WO1997045511A1 - Detergent compositions - Google Patents
Detergent compositions Download PDFInfo
- Publication number
- WO1997045511A1 WO1997045511A1 PCT/US1997/008234 US9708234W WO9745511A1 WO 1997045511 A1 WO1997045511 A1 WO 1997045511A1 US 9708234 W US9708234 W US 9708234W WO 9745511 A1 WO9745511 A1 WO 9745511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- group
- detergent composition
- acid
- perfume
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
Definitions
- US-A-4,260,529 discloses laundry detergent compositions having a pH of no greater than 11 containing cationic ester surfactant and nonionic surfactant at defined weight ratios.
- the perfumes especially those comprising oxygen containing functional groups, have a high affinity for cationically charged substances, such as positively charged fabric surfaces.
- Cationic ester surfactants are capable of interacting with a fabric surface to provide a positively charged fabric surface.
- the perfumes will have an improved fabric substantivity for the fabrics, positively charged by the cationic ester surfactant. It has been found that the use of an cationic ester surfactant thus can provide a surprisingly improved perfume substantivity on the cleaned or washed fabric.
- the detergent composition of the present invention comprises
- Ri is a C5-C31 linear or branched alkyl, alkenyl or alkaryl chain or M".
- X and Y independently, are selected from the group consisting of COO, OCO, O, CO, OCOO, CONH, NHCO, OCONH and NHCOO wherein at least one of X or Y is a COO, OCO, OCOO, OCONH or NHCOO group;
- R2, R3, R4, R6, R7, and Rg are independently selected from the group consisting of alkyl, alkenyl, hydroxyalkyl, hydroxy-alkenyl and alkaryl groups having from 1 to 4 carbon atoms; and
- R5 is independently H or a C1-C3 alkyl group; wherein the values of m, n, s and t independently lie in the range of from 0 to 8, the value of b lies in the range from 0 to 20, and the values of a,
- said perfume component comprises an oxygen-containing functional group.
- An essential element of the detergent compositions of the invention is a cationic ester surfactant.
- the cationic ester surfactant is present at a level from 0.1 % to 20.0%, more preferably from 0.5% to 10%, most preferably from 1.0% to 5.0% by weight of the detergent composition.
- the cationic ester surfactant of the present invention is a, preferably water dispersible, compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group.
- Suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
- Preferred cationic ester surfactants are those having the formula:
- M is selected from the group consisting of halide, methyl sulfate, sulfate, and nitrate, more preferably methyl sulfate, chloride, bromide or iodide.
- the ring structure contains another nitrogen atom or more preferably, an oxygen atom, or mixtures thereof.
- the ring structure contains 5 to 8 atoms, most preferably 6 atoms.
- Suitable cationic ester surfactants have the structural formulas below, wherein d may be from 0 to 20.
- the cationic ester surfactant is hydrolysable under the conditions of a laundry wash method.
- the particularly preferred choline esters may be prepared by the direct esterification of a fatty acid of the desired chain length with dimethylaminoethanol, in the presence of an acid catalyst.
- the reaction product is then quaternized with a methyl halide, preferably in the presence of a solvent such as ethanol, water, propylene glycol or preferably a fatty alcohol ethoxylate such as C10-C18 fatty alcohol ethoxylate having a degree of ethoxylation of from 3 to 50 ethoxy groups per mole forming the desired cationic material.
- a solvent such as ethanol, water, propylene glycol or preferably a fatty alcohol ethoxylate such as C10-C18 fatty alcohol ethoxylate having a degree of ethoxylation of from 3 to 50 ethoxy groups per mole forming the desired cationic material.
- They may also be prepared by the direct esterification of a long chain fatty acid of the desired chain length together with 2-haloethanol
- Perfume composition Another essential aspect of the present invention is a perfume composition, comprising at least one perfume component, with a molecular weight of from 150 to 350 and present at a level of from 0.5% to 90% , preferably from 1.0% to 60%, more preferably from 2.0% to 20% by weight of the perfume composition.
- the perfume composition is present at a level of from 0.01 % to 10.0 %, more preferably from 0.1 % to 6% , most preferably from 0.4 % to 4.0% by weight of the detergent composition.
- the perfume component comprises an oxygen-containing functional group.
- Preferred functional groups are aldehyde, ketone, alcohol or ether functional groups or mixtures thereof.
- Suitable aliphatic ketones are e.g. :
- Suitable aromatic ketones are e.g. :
- Suitable aliphatic aldehydes are e.g.:
- Suitable aromatic aldehydes are e.g.:
- Suitable condensaton products of aldehydes and amines are e.g.
- R' and R" are hydrogen, one R" ' is hydrogen, methyl, or ethyl, and the other R" ' is a straight, branched or cyclic C ⁇ - Cjo alkyl or alkenyl group.
- cis/trans also referred to as Z/E isomers at the double bond in the structure shown above and stereoisomers of the above structure are possible.
- the detergent compositions of the invention preferably contain an additional surfactant selected from anionic, nonionic, non-ester cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
- the detergent compositions of the present invention preferably comprise an additional anionic surfactant.
- anionic surfactants useful for detersive purposes can be comprised in the detergent composition. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants.
- Anionic sulfate surfactants are preferred.
- anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C ⁇ -C ⁇ g monoesters) diesters of sulfosuccinate (especially saturated and unsaturated Cg-C 14 diesters), N-acyl sarcosinates.
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
- Anionic sulfate surfactant include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of
- Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxy sulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C17 acyl-N-(C ⁇ -C4 alkyl) and -N-(C ⁇ -C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
- Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the Cio-Cig alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a Cn-Cig, most preferably C11-C15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
- a particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
- Anionic sulfonate surfactant Anionic sulfonate surfactant
- Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
- Anionic carboxylate surfactant include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alky
- Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxy Is'), especially certain secondary soaps as described herein.
- Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH2 ⁇ ) x CH2COO-M + wherein R is a C ⁇ to Cig alkyl group, x ranges from O to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation.
- Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR ⁇ -CHR2-0)-R3 wherein R is a C ⁇ to Cig alkyl group, x is from 1 to 25, Ri and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxy succinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
- Suitable soap surfactants include the secondary soap surfactants which contain a carboxy 1 unit connected to a secondary carbon.
- Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl- 1-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2- butyl-1-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
- alkali metal sarcosinates of formula R-CON (R 1 ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, Rl is a C1-C4 alkyl group and M is an alkali metal ion.
- R is a C5-C17 linear or branched alkyl or alkenyl group
- Rl is a C1-C4 alkyl group
- M is an alkali metal ion.
- Alkoxylated nonionic surfactant are the alkali metal sarcosinates of formula R-CON (R 1 ) CH2 COOM, wherein R is a C5-C17 linear or branched alkyl or alkenyl group, Rl is a C1-C4 alkyl group and M is an alkali metal i
- any alkoxylated nonionic surfactants are suitable herein.
- the ethoxylated and propoxylated nonionic surfactants are preferred.
- Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxy late/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
- the condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein.
- the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
- Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
- Nonionic polyhydroxy fattv acid amide surfactant Nonionic polyhydroxy fattv acid amide surfactant
- Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R ⁇ CONR ⁇ Z wherein : RI is H, C1-C4 hydrocarbyl, 2- hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C ⁇ or C2 alkyl, most preferably Ci alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C19 alkyl or alkenyl, more preferably straight-chain C9-C17 alkyl or alkenyl, most preferably straight-chain C11-C17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxy hydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
- Z preferably
- Preferred alkylpolyglycosides have the formula
- Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
- a suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Cone, manufactured by Miranol, Inc. , Dayton, NJ.
- Zwitterionic surfactants can also be inco ⁇ orated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
- Suitable betaines are those compounds having the formula R(R')2N+R2COO" wherein R is a C6-C ⁇ g hydrocarbyl group, each R 1 is typically C1-C3 alkyl, and R2 is a C1-C5 hydrocarbyl group.
- Preferred betaines are C 12- 18 dimethyl-ammonio hexanoate and the C ⁇ o-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines.
- Complex betaine surfactants are also suitable for use herein.
- Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-C10 N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
- alkalinity system comprises components capable of providing alkalinity species in solution.
- alkalinity species it is meant herein: carbonate, bicarbonate, hydroxide, the various silicate anions, percarbonate, perborates, perphosphates, persulfate and persilicate.
- alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and any mixtures thereof are dissolved in water.
- carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
- Suitable silicates include the water soluble sodium silicates with an Si(>2: Na2 ⁇ ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred.
- the silicates may be in the form of either the anhydrous salt or a hydrated salt.
- Sodium silicate with an Si ⁇ 2: Na2 ⁇ ratio of 2.0 is the most preferred silicate.
- Preferred crystalline layered silicates for use herein have the general formula
- M is sodium or hydrogen
- x is a number from 1.9 to 4 and y is a number from 0 to 20.
- Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043.
- x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2.
- the most preferred material is ⁇ -Na2Si2 ⁇ 5, available from Hoechst AG as NaSKS-6.
- Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
- the carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
- Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
- Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
- Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No.
- Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261 ,829, 1,1,2,2-ethane tetracarboxylates, 1,1, 3, 3 -propane tetracarboxylates and 1,1, 2, 3 -propane tetracarboxylates.
- Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1 ,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
- Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21 , and salts of phytic acid.
- the aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula
- Zeolite X has the formula Na 86 [(Al ⁇ 2)86(Si ⁇ 2)i ⁇ d. 276 H 2 0.
- a preferred feature of detergent compositions of the invention is an organic peroxyacid bleaching system.
- the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
- the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
- Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
- a preformed organic peroxyacid is incorporated directly into the composition.
- Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
- Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally inco ⁇ orated in the form of the alkali metal, preferably sodium salt at a level of from 1 % to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
- inorganic perhydrate salts include perborate, percarbonate, pe ⁇ hosphate, persulfate and persilicate salts.
- the inorganic perhydrate salts are normally the alkali metal salts.
- the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
- the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
- Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
- Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2-3H2 ⁇ .
- Alkali metal percarbonates particularly sodium percarbonate are preferred perhydrates herein.
- Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C ⁇ 3.3H2 ⁇ 2, and is available commercially as a crystalline solid.
- Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
- Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
- peroxyacid bleach precursors may be represented as
- Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis.
- Preferred precursors of this type provide peracetic acid on perhydrolysis.
- Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N1N1 tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1 , 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
- TAED Tetraacetyl ethylene diamine
- the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
- the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
- R j is H, alkyl, alkaryl, aryl, or arylalkyl.
- the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1 % to 15% by weight, more preferably from 1 % to 10% by weight of the composition.
- a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
- R* is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms
- R 2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms
- R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
- Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
- organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
- diacyl and tetraacylperoxides especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid.
- Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
- compositions optionally contain a transition metal containing bleach catalyst.
- a transition metal containing bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
- ethylenediaminetetraacetic acid ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof.
- bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594.
- Preferred examples of these catalysts include MnIV2(u-0)3(l,4,7-trimethyl-l,4,7- triazacyclononane)2-(PF6)2, MnIH2( u "0)l(u-OAc)2(l ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(C104)2, Mn ⁇ 4 ( u -0)6(1 ,4,7- triazacyclononane)4-(Cl ⁇ 4)2, Mn III Mn IV 4(u-0) ⁇ (u-OAc)2-(l,4,7- trimethyl-l,4,7-triazacyclononane)2-(C104)3, and mixtures thereof.
- ligands suitable for use herein include 1,5,9-trimethyl- 1 ,5,9-triazacyclododecane, 2-methyl-l ,4,7-triazacyclononane, 2-methyl- 1 ,4,7-triazacyclononane, 1 ,2,4,7-tetramethyl-l ,4,7-triazacyclononane, and mixtures thereof.
- bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat. 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(l ,4,7-trimethyl- l,4,7-triazacyclononane)(OCH3)3_(PF6).
- Still another type of bleach catalyst, as disclosed in U.S. Pat. 5, 114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups.
- Other examples include binuclear Mn complexed with tetra-N-dentate and
- the detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant.
- heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
- Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1 % to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
- diethylene triamine penta methylene phosphonate
- ethylene diamine tri methylene phosphonate
- hexamethylene diamine tetra methylene phosphonate
- hydroxy- ethylene 1,1 diphosphonate nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2- hydroxypropylenediamine disuccinic acid or any salts thereof.
- EDDS ethylenediamine-N,N'-disuccinic acid
- Suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A- 399,133.
- iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyI-3-sulfonic acid sequestrants described in EP-A-516, 102 are also suitable herein.
- Preferred additional enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, cellulases, endolases, esterases, pectinases, lactases and peroxidases conventionally inco ⁇ orated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
- Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001 % to 2% by weight, preferably 0.001 % to 1 % by weight, most preferably from 0.001 % to 0.5% by weight of the compositions.
- the lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomyces sp. or Pseudomonas sp. including Pseudomonas pseudoalcaligenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein.
- a preferred lipase is derived from Pseudomonas pseudoalcaligenes. which is described in Granted European Patent, EP-B-0218272.
- Organic polymeric compounds are preferred additional components of the detergent compositions in accord with the invention, and are preferably present as components of any paniculate components where they may act such as to bind the paniculate component together.
- organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
- organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Polymers of the latter type are disclosed in GB-A-1, 596,756.
- salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
- polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
- organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
- Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component.
- silicone antifoam compounds as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
- Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
- Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
- the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
- Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
- Suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C ⁇ g-C40 ketones (e.g. stearone) N- alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
- high molecular weight fatty esters e.g. fatty acid triglycerides
- fatty acid esters of monovalent alcohols e.g. fatty acid esters of monovalent alcohols
- a preferred suds suppressing system comprises
- antifoam compound preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination
- a dispersant compound most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78 % and an ethylene oxide to propylene oxide ratio of from 1 :0.9 to 1 : 1.1 , at a level of from 0.5 % to 10% , preferably 1 % to 10% by weight;
- a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Corning under the tradename DC0544;
- the detergent compositions may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent.
- the clay mineral compound is preferably a smectite clay compound.
- Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647.
- European Patents No.s EP-A- 299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents.
- the detergent compositions herein may also comprise from 0.01 % to 10 %, preferably from 0.05% to 0.5 % by weight of polymeric dye transfer inhibiting agents.
- the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N- vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
- Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
- O O O O li II H A is NC, CO, C, -O-, -S-, -N-; x is O or 1 ;
- the N-O group can be represented by the following general structures :
- RI, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-0 group forms part of these groups.
- the N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
- Suitable polyamine N-oxides wherein the N-0 group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
- R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups.
- One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-0 group forms part of the R-group.
- Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
- polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit.
- a preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
- R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
- examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
- the polyamine N-oxides can be obtained in almost any degree of polymerisation.
- the degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
- the average molecular weight is within the range of 500 to 1000,000.
- the detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000.
- PVP polyvinylpyrrolidone
- Suitable polyvinylpyrrolidones are commercially vailable from ISP Co ⁇ oration, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000).
- PVP K-15 is also available from ISP Co ⁇ oration.
- Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12.
- the detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent.
- Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
- the detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
- Hydrophilic optical brighteners useful herein include those having the structural formula:
- Ri is selected from anilino, N-2-bis-hydroxyethyl and NH-2- hydroxyethyl
- R2 is selected from N-2-bis-hydroxyethyl, N-2- hydroxyethyl-N-methylamino, mo ⁇ hilino, chloro and amino
- M is a salt-forming cation such as sodium or potassium.
- the brightener is 4,4',-bis[(4-anilino-6-(N- 2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Co ⁇ oration. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
- the brightener is 4,4'- bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2- yl)amino]2,2'-stilbenedisulfonic acid disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Co ⁇ oration.
- the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino- s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Co ⁇ oration.
- Such a process involves mixing an effective amount of powder with a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse 7-9, Postfach 2050, Germany. Most preferably a high shear mixer is used, such as a Lodige CB (Trade Name).
- a high active surfactant paste in one or more agglomerators such as a pan agglomerator, a Z-blade mixer or more preferably an in-line mixer such as those manufactured by Schugi (Holland) BV, 29 Chroomstraat 8211 AS, Lelystad, Netherlands, and Gebruder Lodige Maschinenbau GmbH, D-4790 Paderborn 1, Elsenerstrasse
- Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention.
- an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
- a dispensing device is employed in the washing method.
- the dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
- the dispensing device containing the detergent product is placed inside the drum.
- water is introduced into the drum and the drum periodically rotates.
- the design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
- the device may possess a number of openings through which the product may pass.
- the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product.
- the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
- Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
- Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346.
- An article by J. Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette” .
- Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT Patent Application No. W094/ 11562.
- Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070.
- the latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process. A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium.
- the support ring is provided with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
- the dispensing device may be a flexible container, such as a bag or pouch.
- the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
- it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968.
- a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
- Nai2(Al ⁇ 2Si ⁇ 2)i2- 27H20 having a primary particle size in the range from 0.1 to 10 micrometers
- Citric acid Anhydrous citric acid Carbonate Anhydrous sodium carbonate with a particle size between 200 ⁇ m and 900 ⁇ m
- Bicarbonate Anhydrous sodium bicarbonate with a particle size distribution between 400 ⁇ m and 1200 ⁇ m
- Brightener 1 Disodium 4,4 '-bis(2-sul ⁇ hostyryl)biphenyl
- Brightener 2 Disodium 4,4 ' -bis(4-anilino-6-mo ⁇ holino- 1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate.
- Perfume C Perfume composition C as described in example 1.
- laundry detergent compositions A to F were prepared in accord with the invention:
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002256701A CA2256701A1 (en) | 1996-05-31 | 1997-05-15 | Detergent compositions |
BR9709507A BR9709507A (en) | 1996-05-31 | 1997-05-15 | Detergent compositions |
EP97925580A EP0906384A4 (en) | 1996-05-31 | 1997-05-15 | Detergent compositions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9611322.0 | 1996-05-31 | ||
GB9611322A GB2313601A (en) | 1996-05-31 | 1996-05-31 | Detergent compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997045511A1 true WO1997045511A1 (en) | 1997-12-04 |
Family
ID=10794538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/008234 WO1997045511A1 (en) | 1996-05-31 | 1997-05-15 | Detergent compositions |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0906384A4 (en) |
AR (1) | AR014609A1 (en) |
BR (1) | BR9709507A (en) |
CA (1) | CA2256701A1 (en) |
GB (1) | GB2313601A (en) |
WO (1) | WO1997045511A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004110153A1 (en) * | 2003-06-17 | 2004-12-23 | Henkel Kommanditgesellschaft Auf Aktien | Agents against microorganisms, containing patchouli oil, patchouli alcohol and/or the derivatives thereof |
US7557145B2 (en) | 2003-06-17 | 2009-07-07 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Inhibition of the asexual reproduction of fungi by eugenol and/or derivatives thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022219101A1 (en) * | 2021-04-15 | 2022-10-20 | Unilever Ip Holdings B.V. | Solid composition |
WO2022219112A1 (en) * | 2021-04-15 | 2022-10-20 | Unilever Ip Holdings B.V. | Composition |
BR112023021000A2 (en) * | 2021-04-15 | 2023-12-12 | Unilever Ip Holdings B V | SOLID UNIT DOSE COMPOSITION FOR WASHING CLOTHES, METHOD OF PREPARING A SOLID UNIT DOSE COMPOSITION FOR WASHING CLOTHES AND USE OF A SOLID COMPOSITION FOR WASHING CLOTHES |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187184A (en) * | 1977-11-16 | 1980-02-05 | Lever Brothers Company | Softening composition |
US4239660A (en) * | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
US4260529A (en) * | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
US5185088A (en) * | 1991-04-22 | 1993-02-09 | The Procter & Gamble Company | Granular fabric softener compositions which form aqueous emulsion concentrates |
US5399272A (en) * | 1993-12-17 | 1995-03-21 | The Procter & Gamble Company | Clear or translucent, concentrated biodgradable quaternary ammonium fabric softener compositions |
US5427697A (en) * | 1993-12-17 | 1995-06-27 | The Procter & Gamble Company | Clear or translucent, concentrated fabric softener compositions |
US5445757A (en) * | 1993-03-31 | 1995-08-29 | Solvay (Societe Anonyme) | Compositions comprising pentafluorobutane and use of these compositions |
US5500138A (en) * | 1994-10-20 | 1996-03-19 | The Procter & Gamble Company | Fabric softener compositions with improved environmental impact |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3588115T3 (en) * | 1984-05-16 | 2003-03-27 | Stepan Europe, Voreppe | Concentrated plasticizer compositions based on quaternary ammonium-containing cationic surface-active compounds |
BR9611378A (en) * | 1995-11-07 | 1999-02-23 | Quest Int | Fabric conditioning compositions |
-
1996
- 1996-05-31 GB GB9611322A patent/GB2313601A/en not_active Withdrawn
-
1997
- 1997-05-15 EP EP97925580A patent/EP0906384A4/en not_active Withdrawn
- 1997-05-15 WO PCT/US1997/008234 patent/WO1997045511A1/en not_active Application Discontinuation
- 1997-05-15 CA CA002256701A patent/CA2256701A1/en not_active Abandoned
- 1997-05-15 BR BR9709507A patent/BR9709507A/en not_active Application Discontinuation
- 1997-05-30 AR ARP970102357 patent/AR014609A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4187184A (en) * | 1977-11-16 | 1980-02-05 | Lever Brothers Company | Softening composition |
US4260529A (en) * | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
US4239660A (en) * | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
US5185088A (en) * | 1991-04-22 | 1993-02-09 | The Procter & Gamble Company | Granular fabric softener compositions which form aqueous emulsion concentrates |
US5445757A (en) * | 1993-03-31 | 1995-08-29 | Solvay (Societe Anonyme) | Compositions comprising pentafluorobutane and use of these compositions |
US5399272A (en) * | 1993-12-17 | 1995-03-21 | The Procter & Gamble Company | Clear or translucent, concentrated biodgradable quaternary ammonium fabric softener compositions |
US5427697A (en) * | 1993-12-17 | 1995-06-27 | The Procter & Gamble Company | Clear or translucent, concentrated fabric softener compositions |
US5500138A (en) * | 1994-10-20 | 1996-03-19 | The Procter & Gamble Company | Fabric softener compositions with improved environmental impact |
Non-Patent Citations (1)
Title |
---|
See also references of EP0906384A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004110153A1 (en) * | 2003-06-17 | 2004-12-23 | Henkel Kommanditgesellschaft Auf Aktien | Agents against microorganisms, containing patchouli oil, patchouli alcohol and/or the derivatives thereof |
US7557145B2 (en) | 2003-06-17 | 2009-07-07 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Inhibition of the asexual reproduction of fungi by eugenol and/or derivatives thereof |
Also Published As
Publication number | Publication date |
---|---|
EP0906384A1 (en) | 1999-04-07 |
GB2313601A (en) | 1997-12-03 |
BR9709507A (en) | 1999-08-10 |
GB9611322D0 (en) | 1996-08-07 |
EP0906384A4 (en) | 1999-11-17 |
CA2256701A1 (en) | 1997-12-04 |
AR014609A1 (en) | 2001-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997003161A9 (en) | Laundry washing method | |
EP0843715A1 (en) | Detergent compositions | |
EP0906385A1 (en) | Detergent composition | |
WO1997031889A1 (en) | Cationic detergent compounds | |
EP0842247A1 (en) | Detergent compositions | |
WO1998004662A1 (en) | A detergent composition comprising an acid source with a specific particle size | |
WO1998004662A9 (en) | A detergent composition comprising an acid source with a specific particle size | |
EP0906386A1 (en) | Detergent composition | |
WO1997003158A1 (en) | Detergent compositions | |
EP0915956A1 (en) | A detergent composition | |
EP0845024A1 (en) | Detergent compositions | |
WO1997045511A1 (en) | Detergent compositions | |
GB2310851A (en) | Cationic detergent compounds | |
WO1998017760A1 (en) | A detergent composition | |
WO1997045512A1 (en) | Detergent compositions | |
EP0856044A1 (en) | Detergent compositions comprising cation ester surfactant and enzyme | |
WO1997003155A2 (en) | Detergent compositions | |
WO1997003163A1 (en) | Detergent compositions | |
WO1997045513A1 (en) | Detergent composition | |
EP0863969A1 (en) | Detergent compositions | |
GB2303142A (en) | Detergent compositions | |
GB2318363A (en) | Detergent compositions | |
WO1997045513A9 (en) | Detergent composition | |
GB2323380A (en) | A detergent composition | |
GB2325471A (en) | A detergent composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA MX US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997925580 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2256701 Country of ref document: CA Ref country code: CA Ref document number: 2256701 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1998/010092 Country of ref document: MX |
|
WWP | Wipo information: published in national office |
Ref document number: 1997925580 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997925580 Country of ref document: EP |