenidos en la resina. De este modo, se obtiene una disolución concentrada de los diferentes iones metálicos (entre 4 y 8 veces) y se recupera al mismo tiempo la forma potásica (ó amónica) inicial de la resina, quedando dispuesta para la siguiente etapa después de lavar con agua. El agua de lavado es recirculada y utilizada para la preparación de la disolución de elución primaria.The regeneration of the sulfonic resin is carried out with the primary elution solution which, as already described, is a concentrated solution of either KC1, either K 2 SO 4 or one of its mixtures (in the case of using the resin in ammonium form, the ammonium will replace potassium in the primary elution solution), which causes the elution of the metal ions retained in the resin. In this way, a concentrated solution of the different metal ions (between 4 and 8 times) is obtained and the initial potassium (or ammonium) form of the resin is recovered at the same time, remaining ready for the next stage after washing with water . The wash water is recirculated and used for the preparation of the primary elution solution.
HOJA DE SUSTITUCIÓN (REGLA 26) c) Selectividad de los Diferentes Iπtercambiadores IónicosSUBSTITUTE SHEET (RULE 26) c) Selectivity of the Different Ionic Exchangers
La recuperación de los diferentes iones metálicos del agua acida se realiza utilizando intercambiadores iónicos de apropiada selectividad para cada caso.The recovery of the different metal ions of the acidic water is carried out using ion exchangers of appropriate selectivity for each case.
Se ha llevado a cabo un estudio de la selectividad y capacidad de iπtercambiadores catiónicos débiles y quelatantes Los estudios se han realizado utilizando una resina con grupo funcional carboxílico (Lewatit R 250-K o CNP 80) y otra con ácido iminodiacético (Lewatit TP-207) de la casa Bayer.A study of the selectivity and capacity of weak cation exchangers and chelators has been carried out. Studies have been carried out using a resin with a carboxylic functional group (Lewatit R 250-K or CNP 80) and another with iminodiacetic acid (Lewatit TP-207 ) from the Bayer house.
La resina carboxílica se ha mostrado altamente selectiva a Al',+, siendo muy apropiada para la recuperación de este metal. Esta selectividad aumenta drásticamente con el aumento de temperatura de la disolución de carga, lo que supone una forma de alcanzar una mayor pureza del aluminio recuperado. Por otro lado, la resina con ácido iminodiacético se ha mostrado muy selectiva para Cu2*. Esta resina, también permite !a recuperación de Zn2+ en el caso que el Cu2+ y el AT* se eliminen previamente de la disolución, ya que estos dos metales son absorbidos preferentemente. d) Tratamiento Integral de las Aguas acidasThe carboxylic resin has been highly selective to Al ', + , being very suitable for the recovery of this metal. This selectivity increases dramatically with the increase in temperature of the loading solution, which is a way to achieve greater purity of the recovered aluminum. On the other hand, the resin with iminodiacetic acid has been very selective for Cu 2 * . This resin also allows the recovery of Zn 2+ in the event that Cu 2+ and AT * are previously removed from the solution, since these two metals are preferentially absorbed. d) Integral Treatment of Acid Waters
La primera etapa consiste en un pretratamiento de las aguas acidas Dicho proceso consiste en la biooxidación del Fe (II) mediante bacterias del tipo Thiobacillus Ferrooxidans y posterior precipitación de los compuestos de Fe (III) mediente la adición de álcali hasta un pH entre 3 y 4 y adicionando un floculante adecuado para una rápida precipitación total. La siguiente etapa consiste en la recuperación de los diferentes metales eluídos de la resina sulfónica en la etapa de regeneración de dicha resina. La recuperación tiene lugar secuencialmente utilizando un sistema de columnas de lecho fijo conectadas en serie (ver Fig 2). Cada columna está triplicada (dos conectadas y una en regeneración), de modo que el proceso pueda desarrollarse en continuo y pueda continuarse el tratamiento de la disolución mientras se produce la elución y regeneración de la resina agotada.The first stage consists of a pretreatment of acidic waters. This process consists of the biooxidation of Fe (II) by bacteria of the Thiobacillus Ferrooxidans type and subsequent precipitation of Fe (III) compounds by measuring the addition of alkali to a pH between 3 and 4 and adding a suitable flocculant for rapid total precipitation. The next stage consists in the recovery of the different metals eluted from the sulfonic resin in the regeneration stage of said resin. Recovery takes place sequentially using a system of fixed bed columns connected in series (see Fig 2). Each column is tripled (two connected and one in regeneration), so that the process can be developed continuously and the treatment of the solution can be continued while elution and regeneration of the spent resin occurs.
Las columnas 1 y 2 son lechos filtrantes para eliminar finos en suspensión. La síntesis de K2SO4 (ó (NH4)2SO4 ) se realiza en las columnas 3 y 4 (Lewatit SP1 12) durante el proceso de carga con las aguas acidas. La disolución resultante de este proceso que contiene K SO4 ó (NH4) SO4 prácticamente puro se trata en una unidad de osmosis inversa para conseguir la concentración del producto y un volumen considerable de agua apta para regadío. La separación y recuperación del Cιr~ se lleva a cabo en las columnas 5 y 6 (Lewatit TP-207), a partir de la disolución obtenida durante el proceso de regeneración de la resina contenida enColumns 1 and 2 are filter beds to remove suspended fines. The synthesis of K 2 SO 4 (or (NH4) 2 SO 4 ) is carried out in columns 3 and 4 (Lewatit SP1 12) during the charging process with acidic waters. The solution resulting from this process containing virtually pure K SO 4 or (NH4) SO 4 is treated in a reverse osmosis unit to achieve product concentration and a considerable volume of water suitable for irrigation. The separation and recovery of Cιr ~ is carried out in columns 5 and 6 (Lewatit TP-207), from the solution obtained during the regeneration process of the resin contained in
66
HOJA DE SUSTITUCIÓN (REGLA 26) las columnas 3 y 4 con la disolución de elución primaria La separación y recuperación de Al" " se realiza en las columnas 7 y 8 (Lewatit CNP 80) y la de Zn2" en las columnas 9 y 10 (Lewatit TP-207) La eliminación sucesiva de Cu2", AT" y Zn2+ permite la recuperación parcial de Mg2+ a la salida del sistema de columnas, o su separación (junto al calcio remanente) mediante una unidad adicional de intercambio iónico (resina carboxilica, Lewatit CNP80) que se encuentra en la forma catíónica adecuada (potasio ó amonio) para contribuir a la regeneración de la disolución de elución primaria (eluyente de la primera unidad de intercambio iónico columnas 2 y 3).SUBSTITUTE SHEET (RULE 26) columns 3 and 4 with the primary elution solution The separation and recovery of Al "" is carried out in columns 7 and 8 (Lewatit CNP 80) and that of Zn 2 " in columns 9 and 10 (Lewatit TP-207) The successive elimination of Cu 2 " , AT " and Zn 2+ allows the partial recovery of Mg 2+ at the exit of the column system, or its separation (together with the remaining calcium) by an additional ion exchange unit (carboxylic resin, Lewatit CNP80) which is in the appropriate cathonic form (potassium or ammonium) to contribute to the regeneration of the primary elution solution (eluent of the first ion exchange unit columns 2 and 3).
La eliminación de los iones metálicos residuales en la disolución de elución primaria, después de la recuperación selectiva de Cu2+, Al3+, Zn2+ y Mg2+ se lleva a cabo por precipitación ajustando el pH entre 10 y 12 con álcali apropiado. El precipitado de hidróxidos metálicos eliminados de la disolución de elución primaria (prácticamente Mn2+) se separa para su recuperación posterior o se envía a la cabeza del proceso (entrada de aguas acidas)The removal of residual metal ions in the primary elution solution, after selective recovery of Cu 2+ , Al 3+ , Zn 2+ and Mg 2+ is carried out by precipitation by adjusting the pH between 10 and 12 with alkali appropriate. The precipitate of metal hydroxides removed from the primary elution solution (practically Mn 2+ ) is separated for later recovery or sent to the process head (acid water inlet)
HOJA DE SUSTITUCIÓN (REG.LA 26) SUBSTITUTE SHEET (REG.LA 26)

Claims

REIVINDICACIONES
1 Procedimiento para el tratamiento y descontaminación de aguas acidas que contienen metales disueltos y su conversión en fertilizantes, siendo dichos metales principalmente: hierro ferroso, hierro férrico, cobre, zinc, aluminio, magnesio, calcio y manganeso a un pH inferior a 3,5. El proceso consta de las siguientes etapas: a) Biooxidaciόn del Fe (II) hasta Fe (III) haciendo percoiar las aguas a través de un reactor que soporta una población activa de bacterias ferrooxidantes. b) Eliminación del hierro por precipitación de los hidróxidos de Fe (III) mediante la elevación del pH de forma que la mayor parte de los otros metales se mantienen en disolución. c) Síntesis de sulfato potásico o sulfato amónico, libre de cloruros, a partir de las aguas acidas utili.zando un intercambiador iónico no selectivo que estará en forma potásica o amónica. d) Recuperación de los metales contenidos en las aguas acidas, eluidos durante la etapa de regeneración de la resina anterior mediante una disolución regenerante a base de1 Procedure for the treatment and decontamination of acidic waters containing dissolved metals and their conversion into fertilizers, said metals being mainly: ferrous iron, ferric iron, copper, zinc, aluminum, magnesium, calcium and manganese at a pH below 3.5 . The process consists of the following stages: a) Biooxidation of Fe (II) to Fe (III) by causing the water to percoiar through a reactor that supports an active population of ferrooxidant bacteria. b) Removal of iron by precipitation of Fe (III) hydroxides by raising the pH so that most of the other metals are kept in solution. c) Synthesis of potassium sulfate or chloride-free ammonium sulfate, from acidic waters using a non-selective ion exchanger that will be in potassium or ammonium form. d) Recovery of metals contained in acidic waters, eluted during the regeneration stage of the previous resin by means of a regenerating solution based on
KCI, K2SO4 o una mezcla de ambas sales, aplicando un proceso de separación selectiva de los iones metálicos utilizando resinas carboxilicas y quelatantes. e) Eliminación de los iones métricos residuales en la disolución de regeneración utilizada en la etapa anterior, ajuste de pH y contenido salino, de modo que dicha disolución pueda ser reutilizada.KCI, K 2 SO 4 or a mixture of both salts, applying a process of selective separation of metal ions using carboxylic resins and chelators. e) Elimination of residual metric ions in the regeneration solution used in the previous stage, adjustment of pH and saline content, so that said solution can be reused.
2. Procedimiento según la reivindicación 1 caracterizado porque la biooxidación de Fe (II) se realiza mediante catálisis biológica con bacterias ferrooxidantes procedentes de hábitats directamente relacionados con las aguas acidas a tratar.2. Method according to claim 1 characterized in that the biooxidation of Fe (II) is carried out by biological catalysis with ferrooxidant bacteria from habitats directly related to the acidic waters to be treated.
3. Procedimiento según las reivindicaciones 1 y 2 caracterizado porque ia biooxidaciόn de Fe (II) se realiza en bioreactores de lecho fijo o fluidizado y con las poblaciones de bacterias fijadas en soportes inertes.3. Method according to claims 1 and 2 characterized in that the biooxidation of Fe (II) is carried out in fixed or fluidized bed bioreactors and with the populations of bacteria fixed in inert supports.
4. Procedimiento según las reivindicaciones 1 y 3 caracterizado porque la aicalinizaciόn de las aguas acidas se realiza con Ca(OH)2 , KOH, K2CO3, NH OH ó una mezcla de estos compuestos. 4. Method according to claims 1 and 3 characterized in that the aicalinization of the acidic waters is carried out with Ca (OH) 2 , KOH, K 2 CO 3 , NH OH or a mixture of these compounds.
5. Procedimiento según las reivindicaciones 1 a 4 caracterizado porque la síntesis de sulfato potásico o sulfato amónico libre de cloruros se lleva a cabo a partir de la disolución obtenida de las aguas acidas, una vez eliminado el hierro, mediante una resina canónica.5. Method according to claims 1 to 4, characterized in that the synthesis of potassium sulphate or chloride-free ammonium sulfate is carried out from the solution obtained from the acidic waters, once the iron is removed, by means of a canonical resin.
88
HOJA DE SUSTITUCIÓN (REGLA, 26) SUBSTITUTE SHEET (RULE, 26)
6 Procedimiento según las reivindicaciones 1 a 5 caracterizado porque la disolución de regeneración de la resina catiónica no selectiva es a base de cloruro de amonio, sulfato de amonio o una mezcla de ambas sales, en lugar de las sales de potasioMethod according to claims 1 to 5, characterized in that the regeneration solution of the non-selective cationic resin is based on ammonium chloride, ammonium sulfate or a mixture of both salts, instead of potassium salts.
7 Procedimiento según las reivindicaciones 1 a 6 caracterizado porque la recuperación de Cu2+, Al τ, Zn + y Mg + de la disolución de regeneración de la resina anterior se hace secuencialmente utilizando diferentes tipos de resinas con la selectividad apropiada para cada metal.Method according to claims 1 to 6, characterized in that the recovery of Cu 2+ , Al τ , Zn + and Mg + from the regeneration solution of the previous resin is done sequentially using different types of resins with the appropriate selectivity for each metal.
8 Procedimiento según las reivindicaciones 1 a 7 caracterizado porque la separación de Mg"+ de la disolución regenerante se hace conjuntamente con Ca2+ utilizando una unidad de intercambio iónico conectada en serie a la secuencia de resinas que separan selectivamente Cu +, Al3" y Zn2+ .Method according to claims 1 to 7, characterized in that the separation of Mg " + from the regenerating solution is carried out jointly with Ca 2+ using an ion exchange unit connected in series to the sequence of resins that selectively separate Cu + , Al 3" and Zn 2+ .
9. Procedimiento según las reivindicaciones 1 a 8 caracterizado por la realización del proceso de intercambio iónico a temperaturas superiores a 20 C9. Method according to claims 1 to 8 characterized by the performance of the ion exchange process at temperatures above 20 C
10. Procedimiento según las reivindicaciones 1 a 9 caracterizado por la utilización tanto de columnas de lecho fijo como de lecho fluidizado en los procesos de intercambio iónico.10. Method according to claims 1 to 9 characterized by the use of both fixed bed and fluidized bed columns in ion exchange processes.
11. Procedimiento según las reivindicaciones 1 a 10 caracteri.zado por la utilización de una unidad de membranas de osmosis inversa para la obtención de sulfato potásico ó sulfato amónico concentrado y de agua con características adecuadas para regadío.11. Method according to claims 1 to 10 characterized by the use of a reverse osmosis membrane unit for obtaining potassium sulphate or concentrated ammonium sulfate and water with suitable characteristics for irrigation.
12. Procedimiento según las reivindicaciones 1 a 11 caracterizado por la utilización de unidades de electrólisis para la obtención de Cu y Zn metálico.12. Method according to claims 1 to 11 characterized by the use of electrolysis units for obtaining metallic Cu and Zn.
13. Procedimiento según las reivindicaciones 1 a 12 caracterizado porque dichas aguas proceden de instalaciones mineras activas o inactivas, instalaciones industriales con producción natural o artificial de efluentes ácidos o de cuencas fluviales, arroyos, lagunas, etc. que debido a su contacto con masas de minerales están contaminadas por ácido y metales pesados.13. Method according to claims 1 to 12 characterized in that said waters come from active or inactive mining facilities, industrial facilities with natural or artificial production of acid effluents or river basins, streams, lagoons, etc. which due to their contact with masses of minerals are contaminated by acid and heavy metals.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
PCT/ES1997/000231 1996-09-24 1997-09-18 Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers (pidra process) WO1998013308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43023/97A AU4302397A (en) 1996-09-24 1997-09-18 Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers (pidra process)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES09602016A ES2112804B1 (en) 1996-09-24 1996-09-24 PROCEDURE FOR THE TREATMENT AND DECONTAMINATION OF ACIDIC WATERS CONTAINING DISSOLVED METALS AND THEIR CONVERSION IN FERTILIZERS.
ESP9602016 1996-09-24
ESP9701958 1997-09-18
ES9701958A ES2127157B1 (en) 1996-09-24 1997-09-18 PROCEDURE FOR THE TREATMENT AND DECONTAMINATION OF ACIDIC WATERS CONTAINING DISSOLVED METALS AND THEIR CONVERSION IN FERTILIZERS.

Publications (1)

Publication Number Publication Date
WO1998013308A1 true WO1998013308A1 (en) 1998-04-02

Family

ID=26154993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1997/000231 WO1998013308A1 (en) 1996-09-24 1997-09-18 Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers (pidra process)

Country Status (3)

Country Link
AU (1) AU4302397A (en)
ES (1) ES2127157B1 (en)
WO (1) WO1998013308A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116247A2 (en) * 2006-02-14 2007-10-18 Howard, Darryl An effluent treatment process
CN104355498A (en) * 2014-11-13 2015-02-18 国家电网公司 Process for removing heavy metals and COD in electroplating wastewater
CN104355497A (en) * 2014-11-13 2015-02-18 国家电网公司 Method for treating electroplating wastewater
CN104445813A (en) * 2014-11-14 2015-03-25 国家电网公司 Preparation for removing heavy metal ion and industrial COD in sewage
WO2020225522A1 (en) * 2019-05-03 2020-11-12 Agua Db Ltd Water treatment method to generate fertilization or fertigation product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882018A (en) * 1970-12-04 1975-05-06 Aerojet General Co Process for recovery of minerals from acidic streams
DE4128837A1 (en) * 1991-08-30 1993-03-04 Bitterfeld Wolfen Chemie Removing copper@ and-or nickel@ from aq. media - by using special porous anion exchange resins with weakly basic morpholine or piperazine gps., etc.
ES2033744T3 (en) * 1986-07-15 1993-04-01 The Dow Chemical Company COMBINED MEMBRANE AND SORPTION PROCEDURE TO SELECTIVELY SEPARATE IONS.
ES2086263A1 (en) * 1994-09-13 1996-06-16 Rio Tinto Minera S A Process for the treatment and decontamination of acid mine waters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882018A (en) * 1970-12-04 1975-05-06 Aerojet General Co Process for recovery of minerals from acidic streams
ES2033744T3 (en) * 1986-07-15 1993-04-01 The Dow Chemical Company COMBINED MEMBRANE AND SORPTION PROCEDURE TO SELECTIVELY SEPARATE IONS.
DE4128837A1 (en) * 1991-08-30 1993-03-04 Bitterfeld Wolfen Chemie Removing copper@ and-or nickel@ from aq. media - by using special porous anion exchange resins with weakly basic morpholine or piperazine gps., etc.
ES2086263A1 (en) * 1994-09-13 1996-06-16 Rio Tinto Minera S A Process for the treatment and decontamination of acid mine waters

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116247A2 (en) * 2006-02-14 2007-10-18 Howard, Darryl An effluent treatment process
WO2007116247A3 (en) * 2006-02-14 2008-02-28 Facilitating Innovative Res En An effluent treatment process
CN104355498A (en) * 2014-11-13 2015-02-18 国家电网公司 Process for removing heavy metals and COD in electroplating wastewater
CN104355497A (en) * 2014-11-13 2015-02-18 国家电网公司 Method for treating electroplating wastewater
CN104445813A (en) * 2014-11-14 2015-03-25 国家电网公司 Preparation for removing heavy metal ion and industrial COD in sewage
WO2020225522A1 (en) * 2019-05-03 2020-11-12 Agua Db Ltd Water treatment method to generate fertilization or fertigation product

Also Published As

Publication number Publication date
AU4302397A (en) 1998-04-17
ES2127157A1 (en) 1999-04-01
ES2127157B1 (en) 1999-12-01

Similar Documents

Publication Publication Date Title
Kouzbour et al. Comparative analysis of industrial processes for cadmium removal from phosphoric acid: A review
ES2927111T3 (en) Production of phosphate compounds from materials containing phosphorus and at least one of iron and aluminum
ES2394287T3 (en) Hybrid procedure that uses ion exchange resins in the selective recovery of nickel and cobalt from leaching effluents
ES2561488T3 (en) Phosphorus recovery
US4986970A (en) Method for removal of heavy metals, especially cadmium, from phosphoric acid containing solutions
US4915928A (en) Process for removing selenium from wastewater effluent
GB1561511A (en) Process for elimination of mercury from industrial waste waters by means of extraction with solvents
US4599221A (en) Recovery of uranium from wet process phosphoric acid by liquid-solid ion exchange
US20170334752A1 (en) Sulfate reduction in flue gas desulfurization system by barium precipitation
US20120318743A1 (en) Water Desalination and Treatment System and Method
WO2011025440A1 (en) Recovery of al from p-containing material
BRPI0707835A2 (en) effluent treatment process
Deorkar et al. An adsorption process for metal recovery from acid mine waste: The Berkeley Pit problem
AU2022275467A1 (en) Anion removal from waste water
WO1998013308A1 (en) Process for the treatment and decontamination of acid waters which contain dissolved metals and their conversion into fertilizers (pidra process)
Nenov et al. Recovery of sulphuric acid from waste aqueous solutions containing arsenic by ion exchange
FI69110B (en) PROCESS FOER SEPARATION AV KOBOLT FRAON NICKEL
CN115353249B (en) Wastewater treatment process for recovering high-purity sodium bicarbonate by carbon dioxide solidification
US6919030B2 (en) Process for recovering cyanide from copper-containing feed material
US3388059A (en) Acid water treating process
Levlin Recovery of phosphate from sewage sludge and separation of metals by ion exchange
WO1990003947A1 (en) Process for removing ammonia and phosphorus from a wastewater
Копылов TECHNOLOGIES FOR WASTEWATER TREATMENT FROM ARSENIC
CA2103247A1 (en) Treatment of waste water
STARY et al. Recovery of Chromium on Ion Exchange Units

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998515305

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase