WO1997036591A1 - Inhibitors of farnesyl-protein transferase - Google Patents

Inhibitors of farnesyl-protein transferase Download PDF

Info

Publication number
WO1997036591A1
WO1997036591A1 PCT/US1997/004750 US9704750W WO9736591A1 WO 1997036591 A1 WO1997036591 A1 WO 1997036591A1 US 9704750 W US9704750 W US 9704750W WO 9736591 A1 WO9736591 A1 WO 9736591A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
alkyl
aryl
unsubstituted
heterocycle
Prior art date
Application number
PCT/US1997/004750
Other languages
English (en)
French (fr)
Inventor
Christopher J. Dinsmore
Original Assignee
Merck & Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9610338.7A external-priority patent/GB9610338D0/en
Application filed by Merck & Co., Inc. filed Critical Merck & Co., Inc.
Priority to EP97917604A priority Critical patent/EP0900081A4/de
Priority to JP53535797A priority patent/JP2001518067A/ja
Priority to AU25879/97A priority patent/AU707347B2/en
Publication of WO1997036591A1 publication Critical patent/WO1997036591A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • Ras proteins are part of a signalling pathway that links cell surface growth factor receptors to nuclear signals initiating cellular proliferation.
  • Biological and biochemical studies of Ras action indicate that Ras functions like a G-regulatory protein.
  • Ras In the inactive state, Ras is bound to GDP.
  • Ras Upon growth factor receptor activation Ras is induced to exchange GDP for GTP and undergoes a conformational change.
  • the GTP-bound form of Ras propagates the growth stimulatory signal until the signal is terminated by the intrinsic GTPase activity of Ras, which returns the protein to its inactive GDP bound form (D.R. Lowy and D.M.
  • Mutated ras genes (Ha-ras, Ki4a-ras, Ki4b-ras and N-ras) are found in many human cancers, including colorectal carcinoma, exocrine pancreatic carcinoma, and myeloid leukemias. The protein products of these genes are defective in their GTPase activity and constitutively transmit a growth stimulatory signal.
  • Ras C-terminus contains a sequence motif termed a "CAAX” or "Cys-Aaa 1 -Aaa 2 -Xaa” box (Cys is cysteine, Aaa is an aliphatic amino acid, the Xaa is any amino acid) (Willumsen et al., Nature 310 :583-586 (1984)).
  • this motif serves as a signal sequence for the enzymes farnesyl-protein transferase or geranylgeranyl-protein transferase, which catalyze the alkylation of the cysteine residue of the CAAX motif with a C 15 or C 20 isoprenoid, respectively.
  • the Ras protein is one of several proteins that are known to undergo post-translational farnesylation.
  • farnesylated proteins include the Ras-related GTP- binding proteins such as Rho, fungal mating factors, the nuclear lamins, and the gamma subunit of transducin. James, et al., J. Biol. Chem. 269, 14182 ( 1994) have identified a peroxisome associated protein Pxf which is also farnesylated. James, et al., have also suggested that there are farnesylated proteins of unknown structure and function in addition to those listed above.
  • FPTase farnesyl-protein transferase
  • FPP farnesyl diphosphate
  • Ras protein substrates
  • the peptide derived inhibitors that have been described are generally cysteine containing molecules that are related to the CAAX motif that is the signal for protein prenylation. (Schaber et al., ibid; Reiss et. al., ibid; Reiss et al., PNAS, 88:732:736 (1991 )).
  • Such inhibitors may inhibit protein prenylation while serving as alternate substrates for the farnesyl-protein transferase enzyme, or may be purely competitive inhibitors (U.S.
  • Patent 5,141 ,851 University of Texas; N.E. Kohl et al., Science,
  • farnesyl-protein transferase inhibitors are inhibitors of proliferation of vascular smooth muscle cells and are therefore useful in the prevention and therapy of arteriosclerosis and diabetic disturbance of blood vessels (JP H7- 1 12930).
  • the present invention comprises peptidomimetic
  • ketopiperazine-containing compounds which inhibit the farnesyl-protein transferase.
  • the instant compounds lack a thiol moiety and thus offer unique advantages in terms of improved pharmacokinetic behavior in animals, prevention of thiol-dependent chemical reactions, such as rapid autoxidation and disulfide formation with endogenous thiols, and reduced systemic toxicity.
  • chemotherapeutic compositions containing these farnesyl transferase inhibitors and methods for their production are further contained in this invention.
  • the compounds of this invention are useful in the inhibition of farnesyl-protein transferase and the farnesylation of the oncogene protein Ras.
  • the inhibitors of farnesyl-protein transferase are illustrated by the formula A:
  • R 1a and R 1b are independently selected from:
  • substitutent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted aryl, heterocyclic, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, R 10 O-,
  • R 2 and R 3 are independently selected from: H; unsubstituted or substituted C 1-8 alkyl, unsubstituted or substituted C 2-8 alkenyl, unsubstituted or substituted C 2-8 alkynyl, unsubstituted or substituted aryl, unsubstituted or substituted heterocycle,
  • substituted group is substituted with one or more of:
  • R 2 and R 3 are attached to the same C atom and are combined to form - (CH 2 ) u - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N(COR 10 )- ;
  • R 4 is selected from H and CH 3 ; and any two of R 2 , R 3 and R 4 are optionally attached to the same carbon atom;
  • R 5 , R 6 and R 7 are independently selected from: H; C 1 -4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with:
  • R 6 and R 7 may be joined in a ring;
  • R 7 and R 5 may be joined in a ring;
  • R 6a is selected from: C 1 -4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, unsubstituted or substituted with:
  • R 8 is independently selected from:
  • cyanophenyl heterocycle, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, perfluoroalkyl, F, Cl, Br, R 10 O-,
  • R 11 S(O) m -, R 10 C(O)NH-, (R 10 ) 2 NC(O)-, R 10 2 N- C(NR 10 )-, CN, R 10 C(O)-, N 3 , -N(R 10 ) 2 , or R 10 OC(O)NH-;
  • R 9 is selected from:
  • R 11 S(O) m -, R 10 C(O)NR 10 -, (R 10 ) 2 NC(O)-, R 10 2 N- C(NR 10 )-, CN, NO 2 , R 10 C(O)-, N 3 , -N(R 10 ) 2 , or
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl
  • V is selected from:
  • aryl d) C 1 -C 20 alkyl wherein from 0 to 4 carbon atoms are replaced with a a heteroatom selected from O, S, and N, and
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • W is a heterocycle
  • Z is selected from:
  • heteroaryl arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following:
  • n 0, 1 , 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • q 1 or 2;
  • r is 0 to 5, provided that r is 0 when V is hydrogen;
  • s is 0 or 1;
  • t is 0 or 1 ;
  • u is 4 or 5; or the pharmaceutically acceptable salts thereof.
  • R 1 a and R 1 b are independently selected from: a) hydrogen,
  • substitutent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted aryl, heterocyclic, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, Rl°0-, R 11 S(O) m -, R 10 C(O)NR 10 -, (R 10 ) 2 NC(O)-, R 10 2 N-
  • R 2 and R 3 are independently selected from: H; unsubstituted or
  • substituted group is substituted with one or more of:
  • SR 6a , S(O)R 6a , or SO 2 R 6a , R 2 and R 3 are attached to the same C atom and are combined to form - (CH 2 ) u - wherein one of the carbon atoms is optionally replaced by a moiety selected from: O, S(O) m , -NC(O)-, and -N (COR 10 )- ;
  • R 4 is selected from H and CH 3 ; and any two of R 2 , R 3 and R 4 are optionally attached to the same carbon atom;
  • R 5 , R 6 and R 7 are independently selected from: H; C 1 -4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, aroyl, heteroaroyl, arylsulfonyl, heteroarylsulfonyl, unsubstituted or substituted with:
  • R 6 and R 7 may be joined in a ring;
  • R 7 and R 7a may be joined in a ring;
  • R 6a is selected from: C 1 -4 alkyl, C 3-6 cycloalkyl, heterocycle, aryl, unsubstituted or substituted with:
  • R 8 is independently selected from:
  • cyanophenyl heterocycle, C 3 -C 10 cycloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, perfluoroalkyl, F, Cl, Br, R 10 O-,
  • R 11 S(O) m -, R 10 C(O)NH-, (R 10 ) 2 NC(O)-, R 10 2 N- C(NR 10 )-, CN, R 10 C(O)-, N 3 , -N(R 10 ) 2 , or R 10 OC(O)NH-;
  • R 9 is selected from:
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl;
  • V is selected from:
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • W is a heterocycle
  • Z is selected from:
  • heteroaryl arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following:
  • n 0, 1 , 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • q 1 or 2;
  • r is 0 to 5, provided that r is 0 when V is hydrogen;
  • s 1 ;
  • t is 0 or 1 ;
  • u is 4 or 5; or the pharmaceutically acceptable salts thereof.
  • R 1a is independently selected from: hydrogen or C 1 -C 6 alkyl
  • R 1b is independently selected from:
  • substitutent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted aryl, heterocycle, cycloalkyl, alkenyl, R 10 O- and -N(R 10 ) 2 ;
  • R 3 and R 4 are independently selected from H and CH 3 ;
  • R 2 is H; or C 1-5 alkyl, unbranched or branched, unsubstituted or substituted with one or more of:
  • R 6 and R 7 are independently selected from:
  • R 6a is selected from:
  • R 8 is independently selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or R 11 OC(O)NR 10 -, and
  • R 9 is selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 11 S(O) m -, R 10 C(O)NR 10 -, CN, (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or
  • R 11 OC(O)NR 10 -;
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 1 1 is independently selected from C 1 -C 6 alkyl and aryl;
  • V is selected from:
  • heterocycle selected from pyrrolidinyl, imidazolyl,
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • W is a heterocycle selected from pyrrolidinyl, imidazolyl, pyridinyl, thiazolyl, pyridonyl, 2-oxopiperidinyl, indolyl, quinolinyl, or
  • Z is selected from:
  • heteroaryl arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following:
  • n 0, 1 , 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • r is 0 to 5, provided that r is 0 when V is hydrogen;
  • s is 0 or 1 ;
  • t is 0 or 1 ;
  • R 1 a is selected from: hydrogen or C 1 -C 6 alkyl
  • R 1 b is independently selected from:
  • R 3 is selected from H and CH 3 ;
  • R 2 is selected from H; or C 1 -5 alkyl, unbranched or branched, unsubstituted or substituted with one or more of:
  • R 6 and R 7 are independently selected from:
  • R 6a is selected from:
  • R 8 is independently selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or R 11 OC(O)NR 10 -, and
  • R 9a is hydrogen or methyl
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl;
  • V is selected from:
  • heterocycle selected from pyrrolidinyl, imidazolyl,
  • V is not hydrogen if A 1 is S(O) m and V is not hydrogen if A 1 is a bond, n is 0 and A 2 is S(O) m ;
  • heteroaryl arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following:
  • n 0, 1, 2, 3 or 4;
  • p 0, 1 , 2, 3 or 4;
  • R 1 b is independently selected from:
  • R 3 is selected from H and CH 3 ;
  • R 2 is selected from H; or C 1 -5 alkyl, unbranched or branched, unsubstituted or substituted with one or more of:
  • R 2 and R 3 are optionally attached to the same carbon atom
  • R 6 and R 7 are independently selected from:
  • R 6a is selected from:
  • R 8 is independently selected from:
  • perfluoroalkyl F, Cl, R 10 O-, R 10 C(O)NR 10 -, CN, NO 2 , (R 10 ) 2 N-C(NR 10 )-, R 10 C(O)-, -N(R 10 ) 2 , or R 11 OC(O)NR 10 -, and
  • R 10 is independently selected from hydrogen, C 1 -C 6 alkyl, benzyl and aryl;
  • R 11 is independently selected from C 1 -C 6 alkyl and aryl;
  • Z is selected from:
  • heteroaryl arylmethyl, heteroarylmethyl, arylsulfonyl, heteroarylsulfonyl, wherein the substituted group is substituted with one or more of the following:
  • p is 0, 1 , 2, 3 or 4; or the pharmaceutically acceptable salts thereof.
  • the preferred compounds of this invention are as follows: 4-(3-Chlorophenyl)-1 -[ 1 -(4-cyanobenzyl)-5-imidazolylmethyI]-2- piperazinone
  • the compounds of the present invention may have asymmetric centers and occur as racemates, racemic mixtures, and as individual diastereomers, with all possible isomers, including optical isomers, being included in the present invention.
  • any variable e.g. aryl, heterocycle, R 1 , R 2 etc.
  • its definition on each occurence is independent at every other occurence.
  • combinations of substituents/or variables are permissible only if such combinations result in stable compounds.
  • alkyl is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; “alkoxy” represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge.
  • Halogen or “halo” as used herein means fluoro, chloro, bromo and iodo.
  • aryl is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic.
  • aryl elements include phenyl, naphthyl, tetrahydronaphthyl, indanyl, biphenyl, phenanthryl, anthryl or acenaphthyl.
  • heterocycle or heterocyclic represents a stable 5- to 7-membered monocyclic or stable 8- to 1 1- membered bicyclic heterocyclic ring which is either saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group consisting of N, O, and S, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • the heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heterocyclic elements include, but are not limited to, azepinyl, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl,
  • heteroaryl is intended to mean any stable monocyclic or bicyclic carbon ring of up to 7 members in each ring, wherein at least one ring is aromatic and wherein from one to four carbon atoms are replaced by heteroatoms selected from the group consisting of N, O, and S.
  • heterocyclic elements include, but are not limited to, benzimidazolyl, benzisoxazolyl, benzofurazanyl, benzopyranyl, benzothiopyranyl, benzofuryl,
  • the substituted group intended to mean a substituted C 1 -8 alkyl, substituted C 2-8 alkenyl, substituted C 2-8 alkynyl, substituted aryl or substituted heterocycle from which the substitutent(s) R 2 and R 3 are selected.
  • the substituted C 1 -8 alkyl, substituted C 3-6 cycloalkyl, substituted aroyl, substituted aryl, substituted heteroaroyl, substituted arylsulfonyl, substituted heteroarylsulfonyl and substituted heterocycle include moieties containing from 1 to 3 substitutents in addition to the point of attachment to the rest of the compound.
  • substituted aryl substituted heterocycle
  • substituted cycloalkyl are intended to include the cyclic group which is substituted with 1 or 2 substitutents selected from the group which includes but is not limited to F, Cl, Br, CF 3 , NH 2 , N(C 1 -C 6 alkyl) 2 , NO 2 , CN, (C 1 -C 6 alkyl)O-, -OH, (C 1 -C 6
  • cyclic moieties When R 2 and R 3 are combined to form - (CH 2 ) u -, cyclic moieties are formed. Examples of such cyclic moieties include, but are not limited to:
  • cyclic moieties may optionally include a heteroatom(s).
  • heteroatom-containing cyclic moieties include, but are not limited to:
  • Lines drawn into the ring systems from substituents indicate that the indicated bond may be attached to any of the substitutable ring carbon atoms.
  • R 1 a and R 1 b are independently selected from: hydrogen, -N(R 10 ) 2 , R 10 C(O)NR 10 - or unsubstituted or substituted C 1 -C 6 alkyl wherein the substituent on the substituted C 1 -C 6 alkyl is selected from unsubstituted or substituted phenyl, -N(R 1 0 ) 2 , R 10 O- and R 10 C(O)NR 10 -.
  • R 2 is selected from: H, and an unsubstituted or substituted group, the group selected from C 1 -8 alkyl, C 2-8 alkenyl and C 2-8 alkynyl;
  • substituted group is substituted with one or more of:
  • R 3 is selected from: hydrogen and C 1 -C 6 alkyl.
  • R 4 and R 5 are hydrogen.
  • R 6 , R 7 and R 7 a is selected from: hydrogen, unsubstituted or substituted C 1 -C 6 alkyl, unsubstituted or substituted aryl and unsubstituted or substituted cycloalkyl.
  • R 6a is unsubstituted or substituted C 1 -C 6 alkyl, unsubstituted or substituted aryl and unsubstituted or substituted cycloalkyl.
  • R 9 is hydrogen or methyl.
  • R a is hydrogen.
  • R 1 0 is selected from H, C 1 -C 6 alkyl and benzyl.
  • a 1 and A 2 are independently selected from: a bond, -C(O)NR 10 -, -NR 10 C(O)-, O, -N(R 10 )-, -S(O) 2 N(R 10 )- and- N(R 10 )S(O) 2 -.
  • V is selected from hydrogen, heterocycle and aryl. More preferably, V is phenyl.
  • W is selected from imidazolinyl, imidazolyl, oxazolyl. pyrazolyl, pyyrolidinyl, thiazolyl and pyridyl. More
  • W is selected from imidazolyl and pyridyl.
  • X is -CH 2 - or -C(O)-.
  • Z is selected from unsubstituted or substituted phenyl, unsubstituted or substituted naphthyl, unsubstituted or
  • Z is unsubstituted or substituted phenyl.
  • n and r are independently 0, 1 , or 2.
  • p is 1 , 2 or 3.
  • s is 0.
  • t is 1.
  • -N(R 10 ) 2 represents -NHH, -NHCH 3 , -NHC 2 H 5 , etc. It is understood that substituents and substitution patterns on the compounds of the instant invention can be selected by one of ordinary skill in the art to provide compounds that are chemically stable and that can be readily synthesized by techniques known in the art, as well as those methods set forth below, from readily available starting materials.
  • the pharmaceutically acceptable salts of the compounds of this invention include the conventional non-toxic salts of the compounds of this invention as formed, e.g., from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like: and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxy-benzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, trifluoroacetic and the like.
  • the pharmaceutically acceptable salts of the compounds of this invention can be synthesized from the compounds of this invention which contain a basic moiety by conventional chemical methods.
  • the salts are prepared either by ion exchange chromatography or by reacting the free base with stoichiometric amounts or with an excess of the desired salt-forming inorganic or organic acid in a suitable solvent or various combinations of solvents.
  • Reactions used to generate the compounds of this invention are prepared by employing reactions as shown in the Schemes 1- 14, in addition to other standard manipulations such as ester hydrolysis, cleavage of protecting groups, etc., as may be known in the literature or exemplified in the experimental procedures.
  • 2-Piperazinones can be generally prepared as shown in Scheme 1. Amination of the suitably substituted 2-oxazolidinone I provides the diamine II. This is then reacted with a suitably substituted bromoacetate to provide the secondary amide III; acid deprotection provides the key intermediate IV. Ring closure to the 2-piperazinones VI occurs concurrently with reductive alkylation with an aldehyde such as the protected imidazolyl aldehyde V. The imidazolyl protecting group may be removed under acidic conditions such as trifluoroacetic acid in methylene chloride. Alternatively, the imidazolyl may be alkylated and then deprotected to provide compounds such as VIII
  • the intermediate IV can be cyclized and reductively alkylated with a variety of aldehydes, such as IX.
  • the aldehydes can be prepared by standard procedures, such as that described by O. P. Goel, U. Krolls, M. Stier and S. Kesten in Organic Syntheses, 1988, 67, 69- 75), from the appropriate amino acid (Scheme 2).
  • the reductive alkylation can be accomplished at pH 5-7 with a variety of reducing agents, such as sodium triacetoxyborohydride or sodium
  • the product diamine XI can further be selectively protected to obtain XII, which can subsequently be reductively alkylated with a second aldehyde to obtain XIII. Removal of the protecting group, and conversion to cyclized products such as the dihydroimidazole XV can be accomplished by literature procedures.
  • the imidazole acetic acid XVI can be converted to the acetate XVII by standard procedures, and the protected imidazole XVIII can be first reacted with an alkyl halide, then treated with refluxing methanol to provide the regiospecifically alkylated imidazole acetic acid ester XIX.
  • the ester is hydrolyzed and the acid converted to the acid chloride.
  • Reaction with the suitably substituted lithium diketopiperazine XXI in the presence of condensing reagents such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) leads to acylated products such as XXII.
  • the protecting groups can be subsequently removed to unmask the hydroxyl group (Schemes 4, 5).
  • the alcohol can be oxidized under standard conditions to e.g. an aldehyde, which can then be reacted with a variety of organometallic reagents such as Grignard reagents, to obtain secondary alcohols such as XXVII.
  • the fully deprotected amino alcohol XXV can be reductively alkylated
  • the Boc protected amino alcohol XXV can also be utilized to synthesize 2-aziridinylmethylpiperazines such as XXX (Scheme 6). Treating XXV with 1 ,1 '-sulfonyldiimidazole and sodium hydride in a solvent such as dimethylformamide led to the formation of aziridine XXX. The aziridine reacted in the presence of a nucleophile, such as a thiol, in the presence of base to yield, after deprotection, the ring- opened product XXXII.
  • a nucleophile such as a thiol
  • the intermediate IV can be reacted with aldehydes derived from amino acids such as O-alkylated tyrosines, according to standard procedures, to obtain compounds such as XXXV as shown in Scheme 7.
  • R' is an aryl group
  • XXXV can first be hydrogenated to unmask the phenol, and the amine group deprotected with acid to produce XXXVI. Altematively, the amine protecting group in XXXV can be removed, and O-alkylated phenolic amines such as XXXVII produced.
  • Reaction Scheme 8 provides an illustrative example the synthesis of compounds of the instant invention wherein the substituents
  • R 4 and R 5 are combined to form - (CH 2 ) u -.
  • 1 - aminocyclohexan- 1 -al XXXVIII can be converted to the intermediate IXL essentially according to the procedures outlined in Schemes 1 and 2.
  • the intermediate IXL can be deprotected as before, and carried on to final products as described in Schemes 3-7. It is understood that reagents utilized to provide the imidazolylalkyl substituent may be readily replaced by other reagents well known in the art and readily available to provide other N-substituents on the piperazine.
  • Scheme 9 illustrates the use of an optionally substituted homoserine lactone XLII to prepare a Boc-protected intermediate XLIII.
  • Intermediate XLIII may be deprotected and cyclized/reductively alkylated or acylated as illustrated in the previous Schemes.
  • diketopiperazine XLIV may be mesylated and displaced by a suitable nucleophile, such as the sodium salt of ethane thiol, to provide an the sulfide XLV.
  • Diketopiperazine XLIV may also be oxidized to provide the carboxylic acid on
  • diketopiperazine XLVI which can be further utilized to form an ester or amide moiety.
  • Amino acids of the general formula XLVIII which have a sidechain not found in natural amino acids may be prepared by the reactions illustrated in Scheme 10 starting with the readily prepared imine XLVII.
  • Schemes 1 1 -14 illustrate syntheses of suitably substituted aldehydes useful in the syntheses of the instant compounds wherein the variable W is present as a pyridyl moiety. Similar synthetic strategies for preparing alkanols that incorporate other heterocyclic moieties for variable W are also well known in the art.
  • the instant compounds are useful as pharmaceutical agents for mammals, especially for humans. These compounds may be administered to patients for use in the treatment of cancer. Examples of the type of cancer which may be treated with the compounds of this invention include, but are not limited to, colorectal carcinoma, exocrine pancreatic carcinoma, myeloid leukemias and neurological tumors.
  • Such tumors may arise by mutations in the ras genes themselves, mutations in the proteins that can regulate Ras activity (i.e.,
  • NF-1 neurofibromin
  • neu neu
  • ser abl
  • lck lck
  • fyn neurofibromin
  • the compounds of the instant invention inhibit farnesyl- protein transferase and the farnesylation of the oncogene protein Ras.
  • the instant compounds may also inhibit tumor angiogenesis, thereby affecting the growth of tumors (J. Rak et al. Cancer Research, 55:4575- 4580 (1995)).
  • the compounds of this invention are also useful for inhibiting other proliferative diseases, both benign and malignant, wherein Ras proteins are aberrantly activated as a result of oncogenic mutation in other genes (i.e., the Ras gene itself is not activated by mutation to an oncogenic form) with said inhibition being accomplished by the administration of an effective amount of the compounds of the invention to a mammal in need of such treatment.
  • a component of NF-1 is a benign proliferative disorder.
  • the instant compounds may also be useful in the treatment of certain viral infections, in particular in the treatment of hepatitis delta and related viruses (J.S. Glenn et al. Science, 256: 1331 - 1333
  • the compounds of the instant invention are also useful in the prevention of restenosis after percutaneous transluminal coronary angioplasty by inhibiting neointimal formation (C. Indolfi et al. Nature medicine, 1 :541 -545(1995).
  • the instant compounds may also be useful in the treatment and prevention of polycystic kidney disease (D.L. Schaffher et al. American Journal of Pathology, 142: 1051-1060 (1993) and B. Cowley, Jr. et al.FASEB Journal, 2:A3160 (1988)).
  • the instant compounds may also be useful for the treatment of fungal infections.
  • the compounds of this invention may be administered to mammals, preferably humans, either alone or, preferably, in
  • the compounds can be administered orally or parenterally, including the intravenous, intramuscular, intraperitoneal, subcutaneous, rectal and topical routes of administration.
  • the selected compound may be administered, for example, in the form of tablets or capsules, or as an aqueous solution or suspension.
  • carriers which are commonly used include lactose and corn starch, and lubricating agents, such as magnesium stearate, are commonly added.
  • useful diluents include lactose and dried com starch.
  • the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring agents may be added.
  • sterile solutions of the active ingredient are usually prepared, and the pH of the solutions should be suitably adjusted and buffered.
  • the total concentration of solutes should be controlled in order to render the preparation isotonic.
  • the compounds of the instant invention may also be co- administered with other well known therapeutic agents that are selected for their particular usefulness against the condition that is being treated.
  • the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents.
  • the instant compounds may be useful in combination with known anti-cancer and cytotoxic agents.
  • compounds may be useful in combination with agents that are effective in the treatment and prevention of NF-1 , restenosis, polycystic kidney disease, infections of hepatitis delta and related viruses and fungal infections.
  • Such combination products employ the compounds of this invention within the dosage range described below and the other pharmaceutically active agent(s) within its approved dosage range.
  • Compounds of the instant invention may altematively be used sequentially with known pharmaceutically acceptable agent(s) when a combination formulation is inappropriate.
  • the present invention also encompasses a pharmaceutical composition useful in the treatment of cancer, comprising the
  • compositions of this invention include aqueous solutions comprising compounds of this invention and pharmacologically acceptable carriers, e.g., saline, at a pH level, e.g., 7.4.
  • pharmacologically acceptable carriers e.g., saline
  • the solutions may be introduced into a patient's blood-stream by local bolus injection.
  • the daily dosage will normally be determined by the prescribing physician with the dosage generally varying according to the age, weight, and response of the individual patient, as well as the severity of the patient's symptoms.
  • a suitable amount of compound is administered to a mammal undergoing treatment for cancer.
  • Administration occurs in an amount between about 0.1 mg/kg of body weight to about 60 mg/kg of body weight per day, preferably of between 0.5 mg/kg of body weight to about 40 mg/kg of body weight per day.
  • the compounds of the instant invention are also useful as a component in an assay to rapidly determine the presence and quantity of farnesyl-protein transferase (FPTase) in a composition.
  • FPTase farnesyl-protein transferase
  • composition to be tested may be divided and the two
  • mixtures which comprise a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and farnesyl pyrophosphate and, in one of the mixtures, a compound of the instant invention.
  • FPTase for example a tetrapeptide having a cysteine at the amine terminus
  • farnesyl pyrophosphate for example a tetrapeptide having a cysteine at the amine terminus
  • the chemical content of the assay mixtures may be determined by well known
  • inhibitors of FPTase absence or quantitative reduction of the amount of substrate in the assay mixture without the compound of the instant invention relative to the presence of the unchanged substrate in the assay containing the instant compound is indicative of the presence of FPTase in the composition to be tested.
  • potent inhibitor compounds of the instant invention may be used in an active site titration assay to determine the quantity of enzyme in the sample.
  • a series of samples composed of aliquots of a tissue extract containing an unknown amount of farnesyl-protein transferase, an excess amount of a known substrate of FPTase (for example a tetrapeptide having a cysteine at the amine terminus) and farnesyl pyrophosphate are incubated for an appropriate period of time in the presence of varying concentrations of a compound of the instant invention.
  • the concentration of a sufficiently potent inhibitor i.e., one that has a Ki substantially smaller than the
  • concentration of enzyme in the assay vessel required to inhibit the enzymatic activity of the sample by 50% is approximately equal to half of the concentration of the enzyme in that particular sample.
  • Step A Preparation of 1 -triphenylmethyl-4-(hydroxymethyl)- imidazole
  • Step B Preparation of 1 -triphenylmethyl-4-(acetoxymethyl)- imidazole
  • Step C Preparation of 1 -(4-cyanobenzyl)-5-(acetoxymethyl)- imidazole hydrobromide
  • a solution of the product from Step B (85.8 g, 225 mmol) and ⁇ -bromo- p-tolunitrile (50.1 g, 232 mmol) in 500 mL of EtOAc was stirred at 60 °C for 20 hours, during which a pale yellow precipitate formed.
  • the reaction was cooled to room temperature and filtered to provide the solid imidazolium bromide salt. The filtrate was
  • Step D Preparation of 1 -(4-cyanobenzyl)-5-(hydroxymethyl)- imidazole
  • the amine hydrochloride from Step F (ca. 282 mmol, crude material prepared above) was taken up in 500 mL of THF and 500 mL of sat. aq. NaHCO 3 soln., cooled to 0 °C, and di-tert- butylpyrocarbonate (61.6 g, 282 mmol) was added. After 30 h, the reaction was poured into EtOAc, washed with water and brine, dried (Na 2 SO 4 ), filtered, and concentrated in vacuo to provide the titled carbamate (77 g, 100% yield for two steps, ca. 80% pure by 1 ⁇ NMR) as a brown oil which was used in the next step without further
  • Step I Preparation of N-(2-aminoethyl)-N-[(carbomethoxy)- methyl]-3-chloroaniline hydrochloride
  • Step J Preparation of 4-(3-chlorophenyl)-1-[ 1 -(4-cyanobenzyl)-5- imidazolylmethyl]-2-piperazinone hydrochloride
  • Step B Preparation of 2(S)-(ter t-Butoxycarbonylamino)hexanal
  • a mechanically stirred suspension of lithium aluminum hydride (5.00 g, 0.131 mol) in ether (250 mL) was cooled to -45°C under nitrogen.
  • a solution of the product from Step A (28.3 g, 0.103 mol) in ether (125 mL) was added, maintaining the temperature below -35°C.
  • the reaction was warmed to 5°C, then recooled to -45°C.
  • a solution of potassium hydrogen sulfate (27.3 g, 0.200 mol) in water was slowly added, maintaining the temperature below -5°C.
  • Step C Preparation of N-(2,3-Dimethylphenyl)-2(S)-(tert- butoxycarbonylamino)hexanamine
  • Step D Preparation of (S)-6- n-butyl-1-[1 -(4-cyanobenzyl)-5- imidazolylmethyl]-4-(2,3-dimethylphenyl)-2-piperazinone hydrochloride
  • Step B Preparation of 3-(4-Cyanobenzyl)-4-(hydroxymethyI)- pyridine
  • Step D Preparation of 4-(3-chlorophenyl)- 1 -[(3-(4- cyanobenzyl)pyridin-4-yl)methyl]-2-piperazinone
  • the titled compound is prepared from the pyridinal from Step C and the amine hydrochloride from Step I of Example 1 using the reductive alkylation procedured in Step J of Example I.
  • the product is purified by silica gel chromatography, then taken up in CH 2 CI 2 and treated with excess 1 M HCl/ether solution, and concentrated in vacuo to provide the titled product hydrochloride.
  • Bovine FPTase was assayed in a volume of 100 ⁇ l containing 100 mM N-(2- hydroxy ethyl) piperazine-N'-(2-ethane sulfonic acid) (HEPES), pH 7.4, 5 mM MgCl 2 , 5 mM dithiothreitol (DTT), 100 mM [ 3 H]-farnesyl diphosphate ([ 3 H]-FPP; 740 CBq/mmol, New England Nuclear), 650 nM Ras-CVLS and 10 ⁇ g/ml FPTase at 31°C for 60 min. Reactions were initiated with FPTase and stopped with 1 ml of 1.0 M HCL in ethanol.
  • Precipitates were collected onto filter-mats using a TomTec Mach II cell harvestor, washed with 100% ethanol, dried and counted in an LKB ⁇ -plate counter.
  • the assay was linear with respect to both substrates, FPTase levels and time; less than 10% of the [ 3 H]-FPP was utilized during the reaction period.
  • Purified compounds were dissolved in 100% dimethyl sulfoxide (DMSO) and were diluted 20-fold into the assay. Percentage inhibition is measured by the amount of
  • polyethylene glycol 20,000, 10 ⁇ M ZnCl 2 and 100 nM Ras-CVIM were added to the reaction mixture. Reactions were performed for 30 min., stopped with 100 ⁇ l of 30% (v/v) trichloroacetic acid (TCA) in ethanol and processed as described above for the bovine enzyme.
  • TCA trichloroacetic acid
  • Example 1 The compounds of the instant invention described Example 1 was tested for inhibitory activity against human FPTase by the assay described above and were found to have IC 50 of ⁇ 10 ⁇ M.
  • the cell line used in this assay is a v-ras line derived from either Ratl or NIH3T3 cells, which expressed viral Ha-ras p21.
  • the assay is performed essentially as described in DeClue, J.E. et al., Cancer Research 51 :712-717, (1991). Cells in 10 cm dishes at 50-75%
  • the cells are labelled in 3 ml methionine-free DMEM supplemeted with 10% regular DMEM, 2% fetal bovine serum and 400 mCi[ 35 S]methionine (1000 Ci/mmol).
  • the cells are lysed in 1 ml lysis buffer (1 % NP40/20 mM HEPES, pH 7.5/5 mM MgCl 2 /1 mM DTT/10 mg/ml aprotinen/2 mg/ml leupeptin/2 mg/ml antipain/0.5 mM PMSF) and the lysates cleared by centrifugation at 100,000 x g for 45 min. Aliquots of lysates containing equal numbers of acid-precipitable counts are bought to 1 ml with IP buffer (lysis buffer lacking DTT) and immunoprecipitated with the ras-specific monoclonal antibody Y 13-259 (Furth, M.E. et al., J. Virol.
  • Rat 1 cells transformed with either v-ras, v-raf, or v-mos are seeded at a density of 1 x 10 4 cells per plate (35 mm in diameter) in a 0.3% top agarose layer in medium A (Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum) over a bottom agarose layer (0.6%). Both layers contain 0.1 % methanol or an appropriate concentration of the instant compound (dissolved in methanol at 1000 times the final concentration used in the assay).
  • the cells are fed twice weekly with 0.5 ml of medium A containing 0.1 % methanol or the concentration of the instant compound.
  • Photomicrographs are taken 16 days after the cultures are seeded and comparisons are made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
PCT/US1997/004750 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase WO1997036591A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97917604A EP0900081A4 (de) 1996-04-03 1997-03-27 Inhibitoren der farnesyl-protein transferase
JP53535797A JP2001518067A (ja) 1996-04-03 1997-03-27 ファルネシルプロテイントランスフェラーゼの阻害剤
AU25879/97A AU707347B2 (en) 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1479296P 1996-04-03 1996-04-03
US60/014,792 1996-04-03
GBGB9610338.7A GB9610338D0 (en) 1996-05-17 1996-05-17 Inhibitors of farnesyl-protein transferase
GB9610338.7 1996-05-17

Publications (1)

Publication Number Publication Date
WO1997036591A1 true WO1997036591A1 (en) 1997-10-09

Family

ID=26309349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/004750 WO1997036591A1 (en) 1996-04-03 1997-03-27 Inhibitors of farnesyl-protein transferase

Country Status (5)

Country Link
EP (1) EP0900081A4 (de)
JP (1) JP2001518067A (de)
AU (1) AU707347B2 (de)
CA (1) CA2250587A1 (de)
WO (1) WO1997036591A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562823B1 (en) 1998-07-02 2003-05-13 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US8008303B2 (en) 2005-09-16 2011-08-30 Astrazeneca Ab Biphenyl derivatives and their use in treating hepatitis C
US8410144B2 (en) 2009-03-31 2013-04-02 Arqule, Inc. Substituted indolo-pyridinone compounds
US9045445B2 (en) 2010-06-04 2015-06-02 Albany Molecular Research, Inc. Glycine transporter-1 inhibitors, methods of making them, and uses thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915981A (en) * 1973-03-16 1975-10-28 Yoshitomi Pharmaceutical 1-{8 2-(2-Chlorobenzoyl)-4-nitrophenyl{9 -2-(diethylaminomethyl)-imidazole
US4835154A (en) * 1987-06-01 1989-05-30 Smithkline Beckman Corporation 1-aralykyl-5-piperazinylmethyl-2-mercaptoimidazoles and 2-alkylthioimidazoles and their use as dopamine-βhydroxylase inhibitors
US5128355A (en) * 1986-07-11 1992-07-07 E. I. Du Pont De Nemours And Company Treatment of congestive heart failure with angiotensin 11 receptor blocking imidazoles
US5219856A (en) * 1992-04-06 1993-06-15 E. I. Du Pont De Nemours And Company Angiotensin-II receptor blocking, heterocycle substituted imidazoles
US5478934A (en) * 1994-11-23 1995-12-26 Yuan; Jun Certain 1-substituted aminomethyl imidazole and pyrrole derivatives: novel dopamine receptor subtype specific ligands
WO1996016057A1 (en) * 1994-11-23 1996-05-30 Neurogen Corporation Certain 1-substituted aminomethyl imidazole and pyrrole derivatives; novel dopamine receptor subtype specific ligands

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA983495A (en) * 1972-10-11 1976-02-10 Gilbert Regnier Procede de preparation de derives du benzodioxole
DE3132882A1 (de) * 1981-08-20 1983-03-03 Cassella Ag, 6000 Frankfurt Neue piperazinone, ihre herstellung und verwendung
CA2117899A1 (en) * 1992-04-13 1993-10-28 Masayoshi Murata Substituted 3-pyrrolidinylthio-carbapenems as antimicrobial agents
DK0582164T3 (da) * 1992-07-31 1999-08-23 Bristol Myers Squibb Co Adenosin-genoptagelsesinhiberende derivater af diphenyloxazoler, -thiazoler og -imidazoler
WO1995000497A1 (en) * 1993-06-18 1995-01-05 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
US5728830A (en) * 1993-09-22 1998-03-17 Kyowa Hakko Kogyo Co., Ltd. Farnesyltransferase inhibitor
IL117580A0 (en) * 1995-03-29 1996-07-23 Merck & Co Inc Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them
US5710171A (en) * 1995-05-24 1998-01-20 Merck & Co., Inc. Bisphenyl inhibitors of farnesyl-protein transferase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915981A (en) * 1973-03-16 1975-10-28 Yoshitomi Pharmaceutical 1-{8 2-(2-Chlorobenzoyl)-4-nitrophenyl{9 -2-(diethylaminomethyl)-imidazole
US5128355A (en) * 1986-07-11 1992-07-07 E. I. Du Pont De Nemours And Company Treatment of congestive heart failure with angiotensin 11 receptor blocking imidazoles
US4835154A (en) * 1987-06-01 1989-05-30 Smithkline Beckman Corporation 1-aralykyl-5-piperazinylmethyl-2-mercaptoimidazoles and 2-alkylthioimidazoles and their use as dopamine-βhydroxylase inhibitors
US5219856A (en) * 1992-04-06 1993-06-15 E. I. Du Pont De Nemours And Company Angiotensin-II receptor blocking, heterocycle substituted imidazoles
US5478934A (en) * 1994-11-23 1995-12-26 Yuan; Jun Certain 1-substituted aminomethyl imidazole and pyrrole derivatives: novel dopamine receptor subtype specific ligands
WO1996016057A1 (en) * 1994-11-23 1996-05-30 Neurogen Corporation Certain 1-substituted aminomethyl imidazole and pyrrole derivatives; novel dopamine receptor subtype specific ligands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0900081A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562823B1 (en) 1998-07-02 2003-05-13 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
US8008303B2 (en) 2005-09-16 2011-08-30 Astrazeneca Ab Biphenyl derivatives and their use in treating hepatitis C
US8410144B2 (en) 2009-03-31 2013-04-02 Arqule, Inc. Substituted indolo-pyridinone compounds
US9045445B2 (en) 2010-06-04 2015-06-02 Albany Molecular Research, Inc. Glycine transporter-1 inhibitors, methods of making them, and uses thereof

Also Published As

Publication number Publication date
CA2250587A1 (en) 1997-10-09
JP2001518067A (ja) 2001-10-09
EP0900081A4 (de) 2002-01-09
AU707347B2 (en) 1999-07-08
EP0900081A1 (de) 1999-03-10
AU2587997A (en) 1997-10-22

Similar Documents

Publication Publication Date Title
US5859012A (en) Inhibitors of farnesyl-protein transferase
US5919785A (en) Inhibitors of farnesyl-protein transferase
US6066738A (en) Inhibitors of farnesyl-protein transferase
US5914341A (en) Inhibitors of farnesyl-protein transferase
US5968965A (en) Inhibitors of farnesyl-protein transferase
US5885995A (en) Inhibitors of farnesyl-protein transferase
US5869682A (en) Inhibitors of farnesyl-protein transferase
AU715603B2 (en) Inhibitors of farnesyl-protein transferase
US5925651A (en) Inhibitors of farnesyl-protein transferase
US5780492A (en) Inhibitors of farnesyl-protein transferase
AU715667B2 (en) Inhibitors of farnesyl-protein transferase
WO1997036605A1 (en) Inhibitors of farnesyl-protein transferase
WO1997027752A1 (en) Inhibitors of farnesyl-protein transferase
WO1997036886A1 (en) Inhibitors of farnesyl-protein transferase
WO1997036593A1 (en) Inhibitors of farnesyl-protein transferase
AU707416B2 (en) Inhibitors of farnesyl-protein transferase
AU2660797A (en) Inhibitors of farnesyl-protein transferase
WO1997036892A1 (en) Inhibitors of farnesyl-protein transferase
US6028201A (en) Inhibitors of farnesyl-protein transferase
AU703988B2 (en) Inhibitors of farnesyl-protein transferase
AU707347B2 (en) Inhibitors of farnesyl-protein transferase
US5981562A (en) Inhibitors of farnesyl-protein transferase
US5972942A (en) Inhibitors of farnesyl-protein transferase
WO1996031525A2 (en) Inhibitors of farnesyl-protein transferase
AU5428596A (en) Inhibitors of farnesyl-protein transferase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU AZ BA BB BG BR BY CA CN CU CZ EE GE HU IL IS JP KG KR KZ LC LK LR LT LV MD MG MK MN MX NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 535357

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997917604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2250587

Country of ref document: CA

Ref country code: CA

Ref document number: 2250587

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997917604

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997917604

Country of ref document: EP