WO1998007697A1 - Arylsulfonylamino hydroxamic acid derivatives - Google Patents

Arylsulfonylamino hydroxamic acid derivatives Download PDF

Info

Publication number
WO1998007697A1
WO1998007697A1 PCT/IB1997/000924 IB9700924W WO9807697A1 WO 1998007697 A1 WO1998007697 A1 WO 1998007697A1 IB 9700924 W IB9700924 W IB 9700924W WO 9807697 A1 WO9807697 A1 WO 9807697A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
aryl
amino
heteroaryl
alkoxy
Prior art date
Application number
PCT/IB1997/000924
Other languages
French (fr)
Inventor
Todd A. Blumenkopf
Ralph P. Robinson
Original Assignee
Pfizer Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SK214-99A priority Critical patent/SK21499A3/en
Priority to CA002264284A priority patent/CA2264284A1/en
Priority to PL97331895A priority patent/PL331895A1/en
Priority to EP97930699A priority patent/EP0922030A1/en
Priority to JP10510535A priority patent/JP2000501423A/en
Priority to EA199900139A priority patent/EA199900139A1/en
Priority to AU34563/97A priority patent/AU711585B2/en
Priority to IL12818997A priority patent/IL128189A0/en
Application filed by Pfizer Inc. filed Critical Pfizer Inc.
Priority to BR9711223A priority patent/BR9711223A/en
Priority to US09/242,504 priority patent/US6153609A/en
Publication of WO1998007697A1 publication Critical patent/WO1998007697A1/en
Priority to IS4958A priority patent/IS4958A/en
Priority to BG103191A priority patent/BG103191A/en
Priority to NO990821A priority patent/NO990821L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/22Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms
    • C07C311/29Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/34Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • C07D211/46Oxygen atoms attached in position 4 having a hydrogen atom as the second substituent in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D211/62Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane

Definitions

  • the present invention relates to arylsulfonylamino hydroxamic acid derivatives which are inhibitors of matrix metalloproteinases or the production of tumor necrosis factor (TNF) and as such are useful in the treatment of a condition selected from the group consisting of arthritis, cancer, tissue ulceration, restenosis, periodontal disease, epidermolysis bullosa, scleritis and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of TNF.
  • TNF tumor necrosis factor
  • the compounds of the present invention may be used in combination therapy with standard non-steroidal anti-inflammatory drugs (hereinafter NSAID'S) and analgesics for the treatment of arthritis, and in combination with cytotoxic drugs such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine, in the treatment of cancer.
  • NSAID'S standard non-steroidal anti-inflammatory drugs
  • analgesics for the treatment of arthritis
  • cytotoxic drugs such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine
  • This invention also relates to a method of using such compounds in the treatment of the above diseases in mammals, especially humans, and to pharmaceutical compositions useful therefor.
  • Matrix-degrading metalloproteinases such as gelatinase, stromelysin and collagenase, are involved in tissue matrix degradation (e.g. collagen collapse) and have been implicated in many pathological conditions involving abnormal connective tissue and basement membrane matrix metabolism, such as arthritis (e.g. osteoarthritis and rheumatoid arthritis), tissue ulceration (e.g. corneal, epidermal and gastric ulceration), abnormal wound healing, periodontal disease, bone disease (e.g. Paget's disease and osteoporosis), tumor metastasis or invasion, as well as HIV-infection (J. Leuk.
  • Tumor necrosis factor is recognized to be involved in many infectious and autoimmune diseases (W. Fiers, FEBS Letters. 1991 , 285, 199). Furthermore, it has been shown that TNF is the prime mediator of the inflammatory response seen in sepsis and septic shock (C.E. Spooner et al., Clinical Immunology and Immunopatholo ⁇ v. 1992, 62 S11). Summary of the Invention The present invention relates to a compound of the formula
  • n 1 to 6;
  • X is OR 1 wherein R 1 is as defined below; azetidinyi, pyrrolidinyl, piperidinyl, morpholinyl, thiomorphoiinyl, indolinyl, isoindolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, piperazinyl or a bridged diazabicycloalkyl ring selected from the group consisting of
  • each heterocyclic group may optionally be substituted by one or two groups selected from hydroxy, (C r C ⁇ )alkyl, (C,-C fl )alkoxy, (C,-C, 0 )acyl, (C C 10 )acyloxy, (C ⁇ - C 10 )aryl, (C 5 -C 9 )heteroaryl, (C ⁇ -C 10 )aryl(C,-C ⁇ )alkyl, (C 5 -C 9 )heteroaryl (C,-C ⁇ )alkyl, hydroxy (C r C ⁇ )alkyl, (C,-C ⁇ )alkoxy (C,-C ⁇ )alkyl, (C 1 -C ⁇ )acyloxy(C 1 -C ⁇ )alkyl, (C r C ⁇ )
  • R 1 is (C ⁇ -C 10 )aryl, (C 5 -C 9 )het ⁇ roaryl, 5-indanyl, CHR 5 OCOR 6 or CH 2 CONR 7 R 8 wherein R 5 , R ⁇ , R 7 and R 8 are as defined above;
  • R 3 and R 4 are each independently selected from the group consisting of hydrogen, (C ⁇ C ⁇ alkyl, trifluoromethyl, trifluoromethyl(C,-C ⁇ )alkyl, (C,-C ⁇ )alkyl (difluoromethylene), (C,-C 3 )alkyl(difluoromethylene)(C,-C 3 )alkyl, (C ⁇ -C, 0 )aryl, (C B - C 9 )heteroaryl, (C ⁇ -C, 0 )aryl(C r C ⁇ )alkyl, (C 5 -C 9 )heteroaryl(C,-C
  • R 21 is hydrogen, (C,-C 10 )acyl, (C,-C ⁇ )alkyl, (C ⁇ -C 10 )aryl(C 1 -Cg)alkyl, (C 5 - C 9 )heteroaryl(C 1 -C 8 )alkyi or (C 1 -C ⁇ )alkyisulfonyl; and Qis(C 1 -C ⁇ )aikyl,(C fl -C 10 )aryl,(Cg-C 10 )aryloxy(C ⁇ -C 10 )aryl,(Cg-C, 0 )aryl(Cg-C 10 )aryl 1
  • each aryl group is optionally substituted byfluoro, chloro, bromo, (C r C ⁇ )alkyl, with the proviso that X must be substituted when defined as azetidinyi, pyrrolidinyl, mo ⁇ holinyl, thiomorphoiinyl, indolinyl, isoindolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, piperazinyl, (C T -C ⁇ acylpiperaziny
  • alkyl as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof.
  • alkoxy includes O-alkyl groups wherein “alkyl” is defined above.
  • aryl includes an organic radical derived from an aromatic hydrocarbon by removal of one hydrogen, such as phenyl or naphthyl, optionally substituted by 1 to 3 substituents selected from the group consisting of fluoro, chloro, trifluorom ⁇ thyl, (C r C ⁇ )alkoxy, (C ⁇ -C 10 )aryloxy, trifluoromethoxy, difluorom ⁇ thoxy and (C 1 -C ⁇ )alkyl.
  • heteroaryl includes an organic radical derived from an aromatic heterocyclic compound by removal of one hydrogen, such as pyridyl, furyl, pyroyl, thienyl, isothiazolyl, imidazolyl, benzimidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinoiyl, isoquinolyl, benzofuryl, isobenzofuryl, benzothienyl, pyrazolyl, indolyl, isoindolyl, purinyl, carbazolyl, isoxazolyl, thiazolyl, oxazolyl, benzthiazolyl or benzoxazolyl, optionally substituted by 1 to 2 substituents selected from the group consisting of fluoro, chloro, trifluoromethyl, (C,-C ⁇ )alkoxy, (C e - C 10 )ary
  • acyl as used herein, unless otherwise indicated, includes a radical of the general formula RCO wherein R is alkyl, alkoxy, aryl, aryialkyl or arylalkyloxy and the terms “alkyl” or “aryl” are as defined above.
  • acyloxy includes O-acyl groups wherein “acyl” is defined above.
  • D- or L-amino acid includes glycine, alanine, valine, leucine, isoleucine, phenylaianine, asparagine, glutamine, tryptophan, proline, serine, threonine, tyrosine, hydroxyproline, cysteine, cystine, methionine, aspartic acid, glutamic acid, lysine, arginine or histidine.
  • the compound of formula I may have chiral centers and therefore exist in different enantiomeric forms. This invention relates to all optical isomers and stereoisomers of the compounds of formula I and mixtures thereof.
  • Preferred compounds of formula I include those wherein n is 2.
  • More preferred compounds of formula I include those wherein n is 2; either R 3 or R 4 is not hydrogen; Ar is (C C ⁇ )alkoxy(C ⁇ -C, 0 )aryl, (C ⁇ -C, 0 )aryl(C 1 -C ⁇ )alkoxy(C ⁇ - C 10 )aryl, 4-fluorophenoxy(C ⁇ -C 10 )aryl, 4-fluorobenzyloxy(C ⁇ -C 10 )aryl or (C,-C ⁇ )alkyl(C ⁇ - C 10 )aryloxy(C 8 -C 10 )aryl; and X is indolinyl or piperidinyl. Specific preferred compounds of formula I include the following:
  • the present invention also relates to a pharmaceutical composition for (a) the treatment of a condition selected from the group consisting of arthritis, cancer, synergy with cytotoxic anticancer agents, tissue ulceration, macular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, in combination with standard NSAID'S and analgesics and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of tumor necrosis factor (TNF) or (b) the inhibition of matrix metalloproteinases or the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising an amount of a compound of formula I or a pharmaceutically acceptable salt thereof effective in such treatments and a pharmaceutically acceptable carrier.
  • a condition selected from the group consisting of arthritis, cancer, synergy with cytotoxic anticancer agents, tissue ulceration, macular degeneration, restenosis, periodontal
  • the present invention also relates to a method for the inhibition of (a) matrix metalloproteinases or (b) the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising administering to said mammal an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof.
  • a mammal including a human
  • the present invention also relates to a method for treating a condition selected from the group consisting of arthritis, cancer, tissue ulceration, macular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, compounds of formula I may be used in combination with standard NSAID'S and analgesics and in combination with cytotoxic anticancer agents, and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising administering to said mammal an amount of a compound of formula I or a pharmaceutically acceptable salt thereof effective in treating such a condition.
  • TNF tumor necrosis factor
  • R 17 -O-C-(CH 2 ) n -OH such as the chloride, bromide or iodide derivative, preferably the iodide derivative, wherein the R 17 protecting group is benzyl, allyl or tert-butyl, in the presence of a base such as potassium carbonate or sodium hydride, preferably sodium hydride, and a polar solvent, such as dimethylformamide.
  • the reaction mixture is stirred, at room temperature, for a time period between about 60 minutes to about 48 hours, preferably about 18 hours.
  • the R 17 protecting group is chosen such that it may be selectively removed in the presence of and without loss of the R 16 protecting group, therefore, R 17 cannot be the same as R 1 ⁇ .
  • R 17 protecting group is carried out under conditions appropriate for that particular R 17 protecting group in use which will not affect the R 1S protecting group.
  • Such conditions include; (a) saponification where R 17 is and R 1 ⁇ is tert-butyl, (b) hydrogenolysis where R 17 is benzyl and R 1 ⁇ is tert-butyl or (C,-C ⁇ )alkyl, (c) treatment with a strong acid, such as trifluoroac ⁇ tic acid or hydrochloric acid where R 17 is tert- butyl and R 16 is (C r C ⁇ )alkyl, benzyl or allyl, or (d) treatment with tributyltinhydride and acetic acid in the presence of catalytic bis(triphenylphosphine) palladium (II) chloride where R 17 is allyl and R 1 ⁇ is benzyl
  • the carboxylic acid of formula IV is condensed with a compound of the formula HX or the salt thereof, wherein X is as defined above, to give the corresponding amide compound of formula III.
  • the formation of amides from primary or secondary amines or ammonia and carboxylic acids is achieved by conversion of the carboxylic acid to an activated functional derivative which subsequently undergoes reaction with a primary or secondary amine or ammonia to form the amide.
  • the activated functional derivative may be isolated prior to reaction with the primary or secondary amine or ammonia.
  • the carboxylic acid may be treated with oxalyl chloride or thionyl chloride, neat or in an inert solvent, such as chloroform, at a temperature between about 25°C to about 80°C, preferably about 50 °C, to give the corresponding acid chloride functional derivative.
  • the inert solvent and any remaining oxalyl chloride or thionyl chloride is then removed by evaporation under vacuum.
  • the remaining acid chloride functional derivative is then reacted with the primary or secondary amine or ammonia in an inert solvent, such as methylene chloride, to form the amide.
  • the preferred method for the condensation of the carboxylic acid of formula IV with a compound of the formula HX, wherein X is as defined above, to provide the corresponding compound of formula III is the treatment of IV with (benzotriazol-l-yloxy)tris(dimethylamino) phosphonium hexafluorophosphate in the presence of a base, such as triethylamine, to provide the benzotriazol-1-oxy ester in situ which, in turn, reacts with the compound of the formula HX, in an inert solvent, such as methylene chloride, at room temperature to give the compound of formula III.
  • a base such as triethylamine
  • R 1 ⁇ protecting group is carried out under conditions appropriate for the particular R' ⁇ protecting group in use.
  • Such conditions include; (a) saponification where R 1 ⁇ is lower alkyl, (b) hydrogenolysis where R 1 ⁇ is benzyl, (c) treatment with a strong acid, such as trifluoroacetic acid or hydrochloric acid, where R 1 ⁇ is tert-butyl, or (d) treatment with tributyltinhydride and acetic acid in the presence of catalytic bis(triphenylphosphine) palladium (II) chloride where R 1 ⁇ is allyl.
  • the carboxylic acid compound of formula II is converted to the hydroxamic acid compound of formula I by treating II with 1-(3- dimethylaminopropyl)-3-ethylcarbodiimide and 1 -hydroxybenztriazole in a polar solvent, such as dimethylformamide, followed by the addition of hydroxylamine to the reaction mixture after a time period between about 15 minutes to about 1 hour, preferably about 30 minutes.
  • a polar solvent such as dimethylformamide
  • the hydroxylamine is preferably generated in situ from a salt form, such as hydroxylamine hydrochloride, in the presence of a base, such as N- methylmorpholine.
  • a protected derivative of hydroxylamine or its salt form where the hydroxy!
  • hydroxylamine protecting group is protected as a tert-butyl, benzyl, allyl or trimethylsilylether, may be used in the presence of (benzotriazol-1 -yioxy)tris-(dimethylamino) phosphonium hexafluorophosphate and a base, such as N-methylmorpholine. Removal of the hydroxylamine protecting group is carried out by hydrogenolysis for a benzyl protecting group or treatment with a strong acid, such as trifluoroacetic acid, for a tert-butyl protecting group.
  • the allyl protecting group may be removed by treatment with tributyltinhydride and acetic acid in the presence of catalytic bis(triphenylphosphine) palladium (II) chloride.
  • the 2-trimethylsilylethyl ether may be removed by reaction with a strong acid, such as trifluoroacetic acid or by reaction with a fluoride source such as boron trifiuoride etherate.
  • N,0-bis(4-methoxybenzyl)hydroxyl-amine may also be used as the protected hydroxylamine derivative where deprotection is achieved using a mixture of methanesulfonic acid and trifluoroacetic acid.
  • reaction 1 of Scheme 2 the arylsulfonyiamino compound of formula VI, wherein R 1 ⁇ is (C,-C ⁇ )alkyl, benzyl or tert-butyl, is converted to the corresponding compound of formula VIII by reacting VI with a reactive functional derivative, such as the halide, preferably the iodide derivative, of 3-(tert-butyldimethylsilyloxy)-1-propanol in the presence of a base, such as sodium hydride.
  • a reactive functional derivative such as the halide, preferably the iodide derivative, of 3-(tert-butyldimethylsilyloxy)-1-propanol
  • a base such as sodium hydride
  • reaction 2 of Scheme 2 the compound of formula VIII is converted to the alcohol compound of formula IX by treatment of VIII with an excess of an acid, such as acetic acid, or an excess of a Lewis acid, such as boron trifiuoride etherate.
  • an acid such as acetic acid
  • water is added and a water-soluble cosolvent, such as tetrahydrofuran, can be added to promote solubility.
  • the reaction is stirred for a time period between about 18 hours to about 72 hours, preferably about 24 hours, at a temperature between about room temperature to about 60° C, preferably about 50° C.
  • the reaction is stirred in a solvent, such as methylene chloride, for a time period between about 10 minutes to about 6 hours, preferably about 20 minutes, at a temperature between about -20° C to about room temperature, preferably about room temperature.
  • a solvent such as methylene chloride
  • the alcohol compound of formula IX is oxidized to the carboxylic acid compound of formula IV, wherein n is 2, by reacting IX with an excess of sodium periodate and a catalytic amount of ruthenium trichloride in a solvent mixture consisting of acetonitrile, water and carbon tetrachloride, at room temperature, for a time period between about 1 hour to about 24 hours, preferably about 4 hours.
  • the compound of formula IV, wherein n is 2 is further reacted to provide the hydroxamic acid compound of formula I, wherein n is 2, according to the procedure described above in reactions 4, 5 and 6 of Scheme 1..
  • salts of the acidic compounds of the invention are salts formed with bases, namely cationic salts such as alkali and alkaline earth metal salts, such as sodium, lithium, potassium, calcium, magnesium, as well as ammonium salts, such as ammonium, trimethyi-ammonium, diethylammonium, and tris-
  • bases namely cationic salts such as alkali and alkaline earth metal salts, such as sodium, lithium, potassium, calcium, magnesium, as well as ammonium salts, such as ammonium, trimethyi-ammonium, diethylammonium, and tris-
  • acid addition salts such as of mineral acids, organic carboxylic and organic sulfonic acids e.g. hydrochloric acid, methanesulfonic acid, maleic acid, are also possible provided a basic group, such as pyridyl, constitutes part of the structure.
  • the compounds of formula I or their pharmaceutically acceptable salts (hereinafter also referred to as the compounds of the present invention) to inhibit matrix metalloproteinases or the production of tumor necrosis factor (TNF) and, consequently, demonstrate their effectiveness for treating diseases characterized by matrix metalloproteinase or the production of tumor necrosis factor is shown by the following in vitro assay tests.
  • MMP-1 Human recombinant collagenase is activated with trypsin using the following ratio: 10 ⁇ g trypsin per 100 ⁇ g of collagenase. The trypsin and collagenase are incubated at room temperature for 10 minutes then a five fold excess (50 //g/10 ⁇ g trypsin) of soybean trypsin inhibitor is added.
  • Collagenase is diluted to 400 ng/ml and 25 ⁇ is then added to appropriate wells of the microfluor plate. Final concentration of collagenase in the assay is 100 ng/ml.
  • Substrate (DNP-Pro-Cha-Gly-Cys(Me)-His-Ala-Lys(NMA)-NH 2 ) is made as a 5 mM stock in dimethyl sulfoxide and then diluted to 20 ⁇ M in assay buffer. The assay is initiated by the addition of 50 ⁇ substrate per well of the microfluor plate to give a final concentration of 10 ⁇ M.
  • Fluorescence readings (360 nM excitation, 460 nm emission) were taken at time 0 and then at 20 minute intervals. The assay is conducted at room temperature with a typical assay time of 3 hours.
  • Fluorescence vs time is then plotted for both the blank and collagenase containing samples (data from triplicate determinations is averaged). A time point that provides a good signal (the blank) and that is on a linear part of the curve (usually around 120 minutes) is chosen to determine IC 50 values. The zero time is used as a blank for each compound at each concentration and these values are subtracted from the 120 minute data. Data is plotted as inhibitor concentration vs % control (inhibitor fluorescence divided by fluorescence of collagenase alone x 100). IC 50 's are determined from the concentration of inhibitor that gives a signal that is 50% of the control.
  • 72kD gelatinase is activated with 1 mM APMA (p-aminophenyl mercuric acetate) for 15 hours at 4°C and is diluted to give a final concentration in the assay of 100 mg/ml.
  • Inhibitors are diluted as for inhibition of human collagenase (MMP-1) to give final concentrations in the assay of 30 ⁇ M, 3 ⁇ M, 0.3 ⁇ M and 0.03 ⁇ M. Each concentration is done in triplicate. Fluorescence readings (360 nm excitation, 460 emission) are taken at time zero and then at 20 minutes intervals for 4 hours.
  • IC 50 's are determined as per inhibition of human collagenase (MMP-1). If IC 50 's are reported to be less than 0.03 ⁇ M, then the inhibitors are assayed at final concentrations of 0.3 ⁇ M, 0.03 ⁇ M, 0.003 ⁇ M and 0.003 ⁇ M.
  • MMP-3 Inhibition of Stromelvsin Activity
  • MMP-3 Inhibition of stromelysin activity is based on a modified spectrophotometric assay described by Weingarten and Feder (Weingarten, H. and Feder, J., Spectrophotometric Assay for Vertebrate Collagenase, Anal. Biochem. 147, 437-440 (1985)).
  • Human recombinant prostromelysin is activated with trypsin using a ratio of 1 ⁇ l of a 10 mg/ml trypsin stock per 26 ⁇ g of stromelysin.
  • the trypsin and stromelysin are incubated at 37 °C for 15 minutes followed by 10 ⁇ l of 10 mg/ml soybean trypsin inhibitor for 10 minutes at 37° C for 10 minutes at 37° C to quench trypsin activity.
  • Assays are conducted in a total volume of 250 ⁇ l of assay buffer (200 mM sodium chloride, 50 mM MES, and 10 mM calcium chloride, pH 6.0) in 96-well microliter plates.
  • Activated stromelysin is diluted in assay buffer to 25 ⁇ g/ml.
  • Ellman's reagent (3-Carboxy-4-nitrophenyl disulfide) is made as a 1 M stock in dimethyl formamide and diluted to 5 mM in assay buffer with 50 ⁇ l per well yielding at 1 mM final concentration.
  • a 300 mM dimethyl sulfoxide stock solution of the peptide substrate is diluted to 15 mM in assay buffer and the assay is initiated by addition of 50 ⁇ l to each well to give a final concentration of 3 mM substrate.
  • Blanks consist of the peptide substrate and Ellman's reagent without the enzyme. Product formation was monitored at 405 nm with a Molecular Devices UVmax plate reader.
  • IC S0 values were determined in the same manner as for collagenase.
  • Inhibition of MMP-13 Human recombinant MMP-13 is activated with 2mM APMA (p-aminophenyl mercuric acetate) for 1.5 hours, at 37°C and is diluted to 400 mg/ml in assay buffer (50 mM Tris, pH 7.5, 200 mM sodium chloride, 5mM calcium chloride, 20 ⁇ M zinc chloride, 0.02% brij). Twenty-five microliters of diluted enzyme is added per well of a 96 well microfluor plate. The enzyme is then diluted in a 1 :4 ratio in the assay by the addition of inhibitor and substrate to give a final concentration in the assay of 100 mg/ml.
  • assay buffer 50 mM Tris, pH 7.5, 200 mM sodium chloride, 5mM calcium chloride, 20 ⁇ M zinc chloride, 0.02% brij.
  • Substrate (Dnp-Pro-Cha-Gly-Cys(Me)-His-Ala-Lys(NMA)-NH 2 ) is prepared as for inhibition of human collagenase (MMP-1) and 50 ⁇ l is added to each well to give a final assay concentration of 10 ⁇ M. Fluorescence readings (360 nM excitation; 450 emission) are taken at time 0 and every 5 minutes for 1 hour.
  • Positive controls consist of enzyme and substrate with no inhibitor and blanks consist of substrate only.
  • IC 50 's are determined as per inhibition of human collagenase (MMP-1). If IC B0 's are reported to be less than 0.03 ⁇ M, inhibitors are then assayed at final concentrations of 0.3 ⁇ M, 0.03 ⁇ M, 0.003 ⁇ M and 0.0003 ⁇ M.
  • Human mononuclear cells were isolated from anti-coagulated human blood using a one-step Ficoll-hypaque separation technique. (2) The mononuclear cells were washed three times in Hanks balanced salt solution (HBSS) with divalent cations and resuspended to a density of 2 x 10 s /ml in HBSS containing 1% BSA. Differential counts determined using the Abbott Cell Dyn 3500 analyzer indicated that monocytes ranged from 17 to 24% of the total cells in these preparations. 180 ⁇ of the cell suspension was aliquoted into flate bottom 96 well plates (Costar). Additions of compounds and LPS (100ng/ml final concentration) gave a final volume of 200 ⁇ l. All conditions were performed in triplicate.
  • HBSS Hanks balanced salt solution
  • the active compound will be administered orally or parenteraily at dosages between about 0.1 and 25 mg/kg body weight of the subject to be treated per day, preferably from about 0.3 to 5 mg/kg. However, some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.
  • the compounds of the present invention can be administered in a wide variety of different dosage forms, in general, the therapeutically effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.
  • dosage forms for oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelation and acacia.
  • lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes.
  • Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.
  • animals are advantageously contained in an animal feed or drinking water in a concentration of 5- 5000 ppm, preferably 25 to 500 ppm.
  • a sterile injectabie solution of the active ingredient is usually prepared.
  • Solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed.
  • the aqueous solutions should be suitably adjusted and buffered, preferably at a pH of greater than 8, if necessary and the liquid diluent first rendered isotonic.
  • These aqueous solutions are suitable intravenous injection purposes.
  • the oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes.
  • the preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.
  • compounds can be administered intramuscularly or subcutaneously at dosage levels of about 0.1 to 50 mg/kg/day, advantageously 0.2 to 10 mg/kg/day given in a single dose or up to 3 divided doses.
  • the reaction mixture was diluted with ethyl acetate and filtered through diatomac ⁇ ous earth. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and saturated brine. After drying over magnesium sulfate, the solvents were evaporated to give a dark oil from which 3-[(benzyloxycarbonylcyclohexylmethyl)- (4-methoxybenzenesulfonyl)amino]propionic acid, a white foam (28.1 grams, 60%), was isolated by flash chromatography on silica gel eluting sequentially with chloroform and 1% methanol in chloroform.
  • the catalyst was removed by filtration through nylon (pore size 0.45 ⁇ m) and the solvent was evaporated leaving [ ⁇ 3-[4-(tert-butoxycarbonylmethyl- amino)piperidin-1-yl]-3-oxo-propyl ⁇ (4-methoxybenzenesulfonyl)amino]cyclohexylacetic acid as a white foam (1.65 grams, 100%).
  • the catalyst was removed by filtration through nylon (pore s ize 0.45 ⁇ m ) and th e so lvent was evap o rated l eavi n g (1- ⁇ 3-[(cyclohexylhydroxycarbamoylmethyl)(4-methoxybenzene-sulfonyl)amino]propio nyl ⁇ piperidin-4-yl)methylcarbamic acid tert-butyl esteras a white foam (1.53 grams, 95%).
  • Example 9-10 The title compounds of Examples 9-10 were prepared analogously to that described in Example 1 using D-leucine benzyl ester as the starting material in step A and the indicated amine in step E.
  • Example 11 The title compounds of Examples 11-13 were prepared analogously to that described in Example 1 using D-norleucine benzyl ester as the starting material in step A and the indicated amine or alcohol in step E.
  • EXAMPLE 11 ⁇ - ⁇ 3-f(1-Hvdroxycarbamoylpe ⁇ tylH4-methoxybenzene8ulfonyl)aminol- propionyl>p
  • EXAMPLE 12 ⁇ - ⁇ 3-f(1-Hvdroxycarbamoylpe ⁇ tylH4-methoxybenzene8ulfonyl)aminol- propionyl>p
  • Example 14-15 The title compounds of Examples 14-15 were prepared analogously to that described in Example 1 using D-tert-butylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
  • Example 19-20 The title compounds of Examples 19-20 were prepared analogously to that described in Example 1 using D-phenylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
  • Example 23-24 The title compounds of Examples 23-24 were prepared analogously to that described in Example 1 using D-4-homophenylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
  • Example 27-28 The title compounds of Examples 27-28 were prepared analogously to that described in Example 1 using D-cyclohexylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
  • EXAMPLE 46 l-f3-r l-Hvdroxvcarbamo ⁇ lpentvn(4-methoxvbeuzeqes
  • Starting material l- ⁇ 3-[(l-hydroxycarbamoylpentyl)(4-methoxybenzenesulfonyl)- amino]propionyl ⁇ piperidine-4-carboxylic acid ethyl ester.
  • MS 500 (M+ l).
  • EXAMPLE 49 l- 3-rr2-(4-Fluorophenvl)-l-hvdroxvcarbamovleth ⁇ l 4-methoxvbenzene-sulfonvl) aminnlpr ⁇ pinnv piperidine-4-carboxvlic acid
  • Starting material l- ⁇ 3-[[2-(4-fluorophenyl)-l-hydroxycarbamoylethyl](4-methoxy- benzenesulfonyl)amino]propionyl ⁇ piperidine-4-carboxylic acid ethyl ester.
  • EXAMPLE 51 1 - (3- r ( 2-tert-Butox v- 1 -h vdrox vcarbamovleth vl) (4-methoxvbenzene-sulf onyl)- aminn1prnpinnvl>piperidine-4-carboxvlic acid
  • Starting material l- ⁇ 3-[(2-tert-butoxy-l-hydroxycarbamoylethyl)(4-methoxy- benzenesulfonyl)-amino]propionyl ⁇ piperidine-4-carboxylic acid ethyl ester.
  • MS 529 (M+ l).
  • the catalyst was removed by filtration through nylon (pore size 0.45 ⁇ m) and the solvent was evaporated leaving 2 - [ ⁇ 3 - [ 4 - ( 2 - h y d r o x y e t h y l ) p i p e r a z i n - l - y l ] - 3 - o x o - propyl ⁇ (4-methoxybenzenesulfonyl)amino]-3-methylbutyric acid hydrochloride as a white solid (1.16 grams, 92%).
  • the catalyst was removed by filtration through nylon (pore size 0.45 ⁇ ) and the solvent was evaporated to a tan foam which was chromatographed on silica gel eluting with 15% methanol in chloroform containing 0.5% ammonium hydroxide. Clean fractions containing the desired product were taken up in saturated sodium bicarbonate solution. The resulting mixture was extracted several times with ethyl acetate and the combined extracts were concentrated to afford N-hydroxy-2-[ ⁇ 3-[4-(2-hydroxyethyl)piperazin-l-yl]-3-oxopropyl ⁇ -(4-methoxybenzen esulfonyl)amino]-3-methyl-butyramide as an oil.
  • Example 58 The title compound was prepared analogously to that described in Example 42 using 1 - ⁇ 3-[( 1 -hydroxycarbamoyl-2-methylpropyl)-(4-phenoxybenzenesulfonyl)amino] propionyl]piperidine-4-carboxylic acid ethyl ester (Example 58) as the starting material.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Virology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • AIDS & HIV (AREA)
  • Immunology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

A compound of formula (I) wherein n, X, R3, R4 and Q are as defined above, useful in the treatment of a condition selected from the group consisting of arthritis, cancer, tissue ulceration, macular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of TNF. In addition, the compounds of the present invention may be used in combination therapy with standard non-steroidal anti-inflammatory drugs (NSAID'S) and analgesics, and in combination with cytotoxic drugs such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and other alkaloids, such as vincristine, in the treatment of cancer.

Description

ARYLSULFONYLAMINO HYDROXAMIC ACID DERIVATIVES
Background of the Invention The present invention relates to arylsulfonylamino hydroxamic acid derivatives which are inhibitors of matrix metalloproteinases or the production of tumor necrosis factor (TNF) and as such are useful in the treatment of a condition selected from the group consisting of arthritis, cancer, tissue ulceration, restenosis, periodontal disease, epidermolysis bullosa, scleritis and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of TNF. In addition, the compounds of the present invention may be used in combination therapy with standard non-steroidal anti-inflammatory drugs (hereinafter NSAID'S) and analgesics for the treatment of arthritis, and in combination with cytotoxic drugs such as adriamycin, daunomycin, cis-platinum, etoposide, taxol, taxotere and alkaloids, such as vincristine, in the treatment of cancer.
This invention also relates to a method of using such compounds in the treatment of the above diseases in mammals, especially humans, and to pharmaceutical compositions useful therefor.
There are a number of enzymes which effect the breakdown of structural proteins and which are structurally related metalloproteases. Matrix-degrading metalloproteinases, such as gelatinase, stromelysin and collagenase, are involved in tissue matrix degradation (e.g. collagen collapse) and have been implicated in many pathological conditions involving abnormal connective tissue and basement membrane matrix metabolism, such as arthritis (e.g. osteoarthritis and rheumatoid arthritis), tissue ulceration (e.g. corneal, epidermal and gastric ulceration), abnormal wound healing, periodontal disease, bone disease (e.g. Paget's disease and osteoporosis), tumor metastasis or invasion, as well as HIV-infection (J. Leuk. Bio 52 (2): 244-248, 1992). Tumor necrosis factor is recognized to be involved in many infectious and autoimmune diseases (W. Fiers, FEBS Letters. 1991 , 285, 199). Furthermore, it has been shown that TNF is the prime mediator of the inflammatory response seen in sepsis and septic shock (C.E. Spooner et al., Clinical Immunology and Immunopatholoαv. 1992, 62 S11). Summary of the Invention The present invention relates to a compound of the formula
Figure imgf000004_0001
or the pharmaceutically acceptable salts thereof, wherein n is 1 to 6;
X is OR1 wherein R1 is as defined below; azetidinyi, pyrrolidinyl, piperidinyl, morpholinyl, thiomorphoiinyl, indolinyl, isoindolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, piperazinyl or a bridged diazabicycloalkyl ring selected from the group consisting of
Figure imgf000004_0002
H H H
Figure imgf000005_0001
wherein r is 1 , 2 or 3; m is 1 or 2; and p is 0 or 1 ; wherein each heterocyclic group may optionally be substituted by one or two groups selected from hydroxy, (CrCβ)alkyl, (C,-Cfl)alkoxy, (C,-C,0)acyl, (C C10)acyloxy, (Cβ- C10)aryl, (C5-C9)heteroaryl, (Cβ-C10)aryl(C,-Cβ)alkyl, (C5-C9)heteroaryl (C,-Cβ)alkyl, hydroxy (CrCβ)alkyl, (C,-Cβ)alkoxy (C,-Cβ)alkyl, (C1-Cβ)acyloxy(C1-Cβ)alkyl, (Cr Cβ)alkylthio, (CrCβ)alkylthio (C,-Cfl)alkyl, (Cβ-C,0)arylthio, (Cβ-C10) arylthioJC^C^alkyl, R9R10N, R R10NSO2, R9R10NCO,
Figure imgf000005_0002
wherein R9 and R10 are each independently hydrogen, (C^C^alkyl, (Cβ-C,0)aryl, (C6-C9)heteroaryl, (Cβ-C10)aryl (C Cβ)alkyl or (C5-C9)heteroaryl (C^C^alkyl or R9 and R10 may be taken together with the nitrogen to which they are attached to form an azetidinyi, pyrrolidinyl, piperidinyl, moφholinyl orthiomorpolinyl ring; R12S02, R1 S02NH wherein R12 istrifluoromethyl, (C,- Cβ)alkyl, (Cβ-C10)aryl, (C5-C9)heteroaryl, (Ce-C10)aryl(C,-Ce)alkylor(C3-C9)heteroaryl (C,- C8)alkyl; R13CONR9 wherein R9 is as defined above and R13 is hydrogen, (C,-Cβ)alkyl, (C,-Cβ)alkoxy, (Cβ-C,0)aryl, (C5-C9)heteroaryl, (C^CgJary C CgJalkyHCg-C^ary C,- Cβ)alkoxy or (C5-C9)heteroaryl(C Cg)alkyl; RuOOC, R1 OOC(C,-Cβ)alkyl wherein R14 is (C,-C6)alkyl, (Cβ-C10)aryl, (C5-C9)heteroaryl, (Cβ-C,0)aryl (C,-Cβ)alkyl, 5-indanyl, CHR5OCORβ wherein R5 is hydrogen or (C,-Cβ)alkyl and Rβ is
Figure imgf000005_0003
(CrCβ)alkoxy or (Cg-C10)aryl; CH2CONR7R8 wherein R7 and R8 are each independently hydrogen or (C1-Cβ)alkyl or may be taken together with the nitrogen to which they are attached to form an azetidinyi, pyrrolidinyl, piperidinyl, moφholinyl or thiomorphoiinyl ring; or R150 (C,Cβ)alkyl wherein R15 is H2N(CHR16)CO wherein R is the side chain of a natural D- or L-amino acid;
R1 is (Cβ-C10)aryl, (C5-C9)hetβroaryl,
Figure imgf000006_0001
5-indanyl, CHR5OCOR6 or CH2CONR7R8 wherein R5, Rβ, R7 and R8 are as defined above; R3 and R4 are each independently selected from the group consisting of hydrogen, (C^C^alkyl, trifluoromethyl, trifluoromethyl(C,-Cβ)alkyl, (C,-Cβ)alkyl (difluoromethylene), (C,-C3)alkyl(difluoromethylene)(C,-C3)alkyl, (Cβ-C,0)aryl, (CB- C9)heteroaryl, (Cβ-C,0)aryl(CrCβ)alkyl, (C5-C9)heteroaryl(C,-Cβ)alkyl, (Cβ-C10)aryl(Cβ- C10)aryl, (Ce-C10)aryl(Cg-C,0)aryl(C1-Ce)alkyl, (C3-Cβ)cycloalkyl, (C3-Cβ)cycloalkyI(C,- Cg)alkyl>hydroxy(C,-Cg)alkyl,(C1-C10)acyloxy(C1-Cβ)alkyl,(C1-Cβ)alkoxy(C1-Cfl)alkyl,(C1- C10)acylamino(C,-Cβ)alkyl, piperidyl, (C,-Cβ)alkyipiperidyl,
Figure imgf000006_0002
Cβ)alkyl, (C5-C9)heteroaryl(C1-Cβ)alkoxy(C1-Cβ)alkyl, (C,-Cβ)alkylthio(C1-C8)alkyl, (Cβ- C10)arylthio(C,-Cfl)alkyl, (Cl-Cβ)alkylsulfinyl(C1-Cβ)alkyl, (Cθ-C10)arylsulfinyl(C,-Cβ)alkyl, (C1-Cg)alkylsulfonyl(C,-Cβ)alkyl, (Cβ-C10)arylsulfonyl(C Cg)alkyl, amino(C1-Cβ)alkyl, (C CB)alkylamino(C,-Cβ)alkyl, ((C1-Cβ)alkylamino)2(C,-Cβ)alkyl, R17CO(C,-Cβ)alkyl wherein R17 is R O or R7R8N wherein R7, R8 and R14 are as defined above; or R18(C,-Cβ)alkyl wherein R18 is piperazinyl, (C1-C10)acylpiperazinyl, (Cβ-C,0)arylpiperazinyl, (C5- C9)heteroarylpiperazinyl,(C1-Ce)alkylpiperazinyl,(C6-C10)aryI(C,-C6)alkylpiperazinyl,(C6- CgJheteroary C^CgJalkylpiperazinyl, morpholinyl, thiomorphoiinyl, piperidinyl, pyrrolidinyl, piperidyl, (CT-CgJalkylpiperidyl, (C„-C,0)ary!piperidyl, (C5- C9)heteroarylpiperidyl, (Cβ-C10)aryl(C1-Cβ)alkylpiperidyl, (Cg-CgJheteroary C,- Cg)alkylpiperidyl or (C,-C10)acylpipβridyl; or R3 and R4 may be taken together to form a (C3-Cβ)cycloalkyl, oxacyclohexyl, thiocyclohexyl, indanyl or tetralinyl ring or a group of the formula
Figure imgf000006_0003
wherein R21 is hydrogen, (C,-C10)acyl, (C,-Cβ)alkyl, (Cβ-C10)aryl(C1-Cg)alkyl, (C5- C9)heteroaryl(C1-C8)alkyi or (C1-Cβ)alkyisulfonyl; and Qis(C1-Cβ)aikyl,(Cfl-C10)aryl,(Cg-C10)aryloxy(Cβ-C10)aryl,(Cg-C,0)aryl(Cg-C10)aryl1
(C8-C,0)aryl(Cβ-C10)aryl(Cl-C8)alkyl, (C8-C10)aryloxy(C5-C9)heteroaryl, (C5-C9)heteroaryl,
(C1-Cβ)alkyl(Cβ-Cl 0)aryl,(C1-Cβ)alkoxy(Cg-C10)aryl,(Cg-C10)aryl(C1-Cβ)alkoxy(Cβ-C10)aryl,
(C8-C^Jary C^CgJalkoxytC CgJalkyl CB-C8JheteroaryloxytC8-C^Jaryl^C,^)^^^- C9)heteroaryl, (C,-Cβ)alkoxy(C5-C9)heteroaryl, (Ce-C10)aryl(C,-Ce)alkoxy(C5-C9)heteroaryl,
(C5-C9)heteroaryloxy(C5-C9)heteroaryl , (Cg-C10)aryloxy(C1-Cβ)alkyl1 (C5-
C9)heteroaryloxy(C1 -Cg)alkyl , (C, -Cβ)alkyl(Cβ-C, 0)aryloxy(Cβ-C, 0)aryl, (C, -Cβ)alkyl(C5-
C9)heteroaryloxy(Cβ-C10)aryl, (C,-Ce)alkyl(Ce-C10)aryloxy(C5-C9)heteroaryl, (Cr
Cg)alkoxy(Cβ-C10)aryloxy(Cβ-C10)aryl, (C,-Cβ)alkoxy(C5-C9)heteroaryloxy(Cβ-C10)aryl or (C,-C8)alkoxy(Cβ-C10)aryloxy(C5-C9)heteroaryl wherein each aryl group is optionally substituted byfluoro, chloro, bromo, (CrCβ)alkyl,
Figure imgf000007_0001
with the proviso that X must be substituted when defined as azetidinyi, pyrrolidinyl, moφholinyl, thiomorphoiinyl, indolinyl, isoindolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, piperazinyl, (CT-C^acylpiperazinyl, (C,-Cβ)alkylpiperazinyl, (Cβ- C10)arylpiperazinyl, (C5-C9)heteroarylpiperazinyi or a bridged diazabicycloalkyl ring.
The term "alkyl", as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof.
The term "alkoxy", as used herein, includes O-alkyl groups wherein "alkyl" is defined above.
The term "aryl", as used herein, unless otherwise indicated, includes an organic radical derived from an aromatic hydrocarbon by removal of one hydrogen, such as phenyl or naphthyl, optionally substituted by 1 to 3 substituents selected from the group consisting of fluoro, chloro, trifluoromβthyl, (CrCβ)alkoxy, (Cβ-C10)aryloxy, trifluoromethoxy, difluoromβthoxy and (C1-Cβ)alkyl.
The term "heteroaryl", as used herein, unless otherwise indicated, includes an organic radical derived from an aromatic heterocyclic compound by removal of one hydrogen, such as pyridyl, furyl, pyroyl, thienyl, isothiazolyl, imidazolyl, benzimidazolyl, tetrazolyl, pyrazinyl, pyrimidyl, quinoiyl, isoquinolyl, benzofuryl, isobenzofuryl, benzothienyl, pyrazolyl, indolyl, isoindolyl, purinyl, carbazolyl, isoxazolyl, thiazolyl, oxazolyl, benzthiazolyl or benzoxazolyl, optionally substituted by 1 to 2 substituents selected from the group consisting of fluoro, chloro, trifluoromethyl, (C,-Cθ)alkoxy, (Ce- C10)aryloxy, trifluoromethoxy, difluoromethoxy and (C1-Cβ)alkyl. The term "acyl", as used herein, unless otherwise indicated, includes a radical of the general formula RCO wherein R is alkyl, alkoxy, aryl, aryialkyl or arylalkyloxy and the terms "alkyl" or "aryl" are as defined above.
The term "acyloxy", as used herein, includes O-acyl groups wherein "acyl" is defined above.
The term "D- or L-amino acid", as used herein, unless otherwise indicated, includes glycine, alanine, valine, leucine, isoleucine, phenylaianine, asparagine, glutamine, tryptophan, proline, serine, threonine, tyrosine, hydroxyproline, cysteine, cystine, methionine, aspartic acid, glutamic acid, lysine, arginine or histidine. The compound of formula I may have chiral centers and therefore exist in different enantiomeric forms. This invention relates to all optical isomers and stereoisomers of the compounds of formula I and mixtures thereof.
Preferred compounds of formula I include those wherein n is 2.
Other preferred compounds of formula I include those wherein either R3 or R4 is not hydrogen.
Other preferred compounds of formula I include those wherein Ar is (C,- Cβ)alkoxy(Cβ-C10)aryUCg-Cl0)aryl(C Cβ)alkoxy(Cg-C10)aryl4-fluorophenoxy(Cβ-C,0)aryl, 4-fluorobenzyloxy(Cβ-C10)aryl or (CrCg)alkyl(Cfl-C10)aryloxy(Cg-C10)aryl.
Other preferred compounds of formula I include those wherein X is indolinyl or piperidinyl.
More preferred compounds of formula I include those wherein n is 2; either R3 or R4 is not hydrogen; Ar is (C Cβ)alkoxy(Cβ-C,0)aryl, (Cβ-C,0)aryl(C1-Cβ)alkoxy(Cβ- C10)aryl, 4-fluorophenoxy(Cβ-C10)aryl, 4-fluorobenzyloxy(Cβ-C10)aryl or (C,-Cβ)alkyl(Cβ- C10)aryloxy(C8-C10)aryl; and X is indolinyl or piperidinyl. Specific preferred compounds of formula I include the following:
3-[(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzenesulfonyl)-amino]- propionic acid indan-5-yl ester;
Acetic acid 1-{3-[(1 -hydroxycarbamoyl-2-methylpropyl)-(4-methoxy-benzene- sulfonyl)-amino]propionyl}piperidin-4-yl ester; 2-Cyclohexyl-N-hydroxy-2- [ [3-(4-hydroxypiperidin- 1 -yl)-3-oxo- propyl]-(4-methoxy-benzenesulfonyl)amino]acetamide;
Benzoic acid 1 -{3-[(1 -hydroxycarbamoyl-2-methylpropyl)-(4-methoxy-benzene- sulfonyl)amino]propionyl}piperidin-4-yl ester; N-Hydroxy-2-[[3-(4-hydroxypiperidin-1-yl)-3-oxopropylj-(4-methoxy- benzenesulfonyl)amino]-3-methylbutyramide;
1-{3-[(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidine-4-carboxyiic acid; 1-{3-[(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzenesulfonyl)- amino]propionyl}piperidine-4-carboxylic acid ethyl ester;
2-Cyclohexyl-N-hydroxy-2-{(4-methoxybenzenesulfonyl)-[3-(4-methyl- aminopiperidin-1-yl)-3-oxopropyl]amino}acetamide;
3-(4-Chlorophenyl)-N-hydroxy-2-{(4-methoxybenzenesulfonyl)- [3-(4-methylaminopiperidin-1 -yl)-3-oxopropyl]amino}propionamide;
3-Cyclohexyl-N-hydroxy-2-{(4-methoxybenzenesulfonyl)-[3-(4-methyl- aminopiperidin-1-yl)-3-oxopropyl]amino}propionamide;
N-Hydroxy-2-[{3-[4-(2-hydroxy-2-methylpropyl)piperazin-1-yl]- 3-oxopropyl}-(4-methoxy-benzenesulfonyl)amino]-3-methylbutyramide; 2,2-Dimethylpropionic acid 2-(4-{3-[(1-hydroxycarbamoyl-2-methylpropyl)-(4- methoxy-benzenesulfonyl)amino]propionyl}piperazin-1 -yl)ethyl ester; and
Benzoicacid2-(4-{3-[(1-hydroxycarbamoyl-2-methylpropyl)-(4-methoxybenzene- sulfonyl)-amino]propionyl}piperazin-1 -yl)-ethyl ester.
Other specific compounds of formula I include the following: 2-Cyclohexyl-N-hydroxy-2-[{3-[4-(2-hydroxyethyl)piperazin-
1-yl]-3-oxopropyl}-(4-methoxybenzenesulfonyl)amino]acetamide;
N-Hydroxy-2-[{3-[5-(2-hydroxyethyl)-2,5-diazabicyclo[2.2.1]- hept-2-yl]-3-oxopropyl}-(4-methoxybenzenesulfonyl)amino]-3-methylbutyramide;
2-{(4-Benzyloxybenzenesulfonyl)-[3-(4-hydroxypiperidin-1-yl)- 3-oxopropyl]amino}-N-hydroxy-3-methylbutyramide;
2-Cyclohexyl-2-{[4-(4-fluorophenoxy)benzenesulfonyl]-[3-(4-hydroxy- piperidin-1-yl)-3-oxopropyl]-amino}-N-hydroxyacetamide;
2-{[4-(4-Butylphenoxy)benzenesulfonyl]-[3-(4-hydroxypiperidin- 1-yl)-3-oxopropyl]-amino}-N-hydroxy-3-methylbutyramide; 1-{(4-Methoxybenzenesulfonyl)-[3-(4-methylaminopiperidin-1-yl)-3-oxo- propyl]amino}-cyclopentanecarboxyiic acid hydroxyamide;
4-{3-[(1-Hydroxycarbamoyl-2-methylpropyl)-(4-methoxybenzene- sulfonyl)amino]-propionyl}piperazine-2-carboxylic acid ethyl ester; 3- [ (Cycloh exylhyd roxycarbamoyl methyl)- (4-met ho xybenzene- sulfonyl)amino]propionic acid ethoxycarbonytoxymethyl ester;
3-[(1 -Hydroxycarbamoylpentyl)-(4-methoxybenzenesulfonyl)amino]propionic acid ethoxycarbonyloxymethyi ester; 3 - [ [ 4 - ( 4 - F l u o ro b e n zy l oxy ) - b e nze n es u lf o n y l ] - ( 1 - h yd rox y - carbamoyl-2-methyl-propyl)-amino]-propionic acid ethoxycarbonyloxymethyi ester; and
3-[[4-(4-Fluorophenoxy)-benzenesulfonylJ-(1 -hydroxycarbamoyl-2- methyl-propyl)-amino]-propionic acid ethoxycarbonyloxymethyi ester.
The present invention also relates to a pharmaceutical composition for (a) the treatment of a condition selected from the group consisting of arthritis, cancer, synergy with cytotoxic anticancer agents, tissue ulceration, macular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, in combination with standard NSAID'S and analgesics and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of tumor necrosis factor (TNF) or (b) the inhibition of matrix metalloproteinases or the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising an amount of a compound of formula I or a pharmaceutically acceptable salt thereof effective in such treatments and a pharmaceutically acceptable carrier.
The present invention also relates to a method for the inhibition of (a) matrix metalloproteinases or (b) the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising administering to said mammal an effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof.
The present invention also relates to a method for treating a condition selected from the group consisting of arthritis, cancer, tissue ulceration, macular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, compounds of formula I may be used in combination with standard NSAID'S and analgesics and in combination with cytotoxic anticancer agents, and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising administering to said mammal an amount of a compound of formula I or a pharmaceutically acceptable salt thereof effective in treating such a condition. Detailed Description of the Invention The following reaction Schemes illustrate the preparation of the compounds of the present invention. Unless otherwise indicated n, R3, R4, X and Ar in the reaction Schemes and the discussion that follow are defined as above. Scheme 1
Figure imgf000011_0001
V I I V I
Figure imgf000011_0002
I V
I I I Scheme 1 cont'd
Figure imgf000012_0001
r
III II
Figure imgf000012_0002
I
Scheme 2
Figure imgf000013_0001
VI
Figure imgf000013_0002
VIII
20
Figure imgf000013_0003
IX
30
IV Scheme 2 (continued) COOH
R
Figure imgf000014_0001
r
10
IV
15
ln reaction 1 of Scheme 1, the amino acid compound of formula VII, wherein R16 is (C1-Cβ)alkyl, benzyl, allyl or tert-butyl, is converted to the corresponding compound of formula VI by reacting VII with a reactive functional derivative of an arylsulfonic acid compound, such as an aryisulfonyl chloride, in the presence of a base, such as triethylamine, and a polar solvent, such as tetrahydrofuran, dioxane, water or acetonitrile, preferably a mixture of dioxane and water. The reaction mixture is stirred, at room temperature, for a time period between about 10 minutes to about 24 hours, preferably about 60 minutes.
In reaction 2 of Scheme I, the aryisulfonyl amino compound of formula VI, wherein R16 is
Figure imgf000015_0001
benzyl, allyl or tert-butyl, is converted to the corresponding compound of formula V, wherein n is 1 , 3, 4, 5 or 6, by reacting VI with a reactive derivative of an alcohol of the formula
O
II R17-O-C-(CH2)n-OH such as the chloride, bromide or iodide derivative, preferably the iodide derivative, wherein the R17 protecting group is
Figure imgf000015_0002
benzyl, allyl or tert-butyl, in the presence of a base such as potassium carbonate or sodium hydride, preferably sodium hydride, and a polar solvent, such as dimethylformamide. The reaction mixture is stirred, at room temperature, for a time period between about 60 minutes to about 48 hours, preferably about 18 hours. The R17 protecting group is chosen such that it may be selectively removed in the presence of and without loss of the R16 protecting group, therefore, R17 cannot be the same as R. Removal of the R17 protecting group from the compound of formula V to give the corresponding carboxylic acid of formula IV, in reaction 3 of Scheme J., is carried out under conditions appropriate for that particular R17 protecting group in use which will not affect the R1S protecting group. Such conditions include; (a) saponification where R17 is
Figure imgf000015_0003
and R is tert-butyl, (b) hydrogenolysis where R17 is benzyl and R1 β is tert-butyl or (C,-Cθ)alkyl, (c) treatment with a strong acid, such as trifluoroacβtic acid or hydrochloric acid where R17 is tert- butyl and R16 is (CrCβ)alkyl, benzyl or allyl, or (d) treatment with tributyltinhydride and acetic acid in the presence of catalytic bis(triphenylphosphine) palladium (II) chloride where R17 is allyl and R is
Figure imgf000015_0004
benzyl or tert-butyl.
In reaction 4 of Scheme 1, the carboxylic acid of formula IV is condensed with a compound of the formula HX or the salt thereof, wherein X is as defined above, to give the corresponding amide compound of formula III. The formation of amides from primary or secondary amines or ammonia and carboxylic acids is achieved by conversion of the carboxylic acid to an activated functional derivative which subsequently undergoes reaction with a primary or secondary amine or ammonia to form the amide. The activated functional derivative may be isolated prior to reaction with the primary or secondary amine or ammonia. Alternatively, the carboxylic acid may be treated with oxalyl chloride or thionyl chloride, neat or in an inert solvent, such as chloroform, at a temperature between about 25°C to about 80°C, preferably about 50 °C, to give the corresponding acid chloride functional derivative. The inert solvent and any remaining oxalyl chloride or thionyl chloride is then removed by evaporation under vacuum. The remaining acid chloride functional derivative is then reacted with the primary or secondary amine or ammonia in an inert solvent, such as methylene chloride, to form the amide. The preferred method for the condensation of the carboxylic acid of formula IV with a compound of the formula HX, wherein X is as defined above, to provide the corresponding compound of formula III is the treatment of IV with (benzotriazol-l-yloxy)tris(dimethylamino) phosphonium hexafluorophosphate in the presence of a base, such as triethylamine, to provide the benzotriazol-1-oxy ester in situ which, in turn, reacts with the compound of the formula HX, in an inert solvent, such as methylene chloride, at room temperature to give the compound of formula III. Removal of the R protecting group from the compound of formula III to give the corresponding carboxylic acid of formula II, in reaction 5 of Scheme 1, is carried out under conditions appropriate for the particular R'β protecting group in use. Such conditions include; (a) saponification where R is lower alkyl, (b) hydrogenolysis where R is benzyl, (c) treatment with a strong acid, such as trifluoroacetic acid or hydrochloric acid, where R is tert-butyl, or (d) treatment with tributyltinhydride and acetic acid in the presence of catalytic bis(triphenylphosphine) palladium (II) chloride where R is allyl.
In reaction 6 of Scheme 1, the carboxylic acid compound of formula II is converted to the hydroxamic acid compound of formula I by treating II with 1-(3- dimethylaminopropyl)-3-ethylcarbodiimide and 1 -hydroxybenztriazole in a polar solvent, such as dimethylformamide, followed by the addition of hydroxylamine to the reaction mixture after a time period between about 15 minutes to about 1 hour, preferably about 30 minutes. The hydroxylamine is preferably generated in situ from a salt form, such as hydroxylamine hydrochloride, in the presence of a base, such as N- methylmorpholine. Alternatively, a protected derivative of hydroxylamine or its salt form, where the hydroxy! group is protected as a tert-butyl, benzyl, allyl or trimethylsilylether, may be used in the presence of (benzotriazol-1 -yioxy)tris-(dimethylamino) phosphonium hexafluorophosphate and a base, such as N-methylmorpholine. Removal of the hydroxylamine protecting group is carried out by hydrogenolysis for a benzyl protecting group or treatment with a strong acid, such as trifluoroacetic acid, for a tert-butyl protecting group. The allyl protecting group may be removed by treatment with tributyltinhydride and acetic acid in the presence of catalytic bis(triphenylphosphine) palladium (II) chloride. The 2-trimethylsilylethyl ether may be removed by reaction with a strong acid, such as trifluoroacetic acid or by reaction with a fluoride source such as boron trifiuoride etherate. N,0-bis(4-methoxybenzyl)hydroxyl-amine may also be used as the protected hydroxylamine derivative where deprotection is achieved using a mixture of methanesulfonic acid and trifluoroacetic acid. In reaction 1 of Scheme 2, the arylsulfonyiamino compound of formula VI, wherein R1 β is (C,-Cβ)alkyl, benzyl or tert-butyl, is converted to the corresponding compound of formula VIII by reacting VI with a reactive functional derivative, such as the halide, preferably the iodide derivative, of 3-(tert-butyldimethylsilyloxy)-1-propanol in the presence of a base, such as sodium hydride. The reaction is stirred in a polar solvent, such as dimethylformamide, at room temperature, for a time period between about 2 hours to about 48 hours, preferably about 18 hours.
In reaction 2 of Scheme 2, the compound of formula VIII is converted to the alcohol compound of formula IX by treatment of VIII with an excess of an acid, such as acetic acid, or an excess of a Lewis acid, such as boron trifiuoride etherate. When using an acid, such as acetic acid, water is added and a water-soluble cosolvent, such as tetrahydrofuran, can be added to promote solubility. The reaction is stirred for a time period between about 18 hours to about 72 hours, preferably about 24 hours, at a temperature between about room temperature to about 60° C, preferably about 50° C. When using a Lewis acid, such as boron trifiuoride etherate, the reaction is stirred in a solvent, such as methylene chloride, for a time period between about 10 minutes to about 6 hours, preferably about 20 minutes, at a temperature between about -20° C to about room temperature, preferably about room temperature. ln reaction 3 of Scheme 2, the alcohol compound of formula IX is oxidized to the carboxylic acid compound of formula IV, wherein n is 2, by reacting IX with an excess of sodium periodate and a catalytic amount of ruthenium trichloride in a solvent mixture consisting of acetonitrile, water and carbon tetrachloride, at room temperature, for a time period between about 1 hour to about 24 hours, preferably about 4 hours. The compound of formula IV, wherein n is 2, is further reacted to provide the hydroxamic acid compound of formula I, wherein n is 2, according to the procedure described above in reactions 4, 5 and 6 of Scheme 1..
Pharmaceutically acceptable salts of the acidic compounds of the invention are salts formed with bases, namely cationic salts such as alkali and alkaline earth metal salts, such as sodium, lithium, potassium, calcium, magnesium, as well as ammonium salts, such as ammonium, trimethyi-ammonium, diethylammonium, and tris-
(hydroxymethyl)-methylammonium slats.
Similarly acid addition salts, such as of mineral acids, organic carboxylic and organic sulfonic acids e.g. hydrochloric acid, methanesulfonic acid, maleic acid, are also possible provided a basic group, such as pyridyl, constitutes part of the structure.
The ability of the compounds of formula I or their pharmaceutically acceptable salts (hereinafter also referred to as the compounds of the present invention) to inhibit matrix metalloproteinases or the production of tumor necrosis factor (TNF) and, consequently, demonstrate their effectiveness for treating diseases characterized by matrix metalloproteinase or the production of tumor necrosis factor is shown by the following in vitro assay tests.
Biological Assay
Inhibition of Human Collagenase (MMP-1) Human recombinant collagenase is activated with trypsin using the following ratio: 10 μg trypsin per 100 μg of collagenase. The trypsin and collagenase are incubated at room temperature for 10 minutes then a five fold excess (50 //g/10 μg trypsin) of soybean trypsin inhibitor is added.
10 mM stock solutions of inhibitors are made up in dimethyl sulfoxide and then diluted using the following Scheme:
10 mM > 120 /M > 12 JL/M > 1.2 μM > 0.12 μM
Twenty-five microliters of each concentration is then added in triplicate to appropriate wells of a 96 well microfluor plate. The final concentration of inhibitor will be a 1 :4 dilution after addition of enzyme and substrate. Positive controls (enzyme, no inhibitor) are set up in wells D1-D6 and blanks (no enzyme, no inhibitors) are set in wells D7-D12.
Collagenase is diluted to 400 ng/ml and 25 μ\ is then added to appropriate wells of the microfluor plate. Final concentration of collagenase in the assay is 100 ng/ml.
Substrate (DNP-Pro-Cha-Gly-Cys(Me)-His-Ala-Lys(NMA)-NH2) is made as a 5 mM stock in dimethyl sulfoxide and then diluted to 20 μM in assay buffer. The assay is initiated by the addition of 50 μ\ substrate per well of the microfluor plate to give a final concentration of 10 μM.
Fluorescence readings (360 nM excitation, 460 nm emission) were taken at time 0 and then at 20 minute intervals. The assay is conducted at room temperature with a typical assay time of 3 hours.
Fluorescence vs time is then plotted for both the blank and collagenase containing samples (data from triplicate determinations is averaged). A time point that provides a good signal (the blank) and that is on a linear part of the curve (usually around 120 minutes) is chosen to determine IC50 values. The zero time is used as a blank for each compound at each concentration and these values are subtracted from the 120 minute data. Data is plotted as inhibitor concentration vs % control (inhibitor fluorescence divided by fluorescence of collagenase alone x 100). IC50's are determined from the concentration of inhibitor that gives a signal that is 50% of the control.
If IC60's are reported to be <0.03 μM then the inhibitors are assayed at concentrations of 0.3 μM, 0.03 μM, 0.03 μM and 0.003 μM. Inhibition of Gelatinase (MMP-2)
Inhibition of gelatinase activity is assayed using the Dnp-Pro-Cha-Gly-Cys(Me)- His-Ala-Lys(NMA)-NH2 substrate (10 μM) under the same conditions as inhibition of human collagenase (MMP-1).
72kD gelatinase is activated with 1 mM APMA (p-aminophenyl mercuric acetate) for 15 hours at 4°C and is diluted to give a final concentration in the assay of 100 mg/ml. Inhibitors are diluted as for inhibition of human collagenase (MMP-1) to give final concentrations in the assay of 30 μM, 3 μM, 0.3 μM and 0.03 μM. Each concentration is done in triplicate. Fluorescence readings (360 nm excitation, 460 emission) are taken at time zero and then at 20 minutes intervals for 4 hours.
IC50's are determined as per inhibition of human collagenase (MMP-1). If IC50's are reported to be less than 0.03 μM, then the inhibitors are assayed at final concentrations of 0.3 μM, 0.03 μM, 0.003 μM and 0.003 μM.
Inhibition of Stromelvsin Activity (MMP-3) Inhibition of stromelysin activity is based on a modified spectrophotometric assay described by Weingarten and Feder (Weingarten, H. and Feder, J., Spectrophotometric Assay for Vertebrate Collagenase, Anal. Biochem. 147, 437-440 (1985)). Hydrolysis of the thio peptolide substrate [Ac-Pro-Leu-Gly-
SCH[CH2CH(CH3)2]CO-Leu-G!y-OC2H5] yields a mercaptan fragment that can be monitored in the presence of Ellman's reagent.
Human recombinant prostromelysin is activated with trypsin using a ratio of 1 μl of a 10 mg/ml trypsin stock per 26 μg of stromelysin. The trypsin and stromelysin are incubated at 37 °C for 15 minutes followed by 10 μl of 10 mg/ml soybean trypsin inhibitor for 10 minutes at 37° C for 10 minutes at 37° C to quench trypsin activity.
Assays are conducted in a total volume of 250 μl of assay buffer (200 mM sodium chloride, 50 mM MES, and 10 mM calcium chloride, pH 6.0) in 96-well microliter plates. Activated stromelysin is diluted in assay buffer to 25 μg/ml. Ellman's reagent (3-Carboxy-4-nitrophenyl disulfide) is made as a 1 M stock in dimethyl formamide and diluted to 5 mM in assay buffer with 50 μl per well yielding at 1 mM final concentration.
10 mM stock solutions of inhibitors are made in dimethyl sulfoxide and diluted serially in assay buffer such that addition of 50 μL to the appropriate wells yields final concentrations of 3 μM, 0.3 μM, 0.003 μM, and 0.0003 μM. All conditions are completed in triplicate.
A 300 mM dimethyl sulfoxide stock solution of the peptide substrate is diluted to 15 mM in assay buffer and the assay is initiated by addition of 50 μl to each well to give a final concentration of 3 mM substrate. Blanks consist of the peptide substrate and Ellman's reagent without the enzyme. Product formation was monitored at 405 nm with a Molecular Devices UVmax plate reader.
ICS0 values were determined in the same manner as for collagenase. Inhibition of MMP-13 Human recombinant MMP-13 is activated with 2mM APMA (p-aminophenyl mercuric acetate) for 1.5 hours, at 37°C and is diluted to 400 mg/ml in assay buffer (50 mM Tris, pH 7.5, 200 mM sodium chloride, 5mM calcium chloride, 20μM zinc chloride, 0.02% brij). Twenty-five microliters of diluted enzyme is added per well of a 96 well microfluor plate. The enzyme is then diluted in a 1 :4 ratio in the assay by the addition of inhibitor and substrate to give a final concentration in the assay of 100 mg/ml.
10 mM stock solutions of inhibitors are made up in dimethyl sulfoxide and then diluted in assay buffer as per the inhibitor dilution scheme for inhibition of human collagenase (MMP-1): Twenty-five microliters of each concentration is added in triplicate to the microfluor plate. The final concentrations in the assay are 30 μM, 3μM,
0.3 μM, and 0.03 μM.
Substrate (Dnp-Pro-Cha-Gly-Cys(Me)-His-Ala-Lys(NMA)-NH2) is prepared as for inhibition of human collagenase (MMP-1) and 50 μl is added to each well to give a final assay concentration of 10 μM. Fluorescence readings (360 nM excitation; 450 emission) are taken at time 0 and every 5 minutes for 1 hour.
Positive controls consist of enzyme and substrate with no inhibitor and blanks consist of substrate only.
IC50's are determined as per inhibition of human collagenase (MMP-1). If ICB0's are reported to be less than 0.03 μM, inhibitors are then assayed at final concentrations of 0.3 μM, 0.03 μM, 0.003 μM and 0.0003 μM.
Inhibition of TNF Production The ability of the compounds or the pharmaceutically acceptable salts thereof to inhibit the production of TNF and, consequently, demonstrate their effectiveness for treating diseases involving the production of TNF is shown by the following jn vitro assay:
Human mononuclear cells were isolated from anti-coagulated human blood using a one-step Ficoll-hypaque separation technique. (2) The mononuclear cells were washed three times in Hanks balanced salt solution (HBSS) with divalent cations and resuspended to a density of 2 x 10s /ml in HBSS containing 1% BSA. Differential counts determined using the Abbott Cell Dyn 3500 analyzer indicated that monocytes ranged from 17 to 24% of the total cells in these preparations. 180μ of the cell suspension was aliquoted into flate bottom 96 well plates (Costar). Additions of compounds and LPS (100ng/ml final concentration) gave a final volume of 200μl. All conditions were performed in triplicate. After a four hour incubation at 37 °C in an humidified C02 incubator, plates were removed and centrifuged (10 minutes at approximately 250 x g) and the supernatants removed and assayed for TNFσ using the R&D ELISA Kit.
For administration to mammals, including humans, for the inhibition of matrix metalloproteinases or the production of tumor necrosis factor (TNF), a variety of conventional routes may be used including orally, parenteraily and topically. In general, the active compound will be administered orally or parenteraily at dosages between about 0.1 and 25 mg/kg body weight of the subject to be treated per day, preferably from about 0.3 to 5 mg/kg. However, some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.
The compounds of the present invention can be administered in a wide variety of different dosage forms, in general, the therapeutically effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight. For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelation and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration, the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof. In the case of animals, they are advantageously contained in an animal feed or drinking water in a concentration of 5- 5000 ppm, preferably 25 to 500 ppm.
For parenteral administration (intramuscular, intraperitoneal, subcutaneous and intravenous use) a sterile injectabie solution of the active ingredient is usually prepared. Solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed. The aqueous solutions should be suitably adjusted and buffered, preferably at a pH of greater than 8, if necessary and the liquid diluent first rendered isotonic. These aqueous solutions are suitable intravenous injection purposes. The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art. In the case of animals, compounds can be administered intramuscularly or subcutaneously at dosage levels of about 0.1 to 50 mg/kg/day, advantageously 0.2 to 10 mg/kg/day given in a single dose or up to 3 divided doses.
The present invention is illustrated by the following examples, but it is not limited to the details thereof.
EXAMPLE 1 2-Cvclohexγl-N-hvdroxy-2-{(4-methoxybenzene8ulfonylM3-(4-rnethyl-aminop|pβr idin-1-yD-3-oxopropyllamino>acetamide
(A) To a solution of D-cyclohexyigycine benzyl ester hydrochloride (17.0 grams, 59.9 mmol) and triethylamine (17.6 mL, 126.3 mmol) in water (60 mL) and 1 ,4-dioxane (100 mL) was added 4-methoxybenzenesulfonyl chloride (13.0 grams, 62.9 mmol). The mixture was stirred at room temperature for 16 hours and then most of the solvent was removed by evaporation under vacuum. The mixture was diluted with ethyl acetate and was washed successively with dilute hydrochloric acid solution, water, saturated sodium bicarbonate solution, and brine. The organic solution was dried over magnesium sulfate and concentrated to leave N-(4-methoxybenzenesulfonyl)-D-cyclohexylglycine benzyl ester as a white solid, 24.51 grams (99%). (B) N-(4-Methoxybenzenesulfonyl)-D-cyclohexylglycine benzyl ester (12.0 grams ,
29.16 mmol) was added to a suspension of sodium hydride (0.78 grams, 32.5 mmol) in dry N,N-dimethylformamide (100 ml) and, after 20 minutes, tert-butyl-(3-iodopropoxy)- dimethylsilane(9.2 grams, 30.6 mmol) was added. The resulting mixture was stirred at room temperature for 16 hours and was then quenched by addition of saturated ammonium chloride solution. The N,N-dimethylformamide was then removed by evaporation under vacuum. The residue was taken up in diethyi ether and washed successively with dilute hydrochloric acid solution, water and brine. After drying over magnesium sulfate, the diethyi ether was evaporated under vacuum to afford a yellow oil from which [[3-(tert-butyldimethylsilanyloxy)propyl](4-methoxy-benzenesulfonyl)- aminojcyclohexylacetic acid benzyl ester, a clear oil (13.67 grams, 79%), was isolated by flash chromatography on silica gel eluting with 10% ethyl acetate in hexane.
(C) To a solution of [[3-(tert-butyldimethylsilanyloxy)propyl](4-methoxybenzene- suifonyl)amino]cyclohexylacθtic acid benzyl ester (13.67 grams, 23.2 mmol) in methylene chloride (60 mL) at room temperature was added boron trifiuoride etherate (21 mL, 171 mmol). After 20 minutes, the reaction was quenched by addition of saturated ammonium chloride solution and subsequent addition of ethyl acetate and water. The organic phase was separated, washed with brine and dried over magnesium sulfate. Evaporation of the solvent under vacuum gave an oil from which cyclohexyl[(3 iydroxypropyl)(4-methoxy-benzenesulfonyl)amino]acetic acid benzyl ester, a clear oil (11.25 grams, 100%), was isolated by flash chromatography on silica gel eluting with 20% ethyl acetate in hexane and then 40% ethyl acetate in hexane.
(D) Cyclohexyl[(3-hydroxypropyl)(4-methoxybenzenesulfonyl)amino]acetic acid benzyl ester (45.8 grams, 96 mmol) and sodium periodate (92.6 grams, 433 mmol) were dissolved in a mixture of acetonitrilβ (345 mL), carbon tetrachloride (345 mL) and water (460 mL). While cooling in an ice bath, ruthenium trichloride monohydrate (4.4 grams, 21 mmol) was then added. The resulting mixture was mechanically stirred with ice bath cooling for 30 minutes. The bath was removed and stirring was continued at room temperature for 4 hours. The reaction mixture was diluted with ethyl acetate and filtered through diatomacβous earth. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and saturated brine. After drying over magnesium sulfate, the solvents were evaporated to give a dark oil from which 3-[(benzyloxycarbonylcyclohexylmethyl)- (4-methoxybenzenesulfonyl)amino]propionic acid, a white foam (28.1 grams, 60%), was isolated by flash chromatography on silica gel eluting sequentially with chloroform and 1% methanol in chloroform. (E) To a solution of 3-[(benzyloxycarbonylcyclohexylmethyl)(4-methoxy- benzenesulfonyl)-amino]propionic acid (1.57 grams, 3.21 mmol) in methylene chloride (45 mL) were added sequentially triethylamine (1.12 mL, 8.04 mmol), methylpiperidin-4-ylcarbamic acid tert-butyl ester (0.89 grams, 4.15 mmol) and (benzotriazol-1-yloxy)tris(dimethylamino)-phosphonium hexafluoroborate (1.56 grams, 3.53 mmol). The resulting mixture was stirred for 16 hours at room temperature and then diluted with methylene chloride. The solution was washed successively with 0.5 M hydrochloric acid solution, saturated sodium bicarbonate solution and brine. The solution was dried over magnesium sulfate and concentrated to yield an oil which was chromatographed on silica gel eluting with 50% ethyl acetate in hexane to afford [ { 3- [4-(tert-butoxycarbonylmethylamino)piperidin-1 -yl] -3-oxopropyl} (4-methoxybenze nesulfonyl)amino]cyclohexylacetic acid benzyl ester as an oil (1.89 grams, 86%).
(F) To a solution of [{3-[4-(tert-butoxycarbonylmethylamino)piperidin-1-yl]- 3-oxopropyl}(4-methoxybenzenesulfonyl)amino]cyclohexylaceticacid benzyl ester(1.89 grams, 2.76 mmol) in ethanol (90 mL) was added 10% palladium on activated carbon (0.32 grams). The mixture was agitated under 3 atmospheres hydrogen in a Parr shaker for 2 hours. The catalyst was removed by filtration through nylon (pore size 0.45 μm) and the solvent was evaporated leaving [{3-[4-(tert-butoxycarbonylmethyl- amino)piperidin-1-yl]-3-oxo-propyl}(4-methoxybenzenesulfonyl)amino]cyclohexylacetic acid as a white foam (1.65 grams, 100%).
(G) To a solution of [{3-[4-(tert-butoxycarbonylmethylamino)piperidin-1-yl]- 3-oxopropyl}(4-methoxybenzenesulfonyl)amino]cyclohexylaceticacid(1.65grams,2.76 mmol) in methylene chloride (30 mL) were added sequentially O-benzylhydroxylamine hydrochloride (0.47 grams, 2.94 mmol), triethylamine (1.25 mL, 9.0 mmol) and (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluoroborate (1.36 grams, 3.07 mmol). The resulting mixture was stirred for 24 hours at room temperature and then concentrated in vacuo. The residue was taken up in ethyl acetate and washed successively with 0.5 M hydrochloric acid solution, water, saturated sodium bicarbonate solution and brine. The solution was dried over magnesium sulfate and concentrated to yield an oil which was chromatographed on silica gel eluting with 40% hexane in ethylacetatetoafford(1-{3-[(benzyloxycarbamoylcyclohexylmethyl)(4-methoxybenzene- sulfonyl)amino]-propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl esteras a clear oil (1.86 grams, 96%). (H) To a solution of (1-{3-[(benzyloxycarbamoylcyclohexylmethyl)(4-methoxy- benzenesulfonyi)amino]propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester (1.86 grams, 2.65 mmol) in methanol (80 mL) was added 5% palladium on barium sulfate (0.85 grams). The mixture was agitated under 3 atmospheres hydrogen in a Parr shaker for 2.5 hours. The catalyst was removed by filtration through nylon (pore s ize 0.45 μ m ) and th e so lvent was evap o rated l eavi n g (1-{3-[(cyclohexylhydroxycarbamoylmethyl)(4-methoxybenzene-sulfonyl)amino]propio nyl}piperidin-4-yl)methylcarbamic acid tert-butyl esteras a white foam (1.53 grams, 95%).
The title compounds of examples 2-8 were prepared analogously to that described in Example 1 using D-valine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 2
Acetic acid 1 -f3-rf1 -hvdroxycarbarπoyl-2-methylpropyl)(4-methoxybenzβnβ- 8Ulfonyl)-aminolpropionyl>piperidin-4-yl ester
Coupled with acetic acid piperidin-4-yl ester. MS: 500 (M+1).
EXAMPLE 3 Butyric acid 1 -{ 3- f (1 -hyd roxycarbamoyl-2-methyl p ropyl )- (4- methoxy-benzenesulfonvh-aminolpropionylϊpiperidin-4-yl ester
Coupled with butyric acid piperidin-4-yl ester. MS: 528 (M+1).
EXAMPLE 4
Benzole acid 1 -I3-IΪ1 -hvdroxycarbamoyl-2-methylpropylH4-methoxy-benzene- 8ulfonyl)amino1propionyl>piperidin-4-yl ester
Coupled with benzoic acid piperidin-4-yl ester. MS: 562 (M+1). Analysis Calculated for C27H35N308S«1.75 H20: C, 54.67; H, 6.54; N, 7.08. Found: C, 54.52, H, 6.14; N,
7.85.
Example 5 N-Hvdroxy-2-rr3-(4-hydroxypiperidin-1-yl)-3-oxopropyll- 4-methoxy-benzene- sulfonyl>amino1-3-methylbutyramlde
Coupled with 4-hydroxypiperidine. MS: 458 (M+1). Analysis calculated for
C20H31N3O7S«H2O: C, 50.51; H, 6.99; N, 8.84. Found: C, 50.04; H, 6.84; N, 9.14. EXAMPLE 6 (1-f3-f -Hydroxycarbamoyl-2-methylpropyl)(4-methoxybenzenesulfonyl)-amino1 -propionyl>piperidin-4-yl)-methylcarbamic acid tert-butyl ester
Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. EXAMPLE 7
1- 3-r(1-Hvdroxycarbamoyl-2-methylpropyl)(4-methoxybenzene8ulfonv -amino1- propionyllpiperidine-4-carboxylic acid ethyl ester Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 513 (M+1).
EXAMPLE 8 (4-l3-f(1-Hvdroxycarbamoyl-2-methylpropyl) 4-methoxybenzenesulfonv -aminol- propionyl}piperazin-1-yl)-acetic acid ethyl ester
Coupled with piperazin-1-yiacetic acid ethyl ester. HRMS calculated for C23H37N408S(M+1 ): 529.2332. Found: 529.2366.
The title compounds of Examples 9-10 were prepared analogously to that described in Example 1 using D-leucine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 9 (1-l3-rπ-Hydroxycarbamoyl-3-methylbuty 4-methoxybenzene8ulfonyl)-amlno1- propioπyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. MS: 585 (M+1).
EXAMPLE 10 1-^3-r(1-Hydroxycarbamoyl-3-methylbutylM4-methoxybenzene8ulfonyn-amino]- propionyl piperidine-4-carboxylic acid ethyl eβter
Coupled with piperidine-4-carboxylic acid ethyl ester. Melting pont 78-80° C. MS: 528 (M+1).
The title compounds of Examples 11-13 were prepared analogously to that described in Example 1 using D-norleucine benzyl ester as the starting material in step A and the indicated amine or alcohol in step E. EXAMPLE 11 π-{3-f(1-HvdroxycarbamoylpeπtylH4-methoxybenzene8ulfonyl)aminol- propionyl>p|peridin-4-yl)methylcarbamic acid tert-butyl ester Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. EXAMPLE 12
1 -f 3-f (1 -Hvdroχycarbamoγlpentvh(4-methoxybenzenesulfonyl>amino1- proplonyl piperidine-4-carboxyllc acid ethyl ester
Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 528 (M+1).
EXAMPLE 13 3-f(1-Hydroxycarbamoylpentyl>(4-methoxybenzene8Ulfonyl)amino1-propionicacld indan-5-yl ester Coupled with 5-indanoi. MS: 505 (M+1).
The title compounds of Examples 14-15 were prepared analogously to that described in Example 1 using D-tert-butylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 14 (1-f3-ff1-Hydroxycarbamoyl-3.3-dimethylbutyl>-f4-methoxybenzene-8ulfonyπ- aminolproplonyl}piperldin-4-yDmethylcarbamic acid tert-butyl ester
Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. MS: 599 (M+1).
EXAMPLE 15 1-{3-ff1-Hydroxycarbamoyl-3.3-dlmethylbutyl>(4-methoxy-benzenesulfonyl>- amino1proplonyl>piperidine-4-carboxylic acid ethyl ester Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 542 (M+1).
The title compounds of Examples 16-18 were prepared analogously to that described in Example 1 using D-cyclohexylglycine benzyl ester as the starting material in step A and the indicated amine or alcohol in step E. EXAMPLE 16 2-Cyclohexyl-N-hvdroxy-2-rr3-(4-hydroxypiperidιn-1-yl)-3-oxopropyll-f4- methoxy-benzenesulfonyhaminolacetamide
Coupled with 4-hydroxypiperldine. MS: 498 (M+1). Analysis calculated for C23H35N3O7S*0.5H2O: C, 54.53; H, 7.16; N, 8.29. Found: C, 54.21 ; H, 6.98; N, 8.21.
EXAMPLE 17 1-f3-ffCvclohexylhvdroxycarbamoylmethyl)(4-methoxybenzene8ulfonv -aminolp ropionyl>piperidinβ-4-carboxylic acid ethyl ester
Coupled with piperidine-4-carboxyiic acid ethyl ester. MS: 554 (M + 1). Analysis calculated for C-^H^NAS^O.SH-O: C, 55.59; H, 7.16; N, 7.47. Found: C, 55.53; H, 7.18; N, 7.57.
EXAMPLE 18 3-f(CvcIohexylhvdroχγcarbamoylmethyl)-(4-methoxybenzenesulfonyl)-amino1- nropionic acid indan-5-vl ester Coupled with 5-indanol. MS: 531 (M+ 1). Analysis calculated for C27H34N2O7S«H2O: C, 59.11; H, 6.61; N, 5.10. Found: C, 59.40; H, 6.17; N, 5.06.
The title compounds of Examples 19-20 were prepared analogously to that described in Example 1 using D-phenylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 19 (l-{3-r l-Hvdroxvcarbamovl-2-phenvlethγlH4-methoxvbenzenesulfonvn-nιη^ny prnpinnγl)pipprtriin-4-vnmethvlrflrhflrηir acid tert-blltvl ester Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. MS: 619 (M+ l).
EXAMPLE 20 l-f3-r(l-Hvdroxvcarbamovl-2-phenvlethvl)-(4-methoχγbenzenesulfnnvn-aπιinn1- PrftP^ Yl}piPffrid„f1<^4-fnΦny lic acid ethvl ester
Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 561 (M+ l). The title compounds of Examples 21-22 were prepared analogously to that described in Example 1 using D-4-fluorophenylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 21
(l-(3-ri2- 4-FluoroDhenvl)-l-hvdroxvcarbamovlethvn-(4-methoxy-benzene- siilfnny^amiiiftlpropionv^pippridin-^Y ffi thYlyarbamic acid tert-butyl ester
Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester.
EXAMPLE 22 l-{3-rr2-(4-Fluorophenvn-l-hvdroxycarhamoylethvn(4-methoxy-benzenesulfonyl) aminn]prnpinnyl}piperidine-4-carboxylic acid ethyl ester
Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 580 (M+ l). Analysis calculated for
Figure imgf000030_0001
C, 55.95; H, 5.91; N, 7.25. Found: C, 55.72; H, 5.79; N, 7.08.
The title compounds of Examples 23-24 were prepared analogously to that described in Example 1 using D-4-homophenylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 23
(l-{3-rfl-Hvdroxvcflrbamovl-3-phenvlproPvl>-f4-methoxvbenzene-sulfonvn- aminnlprnpinny|}piperidin-4-vnmethvlcarhnmir acid tert-butvl ester
Coupled with tert-butyl ester using methyl-piperidin-4-ylcarbamic acid tert-butyl ester. MS: 633 (M+ l). EXAMPLE 24 l-l3-rQ-Hvdroxycarbamovl-3-phenvlpropvn- 4-methoxvbenzene-sulfnnγ aminnl- propionvUpiperidine-4-carboxvlic acid ethvl ester
Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 576 (M+ l). The title compounds of Examples 27-28 were prepared analogously to that described in Example 1 using D-O-tert-butylserine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 25 ri-{3-r(2-tert-Butoxv-l-hvdroxvcarbamovlethvn(4-methoxvbenzene-suIfonvn- aminolprnpinnvl}pippririm-4-vl)methvlcnrhflmir arid tert-butvl ester
Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. MS: 615 (M+l).
EXAMPLE 26 l-{3-r(2-tert-Butoxv-l-hvdroxvcarbamov]ethvl) 4-methoxv-benzenesulfonvn- flminn]prftpionyl}piperi(line-4-carboxylic acid ethyl ester
Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 558 (M+l).
The title compounds of Examples 27-28 were prepared analogously to that described in Example 1 using D-cyclohexylalanine benzyl ester as the starting material in step A and the indicated amine in step E.
EXAMPLE 27 ri-{3-r(2-Cvclohexvl-l-hvdroxvcarbamovlethvn-(4-methoxv-benzene-sulfonvn- ft iπftlPrftpffonvl piperidin-4-vl)methvlcarbamic acid tert-butvl ester
Coupled with methyl-piperidin-4-ylcarbamic acid tert-butyl ester. MS: 625 (M+l).
EXAMPLE 28 l-(3-r(2-Cvclohexvl-l-hvdroxvcarbamovlethvl)(4-methoxv-henzenesulfonvn- flnftlprftpiθr?γl}piperidine-4-carboxvlic acid ethvl ester Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 568 (M+l).
The title compounds of Examples 29-30 were prepared analogously to that described in Example 1 using D-1-naphthylalanine benzyl ester as the starting material in step A and the indicated amine in step E. EXAMPLE 29 (l-f3-r(l-Hvdroxvcarbamovl-2-naDhthalen-l-vlethvl)-(4-methoxv-benzenesul- ^"Y ^P^' ^lP^ ionv^ i^ridin^vnmethvlcflrhamic arid tert-butvl ester
Coupled with methylpiperidin-4-ylcarbamic acid tert-butyl ester. EXAMPLE 30 l- 3-rfl-Hvdroxvcarbamovl-2-naDhthalen-l-vlethvn(4-methoxvbenzene-sulfonvl) flmiηnlpr pinnvl}piDeridine-4-carboxvlic acidethvl ester
Coupled with piperidine-4-carboxylic acid ethyl ester. MS: 611 (M+l).
EXAMPLE 31 2-Cvclohexvl-N-hvdroxv-2-f(4-methoxvbenzenesulfonvn-r3-(4-mi>thvl-aminft- piperidin-l-vn-3-oxopropvn-aminolacetamide
A solution of l-{3-[(cyclohexylhydroxycarbamoylmethyl)(4-methoxybenzene- sulfonyl)-amino]-propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester (1.53 grams, 2.50 mmol) in methylene chloride (70 mL) was bubbled with hydrochloric acid gas for 2 minutes. The ice bath was removed and the reaction mixture was allowed to stir at room temperature for 1 hour. The solvent was evaporated and twice methanol was added to the residue and evaporated leaving 2-cyclohexyl-N-hydroxy-2-{(4-methoxybenzenesulfonyl)-[3-(4-methylaminopiperidin- l-yl)-3-oxopropyl]-amino}acetamide hydrochloride dihydrate as a white solid (1.22 grams, 90%). MS: 511 (M+ l). Analysis calculated for C24HMClN O6S»2H2O: C, 49.43; H, 7.43; N, 9.61. Found: C, 49.86; H, 7.23; N, 9.69.
The title compounds of Examples 32-41 were prepared analogously to that described in Example 33 using the starting material indicated.
EXAMPLE 32 N-Hvdroxy-2-((4-methoxvbeιιzent^lfonvlU3-(4-pτrtlιvlaminonineridin-l-vn-3- oγnprnpvη^inn}-3-methvlbutvrarnirie hydrochloride
Starting material: ( 1 - {3-[( l-hydroxycarbamoyl-2-methylpropyl)(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidin-4-yl)-methylcarbamic acid tert-butyl ester using methyl-piperidin-4-ylcarbamic acid tert-butyl. MS: 471 (M+ l). EXAMPLE 33
2-{r4-Methoxvbenzenesulfonvl)-r3-(4-methγlamin"piperidin-l-vn-3-oxo-propvn- aminn}-l-mPfhvlpentanoic acid hvHrnvvamide hydrochloride
Starting material: (l-{3-[(l-hydroxycarbamoyl-3-methylbutyl)(4-methoxybenzene- sulfonyl)amino]propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester. Melting Point 170-173°C. MS: 485 (M+l).
EXAMPLE 34 2-((4-Methoxvbenzenesulfonvn-f3-(4-methγlaminnpiPeridin-l-vl)-3-oxo-Dropv]l ^iw}!">Mnnif acid hydroxyamidP hydrochloride Starting material: (l-{3-[(l-hydroxycarbamoylpentyl)-(4-methoxybenzenesulfonyι)- amino]-propionyl}piperidin-4-yl)methyl-carbamic acid tert-butyl ester. MS: 485 (M+ l). Analysis calculated for C2,H34N4O6S»HCl«4H2O: C, 43.5; H, 7.48; N, 9.67. Found: C, 43.65; H, 7.03; N, 9.79.
EXAMPLE 35 2-{(4-Methoxvbeuzenesulfonvl)-r3-r4-methvlaιninopiperidin-l-vl)-3-oxo-propvn aminn}-4.4-HimPrhvlDentflnoic acid hvdrρvγnmiriι> hvrfrnrhlnriite Starting material: (l-{3-[(l-hydroxy-carbamoyl-3,3-dimethylbutyl)(4-methoxy- benzenesulfonyl)amino]propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester. MS: 499 (M+ l). EXAMPLE *
N-Hvdroxv-2-( 4-methoxvbenzenesuIfonvn-13-(4-methvlaminor)ir>eridin-l-vn-3- ff^ rft Yπa^^nftj^-phenvlpro innamidft hydrochloride Starting material : (l-{3-[(l -hydroxycarbamoyl-2-phenylethyl)(4-methoxybenzene- sulfonyl)-amino)propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester. MS: 519 (M+l).
EXAMPLE 37 3-(4-Fluorophenvn-N-hvdroxv-2-( 4-methoxvbenzenesulfonvn-f3-r4-mpthvlflmipn piperidin-l-vn-3-oxo-propγηBnιino>propiormynidι» hγHrochloride Starting material: (l-{3-[[2-(4-fluorophenyl)-l-hydroxycarbamoylethyl]-(4-methoxy- benzenesulfonyl)amino]propionyl}-piperidin-4-yl)methylcarbamic acid tert-butyl ester (Example 21). MS: 537 (M+ l). Analysis calculated for C25H33FN4O6S»HCl«2H2O: C, 49.30; H, 6.29; N, 9.20. Found: C, 49.14; H, 5.82; N, 9.24.
EXAMPLE 38 N-Hvαjoxv-2-n4-methoxvhetιzenesulfonvl)-f3-(4-methvlanιinnpipPridin-l-vn-3- Qχopropyll nιinQ}-4-phenylbwtyraιni e bγdrvchipri e
Starting material: (l-{3-[(l-hydroxycarbamoyI-3-phenylpropyl)(4-methoxy- benzenesulfonyl)amino]propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester. Melting Point 160-170°C. MS: 533 (M+l). Analysis calculated for C26H36N4O6S»HCl»1.5H2O: C, 52.38; H, 6.76; N, 9.40. Found: C, 52.25; H, 6.40; N, 9.00.
EXAMPLE 39 3-tert-Butoxv-N-hvdroxv-2-((4-metboxvbenzenesuLfonvn-r3-(4-methγl-aτninf - piperidin-1 -vn-3-nvnprnpvl -a ino}prnpionamide hydrochloride
Starting material: (l-{3-[(2-tert-butoxy-l-hydroxycarbamoylethyl)(4-methoxy- benzenesulfonyl)amino]propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester. MS: 515 (M+ l).
EXAMPLE 40
3-Cvclohexvl-N-hvdroxv-2-((4-methoxvbenzenesulfonvn-r3-(4-methγVaminn-
Diperidin-l-vl)-3-oynprnpγllaminn}prnpinnamidP hvrirnrhlnririe Starting material: (l-{3-[(2-cyclohexyl-l-hydroxycarbamoylethyl)-(4-methoxy- benzenesulfonyl)amino]propionyl}piperidin-4-yl)methylcarbamic acid tert-butyl ester. MS: 525 (M+ l).
EXAMPLE 41
N-Hvdroxv-2-{(4-methoxvbenzene.sulfonvn-l3- 4-methvlflminoninfridin-1-vll-3- nvnprnpvl1aminn}-3-nnphthalen-l-vlpronionamide hydrochloride
Starting material : (1 - {3-[( 1 -hydroxy-carbamoyl-2-naphthalen- 1 -ylethyι)-(4-methoxy- benzenesulfonyl)amino]propionyl}-piperidin-4-yl)methylcarbamic acid tert-butyl ester. MS: 569 (M+ l). EXAMPLE 42 l-lS-rfCvclohexy vdroxycarhamnvlmpthvn-f methoxvbenzenesiilfnnvn-aininol- propionyl}pippriding-4-carboxylic acid
To a solution of l-{3-[(cyclohexylhydroxycarbamoylmethyι)(4-methoxy- benzenesulfonyl)amino]propionyl}piperidine-4-carboxylic acid ethyl ester (0.62 grams, 1.16 mmol) (Example 17) in ethanol (45 mL) and water (5 mL) was added lithium hydroxide monohydrate (0.24 grams, 5.72 mmol). After stirring for 3 hours at room temperature ethanol-washed Amberlite IR-120 plus ion exchange resin (6 grams) was added. Stirring was continued for 15 minutes and then the mixture was filtered. The filtrate was concentrated in vacuo to give l-{3-[(cyclohexylhydroxycarbamoylmethyl)-(4-methoxy-benzenesulfonyl)amino]propi onyl}-piperidine-4-carboxylic acid monohydrate as a white solid (0.52 grams, 88%). MS: 526 (M+l). Analysis calculated for C24H35N3O,S»H-O: C, 53.03; H, 6.86; N, 7.73. Found: C, 53.53; H, 7.15; N, 7.70.
The title compounds of Examples 43-53 were prepared analogously to that described in Example 45 using the starting material indicated.
EXAMPLE 43 l-{3-r(l-Hvdroxycarbamovl-2-methvlpropvn(4-methoxvbenzen-»-sιιlfnnvnanιip l proDionyl}piperidintv4-carboxylic acid
Starting material : 1 - {3-[( 1 -hydroxycarbamoyl-2-methylpropyl)(4-methoxybenzene- sulfonyl)amino]propionyl}piperidine-4-carboxylic acid ethyl ester. MS: 486
(M+ l). EXAMPLE 44
(4- 3-rfl-Hvdroxγcarbam γl-2-n ethvlpropvlK4-methoχγbeιιzene-sιιlfnnvnaιninnl proDionvrtpiperazin-1-vnacetic cid
Starting material: (4-{3-[(l-hydroxycarbamoyl-2-methylpropyl)(4-methoxybenzene- sulfonyl)amino]-propionyl}piperazin-l-yl)acetic acid ethyl ester (Example 8). MS: 500 (M+ l). EXAMPLE 45 1- -[(l-Hvdroxvcarbamovl-3-methvlbutvn-(4-methnxvbenzenβ;ulff nyn-anι^nπ - proDionvl}piperidine-4-carboxvlic acid
Starting material: l-{3-[(l-hydroxycarbamoyl-3-methylbutyl)(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidine-4-carboxylic acid ethyl ester. Melting Point 118- 120°C. MS: 500 (M+l).
EXAMPLE 46 l-f3-r l-Hvdroxvcarbamoγlpentvn(4-methoxvbeuzeqes|ilfn γl)amino1-propionyl} pippririine-4-rarboxv]ic acid Starting material: l-{3-[(l-hydroxycarbamoylpentyl)(4-methoxybenzenesulfonyl)- amino]propionyl}piperidine-4-carboxylic acid ethyl ester. MS: 500 (M+ l).
EXAMPLE 47
Figure imgf000036_0001
minnlpr^pinηyl}piperidine-4-carhoxvlic acid Starting material: l-{3-[(l-hydroxycarbamoyl-3,3-dimethylbutyl)(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidine-4-carboxylic acid ethyl ester. MS: 514 (M+l).
EXAMPLE S l-f3-rri-Hvdroxycarbamovl-2-phenvlethvn-(4-methoxvbenzenesιιlfnnγn-fliτιin l- prnpinnyI}pippri ine-4-carboxvlic acid Starting material: l-{3-[(l-hydroxycarbamoyl-2-phenyl-ethyl)(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidine-4-carboxylic acid ethyl ester. MS: 534 (M+ l).
EXAMPLE 49 l- 3-rr2-(4-Fluorophenvl)-l-hvdroxvcarbamovlethγl 4-methoxvbenzene-sulfonvl) aminnlprπpinnv piperidine-4-carboxvlic acid Starting material: l-{3-[[2-(4-fluorophenyl)-l-hydroxycarbamoylethyl](4-methoxy- benzenesulfonyl)amino]propionyl}piperidine-4-carboxylic acid ethyl ester.
MS: 552 (M+ 1). Analysis calculated form C25H30FN3O8S»0.5H2O: C, 53.56; H, 5.57;
N, 7.50. Found: C, 53.53; H, 5.39; N, 7.28. EXAMPLE 50 l-{3-rfl-Hvdroxycarbamoyl-3-phenvlDropvn 4-methoxvbenzenesιιlfnnγl)-anιinnl- propiftnγl}pipgri ine-4-carboxvlic acid
Starting material : 1 - {3-[( 1 -hydroxycarbamoyl-3-phenyl-propyl)-(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidine-4-carboxylic acid ethyl ester. Melting Point 85- 92°C. MS: 598 (M+ l).
EXAMPLE 51 1 - (3- r ( 2-tert-Butox v- 1 -h vdrox vcarbamovleth vl) (4-methoxvbenzene-sulf onyl)- aminn1prnpinnvl>piperidine-4-carboxvlic acid Starting material: l-{3-[(2-tert-butoxy-l-hydroxycarbamoylethyl)(4-methoxy- benzenesulfonyl)-amino]propionyl}piperidine-4-carboxylic acid ethyl ester. MS: 529 (M+ l).
EXAMP E 52 l-{3-rr2-Cvclohexvl-l-hvdroxvcarbamovlethvl)f4-methoxvbenzene-sulfonvn- flminnlpropionyl}piperidine-4-carboxylic acid
Starting material: l-{3-[(2-cyclohexyl-l-hydroxycarbamoylethyl)(4-methoxy- benzenesulfonyl)amino]propionyl}piperidine-4-carboxylic acid ethyl ester. MS: 540 (M+l).
EXAMPLE 5 l-f3-r(l-Hvdroxvcarbamovl-2-naphthalen-l-vlethvn(4-methoxvbenzene-sulfonvn aminn1propinnvl}pippriHinP-4-carboxvlic acid
Starting material: 1 -{3-[( 1 -hydroxycarbamoyl-2-naphthalen- 1 -ylethyl)(4-methoxy- benzenesulfonyl)amino]propionyl}piperidine-4-carboxylic acidethyl ester.
MS: 584 (M+l). EXAMPLE 54
N-Hvdroxv-2-rl3-l4-(2-hvdroxvethvnDiDerazin-l-vll-3-oxoDroDvU-(4-methoxyben
7pnP^ιlfnnv^aminol-3-methvlbutvra ide
(A) To a solution of 2-[(2-carboxyethyl)-(4-methoxybenzenesulfonyl)amino]-3- methylbutyric acid benzyl esterφrepared staring from D-valine benzyl ester according to the procedure of Example 1, steps A to D) (1.35 grams, 3.0 mmol) in methylene chloride (45 mL) were added sequentially triethylamine (0.92 mL, 6.9 mmol), 2-piperazin-l-ylethanol (0.43 grams, 3.3 mmol) and (benzotriazol-l-yloxy)tris- (dimethylamino)-phosphonium hexafluoroborate (1.53 grams, 3.45 mmol). The resulting mixture was stirred for 16 hours at room temperature and then concentrated in vacuo. The residue was taken up in ethyl acetate and washed with saturated sodium bicarbonate solution and brine. The solution was dried over magnesium sulfate and concentrated to yield an oil which was chromatographed on silica gel eluting with 5% methanol in chloroform to afford 2-[{3-[4-(2-hydroxyethyl)piperazin-l-yl]-3-oxo- propyl}(4-methoxybenzenesulfonyl)amino]-3-methylbutyric acid benzyl esteras an oil (1.40 grams, 83%). Conversion to the hydrochloride salt was subsequently carried out using anhydrous hydrochloric acid in cold (0*C) methylene chloride.
(B) To a solution of 2-[{3-[4-(2-hydroxyethyl)piperazin-l-yl]-3-oxopropyl}- (4-methoxy-benzenesulfonyl)amino]-3-methylbutyric acid benzyl ester hydrochloride (1.49 grams, 2.49 mmol) in ethanol (80 mL) was added 10% palladium on activated carbon (0.11 grams). The mixture was agitated under 3 atmospheres hydrogen in a Parr shaker for 16 hours. The catalyst was removed by filtration through nylon (pore size 0.45 μm) and the solvent was evaporated leaving 2 - [ { 3 - [ 4 - ( 2 - h y d r o x y e t h y l ) p i p e r a z i n - l - y l ] - 3 - o x o - propyl}(4-methoxybenzenesulfonyl)amino]-3-methylbutyric acid hydrochloride as a white solid (1.16 grams, 92%). (C) To a solution of 2-[{3-[4-(2-hydroxyethyl)piperazin-l-yl]-3-oxo- propyl}(4-methoxy-benzenesulfonyl)amino]-3-methylbutyric acid hydrochloride (1.10 grams, 2.17 mmol) in methylene chloride (50 mL) and N,N-dimethylformamide (0.5 mL) were added sequentially O-benzylhydroxylamine hydrochloride (0.41 grams, 2.60 mmol), triethylamine (0.91 L, 6.5 mmol) and (benzotriazol-l-yloxy)tris- (dimethylamino)-phosphonium hexafluoroborate (1.20 grams, 2.71 mmol). The resulting mixture was stirred for 16 hours at room temperature and then concentrated in vacuo. The residue was taken up in ethyl acetate and washed successively with saturated sodium bicarbonate solution, water and brine. The solution was dried over magnesium sulfate and concentrated to yield an oil which was chromatographed on silica gel eluting with 3% methanol in chloroform to afford N-benzyloxy- 2-[{3-[4-(2-hydroxyethyl)piperazin-l-yl]-3-oxopropyl}(4-methoxybenzenesulfonyl)am ino]-3-methylbutyramide as a clear oil (0.85 grams, 68%). Conversion to the hydrochloride salt was subsequently carried out using anhydrous hydrochloric acid in cold (0°C) methylene chloride.
(D) To a solution of N-benzyloxy-2-[{3-[4-(2-hydroxyethyl)piperazin-l-yl]- 3-oxopropyl}-(4-methoxybenzenesulfonyl)amino]-3-methylbutyramide hydrochloride (0.39 grams, 0.63 mmol) in methanol (30 mL) was added 5% palladium on barium sulfate (0.19 grams). The mixture was agitated under 3 atmospheres hydrogen in a Parr shaker for 2.25 hours. The catalyst was removed by filtration through nylon (pore size 0.45 μ ) and the solvent was evaporated to a tan foam which was chromatographed on silica gel eluting with 15% methanol in chloroform containing 0.5% ammonium hydroxide. Clean fractions containing the desired product were taken up in saturated sodium bicarbonate solution. The resulting mixture was extracted several times with ethyl acetate and the combined extracts were concentrated to afford N-hydroxy-2-[{3-[4-(2-hydroxyethyl)piperazin-l-yl]-3-oxopropyl}-(4-methoxybenzen esulfonyl)amino]-3-methyl-butyramide as an oil. The hydrochloride salt (0.20 grams, 61 %) was formed using anhydrous hydrochloric acid in cold (0*C) methanol. MS: 487 (M+ l). Analysis calculated for
Figure imgf000039_0001
C, 47.41; H, 6.82; N, 10.53. Found: C, 47.41; H, 7.11; N, 9.91.
The title compounds of Examples 55-57 were prepared analogously to that described in Example 58 using the indicated amine in step A.
EXAMPLE 55 2-f[3-f4-D^ ->t|iγ|aminftpipfprfin-1-vl)-3-oxopropvlU4-methoxvbenzene-su.fonvD aminn -.K-hydroxv-3-met rYlbιιtγrflπfidp
Coupled with dimethylpiperidin-4-ylamine. MS: 485 (M+l).
EXAMPLE 56 N-Hvdroxv-2-rf3-r4-(3-hvdroxvρropvnpiperazin-l-vn-3-oxoproρvl>-(4-methoxy- henzftnP.qιIfnnγna innl-3-mftthvlhιrtvramide Coupled with 3-piperazin-l-ylpropan-l-ol. MS: 500 (M+l). EXAMPLE 57 2-l(3-11.4HBipiperi iinvI-l,-vl-3-oxoproDvn-(4-methoxvbenzenesulfoηγ|)- pιiππ1-Ty- hvdroχγ-3-methvlbιιtvraπιidp
Coupled with using [l,4']bipiperidinyl. MS: 525 (M+ l). Analysis calculated for CMH4oN4O6S»HCl»1.5H2O: C, 51.05; H, 7.54; N, 9.52. Found: C, 50.80; H, 7.45; N, 9.36.
EXAMPLE 5g l-<3-r -Hvdroxvcarbamovl-2-methvlpropvl)-(4-phenoxvbenzenesulfonvl) aminn] prnpiπnvl) piperidine-4-carboxvlic acid ethvl ester The title compound was prepared analogously to that described in Example 1 using D-valine benzyl ester and 4-phenoxybenzenesulfonyl chloride as the starting materials in step A and piperidine-4-carboxylic acid ethyl ester in step E. Analysis calculated for C2gH37N3O8S. 0.1CH2C12: C, 57.78; H, 6.42; N, 7.19. Found: C, 57.46; H, 6.41; N, 7.11. EXAMPLE 59 l-{3-r(l-Hvdroxycarbamoyl-2-methylpropyl)-f4-phenoxybepzenesulfony aminπl prnpinnvllpiperidine-4-carboxvlic acid
The title compound was prepared analogously to that described in Example 42 using 1 - { 3-[( 1 -hydroxycarbamoyl-2-methylpropyl)-(4-phenoxybenzenesulfonyl)amino] propionyl]piperidine-4-carboxylic acid ethyl ester (Example 58) as the starting material.
MS: 548 (M+ l). Analysis calculated for C26H33N3O8S. 0.5H2O: C, 56.10; H, 6.16;
N, 7.75. Found: C, 55.99; H, 6.06; N, 7.43.

Claims

CLAIMS 1. A compound of the formula
Figure imgf000041_0001
or the pharmaceutically acceptable salts thereof, wherein n is 1 to 6;
X is OR1 wherein R1 is as defined below; azetidinyi, pyrrolidinyl, piperidinyl, morpholinyl, thiomorphoiinyl, indolinyl, isoindolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, piperazinyl or a bridged diazabicycloalkyl ring selected from the group consisting of
Figure imgf000041_0002
H H
Figure imgf000042_0001
wherein r is 1 , 2 or 3; m is 1 or 2; and p is 0 or 1 ; wherein each heterocyclic group may optionally be substituted by one or two groups selected from hydroxy, (C,-C6)alkyl, (C,-C6)alkoxy, (C,-C,0)acyl, (C,-C10)acyloxy, (C6- C,0)aryl, (C5-C9)heteroaryl, ( -C^aryKC C^alkyl, (C5-C9)heteroaryl (C,-C6)alkyl, hydroxy (CrC6)alkyl, (C,-C6)alkoxy (C,-C6)alkyl, (C,-C6)acyloxy(C1-C6)alkyl, (C,- C«)alkylthio, (C,-C6)aIkylthio (C,-C6)alkyl, (C6-C10)arylthio, (C6-C,0) arylthio(Cr C6)alkyl, R9R10N, R9R,0 SO2, R9R10NCO, R9R,0NCO(CrC6)alkyl wherein R9 and R10 are each independently hydrogen, (C,-C6)alkyl, (C6-C,0)aryl, (C5-C9)heteroaryl, (C6- Cιo)aryl (C.-C^alkyl or (C5-C9)heteroaryl (CrC6)alkyl or R9 and R10 may be taken together with the nitrogen to which they are attached to form an azetidinyi, pyrrolidinyl, piperidinyl, morpholinyl or thiomorpolinyl ring; R12SO2, R12SO2NH wherein R12 is trifluoromethyl, (C,-C6)alkyl, (C6-C10)aryl, (C5-C9)heteroaryl, (C6- C.oJary CrC^alkyl or (C5-C9)heteroaryl (C,-C6)alkyl; R13CONR9 wherein R9 is as defined above and R13 is hydrogen, (C,-C6)alkyl, (C,-C6)alkoxy, (C6-C10)aryl, (C5- C9)heteroaryl, (C1-C6)aryl(C1-C6)alkyl(C6-Cι0)aryl(C1-C6)alkoxy or
Figure imgf000042_0002
C6)alkyl; R14OOC, R14OOC(C,-C6)alkyl wherein R14 is (C,-C6)alkyl, (C6-C10)aryl, (C5- C9)heteroaryl, (C6-C,0)aryl (CrC6)alkyl, 5-indanyl, CHRsOCOR6 wherein Rs is hydrogen or (CrC6)alkyl and R6 is (C,-C6)alkyl, (C,-C6)alkoxy or (C6-C,0)aryl; CH2CONR7R* wherein R7 and R8 are each independently hydrogen or (CrC6)alkyl or may be taken together with the nitrogen to which they are attached to form an azetidinyl, pyrrolidinyl, piperidinyl, morpholinyl or thiomorphoiinyl ring; or R15O (CιC6)alkyl wherein R15 is H2N(CHR,6)CO wherein R16 is the side chain of a natural D- or L-amino acid;
R1 is (C6-C10)aryl, (C5-C9)heteroaryl, (C6-C,0)aryl(CI-C6)alkyl, 5-indanyl, CHRsOCOR6 or CH2CONR7R8 wherein R5, R6, R7 and R8 are as defined above;
R3 and R4 are each independently selected from the group consisting of hydrogen, (C,-C6)alkyl, trifluoromethyl, trifluoromethyl(C,-C6)alkyl, (C,-C6)alkyl (difluoromethylene), (CrC3)alkyl(difluoromethylene)(C,-C3)alkyl, (C6-C,0)aryl, (C5- C9)heteroaryl, (C6-C,o)aryl(C,-C6)alkyl, (C5-C9)heteroaryl(C1-C6)alkyl, (C6-C,0)aryl(C6- C10)aryl, (C6-C10)aryl(C6-C10)aryl(CrC6)alkyl, (C3-C6)cycloalkyl, (C3-C6)cycloalkyl(Cr C6)alkyl,hydroxy(C1-C6)alkyl,(C1-C)0)acyloxy(CrC6)alkyl,(C1-C6)alkoxy(C1-C6)alkyl, (C,-C,o)acylamino(C1-C6)alkyl, piperidyl,
Figure imgf000043_0001
(C6-Cl0)aryl(CI- C6)alkoxy(Cι-C6)alkyl, (Cj-C9)heteroaryl(C1-C6)alkoxy(CrC6)alkyl, (C,-C6)alkylthio(C,- C6)alkyl, (C6-Ct0)arylthio(CrC6)alkyl, (C.- JalkylsulfinyKC.-C^alkyl, ( - C,0)arylsulfinyl(C,-C6)alkyl, (C,-C6)alkylsulfonyl(C,-C6)alkyl, (Cβ-C10)arylsulfonyl(Cr C6)alkyl, amino(CrC6)alkyl, (Cr JalkylaminofCj-C. alkyl, ((C,-C6)alkylamino)2(C,- C6)alkyl, R17CO(C1-C6)alkyl wherein R17 is R14O or R7R8N wherein R7, R8 and R14 are as defined above; or Rl8(C,-C6)alkyl wherein R18 is piperazinyl, (C - C,0)acylpiperazinyl, (C6-C10)arylpiperazinyl, (C5-C9)heteroarylpiperazinyl, (C,- C6)alkylpiperazinyl, (C6-C,o)aryl(CrC6)alkylpiperazinyl, (C5-C9)heteroaryl(C C6)alkylpiperazinyl, morpholinyl, thiomorphoiinyl, piperidinyl, pyrrolidinyl, piperidyl, (C,-C6)alkylpiperidyl, (C6-Cι0)arylpiperidyl, (Cj-C9)heteroarylpiperidyl, (C6-Cl0)aιyl(Cr C6)alkylpiperidyl, (Cs-C^heteroary Ci-C^alkylpiperidyl or (CrC10)acylpiperidyl; or R3 and R4 may be taken together to form a (C3-C6)cycloalkyl, oxacyclohexyl, thiocyclohexyl, indanyl or tetralinyl ring or a group of the formula
Figure imgf000043_0002
wherein R21 is hydrogen, (CrC,0)acyl, (CrC6)alkyl, (C6-C10)aryl(C1-C6)alkyl, (C5- C9)heteroaryl(Cι-C6)alkyl or (C,-C6)alkylsulfonyl; and
Q is (C,-C6)alkyl, (C6-C10)aryl, (C6-C10)aryloxy(C6-C10)aryl, (C6-C10)aryl(C6- C10)aryl, (C6-C10)aryl(C6-C10)aryl(C1-C6)alkyl, (C6-C10)aryloxy(C5-C9)heteroaryl, (C5- C9)heteroaryl, (C,-C6)alkyl(C6-C10)aryl, (CrC6)alkoxy(C6-C10)aryl, (06-0,0)3171(0!- C6)alkoxy(C6-C,o)aryl,(C6-C10)aryl(CrC6)alkoxy(C,-C6)alkyl,(C5-C9)heteroaryloxy(C6- C10)aryl, (CrC6)alkyl(Cj-C9)heteroaryl, (CrC6)alkoxy(C3-C9)heteroaryl, (C6- C10)aryl(CrC6)alkoxy(C5-C9)heteroaryl, (C5-C9)heteroaryloxy(C5-C9)heteroaryl, (C6- C,0)aryloxy(C1-C6)alkyl, (C5-C9)heteroaryloxy(CrC<i)alkyl, (C C6)alkyl(C6- C10)ai7loxy(C6-C,o)aryl,(CrC6)alkyl(C5-C9)heteroaryloxy(C6-C10)aryl,(C1-C6)alkyl(C6- C10)aryloxy(Cj-C9)heteroaryl, (C,-C6)alkoxy(C6-C,0)aryloxy(C6-C,0)aryl, (C,- C6)alkoxy(Cj-C9)heteroaryloxy(C6-C,0)aryl or (CrC6)alkoxy(C6-C,o)aryloxy(C5- C9)heteroaryl wherein each aryl group is optionally substituted by fluoro, chloro, bromo, (C C6)alkyl, (C,-C6)alkoxy or perfluoro(C,-C3)alkyl; with the proviso that X must be substituted when defined as azetidinyi, pyrrolidinyl, morpholinyl, thiomorphoiinyl, indolinyl, isoindolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, piperazinyl, (C,-C,0)acylpiperazinyl, (Cr C6)alkylpiperazinyl, (C6-C,0)arylpiperazinyl, (C5-C9)heteroarylpiperazinyl or a bridged diazabicycloalkyl ring.
2. A compound according to claim 1, wherein n is 2.
3. A compound according to claim 1, wherein either R3 or R4 is not hydrogen.
4. A compound according to claim 1, wherein Q is (C,-C6)alkoxy(C6- C,0)aryl, (C6-C,o)aryl(C1-C6)alkoxy(C6-C,0)aryl, phenoxy(C6-C,0)aryl, 4- fluorophenoxy(C6-C10)aryl, 4-fluorobenzyloxy(C6-C10)aryl or (C,-C6)alkyl(C6- Cio)aryloxy(C6-C10)aryl.
5. A compound according to claim 1 , wherein X is indolinyl or piperidinyl.
6. A compound according to claim 1, wherein n is 2; either R3 or R4 is not hydrogen; Q is (CrC6)alkoxy(C6-C10)aryl, (C6-C10)aryl(Cj-C6)alkoxy(C6-C10)aryl, 4- fluorophenoxy(C6-C jo)aryl, phenoxy(C6-C,0)aryl, 4-fluorobenzyloxy(C6-C,0)aryl or (Cr C6)alkyl(C6-C10)aryloxy(C6-C1o)aryl; and X is indolinyl or piperidinyl.
7. A compound according to claim 1 , wherein said compound is selected from the group consisting of:
3-[(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzenesulfonyl)-amino]- propionic acid indan-5-yl ester; Acetic acid l-{3-[(l-hydroxycarbamoyl-2-methylpropyl)-(4-methoxy-benzene- sulfonyl)-amino]propionyl}piperidin-4-yl ester;
2-Cyclohexyl-N-hydroxy-2-[[3-(4-hydroxypiperidin- l -yl)-3-oxo- propyl]-(4-methoxy-benzenesulfonyl)amino]acetamide;
Benzoicacidl-{3-[(l-hydroxycarbamoyl-2-methylpropyl)-(4-methoxy-benzene- sulfonyl)amino]propionyl}piperidin-4-yl ester;
N-Hydroxy-2-[[3-(4-hydroxypiperidin-l-yl)-3-oxopropyl]-(4-methoxy- benzenesulfonyl)amino]-3-methylbutyramide; l -{3-[(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzene- sulfonyl)-amino]propionyl}piperidine-4-carboxylic acid; l-{3-[(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzenesulfonyl)- amino]propionyl}piperidine-4-carboxylic acid ethyl ester;
2-Cyclohexyl-N-hydroxy-2-{(4-methoxybenzenesulfonyl)-[3-(4-methyl- aminopiperidin- 1 -yl)-3-oxopropyl]amino}acetamide;
3-(4-Chlorophenyl)-N-hydroxy-2-{(4-methoxybenzenesulfonyl)- [3-(4-methylaminopiperidin- 1 -yl)-3-oxopropyl]amino}propionamide;
3-Cyclohexyl-N-hydroxy-2-{(4-methoxybenzenesulfonyl)-[3-(4-methyl- aminopiperidin- 1 -yl)-3-oxopropyl]amino}propionamide;
N-Hydroxy-2-[{3-[4-(2-hydroxy-2-methylpropyl)piperazin- l -yl]- 3-oxopropyl}-(4-methoxy-benzenesulfonyl)amino]-3-methylbutyramide; 2,2-Dimethylpropionicacid2-(4-{3-[(l-hydroxycarbamoyl-2-methylpropyl)-(4- methoxy-benzenesulfonyl)amino]propionyl}piperazin- l-yl)ethyl ester;
Benzoic acid 2-(4-{3-[(l-hydroxycarbamoyl-2-methylpropyl)-(4-methoxybenzene- sulfonyl)-amino]propionyl}piperazin- 1 -yl)-ethyl ester;
2-Cyclohexyl-N-hydroxy-2-[{3-[4-(2-hydroxyethyl)piperazin- l-yl]-3-oxopropyl}-(4-methoxybenzenesulfonyl)amino]acetamide; 2-Hydroxy-2-[{3-[5-(2-hydroxyethyl)-2 , 5-diazabicyclo[2.2. 1 ] - hept-2-yl]-3-oxopropyl}-(4-methoxybenzenesulfonyl)amino]-3-methylbutyramide;
2- { (4-Benzyloxybenzenesulfonyl)-[3-(4-hydroxypiperidin- l -yl)- 3-oxopropyl]amino}-N-hydroxy-3-methylbutyramide; 2-Cyclohexyl-2-{[4-(4-fluorophenoxy)benzenesulfonyl]-[3-(4-hydroxy- piperidin- 1 -yl)-3-oxopropyl]-amino}-N-hydroxyacetamide;
2-{[4-(4-Butylphenoxy)benzenesulfonyl]-[3-(4-hydroxypiperidin- l-yl)-3-oxopropyl]-amino}-N-hydroxy-3-methylbutyramide; l-{(4-Methoxybenzenesulfonyl)-[3-(4-methylaminopiperidin-l-yl)-3-oxo- propyl]amino}-cyclopentanecarboxylic acid hydroxyamide;
4-{3-[( l -Hydroxycarbamoyl-2-methylpropyl)-(4-methoxybenzene- sulfonyl)amino]-propionyl}piperazine-2-carboxylic acid ethyl ester;
3 - [(Cyclohexylhydroxycarbamoylmethyl)-(4-methoxybenzene- sulfonyl)amino]propionic acid ethoxycarbonyloxymethyi ester; 3-[( 1 -Hydroxycarbamoylpentyl)-(4-methoxybenzenesulfonyl)amino]propionic acid ethoxycarbonyloxymethyi ester;
1 - {3- [( 1 -Hydroxycarbamoyl-2-me ylpropyl)-(4-phenoxybenzenes fonyl)amino] propionyl] piperidine-4-carboxylic acid.
3 - [ [4 - (4 - Fl uorob en zy lo x y)-benzen e s ul fon yl ] - ( l -h ydrox y - carbamoyl-2-methyl-propyl)-amino]-propionic acid ethoxycarbonyloxymethyi ester; and
3-[[4-(4-Fluorophenoxy)-benzenesulfonyl]-(l-hydroxycarbamoyl-2- methyl-propyl)-amino]-propionic acid ethoxycarbonyloxymethyi ester.
8. A pharmaceutical composition for (a) the treatment of a condition selected from the group consisting of arthritis, cancer, tissue ulceration, mucular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, in combination with standard NSAID'S and analgesics and in combination with cytotoxic anticancer agents, and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of tumor necrosis factor (TNF) or (b) the inhibition of matrix metalloproteinases or the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising an amount of a compound of claim 1 effective in such treatment and a pharmaceutically acceptable carrier.
9. A method for the inhibition of (a) matrix metalloproteinases or (b) the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising administering to said mammal an effective amount of a compound of claim 1.
10. A method for treating a condition selected from the group consisting of arthritis, cancer, tissue ulceration, macular degeneration, restenosis, periodontal disease, epidermolysis bullosa, scleritis, compounds of formula I may be used in combination with standard NSAID'S and analgesics and in combination with cytotoxic anticancer agents, and other diseases characterized by matrix metalloproteinase activity, AIDS, sepsis, septic shock and other diseases involving the production of tumor necrosis factor (TNF) in a mammal, including a human, comprising administering to said mammal an amount of a compound of claim 1, effective in treating such a condition.
PCT/IB1997/000924 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives WO1998007697A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU34563/97A AU711585B2 (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives
PL97331895A PL331895A1 (en) 1996-08-23 1997-07-25 Arylosulphonylamino derivatives of hydroxamic acid
EP97930699A EP0922030A1 (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives
JP10510535A JP2000501423A (en) 1996-08-23 1997-07-25 Arylsulfonylaminohydroxamic acid derivatives
EA199900139A EA199900139A1 (en) 1996-08-23 1997-07-25 DERIVATIVES OF ARYL SULPHONYLAMINO HYDROXAMIC ACID
SK214-99A SK21499A3 (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives
IL12818997A IL128189A0 (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives
CA002264284A CA2264284A1 (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives
BR9711223A BR9711223A (en) 1996-08-23 1997-07-25 Arylsulfonylaminohydroxic acid derivatives
US09/242,504 US6153609A (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives
IS4958A IS4958A (en) 1996-08-23 1999-01-26 Arylsulfonylamino hydroxamic acid derivatives
BG103191A BG103191A (en) 1996-08-23 1999-02-22 Arylsulphonylamino hydroxamic acid derivatives
NO990821A NO990821L (en) 1996-08-23 1999-02-22 Arylsulfonylamino-hydroxamic acid derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2467596P 1996-08-23 1996-08-23
US60/024,675 1996-08-23

Publications (1)

Publication Number Publication Date
WO1998007697A1 true WO1998007697A1 (en) 1998-02-26

Family

ID=21821806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1997/000924 WO1998007697A1 (en) 1996-08-23 1997-07-25 Arylsulfonylamino hydroxamic acid derivatives

Country Status (31)

Country Link
US (1) US6153609A (en)
EP (1) EP0922030A1 (en)
JP (1) JP2000501423A (en)
KR (1) KR20000068248A (en)
CN (1) CN1228083A (en)
AP (1) AP733A (en)
AR (1) AR009292A1 (en)
AU (1) AU711585B2 (en)
BG (1) BG103191A (en)
BR (1) BR9711223A (en)
CA (1) CA2264284A1 (en)
CO (1) CO4600003A1 (en)
EA (1) EA199900139A1 (en)
GT (1) GT199700094A (en)
HN (1) HN1997000110A (en)
HR (1) HRP970453A2 (en)
ID (1) ID18063A (en)
IL (1) IL128189A0 (en)
IS (1) IS4958A (en)
MA (1) MA24307A1 (en)
NO (1) NO990821L (en)
OA (1) OA10978A (en)
PA (1) PA8435301A1 (en)
PE (1) PE99698A1 (en)
PL (1) PL331895A1 (en)
SK (1) SK21499A3 (en)
TN (1) TNSN97139A1 (en)
TR (1) TR199900387T2 (en)
TW (1) TW397823B (en)
WO (1) WO1998007697A1 (en)
ZA (1) ZA977561B (en)

Cited By (285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050348A1 (en) * 1997-05-09 1998-11-12 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
WO1998055449A1 (en) * 1997-06-06 1998-12-10 The University Of Queensland Hydroxamic acid compounds having anticancer and anti-parasitic properties
EP0895988A1 (en) * 1997-08-08 1999-02-10 Pfizer Products Inc. Arylsulfonylamino hydroxamic acid derivatives
EP0949245A1 (en) * 1998-04-10 1999-10-13 Pfizer Products Inc. Process for alkylating hindered sulfonamides
EP0952148A1 (en) * 1998-04-10 1999-10-27 Pfizer Products Inc. Cyclobutyl-aryloxyarylsulfonylamino hydroxamic acid derivatives
US5985900A (en) * 1997-04-01 1999-11-16 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
US6008243A (en) * 1996-10-24 1999-12-28 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them, and their use
US6118016A (en) * 1998-04-10 2000-09-12 Pfizer Inc. Process for preparing phenoxyphenylsulfonyl halides
EP1041072A1 (en) * 1999-03-31 2000-10-04 Pfizer Products Inc. Dioxocyclopentyl hydroxamic acids
DE19920907A1 (en) * 1999-05-06 2000-11-09 Basf Ag Preparation of cyclohexylglycine ester derivatives comprises reacting cyclohexylglycine derivatives with methanesulfonic acid and benzyl alcohol derivative in organic solvent
US6153757A (en) * 1995-12-08 2000-11-28 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors and intermediates useful for their preparation
US6174915B1 (en) 1997-03-25 2001-01-16 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
US6200996B1 (en) 1999-01-27 2001-03-13 American Cyanamid Company Heteroaryl acetylenic sulfonamide and phosphinic acid amide hydroxamic acid tace inhibitors
US6225311B1 (en) 1999-01-27 2001-05-01 American Cyanamid Company Acetylenic α-amino acid-based sulfonamide hydroxamic acid tace inhibitors
US6277885B1 (en) 1999-01-27 2001-08-21 American Cyanamid Company Acetylenic aryl sulfonamide and phosphinic acid amide hydroxamic acid TACE inhibitors
US6288246B1 (en) 1998-04-10 2001-09-11 Pfizer Inc Process for preparing hydroxamic acids
US6313123B1 (en) 1999-01-27 2001-11-06 American Cyanamid Company Acetylenic sulfonamide thiol tace inhibitors
US6326516B1 (en) 1999-01-27 2001-12-04 American Cyanamid Company Acetylenic β-sulfonamido and phosphinic acid amide hydroxamic acid TACE inhibitors
US6340691B1 (en) 1999-01-27 2002-01-22 American Cyanamid Company Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase and tace inhibitors
US6358980B1 (en) 1999-01-27 2002-03-19 American Cyanamid Company Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase/tace inhibitors
US6458822B2 (en) 2000-03-13 2002-10-01 Pfizer Inc. 2-oxo-imidazolidine-4-carboxylic acid hydroxamide compounds that inhibit matrix metalloproteinases
US6500948B1 (en) 1995-12-08 2002-12-31 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors-compositions, uses preparation and intermediates thereof
US6518434B2 (en) 2000-02-07 2003-02-11 Astrazeneca Ab Coupling process
WO2003075959A1 (en) * 2002-03-08 2003-09-18 Novartis Ag Matrix metalloproteinase inhibitors in combination with hypothermia and/or radiotherapy for the treatment of cancer
US6753337B2 (en) 1999-01-27 2004-06-22 Wyeth Holdings Corporation Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase/tace inhibitors
WO2004056353A2 (en) * 2002-12-20 2004-07-08 Novartis Ag Device and method for delivering mmp inhibitors
US6762178B2 (en) 1999-01-27 2004-07-13 Wyeth Holdings Corporation Acetylenic aryl sulfonamide and phosphinic acid amide hydroxamic acid TACE inhibitors
US6833456B2 (en) 2002-03-01 2004-12-21 Agouron Pharmaceuticals, Inc. Indolyl-urea derivatives of thienopyridines useful as antiangiogenic agents, and methods for their use
WO2005016967A2 (en) 2003-08-13 2005-02-24 Pfizer Products Inc. Modified human igf-1r antibodies
WO2005023759A2 (en) 2003-09-03 2005-03-17 Array Biopharma Inc. Heterocyclic inhibitors of mek and methods of use thereof
US6869962B2 (en) 2002-06-14 2005-03-22 Agouron Pharmaceuticals, Inc. Benzofused heterozryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
WO2005051300A2 (en) 2003-11-19 2005-06-09 Array Biopharma Inc. Bicyclic inhibitors of mek and methods of use thereof
US6946473B2 (en) 1999-01-27 2005-09-20 Wyeth Holdings Corporation Preparation and use of acetylenic ortho-sulfonamido and phosphinic acid amido bicyclic heteroaryl hydroxamic acids as TACE inhibitors
US6995171B2 (en) 2001-06-21 2006-02-07 Agouron Pharmaceuticals, Inc. Bicyclic pyrimidine and pyrimidine derivatives useful as anticancer agents
US7037498B2 (en) 2001-01-05 2006-05-02 Abgenix, Inc. Antibodies to insulin-like growth factor I receptor
US7053107B2 (en) 2002-12-19 2006-05-30 Agouron Pharmaceuticals, Inc. Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
US7141607B1 (en) 2000-03-10 2006-11-28 Insite Vision Incorporated Methods and compositions for treating and inhibiting retinal neovascularization
WO2007035744A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
US7199155B2 (en) 2002-12-23 2007-04-03 Wyeth Holdings Corporation Acetylenic aryl sulfonate hydroxamic acid TACE and matrix metalloproteinase inhibitors
WO2007044084A2 (en) 2005-05-18 2007-04-19 Array Biopharma Inc. Heterocyclic inhibitors of mek and methods of use thereof
US7208500B2 (en) 2003-08-29 2007-04-24 Agouron Pharmaceuticals, Inc. Thienopyridine-phenylacetamides and their derivatives useful as new anti-angiogenic agents
WO2007076245A2 (en) 2005-12-21 2007-07-05 Array Biopharma Inc. Novel hydrogen sulfate salt
US7282496B2 (en) 2001-11-01 2007-10-16 Wyeth Holdings Corporation Allenic aryl sulfonamide hydroxamic acids as matrix metalloproteinase and TACE inhibitors
US7288251B2 (en) 2001-11-09 2007-10-30 Abgenix, Inc. Antibodies to CD40
WO2008075196A1 (en) 2006-12-15 2008-06-26 Pfizer Products Inc. Benzimidazole derivatives
US7429667B2 (en) 2005-01-20 2008-09-30 Ardea Biosciences, Inc. Phenylamino isothiazole carboxamidines as MEK inhibitors
WO2008129380A1 (en) 2007-04-18 2008-10-30 Pfizer Products Inc. Sulfonyl amide derivatives for the treatment of abnormal cell growth
WO2009018238A1 (en) 2007-07-30 2009-02-05 Ardea Biosciences, Inc. Combinations of mek inhibitors and raf kinase inhibitors and uses thereof
US7538111B2 (en) * 2003-03-25 2009-05-26 Laboratoires Fournier S.A. Benzenesulphonamide derivatives, method for production and use thereof for treatment of pain
WO2009082687A1 (en) 2007-12-21 2009-07-02 Genentech, Inc. Azaindolizines and methods of use
WO2009114870A2 (en) 2008-03-14 2009-09-17 Intellikine, Inc. Kinase inhibitors and methods of use
EP2130537A1 (en) 2002-03-13 2009-12-09 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as mek inhibitors
WO2010045495A2 (en) 2008-10-16 2010-04-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof
WO2010051043A1 (en) 2008-11-03 2010-05-06 Intellikine, Inc. Benzoxazole kinase inhibitors and methods of use
US7759518B2 (en) 2005-07-21 2010-07-20 Ardea Biosciences Derivatives of N-(arylamino) sulfonamides as inhibitors of MEK
WO2010090764A1 (en) 2009-02-09 2010-08-12 Supergen, Inc. Pyrrolopyrimidinyl axl kinase inhibitors
WO2010091150A1 (en) 2009-02-05 2010-08-12 Immunogen, Inc. Novel benzodiazepine derivatives
WO2010099137A2 (en) 2009-02-26 2010-09-02 Osi Pharmaceuticals, Inc. In situ methods for monitoring the emt status of tumor cells in vivo
WO2010098866A1 (en) 2009-02-27 2010-09-02 Supergen, Inc. Cyclopentathiophene/cyclohexathiophene dna methyltransferase inhibitors
WO2010099363A1 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099364A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099139A2 (en) 2009-02-25 2010-09-02 Osi Pharmaceuticals, Inc. Combination anti-cancer therapy
WO2010108652A1 (en) 2009-03-27 2010-09-30 Ardea Biosciences Inc. Dihydropyridin sulfonamides and dihydropyridin sulfamides as mek inhibitors
US7820664B2 (en) 2007-01-19 2010-10-26 Bayer Schering Pharma Ag Inhibitors of MEK
WO2010129816A2 (en) 2009-05-07 2010-11-11 Intellikine, Inc. Heterocyclic compounds and uses thereof
US7842836B2 (en) 2006-04-11 2010-11-30 Ardea Biosciences N-aryl-N'alkyl sulfamides as MEK inhibitors
US7858643B2 (en) 2004-08-26 2010-12-28 Agouron Pharmaceuticals, Inc. Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
WO2011014726A1 (en) 2009-07-31 2011-02-03 Osi Pharmaceuticals, Inc. Mtor inhibitor and angiogenesis inhibitor combination therapy
WO2011022439A1 (en) 2009-08-17 2011-02-24 Intellikine, Inc. Heterocyclic compounds and uses thereof
US7897624B2 (en) 2006-04-18 2011-03-01 Ardea Biosciences Pyridone sulfonamides and pyridone sulfamides as MEK inhibitors
EP2292233A2 (en) 1999-11-11 2011-03-09 OSI Pharmaceuticals, Inc. Pharmaceutical uses of N-(3-Ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine
WO2011027249A2 (en) 2009-09-01 2011-03-10 Pfizer Inc. Benzimidazole derivatives
WO2011049625A1 (en) 2009-10-20 2011-04-28 Mansour Samadpour Method for aflatoxin screening of products
EP2322550A1 (en) 2004-12-22 2011-05-18 Amgen, Inc Compositions comprising anti-IGF-1R Antibodies and Methods for obtaining said Antibodies
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
WO2011098971A1 (en) 2010-02-12 2011-08-18 Pfizer Inc. Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
WO2011109572A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011145035A1 (en) 2010-05-17 2011-11-24 Indian Incozen Therapeutics Pvt. Ltd. Novel 3,5-disubstitued-3h-imidazo[4,5-b]pyridine and 3,5- disubstitued -3h-[1,2,3]triazolo[4,5-b] pyridine compounds as modulators of protein kinases
WO2011146882A1 (en) 2010-05-21 2011-11-24 Intellikine, Inc. Chemical compounds, compositions and methods for kinase modulation
WO2012052948A1 (en) 2010-10-20 2012-04-26 Pfizer Inc. Pyridine- 2- derivatives as smoothened receptor modulators
WO2012064973A2 (en) 2010-11-10 2012-05-18 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP2476667A2 (en) 2003-02-26 2012-07-18 Sugen, Inc. Aminoheteroaryl compounds as protein kinase inhibitors
WO2012097000A1 (en) 2011-01-10 2012-07-19 Pingda Ren Processes for preparing isoquinolinones and solid forms of isoquinolinones
WO2012106556A2 (en) 2011-02-02 2012-08-09 Amgen Inc. Methods and compositons relating to inhibition of igf-1r
WO2012112708A1 (en) 2011-02-15 2012-08-23 Immunogen, Inc. Cytotoxic benzodiazepine derivatives and methods of preparation
WO2012116237A2 (en) 2011-02-23 2012-08-30 Intellikine, Llc Heterocyclic compounds and uses thereof
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
WO2012145183A2 (en) 2011-04-19 2012-10-26 Pfizer Inc. Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
WO2012151525A1 (en) 2011-05-04 2012-11-08 Rhizen Pharmaceuticals Sa Novel compounds as modulators of protein kinases
WO2013012918A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
WO2013012915A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
WO2013032591A1 (en) 2011-08-29 2013-03-07 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
WO2013042006A1 (en) 2011-09-22 2013-03-28 Pfizer Inc. Pyrrolopyrimidine and purine derivatives
WO2013049332A1 (en) 2011-09-29 2013-04-04 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
WO2013050725A1 (en) 2011-10-04 2013-04-11 King's College London Ige anti -hmw-maa antibody
WO2013068902A1 (en) 2011-11-08 2013-05-16 Pfizer Inc. Methods of treating inflammatory disorders using anti-m-csf antibodies
WO2013126617A1 (en) 2012-02-22 2013-08-29 The Regents Of The University Of Colorado, A Body Corporate Bouvardin derivatives and therapeutic uses thereof
US8530463B2 (en) 2007-05-07 2013-09-10 Hale Biopharma Ventures Llc Multimodal particulate formulations
WO2013144737A2 (en) 2012-03-30 2013-10-03 Rhizen Pharmaceuticals Sa Novel 3,5-disubstitued-3h-imidazo[4,5-b]pyridine and 3,5- disubstitued -3h-[1,2,3]triazolo[4,5-b] pyridine compounds as modulators of c-met protein kinases
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
WO2013154878A1 (en) 2012-04-10 2013-10-17 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2013185115A1 (en) 2012-06-08 2013-12-12 Sutro Biopharma, Inc. Antibodies comprising site-specific non-natural amino acid residues, methods of their preparation and methods of their use
EP2690101A1 (en) 2007-12-19 2014-01-29 Genentech, Inc. 5-Anilinoimidazopyridines and Methods of Use
WO2014031566A1 (en) 2012-08-22 2014-02-27 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
WO2014036492A1 (en) 2012-08-31 2014-03-06 Sutro Biopharma, Inc. Modified amino acids comprising an azido group
WO2014071109A1 (en) 2012-11-01 2014-05-08 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
WO2014134486A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134483A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014143659A1 (en) 2013-03-15 2014-09-18 Araxes Pharma Llc Irreversible covalent inhibitors of the gtpase k-ras g12c
WO2014151386A1 (en) 2013-03-15 2014-09-25 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
WO2014152588A1 (en) 2013-03-15 2014-09-25 Araxes Pharma Llc Covalent inhibitors of kras g12c
WO2014151147A1 (en) 2013-03-15 2014-09-25 Intellikine, Llc Combination of kinase inhibitors and uses thereof
US8895546B2 (en) 2009-03-27 2014-11-25 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
WO2014194030A2 (en) 2013-05-31 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014194254A1 (en) 2013-05-30 2014-12-04 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
WO2015006555A2 (en) 2013-07-10 2015-01-15 Sutro Biopharma, Inc. Antibodies comprising multiple site-specific non-natural amino acid residues, methods of their preparation and methods of their use
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015051244A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015051341A1 (en) 2013-10-03 2015-04-09 Araxes Pharma Llc Inhibitors of erk and methods of use
WO2015054658A1 (en) 2013-10-11 2015-04-16 Sutro Biopharma, Inc. Modified amino acids comprising tetrazine functional groups, methods of preparation, and methods of their use
WO2015054572A1 (en) 2013-10-10 2015-04-16 Araxes Pharma Llc Inhibitors of kras g12c
WO2015061204A1 (en) 2013-10-21 2015-04-30 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9034861B2 (en) 2009-10-13 2015-05-19 Allomek Therapeutics Llc MEK inhibitors useful in the treatment of diseases
WO2015075598A1 (en) 2013-11-21 2015-05-28 Pfizer Inc. 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders
EP2918589A1 (en) 2009-07-15 2015-09-16 Intellikine, LLC Adenine derivative as pi3k inhibitor
WO2015155624A1 (en) 2014-04-10 2015-10-15 Pfizer Inc. Dihydropyrrolopyrimidine derivatives
WO2015168079A1 (en) 2014-04-29 2015-11-05 Infinity Pharmaceuticals, Inc. Pyrimidine or pyridine derivatives useful as pi3k inhibitors
WO2015166373A1 (en) 2014-04-30 2015-11-05 Pfizer Inc. Cycloalkyl-linked diheterocycle derivatives
US9227978B2 (en) 2013-03-15 2016-01-05 Araxes Pharma Llc Covalent inhibitors of Kras G12C
WO2016001789A1 (en) 2014-06-30 2016-01-07 Pfizer Inc. Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
EP3009436A1 (en) 2008-07-08 2016-04-20 Intellikine, LLC Kinase inhibitors and methods of use
WO2016097918A1 (en) 2014-12-18 2016-06-23 Pfizer Inc. Pyrimidine and triazine derivatives and their use as axl inhibitors
EP3050876A2 (en) 2009-11-05 2016-08-03 Rhizen Pharmaceuticals S.A. Kinase modulators
US9452215B2 (en) 2012-02-22 2016-09-27 The Regents Of The University Of Colorado Bourvadin derivatives and therapeutic uses thereof
WO2016178876A2 (en) 2015-05-01 2016-11-10 Cocrystal Pharma, Inc. Nucleoside analogs for treatment of the flaviviridae family of viruses and cancer
AU2011377440B2 (en) * 2011-09-19 2017-01-05 Beijing Konruns Pharmaceutical Co., Ltd. Hydroxamic acid compound containing quinolyl and preparation method thereof, and pharmaceutical composition containing this compound and use thereof
WO2017009751A1 (en) 2015-07-15 2017-01-19 Pfizer Inc. Pyrimidine derivatives
EP3135692A1 (en) 2010-06-16 2017-03-01 University of Pittsburgh of the Commonwealth System of Higher Education Antibodies to endoplasmin and their use
EP3135690A1 (en) 2012-06-26 2017-03-01 Sutro Biopharma, Inc. Modified fc proteins comprising site-specific non-natural amino acid residues, conjugates of the same, methods of their preparation and methods of their use
WO2017058792A1 (en) 2015-09-28 2017-04-06 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
WO2017058768A1 (en) 2015-09-28 2017-04-06 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
EP3170840A1 (en) 2003-09-10 2017-05-24 Warner-Lambert Company LLC Antibodies to m-csf
WO2017087528A1 (en) 2015-11-16 2017-05-26 Araxes Pharma Llc 2-substituted quinazoline compounds comprising a substituted heterocyclic group and methods of use thereof
WO2017096165A1 (en) 2015-12-03 2017-06-08 Agios Pharmaceuticals, Inc. Mat2a inhibitors for treating mtap null cancer
WO2017132615A1 (en) 2016-01-27 2017-08-03 Sutro Biopharma, Inc. Anti-cd74 antibody conjugates, compositions comprising anti-cd74 antibody conjugates and methods of using anti-cd74 antibody conjugates
WO2017161028A1 (en) 2016-03-16 2017-09-21 Kura Oncology, Inc. Substituted inhibitors of menin-mll and methods of use
WO2017161002A1 (en) 2016-03-16 2017-09-21 Kura Oncology, Inc. Bridged bicyclic inhibitors of menin-mll and methods of use
US9810690B2 (en) 2015-10-19 2017-11-07 Araxes Pharma Llc Method for screening inhibitors of Ras
WO2017197240A1 (en) 2016-05-12 2017-11-16 The Regents Of The University Of Michigan Ash1l inhibitors and methods of treatment therewith
US9840516B2 (en) 2013-10-10 2017-12-12 Araxes Pharma Llc Substituted quinazolines as inhibitors of KRAS G12C
WO2017214269A1 (en) 2016-06-08 2017-12-14 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9862701B2 (en) 2014-09-25 2018-01-09 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2018045379A1 (en) 2016-09-02 2018-03-08 Dana-Farber Cancer Institute, Inc. Composition and methods of treating b cell disorders
WO2018064510A1 (en) 2016-09-29 2018-04-05 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
WO2018068017A1 (en) 2016-10-07 2018-04-12 Araxes Pharma Llc Heterocyclic compounds as inhibitors of ras and methods of use thereof
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
US9988357B2 (en) 2015-12-09 2018-06-05 Araxes Pharma Llc Methods for preparation of quinazoline derivatives
WO2018119183A2 (en) 2016-12-22 2018-06-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
US10011600B2 (en) 2014-09-25 2018-07-03 Araxes Pharma Llc Methods and compositions for inhibition of Ras
WO2018140598A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Fused n-heterocyclic compounds and methods of use thereof
WO2018140600A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Fused hetero-hetero bicyclic compounds and methods of use thereof
WO2018140599A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Benzothiophene and benzothiazole compounds and methods of use thereof
WO2018140512A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Fused bicyclic benzoheteroaromatic compounds and methods of use thereof
WO2018140514A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc 1-(6-(3-hydroxynaphthalen-1-yl)quinazolin-2-yl)azetidin-1-yl)prop-2-en-1-one derivatives and similar compounds as kras g12c inhibitors for the treatment of cancer
WO2018140513A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc 1-(3-(6-(3-hydroxynaphthalen-1-yl)benzofuran-2-yl)azetidin-1yl)prop-2-en-1-one derivatives and similar compounds as kras g12c modulators for treating cancer
WO2018175746A1 (en) 2017-03-24 2018-09-27 Kura Oncology, Inc. Methods for treating hematological malignancies and ewing's sarcoma
US10111874B2 (en) 2014-09-18 2018-10-30 Araxes Pharma Llc Combination therapies for treatment of cancer
WO2018218069A1 (en) 2017-05-25 2018-11-29 Araxes Pharma Llc Quinazoline derivatives as modulators of mutant kras, hras or nras
WO2018218071A1 (en) 2017-05-25 2018-11-29 Araxes Pharma Llc Compounds and methods of use thereof for treatment of cancer
WO2018217651A1 (en) 2017-05-22 2018-11-29 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2018218070A2 (en) 2017-05-25 2018-11-29 Araxes Pharma Llc Covalent inhibitors of kras
US10144724B2 (en) 2015-07-22 2018-12-04 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
EP3409669A1 (en) 2014-06-19 2018-12-05 ARIAD Pharmaceuticals, Inc. Heteroaryl compounds for kinase inhibition
EP3409278A1 (en) 2011-07-21 2018-12-05 Tolero Pharmaceuticals, Inc. Heterocyclic protein kinase inhibitors
WO2019023316A1 (en) 2017-07-26 2019-01-31 Sutro Biopharma, Inc. Methods of using anti-cd74 antibodies and antibody conjugates in treatment of t-cell lymphoma
WO2019051291A1 (en) 2017-09-08 2019-03-14 Amgen Inc. Inhibitors of kras g12c and methods of using the same
WO2019055909A1 (en) 2017-09-18 2019-03-21 Sutro Biopharma, Inc. Anti-folate receptor alpha antibody conjugates and their uses
US10246424B2 (en) 2015-04-10 2019-04-02 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
WO2019075367A1 (en) 2017-10-13 2019-04-18 Tolero Pharmaceuticals, Inc. Pkm2 activators in combination with reactive oxygen species for treatment of cancer
WO2019094772A1 (en) 2017-11-10 2019-05-16 The Regents Of The University Of Michigan Ash1l degraders and methods of treatment therewith
WO2019113469A1 (en) 2017-12-07 2019-06-13 The Regents Of The University Of Michigan Nsd family inhibitors and methods of treatment therewith
US10428064B2 (en) 2015-04-15 2019-10-01 Araxes Pharma Llc Fused-tricyclic inhibitors of KRAS and methods of use thereof
WO2019213516A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019213526A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019217691A1 (en) 2018-05-10 2019-11-14 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
WO2019232419A1 (en) 2018-06-01 2019-12-05 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2019236957A1 (en) 2018-06-07 2019-12-12 The Regents Of The University Of Michigan Prc1 inhibitors and methods of treatment therewith
WO2019241157A1 (en) 2018-06-11 2019-12-19 Amgen Inc. Kras g12c inhibitors for treating cancer
EP3590932A1 (en) 2013-03-14 2020-01-08 Tolero Pharmaceuticals, Inc. Jak2 and alk2 inhibitors and methods for their use
WO2020028706A1 (en) 2018-08-01 2020-02-06 Araxes Pharma Llc Heterocyclic spiro compounds and methods of use thereof for the treatment of cancer
EP3613743A1 (en) 2008-01-04 2020-02-26 Intellikine, LLC Processes for the preparation of 1h-pyrazolo[3,4-d]pyrimidin-4-amine derivatives
WO2020050890A2 (en) 2018-06-12 2020-03-12 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2020060944A1 (en) 2018-09-17 2020-03-26 Sutro Biopharma, Inc. Combination therapies with anti-folate receptor antibody conjugates
WO2020086739A1 (en) 2018-10-24 2020-04-30 Araxes Pharma Llc 2-(2-acryloyl-2,6-diazaspiro[3.4]octan-6-yl)-6-(1h-indazol-4-yl)-benzonitrile derivatives and related compounds as inhibitors of g12c mutant kras protein for inhibiting tumor metastasis
US10646488B2 (en) 2016-07-13 2020-05-12 Araxes Pharma Llc Conjugates of cereblon binding compounds and G12C mutant KRAS, HRAS or NRAS protein modulating compounds and methods of use thereof
WO2020102730A1 (en) 2018-11-16 2020-05-22 Amgen Inc. Improved synthesis of key intermediate of kras g12c inhibitor compound
WO2020106640A1 (en) 2018-11-19 2020-05-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
WO2020106647A2 (en) 2018-11-19 2020-05-28 Amgen Inc. Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
WO2020113071A1 (en) 2018-11-29 2020-06-04 Araxes Pharma Llc Compounds and methods of use thereof for treatment of cancer
US10689356B2 (en) 2015-09-28 2020-06-23 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2020132649A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
WO2020132651A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
WO2020132648A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
WO2020132653A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
US10730867B2 (en) 2015-09-28 2020-08-04 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10766865B2 (en) 2012-10-16 2020-09-08 Sumitomo Dainippon Pharma Oncology, Inc. PKM2 modulators and methods for their use
WO2020180768A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2020180770A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heterocyclyl compounds and uses thereof
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
US10822312B2 (en) 2016-03-30 2020-11-03 Araxes Pharma Llc Substituted quinazoline compounds and methods of use
WO2020227105A1 (en) 2019-05-03 2020-11-12 Sutro Biopharma, Inc. Anti-bcma antibody conjugates
US10835537B2 (en) 2015-08-03 2020-11-17 Sumitomo Dainippon Pharma Oncology, Inc. Combination therapies for treatment of cancer
US10858343B2 (en) 2015-09-28 2020-12-08 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10875842B2 (en) 2015-09-28 2020-12-29 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
WO2021026098A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021026100A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Pyridine derivatives as kif18a inhibitors
WO2021026101A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021026099A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021055728A1 (en) 2019-09-18 2021-03-25 Merck Sharp & Dohme Corp. Small molecule inhibitors of kras g12c mutant
WO2021067215A1 (en) 2019-09-30 2021-04-08 Agios Pharmaceuticals, Inc. Piperidine compounds as menin inhibitors
US10975071B2 (en) 2015-09-28 2021-04-13 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2021081212A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
WO2021085653A1 (en) 2019-10-31 2021-05-06 Taiho Pharmaceutical Co., Ltd. 4-aminobut-2-enamide derivatives and salts thereof
WO2021086833A1 (en) 2019-10-28 2021-05-06 Merck Sharp & Dohme Corp. Small molecule inhibitors of kras g12c mutant
WO2021091956A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091967A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091982A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021092115A1 (en) 2019-11-08 2021-05-14 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2021097207A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021097212A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021107160A1 (en) 2019-11-29 2021-06-03 Taiho Pharmaceutical Co., Ltd. A compound having inhibitory activity against kras g12d mutation
WO2021108683A1 (en) 2019-11-27 2021-06-03 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11040038B2 (en) 2018-07-26 2021-06-22 Sumitomo Dainippon Pharma Oncology, Inc. Methods for treating diseases associated with abnormal ACVR1 expression and ACVR1 inhibitors for use in the same
WO2021142026A1 (en) 2020-01-07 2021-07-15 Revolution Medicines, Inc. Shp2 inhibitor dosing and methods of treating cancer
WO2021155006A1 (en) 2020-01-31 2021-08-05 Les Laboratoires Servier Sas Inhibitors of cyclin-dependent kinases and uses thereof
WO2021178597A1 (en) 2020-03-03 2021-09-10 Sutro Biopharma, Inc. Antibodies comprising site-specific glutamine tags, methods of their preparation and methods of their use
US11118233B2 (en) 2016-05-18 2021-09-14 The University Of Chicago BTK mutation and ibrutinib resistance
WO2021207310A1 (en) 2020-04-08 2021-10-14 Agios Pharmaceuticals, Inc. Menin inhibitors and methods of use for treating cancer
WO2021204159A1 (en) 2020-04-08 2021-10-14 Agios Pharmaceuticals, Inc. Menin inhibitors and methods of use for treating cancer
WO2021215545A1 (en) 2020-04-24 2021-10-28 Taiho Pharmaceutical Co., Ltd. Anticancer combination therapy with n-(1-acryloyl-azetidin-3-yl)-2-((1h-indazol-3-yl)amino)methyl)-1h-imidazole-5-carboxamide inhibitor of kras-g12c
WO2021215544A1 (en) 2020-04-24 2021-10-28 Taiho Pharmaceutical Co., Ltd. Kras g12d protein inhibitors
WO2021257736A1 (en) 2020-06-18 2021-12-23 Revolution Medicines, Inc. Methods for delaying, preventing, and treating acquired resistance to ras inhibitors
WO2022014640A1 (en) 2020-07-15 2022-01-20 大鵬薬品工業株式会社 Pyrimidine compound-containing combination to be used in tumor treatment
US11236091B2 (en) 2019-05-21 2022-02-01 Amgen Inc. Solid state forms
US11241414B2 (en) 2008-03-28 2022-02-08 Neurelis, Inc. Administration of benzodiazepine compositions
US11267885B2 (en) 2017-01-26 2022-03-08 Zlip Holding Limited CD47 antigen binding unit and uses thereof
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
WO2022060583A1 (en) 2020-09-03 2022-03-24 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
WO2022060836A1 (en) 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
EP4006030A2 (en) 2015-06-04 2022-06-01 Kura Oncology, Inc. Methods and compositions for inhibiting the interaction of menin with mll proteins
WO2022140427A1 (en) 2020-12-22 2022-06-30 Qilu Regor Therapeutics Inc. Sos1 inhibitors and uses thereof
US11426404B2 (en) 2019-05-14 2022-08-30 Amgen Inc. Dosing of KRAS inhibitor for treatment of cancers
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2022221227A1 (en) 2021-04-13 2022-10-20 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
WO2022235866A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
WO2022235864A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2022250170A1 (en) 2021-05-28 2022-12-01 Taiho Pharmaceutical Co., Ltd. Small molecule inhibitors of kras mutated proteins
US11542248B2 (en) 2017-06-08 2023-01-03 Kura Oncology, Inc. Methods and compositions for inhibiting the interaction of menin with MLL proteins
WO2023056589A1 (en) 2021-10-08 2023-04-13 Servier Pharmaceuticals Llc Menin inhibitors and methods of use for treating cancer
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
US11649251B2 (en) 2017-09-20 2023-05-16 Kura Oncology, Inc. Substituted inhibitors of menin-MLL and methods of use
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
US11746103B2 (en) 2020-12-10 2023-09-05 Sumitomo Pharma Oncology, Inc. ALK-5 inhibitors and uses thereof
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
WO2023211812A1 (en) 2022-04-25 2023-11-02 Nested Therapeutics, Inc. Heterocyclic derivatives as mitogen-activated protein kinase (mek) inhibitors
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
US11858925B2 (en) 2020-07-10 2024-01-02 The Regents Of The University Of Michigan GAS41 inhibitors and methods of use thereof
WO2024006542A1 (en) 2022-06-30 2024-01-04 Sutro Biopharma, Inc. Anti-ror1 antibodies and antibody conjugates, compositions comprising anti-ror1 antibodies or antibody conjugates, and methods of making and using anti-ror1 antibodies and antibody conjugates
WO2024010925A2 (en) 2022-07-08 2024-01-11 Nested Therapeutics, Inc. Mitogen-activated protein kinase (mek) inhibitors
US11931420B2 (en) 2021-04-30 2024-03-19 Celgene Corporation Combination therapies using an anti-BCMA antibody drug conjugate (ADC) in combination with a gamma secretase inhibitor (GSI)
WO2024081916A1 (en) 2022-10-14 2024-04-18 Black Diamond Therapeutics, Inc. Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof
WO2024211663A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024211712A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055851A1 (en) * 2001-12-27 2003-07-10 Sumitomo Pharmaceuticals Company, Limited Hydroxamic acid derivative and mmp inhibitor containing the same as active ingredient
CN107995863A (en) 2015-04-20 2018-05-04 特雷罗药物股份有限公司 Response of the prediction to Avobenzene west ground is analyzed by mitochondria
AU2016264212B2 (en) 2015-05-18 2020-10-22 Sumitomo Pharma Oncology, Inc. Alvocidib prodrugs having increased bioavailability
WO2018119000A1 (en) 2016-12-19 2018-06-28 Tolero Pharmaceuticals, Inc. Profiling peptides and methods for sensitivity profiling
KR20210003780A (en) 2018-04-05 2021-01-12 스미토모 다이니폰 파마 온콜로지, 인크. AXL kinase inhibitors and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606046A1 (en) * 1993-01-06 1994-07-13 Ciba-Geigy Ag Arylsulfonamido-substituted hydroxamic acids
WO1995035275A1 (en) * 1994-06-22 1995-12-28 British Biotech Pharmaceuticals Limited Metalloproteinase inhibitors
WO1996000214A1 (en) * 1994-06-24 1996-01-04 Ciba-Geigy Ag Arylsulfonamido-substituted hydroxamic acids as matrix metalloproteinase inhibitors
WO1996027583A1 (en) * 1995-03-08 1996-09-12 Pfizer Inc. Arylsulfonylamino hydroxamic acid derivatives

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8827305D0 (en) * 1988-11-23 1988-12-29 British Bio Technology Compounds
AU6951296A (en) * 1995-08-08 1997-03-05 Fibrogen, Inc. C-proteinase inhibitors for the treatment of disorders related to the overproduction of collagen
US5994351A (en) * 1998-07-27 1999-11-30 Pfizer Inc. Arylsulfonylamino hydroxamic acid derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606046A1 (en) * 1993-01-06 1994-07-13 Ciba-Geigy Ag Arylsulfonamido-substituted hydroxamic acids
WO1995035275A1 (en) * 1994-06-22 1995-12-28 British Biotech Pharmaceuticals Limited Metalloproteinase inhibitors
WO1996000214A1 (en) * 1994-06-24 1996-01-04 Ciba-Geigy Ag Arylsulfonamido-substituted hydroxamic acids as matrix metalloproteinase inhibitors
WO1996027583A1 (en) * 1995-03-08 1996-09-12 Pfizer Inc. Arylsulfonylamino hydroxamic acid derivatives

Cited By (440)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153757A (en) * 1995-12-08 2000-11-28 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors and intermediates useful for their preparation
US6500948B1 (en) 1995-12-08 2002-12-31 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors-compositions, uses preparation and intermediates thereof
US6849732B2 (en) 1995-12-08 2005-02-01 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses, and methods and intermediates useful for their preparation
US6008243A (en) * 1996-10-24 1999-12-28 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them, and their use
US6495699B2 (en) 1996-10-24 2002-12-17 Agouron Pharmaceuticals Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them, and their use
US6174915B1 (en) 1997-03-25 2001-01-16 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
US6306892B1 (en) 1997-03-25 2001-10-23 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them, and their use
US5985900A (en) * 1997-04-01 1999-11-16 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
WO1998050348A1 (en) * 1997-05-09 1998-11-12 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
WO1998055449A1 (en) * 1997-06-06 1998-12-10 The University Of Queensland Hydroxamic acid compounds having anticancer and anti-parasitic properties
EP0895988A1 (en) * 1997-08-08 1999-02-10 Pfizer Products Inc. Arylsulfonylamino hydroxamic acid derivatives
US6114568A (en) * 1998-04-10 2000-09-05 Pfizer Inc. Process for alkylating hindered sulfonamides useful in the production of matrix metalloproteinase inhibitors
US6156798A (en) * 1998-04-10 2000-12-05 Pfizer Inc Cyclobutyl-aryloxyarylsulfonylamino hydroxamic acid derivatives
US6118016A (en) * 1998-04-10 2000-09-12 Pfizer Inc. Process for preparing phenoxyphenylsulfonyl halides
AP1095A (en) * 1998-04-10 2002-08-26 Pfizer Prod Inc Process for alkylating hindered sulfonamides.
US6229025B1 (en) 1998-04-10 2001-05-08 Pfizer Inc Process for alkylating hindered sulfonamides
EP0952148A1 (en) * 1998-04-10 1999-10-27 Pfizer Products Inc. Cyclobutyl-aryloxyarylsulfonylamino hydroxamic acid derivatives
US6288246B1 (en) 1998-04-10 2001-09-11 Pfizer Inc Process for preparing hydroxamic acids
WO1999052862A1 (en) * 1998-04-10 1999-10-21 Pfizer Products Inc. Process for alkylating hindered sulfonamides useful in the production of matrix metalloproteinase inhibitors
EP0949245A1 (en) * 1998-04-10 1999-10-13 Pfizer Products Inc. Process for alkylating hindered sulfonamides
US6753337B2 (en) 1999-01-27 2004-06-22 Wyeth Holdings Corporation Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase/tace inhibitors
US6812227B2 (en) 1999-01-27 2004-11-02 Wyeth Holdings Corporation Acetylenic α-amino acid-based sulfonamide hydroxamic acid tace inhibitors
US6358980B1 (en) 1999-01-27 2002-03-19 American Cyanamid Company Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase/tace inhibitors
US6326516B1 (en) 1999-01-27 2001-12-04 American Cyanamid Company Acetylenic β-sulfonamido and phosphinic acid amide hydroxamic acid TACE inhibitors
US6946473B2 (en) 1999-01-27 2005-09-20 Wyeth Holdings Corporation Preparation and use of acetylenic ortho-sulfonamido and phosphinic acid amido bicyclic heteroaryl hydroxamic acids as TACE inhibitors
US6200996B1 (en) 1999-01-27 2001-03-13 American Cyanamid Company Heteroaryl acetylenic sulfonamide and phosphinic acid amide hydroxamic acid tace inhibitors
US6225311B1 (en) 1999-01-27 2001-05-01 American Cyanamid Company Acetylenic α-amino acid-based sulfonamide hydroxamic acid tace inhibitors
US6313123B1 (en) 1999-01-27 2001-11-06 American Cyanamid Company Acetylenic sulfonamide thiol tace inhibitors
US6277885B1 (en) 1999-01-27 2001-08-21 American Cyanamid Company Acetylenic aryl sulfonamide and phosphinic acid amide hydroxamic acid TACE inhibitors
US6825354B2 (en) 1999-01-27 2004-11-30 Wyeth Holdings Corporation Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase and TACE inhibitors
US6762178B2 (en) 1999-01-27 2004-07-13 Wyeth Holdings Corporation Acetylenic aryl sulfonamide and phosphinic acid amide hydroxamic acid TACE inhibitors
US6716833B2 (en) 1999-01-27 2004-04-06 Wyeth Holdings Corporation Acetylenic α-amino acid-based sulfonamide hydroxamic acid tace inhibitors
US6340691B1 (en) 1999-01-27 2002-01-22 American Cyanamid Company Alkynyl containing hydroxamic acid compounds as matrix metalloproteinase and tace inhibitors
EP1041072A1 (en) * 1999-03-31 2000-10-04 Pfizer Products Inc. Dioxocyclopentyl hydroxamic acids
DE19920907A1 (en) * 1999-05-06 2000-11-09 Basf Ag Preparation of cyclohexylglycine ester derivatives comprises reacting cyclohexylglycine derivatives with methanesulfonic acid and benzyl alcohol derivative in organic solvent
EP3100730A1 (en) 1999-11-11 2016-12-07 OSI Pharmaceuticals, LLC N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine for use in the treatment of nsclc
EP2292233A2 (en) 1999-11-11 2011-03-09 OSI Pharmaceuticals, Inc. Pharmaceutical uses of N-(3-Ethynylphenyl)-6,7-bis(2-methoxyethoxy)-4-quinazolinamine
US6518434B2 (en) 2000-02-07 2003-02-11 Astrazeneca Ab Coupling process
US7141607B1 (en) 2000-03-10 2006-11-28 Insite Vision Incorporated Methods and compositions for treating and inhibiting retinal neovascularization
US6458822B2 (en) 2000-03-13 2002-10-01 Pfizer Inc. 2-oxo-imidazolidine-4-carboxylic acid hydroxamide compounds that inhibit matrix metalloproteinases
EP2194067A2 (en) 2001-01-05 2010-06-09 Pfizer Inc. Antibodies to insulin-like growth factor I receptor (IGF-IR)
US9234041B2 (en) 2001-01-05 2016-01-12 Pfizer Inc. Antibodies to insulin-like growth factor I receptor
EP2796468A2 (en) 2001-01-05 2014-10-29 Pfizer Inc Antibodies to insulin-like growth factor I receptor
US7037498B2 (en) 2001-01-05 2006-05-02 Abgenix, Inc. Antibodies to insulin-like growth factor I receptor
US6995171B2 (en) 2001-06-21 2006-02-07 Agouron Pharmaceuticals, Inc. Bicyclic pyrimidine and pyrimidine derivatives useful as anticancer agents
US7282496B2 (en) 2001-11-01 2007-10-16 Wyeth Holdings Corporation Allenic aryl sulfonamide hydroxamic acids as matrix metalloproteinase and TACE inhibitors
EP2343086A2 (en) 2001-11-09 2011-07-13 Pfizer Products Inc. Antibodies to CD40
US7288251B2 (en) 2001-11-09 2007-10-30 Abgenix, Inc. Antibodies to CD40
US6833456B2 (en) 2002-03-01 2004-12-21 Agouron Pharmaceuticals, Inc. Indolyl-urea derivatives of thienopyridines useful as antiangiogenic agents, and methods for their use
WO2003075959A1 (en) * 2002-03-08 2003-09-18 Novartis Ag Matrix metalloproteinase inhibitors in combination with hypothermia and/or radiotherapy for the treatment of cancer
EP2130536A1 (en) 2002-03-13 2009-12-09 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as mek inhibitors
EP3000810A1 (en) 2002-03-13 2016-03-30 Array Biopharma, Inc. N3 alkylated benzimidazole derivative as mek inhibitor
EP2130537A1 (en) 2002-03-13 2009-12-09 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as mek inhibitors
EP2275102A1 (en) 2002-03-13 2011-01-19 Array Biopharma, Inc. N3 alkylated benzimidazole derivatives as MEK inhibitors
US7045528B2 (en) 2002-06-14 2006-05-16 Agouron Pharmaceuticals, Inc. Benzofused heterozryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US6869962B2 (en) 2002-06-14 2005-03-22 Agouron Pharmaceuticals, Inc. Benzofused heterozryl amide derivatives of thienopyridines useful as therapeutic agents, pharmaceutical compositions including the same, and methods for their use
US7053107B2 (en) 2002-12-19 2006-05-30 Agouron Pharmaceuticals, Inc. Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
WO2004056353A3 (en) * 2002-12-20 2004-11-04 Novartis Ag Device and method for delivering mmp inhibitors
WO2004056353A2 (en) * 2002-12-20 2004-07-08 Novartis Ag Device and method for delivering mmp inhibitors
US7485667B2 (en) 2002-12-23 2009-02-03 Wyeth Holdings Corporation Acetylenic aryl sulfonate hydroxamic acid tace and matrix metalloproteinase inhibitors
US7199155B2 (en) 2002-12-23 2007-04-03 Wyeth Holdings Corporation Acetylenic aryl sulfonate hydroxamic acid TACE and matrix metalloproteinase inhibitors
EP2476667A2 (en) 2003-02-26 2012-07-18 Sugen, Inc. Aminoheteroaryl compounds as protein kinase inhibitors
US7538111B2 (en) * 2003-03-25 2009-05-26 Laboratoires Fournier S.A. Benzenesulphonamide derivatives, method for production and use thereof for treatment of pain
WO2005016967A2 (en) 2003-08-13 2005-02-24 Pfizer Products Inc. Modified human igf-1r antibodies
US7208500B2 (en) 2003-08-29 2007-04-24 Agouron Pharmaceuticals, Inc. Thienopyridine-phenylacetamides and their derivatives useful as new anti-angiogenic agents
WO2005023759A2 (en) 2003-09-03 2005-03-17 Array Biopharma Inc. Heterocyclic inhibitors of mek and methods of use thereof
US10280219B2 (en) 2003-09-10 2019-05-07 Amgen Fremont Inc. Antibodies to M-CSF
US9718883B2 (en) 2003-09-10 2017-08-01 Amgen Fremont Inc. Antibodies to M-CSF
EP3170840A1 (en) 2003-09-10 2017-05-24 Warner-Lambert Company LLC Antibodies to m-csf
EP2251327A2 (en) 2003-11-19 2010-11-17 Array Biopharma, Inc. Heterocyclic inhibitors of MEK and methods of use thereof
WO2005051300A2 (en) 2003-11-19 2005-06-09 Array Biopharma Inc. Bicyclic inhibitors of mek and methods of use thereof
US8785632B2 (en) 2004-08-26 2014-07-22 Agouron Pharmaceuticals, Inc. Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
US7858643B2 (en) 2004-08-26 2010-12-28 Agouron Pharmaceuticals, Inc. Enantiomerically pure aminoheteroaryl compounds as protein kinase inhibitors
EP2322550A1 (en) 2004-12-22 2011-05-18 Amgen, Inc Compositions comprising anti-IGF-1R Antibodies and Methods for obtaining said Antibodies
EP2322551A2 (en) 2004-12-22 2011-05-18 Amgen, Inc Compositions comprising Anti-IGF-1R Antibodies and Methods for their Production
US7429667B2 (en) 2005-01-20 2008-09-30 Ardea Biosciences, Inc. Phenylamino isothiazole carboxamidines as MEK inhibitors
US7652047B2 (en) 2005-01-20 2010-01-26 Ardea Biosciences, Inc. Phenylamino isothiazole carboxamidines as MEK inhibitors
EP2364973A1 (en) 2005-05-18 2011-09-14 Array Biopharma, Inc. Heterocyclic inhibitors of MEK and Methods of use thereof
WO2007044084A2 (en) 2005-05-18 2007-04-19 Array Biopharma Inc. Heterocyclic inhibitors of mek and methods of use thereof
EP2361905A1 (en) 2005-05-18 2011-08-31 Array Biopharma Inc. Heterocyclic Inhibitors of MEK and methods of use thereof
US7759518B2 (en) 2005-07-21 2010-07-20 Ardea Biosciences Derivatives of N-(arylamino) sulfonamides as inhibitors of MEK
US8101799B2 (en) 2005-07-21 2012-01-24 Ardea Biosciences Derivatives of N-(arylamino) sulfonamides as inhibitors of MEK
US8829052B2 (en) 2005-07-21 2014-09-09 Ardea Biosciences, Inc. Derivatives of N-(arylamino)sulfonamides as inhibitors of MEK
WO2007035744A1 (en) 2005-09-20 2007-03-29 Osi Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
EP2372363A1 (en) 2005-09-20 2011-10-05 OSI Pharmaceuticals, Inc. Biological markers predictive of anti-cancer response to insulin-like growth factor-1
WO2007076245A2 (en) 2005-12-21 2007-07-05 Array Biopharma Inc. Novel hydrogen sulfate salt
US7842836B2 (en) 2006-04-11 2010-11-30 Ardea Biosciences N-aryl-N'alkyl sulfamides as MEK inhibitors
US8716318B2 (en) 2006-04-18 2014-05-06 Ardea Biosciences Pyridone sulfonamides and pyridone sulfamides as MEK inhibitors
US7897624B2 (en) 2006-04-18 2011-03-01 Ardea Biosciences Pyridone sulfonamides and pyridone sulfamides as MEK inhibitors
WO2008075196A1 (en) 2006-12-15 2008-06-26 Pfizer Products Inc. Benzimidazole derivatives
US7820664B2 (en) 2007-01-19 2010-10-26 Bayer Schering Pharma Ag Inhibitors of MEK
US8063049B2 (en) 2007-01-19 2011-11-22 Ardea Biosciences, Inc. Inhibitors of MEK
WO2008129380A1 (en) 2007-04-18 2008-10-30 Pfizer Products Inc. Sulfonyl amide derivatives for the treatment of abnormal cell growth
US8530463B2 (en) 2007-05-07 2013-09-10 Hale Biopharma Ventures Llc Multimodal particulate formulations
WO2009018238A1 (en) 2007-07-30 2009-02-05 Ardea Biosciences, Inc. Combinations of mek inhibitors and raf kinase inhibitors and uses thereof
EP2690101A1 (en) 2007-12-19 2014-01-29 Genentech, Inc. 5-Anilinoimidazopyridines and Methods of Use
WO2009082687A1 (en) 2007-12-21 2009-07-02 Genentech, Inc. Azaindolizines and methods of use
US11433065B2 (en) 2008-01-04 2022-09-06 Intellikine Llc Certain chemical entities, compositions and methods
EP3613743A1 (en) 2008-01-04 2020-02-26 Intellikine, LLC Processes for the preparation of 1h-pyrazolo[3,4-d]pyrimidin-4-amine derivatives
WO2009114870A2 (en) 2008-03-14 2009-09-17 Intellikine, Inc. Kinase inhibitors and methods of use
US11793786B2 (en) 2008-03-28 2023-10-24 Neurelis, Inc. Administration of benzodiazepine compositions
US11241414B2 (en) 2008-03-28 2022-02-08 Neurelis, Inc. Administration of benzodiazepine compositions
US9763876B2 (en) 2008-03-28 2017-09-19 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
EP3009436A1 (en) 2008-07-08 2016-04-20 Intellikine, LLC Kinase inhibitors and methods of use
WO2010045495A2 (en) 2008-10-16 2010-04-22 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Fully human antibodies to high molecular weight-melanoma associated antigen and uses thereof
EP3153023A1 (en) 2008-11-03 2017-04-12 Intellikine, LLC Benzoxazole kinase inhibitors and methods of use
WO2010051043A1 (en) 2008-11-03 2010-05-06 Intellikine, Inc. Benzoxazole kinase inhibitors and methods of use
WO2010091150A1 (en) 2009-02-05 2010-08-12 Immunogen, Inc. Novel benzodiazepine derivatives
EP3100745A1 (en) 2009-02-05 2016-12-07 Immunogen, Inc. Novel benzodiazepine derivatives
EP3360879A1 (en) 2009-02-05 2018-08-15 ImmunoGen, Inc. Benzodiazepine derivatives as cytotoxic agents
WO2010090764A1 (en) 2009-02-09 2010-08-12 Supergen, Inc. Pyrrolopyrimidinyl axl kinase inhibitors
WO2010099139A2 (en) 2009-02-25 2010-09-02 Osi Pharmaceuticals, Inc. Combination anti-cancer therapy
WO2010099137A2 (en) 2009-02-26 2010-09-02 Osi Pharmaceuticals, Inc. In situ methods for monitoring the emt status of tumor cells in vivo
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099364A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010099363A1 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
WO2010098866A1 (en) 2009-02-27 2010-09-02 Supergen, Inc. Cyclopentathiophene/cyclohexathiophene dna methyltransferase inhibitors
US8895546B2 (en) 2009-03-27 2014-11-25 Hale Biopharma Ventures, Llc Administration of benzodiazepine compositions
WO2010108652A1 (en) 2009-03-27 2010-09-30 Ardea Biosciences Inc. Dihydropyridin sulfonamides and dihydropyridin sulfamides as mek inhibitors
WO2010129816A2 (en) 2009-05-07 2010-11-11 Intellikine, Inc. Heterocyclic compounds and uses thereof
EP3441392A1 (en) 2009-07-15 2019-02-13 Intellikine, LLC A pharmaceutical composition for oral administration
EP2918589A1 (en) 2009-07-15 2015-09-16 Intellikine, LLC Adenine derivative as pi3k inhibitor
WO2011014726A1 (en) 2009-07-31 2011-02-03 Osi Pharmaceuticals, Inc. Mtor inhibitor and angiogenesis inhibitor combination therapy
WO2011022439A1 (en) 2009-08-17 2011-02-24 Intellikine, Inc. Heterocyclic compounds and uses thereof
WO2011027249A2 (en) 2009-09-01 2011-03-10 Pfizer Inc. Benzimidazole derivatives
US9034861B2 (en) 2009-10-13 2015-05-19 Allomek Therapeutics Llc MEK inhibitors useful in the treatment of diseases
WO2011049625A1 (en) 2009-10-20 2011-04-28 Mansour Samadpour Method for aflatoxin screening of products
EP3444242A2 (en) 2009-11-05 2019-02-20 Rhizen Pharmaceuticals S.A. Novel benzopyran kinase modulators
EP3050876A2 (en) 2009-11-05 2016-08-03 Rhizen Pharmaceuticals S.A. Kinase modulators
WO2011100403A1 (en) 2010-02-10 2011-08-18 Immunogen, Inc Cd20 antibodies and uses thereof
EP4166558A1 (en) 2010-02-12 2023-04-19 Pfizer Inc. Salts and polymorphs of 8-fluoro-2-{4- [(methylamino)methyl]phenyl}-1 ,3,4,5-tetrahydro-6h-azepino[5,4,3- cd]indol-6-one
EP3150610A1 (en) 2010-02-12 2017-04-05 Pfizer Inc Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
EP3597651A1 (en) 2010-02-12 2020-01-22 Pfizer Inc Salts and polymorphs of 8-fluoro-2-{4- [(methylamino)methyl]phenyl}-1 ,3,4,5-tetrahydro-6h-azepino[5,4,3- cd]indol-6-one
WO2011098971A1 (en) 2010-02-12 2011-08-18 Pfizer Inc. Salts and polymorphs of 8-fluoro-2-{4-[(methylamino}methyl]phenyl}-1,3,4,5-tetrahydro-6h-azepino[5,4,3-cd]indol-6-one
WO2011109584A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011109572A2 (en) 2010-03-03 2011-09-09 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors
WO2011145035A1 (en) 2010-05-17 2011-11-24 Indian Incozen Therapeutics Pvt. Ltd. Novel 3,5-disubstitued-3h-imidazo[4,5-b]pyridine and 3,5- disubstitued -3h-[1,2,3]triazolo[4,5-b] pyridine compounds as modulators of protein kinases
EP3450432A1 (en) 2010-05-17 2019-03-06 Incozen Therapeutics Pvt. Ltd. Novel 3,5-disubstitued-3h-imidazo[4,5-b]pyridine and 3,5- disubstitued - 3h-[1,2,3]triazolo[4,5-b] pyridine compounds as modulators of protein kinases
WO2011146882A1 (en) 2010-05-21 2011-11-24 Intellikine, Inc. Chemical compounds, compositions and methods for kinase modulation
EP3135692A1 (en) 2010-06-16 2017-03-01 University of Pittsburgh of the Commonwealth System of Higher Education Antibodies to endoplasmin and their use
WO2012052948A1 (en) 2010-10-20 2012-04-26 Pfizer Inc. Pyridine- 2- derivatives as smoothened receptor modulators
WO2012064973A2 (en) 2010-11-10 2012-05-18 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US9290497B2 (en) 2011-01-10 2016-03-22 Infinity Pharmaceuticals, Inc. Processes for preparing isoquinolinones and solid forms of isoquinolinones
WO2012097000A1 (en) 2011-01-10 2012-07-19 Pingda Ren Processes for preparing isoquinolinones and solid forms of isoquinolinones
US9840505B2 (en) 2011-01-10 2017-12-12 Infinity Pharmaceuticals, Inc. Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1 (2H)-one and methods of use thereof
EP3581574A1 (en) 2011-01-10 2019-12-18 Infinity Pharmaceuticals, Inc. A composition for oral administration for use in the treatment of cancer, an inflammatory disease or an auto-immune disease
US11312718B2 (en) 2011-01-10 2022-04-26 Infinity Pharmaceuticals, Inc. Formulations of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one
USRE46621E1 (en) 2011-01-10 2017-12-05 Infinity Pharmaceuticals, Inc. Processes for preparing isoquinolinones and solid forms of isoquinolinones
US10550122B2 (en) 2011-01-10 2020-02-04 Infinity Pharmaceuticals, Inc. Solid forms of (S)-3-(1-(9H-purin-6-ylamino)ethyl)-8-chloro-2-phenylisoquinolin-1(2H)-one and methods of use thereof
EP3238722A1 (en) 2011-01-10 2017-11-01 Infinity Pharmaceuticals, Inc. Solid forms of isoquinolinones
WO2012106556A2 (en) 2011-02-02 2012-08-09 Amgen Inc. Methods and compositons relating to inhibition of igf-1r
EP3053600A1 (en) 2011-02-15 2016-08-10 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
WO2012128868A1 (en) 2011-02-15 2012-09-27 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
EP3666289A1 (en) 2011-02-15 2020-06-17 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
WO2012112708A1 (en) 2011-02-15 2012-08-23 Immunogen, Inc. Cytotoxic benzodiazepine derivatives and methods of preparation
WO2012116040A1 (en) 2011-02-22 2012-08-30 OSI Pharmaceuticals, LLC Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors in hepatocellular carcinoma
US9127000B2 (en) 2011-02-23 2015-09-08 Intellikine, LLC. Heterocyclic compounds and uses thereof
WO2012116237A2 (en) 2011-02-23 2012-08-30 Intellikine, Llc Heterocyclic compounds and uses thereof
WO2012142164A1 (en) 2011-04-12 2012-10-18 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Human monoclonal antibodies that bind insulin-like growth factor (igf) i and ii
EP3536708A1 (en) 2011-04-19 2019-09-11 Pfizer Inc Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
WO2012145183A2 (en) 2011-04-19 2012-10-26 Pfizer Inc. Combinations of anti-4-1bb antibodies and adcc-inducing antibodies for the treatment of cancer
WO2012149014A1 (en) 2011-04-25 2012-11-01 OSI Pharmaceuticals, LLC Use of emt gene signatures in cancer drug discovery, diagnostics, and treatment
WO2012151525A1 (en) 2011-05-04 2012-11-08 Rhizen Pharmaceuticals Sa Novel compounds as modulators of protein kinases
WO2013012915A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
WO2013012918A1 (en) 2011-07-19 2013-01-24 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
EP3812387A1 (en) 2011-07-21 2021-04-28 Sumitomo Dainippon Pharma Oncology, Inc. Heterocyclic protein kinase inhibitors
EP3409278A1 (en) 2011-07-21 2018-12-05 Tolero Pharmaceuticals, Inc. Heterocyclic protein kinase inhibitors
US10875864B2 (en) 2011-07-21 2020-12-29 Sumitomo Dainippon Pharma Oncology, Inc. Substituted imidazo[1,2-B]pyridazines as protein kinase inhibitors
WO2013032591A1 (en) 2011-08-29 2013-03-07 Infinity Pharmaceuticals Inc. Heterocyclic compounds and uses thereof
AU2011377440B2 (en) * 2011-09-19 2017-01-05 Beijing Konruns Pharmaceutical Co., Ltd. Hydroxamic acid compound containing quinolyl and preparation method thereof, and pharmaceutical composition containing this compound and use thereof
WO2013042006A1 (en) 2011-09-22 2013-03-28 Pfizer Inc. Pyrrolopyrimidine and purine derivatives
WO2013049332A1 (en) 2011-09-29 2013-04-04 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
US9630979B2 (en) 2011-09-29 2017-04-25 Infinity Pharmaceuticals, Inc. Inhibitors of monoacylglycerol lipase and methods of their use
WO2013050725A1 (en) 2011-10-04 2013-04-11 King's College London Ige anti -hmw-maa antibody
EP3275902A1 (en) 2011-10-04 2018-01-31 IGEM Therapeutics Limited Ige anti-hmw-maa antibody
WO2013068902A1 (en) 2011-11-08 2013-05-16 Pfizer Inc. Methods of treating inflammatory disorders using anti-m-csf antibodies
EP3345624A1 (en) 2012-02-22 2018-07-11 The Regents Of The University Of Colorado Bouvardin derivatives and therapeutic uses thereof
US10259846B2 (en) 2012-02-22 2019-04-16 The Regents Of The University Of Colorado Bouvardin derivatives and therapeutic uses thereof
US9452215B2 (en) 2012-02-22 2016-09-27 The Regents Of The University Of Colorado Bourvadin derivatives and therapeutic uses thereof
WO2013126617A1 (en) 2012-02-22 2013-08-29 The Regents Of The University Of Colorado, A Body Corporate Bouvardin derivatives and therapeutic uses thereof
WO2013144737A2 (en) 2012-03-30 2013-10-03 Rhizen Pharmaceuticals Sa Novel 3,5-disubstitued-3h-imidazo[4,5-b]pyridine and 3,5- disubstitued -3h-[1,2,3]triazolo[4,5-b] pyridine compounds as modulators of c-met protein kinases
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
WO2013154878A1 (en) 2012-04-10 2013-10-17 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP3505534A1 (en) 2012-06-08 2019-07-03 Sutro Biopharma, Inc. Antibodies comprising sitespecific nonnatural amino acid residues, methods of their preparation and methods of their use
WO2013185115A1 (en) 2012-06-08 2013-12-12 Sutro Biopharma, Inc. Antibodies comprising site-specific non-natural amino acid residues, methods of their preparation and methods of their use
EP3135690A1 (en) 2012-06-26 2017-03-01 Sutro Biopharma, Inc. Modified fc proteins comprising site-specific non-natural amino acid residues, conjugates of the same, methods of their preparation and methods of their use
WO2014031566A1 (en) 2012-08-22 2014-02-27 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
EP4074728A1 (en) 2012-08-31 2022-10-19 Sutro Biopharma, Inc. Modified peptides comprising an azido group
WO2014036492A1 (en) 2012-08-31 2014-03-06 Sutro Biopharma, Inc. Modified amino acids comprising an azido group
EP3584255A1 (en) 2012-08-31 2019-12-25 Sutro Biopharma, Inc. Modified amino acids comprising an azido group
US10766865B2 (en) 2012-10-16 2020-09-08 Sumitomo Dainippon Pharma Oncology, Inc. PKM2 modulators and methods for their use
WO2014071109A1 (en) 2012-11-01 2014-05-08 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
EP3566750A2 (en) 2013-02-28 2019-11-13 ImmunoGen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134486A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2014134483A2 (en) 2013-02-28 2014-09-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
EP3590932A1 (en) 2013-03-14 2020-01-08 Tolero Pharmaceuticals, Inc. Jak2 and alk2 inhibitors and methods for their use
US10752594B2 (en) 2013-03-14 2020-08-25 Sumitomo Dainippon Pharma Oncology, Inc. JAK1 and ALK2 inhibitors and methods for their use
WO2014143659A1 (en) 2013-03-15 2014-09-18 Araxes Pharma Llc Irreversible covalent inhibitors of the gtpase k-ras g12c
WO2014151386A1 (en) 2013-03-15 2014-09-25 Infinity Pharmaceuticals, Inc. Salts and solid forms of isoquinolinones and composition comprising and methods of using the same
US10919850B2 (en) 2013-03-15 2021-02-16 Araxes Pharma Llc Covalent inhibitors of KRas G12C
WO2014151147A1 (en) 2013-03-15 2014-09-25 Intellikine, Llc Combination of kinase inhibitors and uses thereof
WO2014152588A1 (en) 2013-03-15 2014-09-25 Araxes Pharma Llc Covalent inhibitors of kras g12c
EP3401314A1 (en) 2013-03-15 2018-11-14 Araxes Pharma LLC Covalent inhibitors of kras g12c
US9745319B2 (en) 2013-03-15 2017-08-29 Araxes Pharma Llc Irreversible covalent inhibitors of the GTPase K-Ras G12C
US10273207B2 (en) 2013-03-15 2019-04-30 Araxes Pharma Llc Covalent inhibitors of kras G12C
US9227978B2 (en) 2013-03-15 2016-01-05 Araxes Pharma Llc Covalent inhibitors of Kras G12C
US9926267B2 (en) 2013-03-15 2018-03-27 Araxes Pharma Llc Covalent inhibitors of K-Ras G12C
WO2014194254A1 (en) 2013-05-30 2014-12-04 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
EP3811974A1 (en) 2013-05-30 2021-04-28 Infinity Pharmaceuticals, Inc. Treatment of cancers using pi3 kinase isoform modulators
WO2014194030A2 (en) 2013-05-31 2014-12-04 Immunogen, Inc. Conjugates comprising cell-binding agents and cytotoxic agents
WO2015006555A2 (en) 2013-07-10 2015-01-15 Sutro Biopharma, Inc. Antibodies comprising multiple site-specific non-natural amino acid residues, methods of their preparation and methods of their use
EP3336103A1 (en) 2013-07-10 2018-06-20 Sutro Biopharma, Inc. Antibodies comprising multiple site-specific non-natural amino acid residues, methods of their preparation and methods of their use
WO2015051341A1 (en) 2013-10-03 2015-04-09 Araxes Pharma Llc Inhibitors of erk and methods of use
WO2015051244A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
EP3964507A1 (en) 2013-10-04 2022-03-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015051241A1 (en) 2013-10-04 2015-04-09 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015054572A1 (en) 2013-10-10 2015-04-16 Araxes Pharma Llc Inhibitors of kras g12c
US10370386B2 (en) 2013-10-10 2019-08-06 Araxes Pharma Llc Substituted quinolines as inhibitors of KRAS G12C
US9840516B2 (en) 2013-10-10 2017-12-12 Araxes Pharma Llc Substituted quinazolines as inhibitors of KRAS G12C
US11878985B2 (en) 2013-10-10 2024-01-23 Araxes Pharma Llc Substituted quinazolines as inhibitors of KRAS G12C
US10927125B2 (en) 2013-10-10 2021-02-23 Araxes Pharma Llc Substituted cinnolines as inhibitors of KRAS G12C
EP3636639A1 (en) 2013-10-10 2020-04-15 Araxes Pharma LLC Inhibitors of kras g12c
WO2015054658A1 (en) 2013-10-11 2015-04-16 Sutro Biopharma, Inc. Modified amino acids comprising tetrazine functional groups, methods of preparation, and methods of their use
WO2015061204A1 (en) 2013-10-21 2015-04-30 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
WO2015075598A1 (en) 2013-11-21 2015-05-28 Pfizer Inc. 2,6-substituted purine derivatives and their use in the treatment of proliferative disorders
WO2015155624A1 (en) 2014-04-10 2015-10-15 Pfizer Inc. Dihydropyrrolopyrimidine derivatives
WO2015168079A1 (en) 2014-04-29 2015-11-05 Infinity Pharmaceuticals, Inc. Pyrimidine or pyridine derivatives useful as pi3k inhibitors
WO2015166373A1 (en) 2014-04-30 2015-11-05 Pfizer Inc. Cycloalkyl-linked diheterocycle derivatives
EP3556757A1 (en) 2014-04-30 2019-10-23 Pfizer Inc Cycloalkyl-linked diheterocycle derivatives
EP3778584A1 (en) 2014-06-19 2021-02-17 ARIAD Pharmaceuticals, Inc. Production process of 2-chloro-4-heteroaryl-pyrimidine derivatives
EP3409669A1 (en) 2014-06-19 2018-12-05 ARIAD Pharmaceuticals, Inc. Heteroaryl compounds for kinase inhibition
WO2016001789A1 (en) 2014-06-30 2016-01-07 Pfizer Inc. Pyrimidine derivatives as pi3k inhibitors for use in the treatment of cancer
EP3473271A1 (en) 2014-07-31 2019-04-24 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Human monoclonal antibodies against epha4 and their use
US12037404B2 (en) 2014-07-31 2024-07-16 The Hong Kong University Of Science And Technology Human monoclonal antibodies against EphA4 and their use
US10934360B2 (en) 2014-07-31 2021-03-02 The Hong Kong University Of Science And Technology Human monoclonal antibodies against EPHA4 and their use
WO2016019280A1 (en) 2014-07-31 2016-02-04 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Human monoclonal antibodies against epha4 and their use
US10111874B2 (en) 2014-09-18 2018-10-30 Araxes Pharma Llc Combination therapies for treatment of cancer
US9862701B2 (en) 2014-09-25 2018-01-09 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10011600B2 (en) 2014-09-25 2018-07-03 Araxes Pharma Llc Methods and compositions for inhibition of Ras
WO2016097918A1 (en) 2014-12-18 2016-06-23 Pfizer Inc. Pyrimidine and triazine derivatives and their use as axl inhibitors
US9593097B2 (en) 2014-12-18 2017-03-14 Pfizer Inc. Axl inhibitors
US10246424B2 (en) 2015-04-10 2019-04-02 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
US10829458B2 (en) 2015-04-10 2020-11-10 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
US10428064B2 (en) 2015-04-15 2019-10-01 Araxes Pharma Llc Fused-tricyclic inhibitors of KRAS and methods of use thereof
WO2016178876A2 (en) 2015-05-01 2016-11-10 Cocrystal Pharma, Inc. Nucleoside analogs for treatment of the flaviviridae family of viruses and cancer
EP4006030A2 (en) 2015-06-04 2022-06-01 Kura Oncology, Inc. Methods and compositions for inhibiting the interaction of menin with mll proteins
WO2017009751A1 (en) 2015-07-15 2017-01-19 Pfizer Inc. Pyrimidine derivatives
US10351550B2 (en) 2015-07-22 2019-07-16 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
US10144724B2 (en) 2015-07-22 2018-12-04 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof
US10835537B2 (en) 2015-08-03 2020-11-17 Sumitomo Dainippon Pharma Oncology, Inc. Combination therapies for treatment of cancer
US10858343B2 (en) 2015-09-28 2020-12-08 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10647703B2 (en) 2015-09-28 2020-05-12 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10975071B2 (en) 2015-09-28 2021-04-13 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10875842B2 (en) 2015-09-28 2020-12-29 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10689356B2 (en) 2015-09-28 2020-06-23 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10882847B2 (en) 2015-09-28 2021-01-05 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10730867B2 (en) 2015-09-28 2020-08-04 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2017058792A1 (en) 2015-09-28 2017-04-06 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
WO2017058768A1 (en) 2015-09-28 2017-04-06 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
US9810690B2 (en) 2015-10-19 2017-11-07 Araxes Pharma Llc Method for screening inhibitors of Ras
US10414757B2 (en) 2015-11-16 2019-09-17 Araxes Pharma Llc 2-substituted quinazoline compounds comprising a substituted heterocyclic group and methods of use thereof
US11021470B2 (en) 2015-11-16 2021-06-01 Araxes Pharma Llc 2-substituted quinazoline compounds comprising a substituted heterocyclic group and methods of use thereof
WO2017087528A1 (en) 2015-11-16 2017-05-26 Araxes Pharma Llc 2-substituted quinazoline compounds comprising a substituted heterocyclic group and methods of use thereof
WO2017096165A1 (en) 2015-12-03 2017-06-08 Agios Pharmaceuticals, Inc. Mat2a inhibitors for treating mtap null cancer
US9988357B2 (en) 2015-12-09 2018-06-05 Araxes Pharma Llc Methods for preparation of quinazoline derivatives
WO2017132615A1 (en) 2016-01-27 2017-08-03 Sutro Biopharma, Inc. Anti-cd74 antibody conjugates, compositions comprising anti-cd74 antibody conjugates and methods of using anti-cd74 antibody conjugates
WO2017132617A1 (en) 2016-01-27 2017-08-03 Sutro Biopharma, Inc. Anti-cd74 antibody conjugates, compositions comprising anti-cd74 antibody conjugates and methods of using anti-cd74 antibody conjugates
US11673898B2 (en) 2016-03-16 2023-06-13 Kura Oncology, Inc. Substituted inhibitors of menin-MLL and methods of use
WO2017161028A1 (en) 2016-03-16 2017-09-21 Kura Oncology, Inc. Substituted inhibitors of menin-mll and methods of use
US11555041B2 (en) 2016-03-16 2023-01-17 Kura Oncology, Inc. Bridged bicyclic inhibitors of menin-MLL and methods of use
WO2017161002A1 (en) 2016-03-16 2017-09-21 Kura Oncology, Inc. Bridged bicyclic inhibitors of menin-mll and methods of use
US10752639B2 (en) 2016-03-16 2020-08-25 Kura Oncology, Inc. Bridged bicyclic inhibitors of menin-MLL and methods of use
EP4219449A2 (en) 2016-03-16 2023-08-02 Kura Oncology, Inc. Substituted indole derivatives and methods of preparation thereof
US10781218B2 (en) 2016-03-16 2020-09-22 Kura Oncology, Inc. Substituted inhibitors of menin-MLL and methods of use
US10822312B2 (en) 2016-03-30 2020-11-03 Araxes Pharma Llc Substituted quinazoline compounds and methods of use
US11883381B2 (en) 2016-05-12 2024-01-30 The Regents Of The University Of Michigan ASH1L inhibitors and methods of treatment therewith
WO2017197240A1 (en) 2016-05-12 2017-11-16 The Regents Of The University Of Michigan Ash1l inhibitors and methods of treatment therewith
US11118233B2 (en) 2016-05-18 2021-09-14 The University Of Chicago BTK mutation and ibrutinib resistance
WO2017214269A1 (en) 2016-06-08 2017-12-14 Infinity Pharmaceuticals, Inc. Heterocyclic compounds and uses thereof
US10646488B2 (en) 2016-07-13 2020-05-12 Araxes Pharma Llc Conjugates of cereblon binding compounds and G12C mutant KRAS, HRAS or NRAS protein modulating compounds and methods of use thereof
WO2018045379A1 (en) 2016-09-02 2018-03-08 Dana-Farber Cancer Institute, Inc. Composition and methods of treating b cell disorders
US10870694B2 (en) 2016-09-02 2020-12-22 Dana Farber Cancer Institute, Inc. Composition and methods of treating B cell disorders
US10280172B2 (en) 2016-09-29 2019-05-07 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
WO2018064510A1 (en) 2016-09-29 2018-04-05 Araxes Pharma Llc Inhibitors of kras g12c mutant proteins
US10723738B2 (en) 2016-09-29 2020-07-28 Araxes Pharma Llc Inhibitors of KRAS G12C mutant proteins
US10377743B2 (en) 2016-10-07 2019-08-13 Araxes Pharma Llc Inhibitors of RAS and methods of use thereof
WO2018068017A1 (en) 2016-10-07 2018-04-12 Araxes Pharma Llc Heterocyclic compounds as inhibitors of ras and methods of use thereof
US11279694B2 (en) 2016-11-18 2022-03-22 Sumitomo Dainippon Pharma Oncology, Inc. Alvocidib prodrugs and their use as protein kinase inhibitors
WO2018098352A2 (en) 2016-11-22 2018-05-31 Jun Oishi Targeting kras induced immune checkpoint expression
WO2018119183A2 (en) 2016-12-22 2018-06-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
US10532042B2 (en) 2016-12-22 2020-01-14 Amgen Inc. KRAS G12C inhibitors and methods of using the same
EP4001269A1 (en) 2016-12-22 2022-05-25 Amgen Inc. Benzoisothiazole, isothiazolo[3,4-b]pyridine, quinazoline, phthalazine, pyrido[2,3-d]pyridazine and pyrido[2,3-d]pyrimidine derivatives as kras g12c inhibitors for treating lung, pancreatic or colorectal cancer
US11285135B2 (en) 2016-12-22 2022-03-29 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2018140512A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Fused bicyclic benzoheteroaromatic compounds and methods of use thereof
US11059819B2 (en) 2017-01-26 2021-07-13 Janssen Biotech, Inc. Fused hetero-hetero bicyclic compounds and methods of use thereof
US11358959B2 (en) 2017-01-26 2022-06-14 Araxes Pharma Llc Benzothiophene and benzothiazole compounds and methods of use thereof
US11136308B2 (en) 2017-01-26 2021-10-05 Araxes Pharma Llc Substituted quinazoline and quinazolinone compounds and methods of use thereof
WO2018140598A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Fused n-heterocyclic compounds and methods of use thereof
US11267885B2 (en) 2017-01-26 2022-03-08 Zlip Holding Limited CD47 antigen binding unit and uses thereof
US11279689B2 (en) 2017-01-26 2022-03-22 Araxes Pharma Llc 1-(3-(6-(3-hydroxynaphthalen-1-yl)benzofuran-2-yl)azetidin-1 yl)prop-2-en-1-one derivatives and similar compounds as KRAS G12C modulators for treating cancer
US11274093B2 (en) 2017-01-26 2022-03-15 Araxes Pharma Llc Fused bicyclic benzoheteroaromatic compounds and methods of use thereof
WO2018140600A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Fused hetero-hetero bicyclic compounds and methods of use thereof
WO2018140599A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc Benzothiophene and benzothiazole compounds and methods of use thereof
WO2018140514A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc 1-(6-(3-hydroxynaphthalen-1-yl)quinazolin-2-yl)azetidin-1-yl)prop-2-en-1-one derivatives and similar compounds as kras g12c inhibitors for the treatment of cancer
WO2018140513A1 (en) 2017-01-26 2018-08-02 Araxes Pharma Llc 1-(3-(6-(3-hydroxynaphthalen-1-yl)benzofuran-2-yl)azetidin-1yl)prop-2-en-1-one derivatives and similar compounds as kras g12c modulators for treating cancer
WO2018175746A1 (en) 2017-03-24 2018-09-27 Kura Oncology, Inc. Methods for treating hematological malignancies and ewing's sarcoma
US11944627B2 (en) 2017-03-24 2024-04-02 Kura Oncology, Inc. Methods for treating hematological malignancies and Ewing's sarcoma
US10519146B2 (en) 2017-05-22 2019-12-31 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US11905281B2 (en) 2017-05-22 2024-02-20 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2018217651A1 (en) 2017-05-22 2018-11-29 Amgen Inc. Kras g12c inhibitors and methods of using the same
EP3974429A1 (en) 2017-05-22 2022-03-30 Amgen Inc. Precursors of kras g12c inhibitors
US10736897B2 (en) 2017-05-25 2020-08-11 Araxes Pharma Llc Compounds and methods of use thereof for treatment of cancer
WO2018218071A1 (en) 2017-05-25 2018-11-29 Araxes Pharma Llc Compounds and methods of use thereof for treatment of cancer
WO2018218069A1 (en) 2017-05-25 2018-11-29 Araxes Pharma Llc Quinazoline derivatives as modulators of mutant kras, hras or nras
US11639346B2 (en) 2017-05-25 2023-05-02 Araxes Pharma Llc Quinazoline derivatives as modulators of mutant KRAS, HRAS or NRAS
WO2018218070A2 (en) 2017-05-25 2018-11-29 Araxes Pharma Llc Covalent inhibitors of kras
US11377441B2 (en) 2017-05-25 2022-07-05 Araxes Pharma Llc Covalent inhibitors of KRAS
US10745385B2 (en) 2017-05-25 2020-08-18 Araxes Pharma Llc Covalent inhibitors of KRAS
US11542248B2 (en) 2017-06-08 2023-01-03 Kura Oncology, Inc. Methods and compositions for inhibiting the interaction of menin with MLL proteins
WO2019023316A1 (en) 2017-07-26 2019-01-31 Sutro Biopharma, Inc. Methods of using anti-cd74 antibodies and antibody conjugates in treatment of t-cell lymphoma
WO2019051291A1 (en) 2017-09-08 2019-03-14 Amgen Inc. Inhibitors of kras g12c and methods of using the same
US11306087B2 (en) 2017-09-08 2022-04-19 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
EP4141005A1 (en) 2017-09-08 2023-03-01 Amgen Inc. Inhibitors of kras g12c and methods of using the same
US10640504B2 (en) 2017-09-08 2020-05-05 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
US11993597B2 (en) 2017-09-08 2024-05-28 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
EP4403175A2 (en) 2017-09-08 2024-07-24 Amgen Inc. Inhibitors of kras g12c and methods of using the same
US11497756B2 (en) 2017-09-12 2022-11-15 Sumitomo Pharma Oncology, Inc. Treatment regimen for cancers that are insensitive to BCL-2 inhibitors using the MCL-1 inhibitor alvocidib
WO2019055909A1 (en) 2017-09-18 2019-03-21 Sutro Biopharma, Inc. Anti-folate receptor alpha antibody conjugates and their uses
US11649251B2 (en) 2017-09-20 2023-05-16 Kura Oncology, Inc. Substituted inhibitors of menin-MLL and methods of use
WO2019075367A1 (en) 2017-10-13 2019-04-18 Tolero Pharmaceuticals, Inc. Pkm2 activators in combination with reactive oxygen species for treatment of cancer
WO2019094772A1 (en) 2017-11-10 2019-05-16 The Regents Of The University Of Michigan Ash1l degraders and methods of treatment therewith
WO2019094773A1 (en) 2017-11-10 2019-05-16 The Regents Of The University Of Michigan Ash1l inhibitors and methods of treatment therewith
US11786602B2 (en) 2017-11-10 2023-10-17 The Regents Of The University Of Michigan ASH1L degraders and methods of treatment therewith
US11147885B2 (en) 2017-11-10 2021-10-19 The Regents Of The University Of Michigan ASH1L inhibitors and methods of treatment therewith
US10632209B2 (en) 2017-11-10 2020-04-28 The Regents Of The University Of Michigan ASH1L inhibitors and methods of treatment therewith
US11833210B2 (en) 2017-11-10 2023-12-05 The Regents Of The University Of Michigan ASH1L inhibitors and methods of treatment therewith
US11110177B2 (en) 2017-11-10 2021-09-07 The Regents Of The University Of Michigan ASH1L degraders and methods of treatment therewith
WO2019113469A1 (en) 2017-12-07 2019-06-13 The Regents Of The University Of Michigan Nsd family inhibitors and methods of treatment therewith
US11090304B2 (en) 2018-05-04 2021-08-17 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US11766436B2 (en) 2018-05-04 2023-09-26 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019213516A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11045484B2 (en) 2018-05-04 2021-06-29 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019213526A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
US10988485B2 (en) 2018-05-10 2021-04-27 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019217691A1 (en) 2018-05-10 2019-11-14 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
US11096939B2 (en) 2018-06-01 2021-08-24 Amgen Inc. KRAS G12C inhibitors and methods of using the same
WO2019232419A1 (en) 2018-06-01 2019-12-05 Amgen Inc. Kras g12c inhibitors and methods of using the same
EP4155293A1 (en) 2018-06-07 2023-03-29 The Regents of The University of Michigan Prc1 inhibitors and methods of treatment therewith
WO2019236957A1 (en) 2018-06-07 2019-12-12 The Regents Of The University Of Michigan Prc1 inhibitors and methods of treatment therewith
US11319302B2 (en) 2018-06-07 2022-05-03 The Regents Of The University Of Michigan PRC1 inhibitors and methods of treatment therewith
WO2019241157A1 (en) 2018-06-11 2019-12-19 Amgen Inc. Kras g12c inhibitors for treating cancer
EP4268898A2 (en) 2018-06-11 2023-11-01 Amgen Inc. Kras g12c inhibitors for treating cancer
WO2020050890A2 (en) 2018-06-12 2020-03-12 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11285156B2 (en) 2018-06-12 2022-03-29 Amgen Inc. Substituted piperazines as KRAS G12C inhibitors
US12083121B2 (en) 2018-06-12 2024-09-10 Amgen Inc. Substituted piperazines as KRAS G12C inhibitors
US11040038B2 (en) 2018-07-26 2021-06-22 Sumitomo Dainippon Pharma Oncology, Inc. Methods for treating diseases associated with abnormal ACVR1 expression and ACVR1 inhibitors for use in the same
WO2020028706A1 (en) 2018-08-01 2020-02-06 Araxes Pharma Llc Heterocyclic spiro compounds and methods of use thereof for the treatment of cancer
WO2020060944A1 (en) 2018-09-17 2020-03-26 Sutro Biopharma, Inc. Combination therapies with anti-folate receptor antibody conjugates
WO2020086739A1 (en) 2018-10-24 2020-04-30 Araxes Pharma Llc 2-(2-acryloyl-2,6-diazaspiro[3.4]octan-6-yl)-6-(1h-indazol-4-yl)-benzonitrile derivatives and related compounds as inhibitors of g12c mutant kras protein for inhibiting tumor metastasis
WO2020102730A1 (en) 2018-11-16 2020-05-22 Amgen Inc. Improved synthesis of key intermediate of kras g12c inhibitor compound
EP4234546A2 (en) 2018-11-16 2023-08-30 Amgen Inc. Improved synthesis of key intermediate of kras g12c inhibitor compound
US11299491B2 (en) 2018-11-16 2022-04-12 Amgen Inc. Synthesis of key intermediate of KRAS G12C inhibitor compound
WO2020106640A1 (en) 2018-11-19 2020-05-28 Amgen Inc. Kras g12c inhibitors and methods of using the same
US11918584B2 (en) 2018-11-19 2024-03-05 Amgen Inc. Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
US11053226B2 (en) 2018-11-19 2021-07-06 Amgen Inc. KRAS G12C inhibitors and methods of using the same
US11439645B2 (en) 2018-11-19 2022-09-13 Amgen Inc. Combination therapy including a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
WO2020106647A2 (en) 2018-11-19 2020-05-28 Amgen Inc. Combination therapy including a krasg12c inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers
WO2020113071A1 (en) 2018-11-29 2020-06-04 Araxes Pharma Llc Compounds and methods of use thereof for treatment of cancer
US11034710B2 (en) 2018-12-04 2021-06-15 Sumitomo Dainippon Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US12077554B2 (en) 2018-12-04 2024-09-03 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
US11530231B2 (en) 2018-12-04 2022-12-20 Sumitomo Pharma Oncology, Inc. CDK9 inhibitors and polymorphs thereof for use as agents for treatment of cancer
WO2020132648A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
WO2020132649A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
WO2020132651A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Kif18a inhibitors
WO2020132653A1 (en) 2018-12-20 2020-06-25 Amgen Inc. Heteroaryl amides useful as kif18a inhibitors
US12054476B2 (en) 2018-12-20 2024-08-06 Amgen Inc. KIF18A inhibitors
US11236069B2 (en) 2018-12-20 2022-02-01 Amgen Inc. KIF18A inhibitors
US11471456B2 (en) 2019-02-12 2022-10-18 Sumitomo Pharma Oncology, Inc. Formulations comprising heterocyclic protein kinase inhibitors
WO2020180768A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2020180770A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heterocyclyl compounds and uses thereof
US11793802B2 (en) 2019-03-20 2023-10-24 Sumitomo Pharma Oncology, Inc. Treatment of acute myeloid leukemia (AML) with venetoclax failure
US11712433B2 (en) 2019-03-22 2023-08-01 Sumitomo Pharma Oncology, Inc. Compositions comprising PKM2 modulators and methods of treatment using the same
WO2020198077A1 (en) 2019-03-22 2020-10-01 Sumitomo Dainippon Pharma Oncology, Inc. Compositions comprising pkm2 modulators and methods of treatment using the same
WO2020227105A1 (en) 2019-05-03 2020-11-12 Sutro Biopharma, Inc. Anti-bcma antibody conjugates
US11426404B2 (en) 2019-05-14 2022-08-30 Amgen Inc. Dosing of KRAS inhibitor for treatment of cancers
US11236091B2 (en) 2019-05-21 2022-02-01 Amgen Inc. Solid state forms
US11827635B2 (en) 2019-05-21 2023-11-28 Amgen Inc. Solid state forms
WO2021003417A1 (en) 2019-07-03 2021-01-07 Sumitomo Dainippon Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (tnk1) inhibitors and uses thereof
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof
WO2021026100A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Pyridine derivatives as kif18a inhibitors
WO2021026101A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021026098A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021026099A1 (en) 2019-08-02 2021-02-11 Amgen Inc. Kif18a inhibitors
WO2021055728A1 (en) 2019-09-18 2021-03-25 Merck Sharp & Dohme Corp. Small molecule inhibitors of kras g12c mutant
WO2021067215A1 (en) 2019-09-30 2021-04-08 Agios Pharmaceuticals, Inc. Piperidine compounds as menin inhibitors
WO2021081212A1 (en) 2019-10-24 2021-04-29 Amgen Inc. Pyridopyrimidine derivatives useful as kras g12c and kras g12d inhibitors in the treatment of cancer
WO2021086833A1 (en) 2019-10-28 2021-05-06 Merck Sharp & Dohme Corp. Small molecule inhibitors of kras g12c mutant
WO2021085653A1 (en) 2019-10-31 2021-05-06 Taiho Pharmaceutical Co., Ltd. 4-aminobut-2-enamide derivatives and salts thereof
WO2021091982A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091967A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021091956A1 (en) 2019-11-04 2021-05-14 Revolution Medicines, Inc. Ras inhibitors
WO2021092115A1 (en) 2019-11-08 2021-05-14 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
WO2021097212A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021097207A1 (en) 2019-11-14 2021-05-20 Amgen Inc. Improved synthesis of kras g12c inhibitor compound
WO2021108683A1 (en) 2019-11-27 2021-06-03 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2021107160A1 (en) 2019-11-29 2021-06-03 Taiho Pharmaceutical Co., Ltd. A compound having inhibitory activity against kras g12d mutation
WO2021142026A1 (en) 2020-01-07 2021-07-15 Revolution Medicines, Inc. Shp2 inhibitor dosing and methods of treating cancer
WO2021155006A1 (en) 2020-01-31 2021-08-05 Les Laboratoires Servier Sas Inhibitors of cyclin-dependent kinases and uses thereof
WO2021178597A1 (en) 2020-03-03 2021-09-10 Sutro Biopharma, Inc. Antibodies comprising site-specific glutamine tags, methods of their preparation and methods of their use
WO2021204159A1 (en) 2020-04-08 2021-10-14 Agios Pharmaceuticals, Inc. Menin inhibitors and methods of use for treating cancer
WO2021207310A1 (en) 2020-04-08 2021-10-14 Agios Pharmaceuticals, Inc. Menin inhibitors and methods of use for treating cancer
WO2021215544A1 (en) 2020-04-24 2021-10-28 Taiho Pharmaceutical Co., Ltd. Kras g12d protein inhibitors
WO2021215545A1 (en) 2020-04-24 2021-10-28 Taiho Pharmaceutical Co., Ltd. Anticancer combination therapy with n-(1-acryloyl-azetidin-3-yl)-2-((1h-indazol-3-yl)amino)methyl)-1h-imidazole-5-carboxamide inhibitor of kras-g12c
WO2021257736A1 (en) 2020-06-18 2021-12-23 Revolution Medicines, Inc. Methods for delaying, preventing, and treating acquired resistance to ras inhibitors
US11858925B2 (en) 2020-07-10 2024-01-02 The Regents Of The University Of Michigan GAS41 inhibitors and methods of use thereof
WO2022014640A1 (en) 2020-07-15 2022-01-20 大鵬薬品工業株式会社 Pyrimidine compound-containing combination to be used in tumor treatment
WO2022060583A1 (en) 2020-09-03 2022-03-24 Revolution Medicines, Inc. Use of sos1 inhibitors to treat malignancies with shp2 mutations
WO2022060836A1 (en) 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
US11746103B2 (en) 2020-12-10 2023-09-05 Sumitomo Pharma Oncology, Inc. ALK-5 inhibitors and uses thereof
WO2022140427A1 (en) 2020-12-22 2022-06-30 Qilu Regor Therapeutics Inc. Sos1 inhibitors and uses thereof
US12037346B2 (en) 2021-04-13 2024-07-16 Nuvalent, Inc. Amino-substituted heteroaryls for treating cancers with EGFR mutations
WO2022221227A1 (en) 2021-04-13 2022-10-20 Nuvalent, Inc. Amino-substituted heterocycles for treating cancers with egfr mutations
US11931420B2 (en) 2021-04-30 2024-03-19 Celgene Corporation Combination therapies using an anti-BCMA antibody drug conjugate (ADC) in combination with a gamma secretase inhibitor (GSI)
WO2022235864A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
WO2022235866A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
WO2022250170A1 (en) 2021-05-28 2022-12-01 Taiho Pharmaceutical Co., Ltd. Small molecule inhibitors of kras mutated proteins
WO2023056589A1 (en) 2021-10-08 2023-04-13 Servier Pharmaceuticals Llc Menin inhibitors and methods of use for treating cancer
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023211812A1 (en) 2022-04-25 2023-11-02 Nested Therapeutics, Inc. Heterocyclic derivatives as mitogen-activated protein kinase (mek) inhibitors
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
WO2024006542A1 (en) 2022-06-30 2024-01-04 Sutro Biopharma, Inc. Anti-ror1 antibodies and antibody conjugates, compositions comprising anti-ror1 antibodies or antibody conjugates, and methods of making and using anti-ror1 antibodies and antibody conjugates
WO2024010925A2 (en) 2022-07-08 2024-01-11 Nested Therapeutics, Inc. Mitogen-activated protein kinase (mek) inhibitors
WO2024081916A1 (en) 2022-10-14 2024-04-18 Black Diamond Therapeutics, Inc. Methods of treating cancers using isoquinoline or 6-aza-quinoline derivatives
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof
WO2024211663A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024211712A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors

Also Published As

Publication number Publication date
MA24307A1 (en) 1998-04-01
TR199900387T2 (en) 1999-04-21
NO990821L (en) 1999-02-23
AR009292A1 (en) 2000-04-12
HRP970453A2 (en) 1998-08-31
SK21499A3 (en) 2000-05-16
CN1228083A (en) 1999-09-08
EP0922030A1 (en) 1999-06-16
EA199900139A1 (en) 1999-08-26
AP733A (en) 1999-02-12
ZA977561B (en) 1999-02-22
OA10978A (en) 2001-11-05
AU711585B2 (en) 1999-10-14
PA8435301A1 (en) 1999-12-27
NO990821D0 (en) 1999-02-22
AU3456397A (en) 1998-03-06
PE99698A1 (en) 1998-12-26
JP2000501423A (en) 2000-02-08
GT199700094A (en) 1999-02-10
HN1997000110A (en) 1998-02-26
BR9711223A (en) 1999-08-17
BG103191A (en) 1999-11-30
TW397823B (en) 2000-07-11
IS4958A (en) 1999-01-26
TNSN97139A1 (en) 2005-03-15
CA2264284A1 (en) 1998-02-26
IL128189A0 (en) 1999-11-30
AP9701078A0 (en) 1997-10-31
PL331895A1 (en) 1999-08-16
ID18063A (en) 1998-02-26
CO4600003A1 (en) 1998-05-08
KR20000068248A (en) 2000-11-25
US6153609A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
AP733A (en) Arylsulfonylamino hydroxamic acid derivatives.
US6599890B1 (en) Arylsulfonyl hydroxamic acid derivatives
EP0821671B1 (en) Arylsulfonyl hydroxamic acid derivatives as mmp and tnf inhibitors
AU721748B2 (en) Arylsulfonylamino hydroxamic acid derivatives
EP0813520B1 (en) Arylsulfonylamino hydroxamic acid derivatives
HRP980004A2 (en) Cyclic sulfone derivatives
EP0895988B1 (en) Arylsulfonylamino hydroxamic acid derivatives
US6380219B1 (en) Arylsulfonylamino hydroxamic acid derivatives
US20020006920A1 (en) Arylsulfonylamino hydroxamic acid derivatives
US6509337B1 (en) Arylsulfonyl Hydroxamic Acid derivatives as MMP and TNF inhibitors
US6107337A (en) Arylsulfonylamino hydroxamic acid derivatives
MXPA99001808A (en) Arylsulfonylamino hydroxamic acid derivatives
CZ58999A3 (en) Derivatives of arylsulfonylaminohydroxamic acid, pharmaceutical preparation, inhibition method of matrix metalloproteinases or production of tumor necrosis factor and therapeutical method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197354.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 333726

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1997930699

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1199900061

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 09242504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 21499

Country of ref document: SK

Ref document number: 199900139

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 1019997001383

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2264284

Country of ref document: CA

Ref document number: 2264284

Country of ref document: CA

Kind code of ref document: A

Ref document number: 1998 510535

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P-93/99

Country of ref document: YU

Ref document number: PV1999-589

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/001808

Country of ref document: MX

Ref document number: 1999/00387

Country of ref document: TR

WWP Wipo information: published in national office

Ref document number: 1997930699

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1997930699

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1999-589

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: PV1999-589

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 1019997001383

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997001383

Country of ref document: KR