WO1998003569A1 - Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom - Google Patents
Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom Download PDFInfo
- Publication number
- WO1998003569A1 WO1998003569A1 PCT/GB1997/001956 GB9701956W WO9803569A1 WO 1998003569 A1 WO1998003569 A1 WO 1998003569A1 GB 9701956 W GB9701956 W GB 9701956W WO 9803569 A1 WO9803569 A1 WO 9803569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- metal
- polyisocyanate
- metal salt
- weight
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/302—Water
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
Definitions
- This invention relates to a polyisocyanate-based polymer containing a metal salt, a process for the preparation of the polymer, and a process for calcining the obtained polymer to provide a powder substance containing the metal, with said powder having an average particle size of less than 1 micrometer.
- Metal or metal oxide particles of sub icron size are a valuable industrial commodity finding use in many applications including for example in the manufacture of industrial catalyst such as might be employed in the chemical industry, in the manufacture of ceramics, of electronic components, and as fillers for, for example, plastics, paints or cosmetics.
- a common objective is the production of a metal powder that has a fine particle size and does not exhibit the problem of agglomeration leading to a w de particle size distribution. To optimize this, it is necessary to develop a process which provides a homogeneous and even distribution, precipitation, of the metal-containing substance in the first instance without providing subsequent opportunity for secondary nucleation leading to agglomeration.
- this invention relates to a polyisocyanate- based polymer having dispersed therein a metal salt, said polymer being obtained by reacting an organic polyisocyanate with an aqueous composition of a metal salt, characterized in that the polymer comprises the metal salt in an amount of from at least 10 weight percent based on total dry weight of the salt and the polyisocyanace- based polymer.
- this invention relates to a process for preparing a polyisocyanate-based polymer having dispersed therein a metal salt by reacting an organic polyisocyanate with an aqueous composition of a metal salt characterized in that:
- the amount of metal salt employed is sufficient to provide the resulting polymer with a metal salt content of at least 10 weight percent based on total dry weight of the salt and the polyisocyanate-based polymer,* and in that
- the polyisocyanate is present in an amount of from at least 10 parts by weight per 100 parts by weight of the aqueous composition with the proviso that when the aqueous composition comprises an additional isocyanate-reactive substance in an amount of more than about 60 weight percent, the amount of polyisocyanate employed does not exceed more than about 70 parts by weight.
- this invention relates to a process for producing a metal -containing powder having an average particle size of less than 1 micrometer, which process comprises calcining a polyisocyanate-based polymer having dispersed therein a metal salt, at a temperature of from about 300°C to about 1500°C characterized in that the polymer has a metal salt content at least 10 weight percent based on total dry weight of the salt and the polyisocyanate-based polymer.
- this invention relates to a metal-containing powder obtainable by calcination of a polyisocyanate-based polymer having dispersed therein a metal salt characterized in that the powder has an average particle size of less than about 1 micrometer and an average BET surface area of more than 200 mVgram.
- this invention relates to a composition containing a metal-containing powder obtainable such a calcination process characterized in that the composition comprises a bulk phase having dispersed therein from about 0.1 to about 50 weight percent of the powder based on total weight of the bulk phase and powder.
- the present invention provides for a relatively simple and cost- effective route for the manufacture of metal -containing powders of submicron particles size Such particles find value in the manufacture of ceramic articles, electronics, industrial catalysts and as fillers in plastics, paints or cosmetics including creams and oils
- the smaller particle of the filler provide for a minimum reflection of visible light allowing exploitation of filler properties with minimal disturbance to transparency or visible light transmission properties of the substance to be filled Transmission of electromagnetic radiation of other wavelengths may be blocked by the presence of the filler.
- Described hereinafter is a polyisocyanate-based polymer having dispersed therein a metal salt; a process for the preparation of such polymer; a process for calcining the obtained polymer to provide a metal -containing powder; and a metal -containing powder having a submicron particle size.
- the metal in the "metal-containing" powder may be present as elemental metal, or as an oxide, carbide or alloy thereof. Whether the powder which is obtained will be a metal, a metal alloy, oxide or carbide will depend upon the metal salt(s) present in the polyisocyanate-based polymer and the conditions of pyrolysis or calcining. It is also to be appreciated that the same factors can influence the characteristics of the particles including their size and surface area.
- the metal-containing powder obtained according to this invention is characterized in that it has an average particle size of less than 1 micrometer (1000 nanometers), preferably less than about 0.1 micrometer (100 nanometers), and more preferably less than 0.02 micrometer (20 nanometers) .
- average particle size it is understood that less than about 25, preferably less than about 10, and more preferably less than about 5 percent of the metal particles will have a size in excess of the mentioned particle size.
- particle size it is meant the size of the particle in its largest dimension.
- the powder is further characterized in that it has an average BET surface area of at least 5, preferably at least 25, more preferably at least 100, and yet more preferably of at least 200 rrT/gram.
- the metal -containing powder has an average particle size of less than about 0.1 micrometer and an average BET surface area of at least 25 mVgram.
- the powder obtainable according to this invention can comprise any desired metal.
- the metal in a zero or appropriate oxidation state, is one or more of the elements lanthanum, barium, strontium, chromium, zirconium, yttrium, aluminum, lithium, iron, antimony, bismuth, lead, calcium, magnesium, copper, boron, cadmium, cesium, dysprosium, erbium, europium, gold, hafnium, holmium, lutetium, mercury, molybdenum, niobium, osmium, palladium, platinum, praseodymium, rhenium, rhodium, rubidium, ruthenium, samarium, scandium, sodium, tantalum, ytterbium, thorium, thulium, tin, zinc, nickel, titanium, tungsten, uranium, vanadium, or ytterbium.
- the powder is obtained by the pyrolysis and/or calcining of a particular polyisocyanate-based polymer having dispersed therein a metal salt obtained by reacting an organic polyisocyanate with an aqueous composition of a water soluble metal salt.
- the metal salt content of the polymer should be as high as practically possible to provide for attractive yields of any subsequent metal powder.
- the polymer has a metal salt content of at least 10, preferably from 12 to 50, and more preferably from 15 to 30 weight percent based on the based on total dry weight of the salt and the polyisocyanate-based polymer.
- dry weight it is meant the weight of the metal salt excluding any water of crystallization as might be present.
- the polyisocyanate-based polymer has an overall density of greater than 400 kg/m3 , preferably from about 420 to about 1200 kg/m3, yet more preferably from about 500 to about 1000 kg/m3. While it is possible to prepare polymer of a lower density, such lower density polymer occupies a larger volume and does not provide for a subsequent cost effective production of the metal-containing powder.
- the organic polyisocyanate used to prepare the polymer can be any organic aliphatic or aromatic polyisocyanate commonly used when preparing polyurethane polymers and foams
- dnsocyanates such as m- or p-phenylene diisocyanate, toluene-2, 4-d ⁇ socyanate, toluene-2 , 6-d ⁇ socyanate, hexamethylene-1, 6- -diisocyanate, tetramethylene- 1,4 -diisocyanate, cyclohexane-i, 4- -dnsocyanate, hexahydrotoluene diisocyanate (and isomers) , naphthalene- 1, 5-diisocyanate, l-methylphenyl-2, 4-phenyl diisocyanate, diphenylmethane- 4,4' -diisocyanate, diphenylmethane-2, 4 ' -d
- the aqueous composition comprises one or more metal cations in association with one or more anions, or a mixture of metal cations and anions with a metal oxide.
- a halide carbonate, bicarbonate, hydroxide, mercaptide, alkoxide, carboxylate, oxalate, sulphate, bisulphite or nitrate
- Preferred anions include chloride, carbonate, hydroxide, alkoxide carboxylate or nitrate.
- metal salts having as the anion component a nitrate are preferred
- the metal cation can in principle be of any metal from which it is desired to obtain a metal powder, however those presently having known industrial value and suitable for use in the present invention include lanthanum, barium, strontium, chromium, zirconium, yttrium, aluminum, lithium, iron, antimony, bismuth, lead, calcium, ⁇ agnes ⁇ um, copper, boron, cadmium, cesium, dysprosium, erbium, europium, gold, hafnium, holmium, lutetium, mercury, molybdenum, niobium, osmium, palladium, platinum, praseodymium, rhenium, rhodium, rubidium, ruthenium, samarium, scandium, sodium, tantalum, ytterbium, thorium, thulium, tin, zinc
- the aqueous composition further contains an additional isocyanate-reactive substance.
- the amount of additional isocyanate- reactive substance advantageously does not exceed about 90, preferably does not exceed about 60, and more preferably does not exceed about 40 weight percent based on total parts by weight of the aqueous composition.
- the additional isocyanate-reactive substance can be any isocyanate-reactive substance, excluding water. Such substances are referred to collectively herein as "polyahls".
- the term "polyahl" is used to describe any isocyanate-reactive substance containing two or more isocyanate reactive moieties per molecule.
- Such reactive moieties include hydroxyl, primary or secondary amine, carboxylic acid, or thiol groups.
- Polyols e.g., compounds having at least two hydroxyl groups per molecule, are especially preferred due to their desirable reactivity with polyisocyanates.
- polyahls suitable for preparing rigid polyurethane include those having an equivalent weight of from about 50 to about 700, preferably from about 70 to about 30C and more preferably from about 70 to about 150.
- Such polyahls alsc advantageously have a functionality of at least 2, preferably abcut 3, and up to about 16, preferably up to about 8, active hydrogen atoms per molecule.
- Representative of polyahls include polyether polyols, polyester polyols, polyhydroxy- terminated acetal resins, hydroxyl -terminated amines and polyamines.
- Preferred for preparing rigid foams is a polyol prepared by adding an alkylene oxide to an initiator having from about 2 to about 8, preferably about 3 to about 8 active hydrogen atoms.
- examples of such polyols include those commercially available under the trademark designation VORANOL including VORANOL 202, VORANOL 360, VORANOL 370, VORANOL 446, VORANOL 490, VORANOL 575, VORANOL 640 and VORANOL 800, all sold by The Dow Chemical Company, and PLURACOL 824, sold by BASF Wyandotte.
- polystyrene foams include alkylene oxide derivatives of Mannich condensates, as disclosed, for example, in U.S. Patents 3,297,597; 4,137,265 and 4,383,102,* and aminoalkylpiperazine-initiated polyethers as described in U.S. Patent 4,704,410 and 4,704,411.
- Other polyols distinguished from the above by having a hydroxyl equivalent weight of greater than 700, and normally contemplated for use when preparing a flexible polyurethane foam, can also be used in the present invention though rigid polyols are preferred for reasons of optimizing on the eventual yield of the metal powder.
- polyols suited to the preparation of rigid polyurethane are advantageously employed, and especially amine-initiated polyether polyols.
- Such polyols provide for a greater system reactivity leading to a desirable dispersion of the metal salt in the polymer and further restricting the opportunity for formation of salt crystals within the polymer. It is presently believed that a high system reactivity is required so that the water of the aqueous composition is expediently removed, by its reaction with the isocyanate, leading to a fine dispersion of the salt in the polymer. In contrast it is believed that lower reactivity leads to a slower removal of the water providing an opportunity for growth of metal salt crystals during formation of
- the polyisocyanate and aqueous composition are present in relative proportions to provide a polymer with a metal salt content as described above .
- the amount of polyisocyanate employed is preferably from at least 10, preferably from 10 to 100, and more preferably from about 10 to about 70 parts by weight per 100 parts by weight of aqueous composition, with the proviso that when the aqueous composition comprises an additional isocyanate-reactive substance in an amount of more than 60 weight percent, the amount of polyisocyanate employed does not exceed more than about 70, and preferably do not exceed more than about 60 parts by weight. Higher amounts are not practical if intending to provide for an attractive yield of metal powder from a given weight of polymer.
- the purity of a metal-containing powder can be important if to have value in certain applications including those of the electronics industry. Contaminants such as silicon, phosphorus and in some instances tin should be minimized. Accordingly when preparing the polymer of the present invention, as intermediate to the formation of the metal-containing powder, it advantageous for the resulting polymer product and its associated preparation process that there is a substantial absence of silicone-based surfactants, phosphorus - containing substances, or metal -based polyurethane promoting catalysts .
- a catalyst When it is desired to increase the rate of formation of the polymer, a catalyst can be employed. Suitable catalysts include nitrogen-based substances such as those well known a person familiar in the art of manufacturing polyurethane polymer and therefore need not be further described here. In the present invention it is not necessary that the resulting polymer have a good cellular structure, a collapsed and brittle polymer with little or no cellular structure is equally of value for the subsequent calcining procedure. A defoamer agent can therefore advantageously be present when preparing the polyisocyanate-based polymer. Examples of common defoamer agents include non-silicone-based grease and hydrocarbon oils.
- Any equipment commonly used in the continuous or discontinuous manufacture of polyurethane foams or elastomers can be employed to produce the polymer of this invention.
- Such equipment provides for the efficient mixing, under high shear conditions, of controlled amounts of polyisocyanate with the aqueous composition.
- To assist in the production of polymer of the present invention it is convenient to operate such equipment with a raw material temperature as high, and mixing times as long, as possible.
- High component temperatures promote a more rapid reaction leading to a desirable conversion of water or alternatively its loss through evaporation.
- High process temperatures also optimize the solubility of the metal salt in the aqueous composition and minimize any tendency for its crystallizing out as the water is consumed by reaction with the polyisocyanate.
- Extended mixing times provide for the greatest opportunity for optimum conversion of reactants to polymer.
- the calcining conditions require exposing the polymer to a temperature of from about 300°C to about 1500°C, and preferably from about 400°C to about 1000°C for a period of a few minutes to many hours.
- a temperature of from about 300°C to about 1500°C and preferably from about 400°C to about 1000°C for a period of a few minutes to many hours.
- a pyrolysis step may be employed.
- the described metal -containing powders having a submicron particle size are of value in the manufacture or ceramic articles, industrial catalysts, electronic components, and as fillers for plastics, paints or cosmetics.
- the metal- containing powder When used as filler the metal- containing powder will be present, based on total weight of bul k matrix and powder, typically in an amount of from about 0.1 to about 50, and more usually in an amount of from about 1 to about 25 weight percent.
- the bulk matrix may be, for example, a plastic including a thermoset or thermoplastic polymer, a paint, or a cosmetic composition cream or oil .
- a polyisocyanate-based polymer containing a metal salt is prepared by reacting the following components .- as A ⁇ ueous Composition
- VORANOL 1055 is a glycerine-propylene oxide adduct with a molecular weight of about 1000 and available from The Dow Chemical Company.
- VORANATE M220 is a crude polymethylene polyphenyl polyisocyanate having an average NCO content of about 31. 5 wt% , available from The Dow Chemical
- the resulting polymer has an essentially non cellular structure and an overall density in excess of 1000 kg/m'.
- the metal salt content of the polymer is 23.2 weight percent.
- the polymer is subjected to a grinding procedure to provide course granules which on subsequent calcination for a period of about 3 hours at 700°C in an air environment yield a white or colourless powder.
- the yield of powder containing aluminum is estimated to be about 6.7%.
- the average BET surface area of the powder is observed to be 250 mVgram and indicative of an average particle size significantly smaller than one micrometer.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR9710388A BR9710388A (en) | 1996-07-22 | 1997-07-21 | Polyisocyanate-based polymer process for preparing a polyisocyanate-based polymer process for the production of a metal-containing powder Metal-containing powder and composition |
DE69701697T DE69701697T2 (en) | 1996-07-22 | 1997-07-21 | POLYMER CONTAINING METAL SALTS BASED ON POLYISOCYANATES AND METAL POWDER PRODUCED THEREOF |
EP97931968A EP0912621B1 (en) | 1996-07-22 | 1997-07-21 | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
US09/214,883 US6211285B1 (en) | 1996-07-22 | 1997-07-21 | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
AT97931968T ATE191726T1 (en) | 1996-07-22 | 1997-07-21 | POLYISOCYANATE-BASED POLYMER CONTAINING METAL SALTS AND METAL POWDER PRODUCED THEREFROM |
DK97931968T DK0912621T3 (en) | 1996-07-22 | 1997-07-21 | Metal-containing polyisocyanate-based polymer and metal powders made therefrom |
JP10506697A JP2000514861A (en) | 1996-07-22 | 1997-07-21 | Polyisocyanate-based polymer containing metal salt and method for producing metal powder from this polymer |
AU35547/97A AU743206B2 (en) | 1996-07-22 | 1997-07-21 | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
IL12816497A IL128164A0 (en) | 1996-07-22 | 1997-07-21 | Polisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
NO990254A NO990254L (en) | 1996-07-22 | 1999-01-21 | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9615373.9 | 1996-07-22 | ||
GBGB9615373.9A GB9615373D0 (en) | 1996-07-22 | 1996-07-22 | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998003569A1 true WO1998003569A1 (en) | 1998-01-29 |
Family
ID=10797308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1997/001956 WO1998003569A1 (en) | 1996-07-22 | 1997-07-21 | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
Country Status (20)
Country | Link |
---|---|
US (1) | US6211285B1 (en) |
EP (1) | EP0912621B1 (en) |
JP (1) | JP2000514861A (en) |
KR (1) | KR20000067953A (en) |
CN (1) | CN1225651A (en) |
AT (1) | ATE191726T1 (en) |
AU (1) | AU743206B2 (en) |
BR (1) | BR9710388A (en) |
CA (1) | CA2259903A1 (en) |
DE (1) | DE69701697T2 (en) |
DK (1) | DK0912621T3 (en) |
ES (1) | ES2147010T3 (en) |
GB (1) | GB9615373D0 (en) |
IL (1) | IL128164A0 (en) |
NO (1) | NO990254L (en) |
PL (1) | PL331242A1 (en) |
PT (1) | PT912621E (en) |
TR (1) | TR199900078T2 (en) |
TW (1) | TW495520B (en) |
WO (1) | WO1998003569A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6211285B1 (en) | 1996-07-22 | 2001-04-03 | The Dow Chemical Company | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6984287B2 (en) * | 2001-11-02 | 2006-01-10 | The Dow Chemical Company | Primer composition for promoting adhesion of a urethane adhesive to a polymeric substrate |
US6878184B1 (en) * | 2002-08-09 | 2005-04-12 | Kovio, Inc. | Nanoparticle synthesis and the formation of inks therefrom |
US7078276B1 (en) * | 2003-01-08 | 2006-07-18 | Kovio, Inc. | Nanoparticles and method for making the same |
US20040249023A1 (en) * | 2003-01-17 | 2004-12-09 | Stoffer James O. | Compounds for corrosion resistant primer coatings and protection of metal substrates |
AU2004205892B2 (en) * | 2003-01-17 | 2009-12-10 | University Of Missouri Curators | Corrosion resistant coatings containing rare earth compounds |
US7601425B2 (en) * | 2003-03-07 | 2009-10-13 | The Curators Of The University Of Missouri | Corrosion resistant coatings containing carbon |
US20050281997A1 (en) * | 2004-06-16 | 2005-12-22 | Sealed Air Corporation (Us) | Pitch modulating laminate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3510323A (en) * | 1965-10-21 | 1970-05-05 | Ppg Industries Inc | Heat resistant inorganic foams and their method of manufacture |
US4367259A (en) * | 1981-07-27 | 1983-01-04 | W. R. Grace & Co. | Sound deadening material |
EP0087160A1 (en) * | 1982-02-24 | 1983-08-31 | COMPAGNIE GENERALE D'ELECTRICITE Société anonyme dite: | Process for producing porous metal bodies |
EP0552133A1 (en) * | 1992-01-16 | 1993-07-21 | Institute Of Gas Technology | Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam |
JPH0797566A (en) * | 1993-08-02 | 1995-04-11 | Tokai Rubber Ind Ltd | Liquid chemical for waterstop work |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA834933A (en) | 1970-02-17 | J. Lott Frederick | Cable gland for electric cable | |
US3325698A (en) | 1964-01-15 | 1967-06-13 | Gen Electric | Electrical capacitor electrode and method of making the same |
GB1226553A (en) | 1967-06-27 | 1971-03-31 | ||
JPS5024968B1 (en) | 1969-07-26 | 1975-08-20 | ||
JPS5983972A (en) | 1982-11-02 | 1984-05-15 | 日本特殊陶業株式会社 | Manufacture of ceramic porous body |
US4442175A (en) | 1983-01-27 | 1984-04-10 | Corning Glass Works | Cellular ceramic bodies and method making same |
JPS60215586A (en) | 1984-04-10 | 1985-10-28 | 積水化成品工業株式会社 | Manufacture of titanate porous body |
JPS60239376A (en) | 1984-05-11 | 1985-11-28 | 東洋ゴム工業株式会社 | Manufacture of porous ceramic moldings |
JPS6121960A (en) | 1984-07-10 | 1986-01-30 | 日産自動車株式会社 | Ceramic injection moldings |
JPS62158173A (en) | 1985-06-19 | 1987-07-14 | 三洋化成工業株式会社 | Manufacture of ceramic structure |
JP2515098B2 (en) | 1986-04-23 | 1996-07-10 | 永和化成工業株式会社 | Method for manufacturing ceramic foam |
US4778671A (en) | 1986-07-14 | 1988-10-18 | Corning Glass Works | Preparation of unagglomerated metal oxide particles with uniform particle size |
DE3724156A1 (en) | 1987-07-22 | 1989-02-02 | Norddeutsche Affinerie | METHOD FOR PRODUCING METALLIC OR CERAMIC HOLLOW BALLS |
US4929433A (en) | 1987-10-22 | 1990-05-29 | Alfred University | Method for the preparation of sinterable nitrides |
JPH04507230A (en) | 1988-06-09 | 1992-12-17 | バテル メモリアル インスティテュート | Ceramic powder and thin film of metal oxide and method for producing the ceramic powder and thin film |
GB8909730D0 (en) | 1989-04-27 | 1989-06-14 | Ici Plc | Inorganic particles |
JPH03124404A (en) | 1989-10-11 | 1991-05-28 | Toshiba Corp | Production of ceramics product |
JP2958037B2 (en) | 1990-03-01 | 1999-10-06 | 旭光学工業株式会社 | Method for producing porous ceramic granules |
US5102836A (en) | 1990-06-06 | 1992-04-07 | Center For Innovative Technology | Ceramic materials with low thermal conductivity and low coefficients of thermal expansion |
ATE127148T1 (en) | 1991-01-11 | 1995-09-15 | Lubrizol Corp | TRITIANES AND PHOSPHORIC ACID AND/OR THIOPHOSPHORIC ACID DERIVATIVES. |
US5188780A (en) | 1991-04-18 | 1993-02-23 | Regents Of The University Of California | Method for preparation of dense ceramic products |
US5202306A (en) | 1991-09-18 | 1993-04-13 | The United States Of America As Represented By The United States Department Of Energy | Fracture toughness for copper oxide superconductors |
US5338334A (en) | 1992-01-16 | 1994-08-16 | Institute Of Gas Technology | Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam |
US5698483A (en) | 1995-03-17 | 1997-12-16 | Institute Of Gas Technology | Process for preparing nanosized powder |
US5597649A (en) * | 1995-11-16 | 1997-01-28 | Hoechst Celanese Corp. | Composite yarns having high cut resistance for severe service |
GB9615373D0 (en) | 1996-07-22 | 1996-09-04 | Dow Benelux | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
-
1996
- 1996-07-22 GB GBGB9615373.9A patent/GB9615373D0/en active Pending
-
1997
- 1997-07-21 CN CN97196608A patent/CN1225651A/en active Pending
- 1997-07-21 EP EP97931968A patent/EP0912621B1/en not_active Expired - Lifetime
- 1997-07-21 JP JP10506697A patent/JP2000514861A/en active Pending
- 1997-07-21 PT PT97931968T patent/PT912621E/en unknown
- 1997-07-21 AU AU35547/97A patent/AU743206B2/en not_active Ceased
- 1997-07-21 DK DK97931968T patent/DK0912621T3/en active
- 1997-07-21 KR KR1019997000448A patent/KR20000067953A/en not_active Application Discontinuation
- 1997-07-21 TR TR1999/00078T patent/TR199900078T2/en unknown
- 1997-07-21 ES ES97931968T patent/ES2147010T3/en not_active Expired - Lifetime
- 1997-07-21 WO PCT/GB1997/001956 patent/WO1998003569A1/en not_active Application Discontinuation
- 1997-07-21 CA CA002259903A patent/CA2259903A1/en not_active Abandoned
- 1997-07-21 DE DE69701697T patent/DE69701697T2/en not_active Expired - Fee Related
- 1997-07-21 BR BR9710388A patent/BR9710388A/en not_active Application Discontinuation
- 1997-07-21 US US09/214,883 patent/US6211285B1/en not_active Expired - Fee Related
- 1997-07-21 TW TW086110306A patent/TW495520B/en not_active IP Right Cessation
- 1997-07-21 IL IL12816497A patent/IL128164A0/en unknown
- 1997-07-21 AT AT97931968T patent/ATE191726T1/en not_active IP Right Cessation
- 1997-07-21 PL PL97331242A patent/PL331242A1/en unknown
-
1999
- 1999-01-21 NO NO990254A patent/NO990254L/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3510323A (en) * | 1965-10-21 | 1970-05-05 | Ppg Industries Inc | Heat resistant inorganic foams and their method of manufacture |
US4367259A (en) * | 1981-07-27 | 1983-01-04 | W. R. Grace & Co. | Sound deadening material |
EP0087160A1 (en) * | 1982-02-24 | 1983-08-31 | COMPAGNIE GENERALE D'ELECTRICITE Société anonyme dite: | Process for producing porous metal bodies |
US4569821A (en) * | 1982-02-24 | 1986-02-11 | Compagnie Generale D'electricite, S.A. | Method of preparing a porous metal body |
EP0552133A1 (en) * | 1992-01-16 | 1993-07-21 | Institute Of Gas Technology | Process for preparing submicron/nanosize ceramic powders from precursors incorporated within a polymeric foam |
JPH0797566A (en) * | 1993-08-02 | 1995-04-11 | Tokai Rubber Ind Ltd | Liquid chemical for waterstop work |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 9523, Derwent World Patents Index; AN 175486, XP002043689 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6211285B1 (en) | 1996-07-22 | 2001-04-03 | The Dow Chemical Company | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom |
Also Published As
Publication number | Publication date |
---|---|
GB9615373D0 (en) | 1996-09-04 |
DK0912621T3 (en) | 2000-09-11 |
DE69701697D1 (en) | 2000-05-18 |
ATE191726T1 (en) | 2000-04-15 |
EP0912621A1 (en) | 1999-05-06 |
TW495520B (en) | 2002-07-21 |
AU743206B2 (en) | 2002-01-24 |
TR199900078T2 (en) | 1999-03-22 |
NO990254D0 (en) | 1999-01-21 |
NO990254L (en) | 1999-01-21 |
PT912621E (en) | 2000-09-29 |
ES2147010T3 (en) | 2000-08-16 |
CN1225651A (en) | 1999-08-11 |
CA2259903A1 (en) | 1998-01-29 |
AU3554797A (en) | 1998-02-10 |
BR9710388A (en) | 1999-08-17 |
EP0912621B1 (en) | 2000-04-12 |
DE69701697T2 (en) | 2000-11-23 |
PL331242A1 (en) | 1999-07-05 |
IL128164A0 (en) | 1999-11-30 |
US6211285B1 (en) | 2001-04-03 |
KR20000067953A (en) | 2000-11-25 |
JP2000514861A (en) | 2000-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0912621B1 (en) | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom | |
EP0422797B1 (en) | Fire retardant compositions | |
CN108603097B (en) | Heat-accumulating particle, method for producing same, and heat-accumulating material | |
CN100352583C (en) | Ultrafine cobalt metal powder, process for production thereof and use of cobalt metal powder and of cobalt carbonate | |
US5998523A (en) | Composition comprising a metal salt and metal powder therefrom by the calcining thereof | |
CA2777672C (en) | Liquid isocyanate composition | |
US6123988A (en) | Process for the preparation of polyurethane spherical particle | |
WO1995000441A1 (en) | Kaolin derivatives | |
MXPA99000778A (en) | Polyisocyanate-based polymer comprising metal salts and preparation of metal powders therefrom | |
DE69327844T2 (en) | METHOD FOR CONVERTING POLYURETHANE POLYMER IN POLYOL AND NEW POLYURETHANE POLYMER MADE THEREOF | |
EP3880734B1 (en) | Water processes for producing polyether polyols from solid polyhydroxyl compounds | |
EP0982330B1 (en) | An improved process for the preparation of polyurethane spherical particle | |
WO2022263302A1 (en) | Thermoplastic molding compound having good thermal and electrical properties | |
US4344892A (en) | Self-granulating reaction product of 4,4'-diphenylmethane diisocyanate and resorcinol | |
JPH09194589A (en) | Polyoxyalkylenepolyol and its production | |
Harris et al. | Synthesis and characterization of urea-based polyureas: 1. Urea-terminated poly (1, 6-hexamethyleneurea) polyol dispersions | |
EP0054294B1 (en) | Process for converting isocyanato groups into carbodiimido and/or urethonimino groups | |
EP2673309A1 (en) | Reactive sols and method for producing them | |
MXPA00000641A (en) | A composition comprising a metal salt and metal powder therefrom by the calcining thereof | |
AU674091C (en) | Kaolin derivatives | |
Somdee | ANTAL KERPELY DOCTORAL SCHOOL OF MATERIALS SCIENCE & TECHNOLOGY | |
KR20190122701A (en) | Hydrotalcite composition and resin additive containing the composition | |
AU6966194A (en) | Kaolin derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97196608.7 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2259903 Country of ref document: CA Ref document number: 2259903 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1999/00078 Country of ref document: TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1999/000778 Country of ref document: MX Ref document number: 99-00073 Country of ref document: RO |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV1999-206 Country of ref document: CZ Ref document number: 1019997000448 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997931968 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997931968 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09214883 Country of ref document: US |
|
WWR | Wipo information: refused in national office |
Ref document number: PV1999-206 Country of ref document: CZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997931968 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019997000448 Country of ref document: KR |
|
WWR | Wipo information: refused in national office |
Ref document number: 1019997000448 Country of ref document: KR |