WO1997034769A1 - Ink jet head and method of manufacturing same - Google Patents

Ink jet head and method of manufacturing same Download PDF

Info

Publication number
WO1997034769A1
WO1997034769A1 PCT/JP1997/000830 JP9700830W WO9734769A1 WO 1997034769 A1 WO1997034769 A1 WO 1997034769A1 JP 9700830 W JP9700830 W JP 9700830W WO 9734769 A1 WO9734769 A1 WO 9734769A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
substrate
groove
silicon single
single crystal
Prior art date
Application number
PCT/JP1997/000830
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Fujii
Tarou Takekoshi
Tomohiro Makigaki
Hiroshi Koeda
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO1997034769A1 publication Critical patent/WO1997034769A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14411Groove in the nozzle plate

Definitions

  • the present invention relates to an ink jet head for an ink jet printer, and more particularly to an ink jet head in which a groove such as an ink cavity is accurately etched on a semiconductor substrate and a method for manufacturing the same.
  • the ink jet head of an ink jet printer has a structure in which a plurality of ink nozzles for discharging ink droplets to the outside and an ink supply path communicating with these ink nozzles are formed on a semiconductor substrate.
  • ink jet heads so that high-definition characters can be printed.
  • various inkjet head manufacturing methods have been developed.
  • the ink jet head disclosed in this publication has a configuration including a plurality of ink nozzles, ink cavities communicating with the respective ink nozzles, and a common ink reservoir for supplying ink to the ink cavities. ing. Ink supplied from the external ink supply to the ink reservoir of the ink jet head is supplied from the ink reservoir via each orifice. Supplied to the ink cavity.
  • the bottom surface of each ink cavity functions as a diaphragm, and the ink nozzles communicate with the ink nozzles using the ink volume fluctuations that fluctuate by vibrating the diaphragms by electrostatic force. Drops cannot be ejected to the outside.
  • a portion constituting the ink supply path such as each ink nozzle, ink cavity, and orifice is formed with high precision.
  • the nozzle, orifice and diaphragm are formed with high precision. If the shape of the orifice varies, the fluid resistance value of each orifice portion varies, so that the ink supply amount to each ink cavity varies, and as a result, the ink ejection amount of each ink nozzle varies.
  • the fluid resistance created by an orifice depends on its cross-sectional area and length.
  • the fluid resistance of the orifice is proportional to the length.
  • the length of the orifice is 150 to 3 in consideration of the amount of ink supplied, the damping characteristics of the diaphragm, and the amount of ink returning from the ink cavity to the ink reservoir during ink ejection. Set to 0 micron. If the length of this orifice fluctuates, for example, by 10%, the amount of ink supply also fluctuates by 10%. Here, if the ink weight fluctuates by 5%, the print quality will be adversely affected. Therefore, it is desirable that the variation in the orifice length be suppressed to less than 5%, that is, less than 20 microns.
  • the ink cavity and the orifice are simultaneously etched using a semiconductor substrate having the (100) crystal plane orientation
  • the (111) crystal plane appears due to anisotropic etching in the width direction of the orifice.
  • the sectional shape of the orifice can be formed with high accuracy.
  • the etching speed is high (1 1 2). It is difficult to accurately set the length of the orifice.
  • the grooves for ink cavities and the bottom surface of the cavities are defined by etching the surface of the same silicon single crystal substrate.
  • a plate By forming a groove for an orifice and a groove for an ink reservoir, and overlaying the silicon single crystal substrate having each groove with a silicon single crystal substrate having a flat surface, ink cavities, An inkjet head having an orifice and an ink reservoir is configured.
  • anisotropic etching is performed on each of two silicon substrates. forming a plurality of grooves having different sizes by subjecting, thereafter, however c method to superimpose these silicon substrate is disclosed, these silicon substrate has both (1 0 0) crystal plane on the surface It is a silicon substrate. Then, after forming a groove by performing anisotropic etching on the lower silicon substrate of the two silicon substrates, forming a through-hole by polishing from the rear surface side, a nozzle is formed on the upper surface side.
  • the formed silicon substrates are laminated, and a flatter third silicon substrate is bonded to the lower surface side to form an ink jet head.
  • the substrate in order to form a groove in the intermediate silicon substrate, the substrate must be processed in addition to the step of performing anisotropic etching. This requires a polishing step, which not only complicates the process, but also lowers the accuracy of the depth of the formed groove as compared with the one formed only by etching. That is, the method for manufacturing a thermal ink jet head disclosed in Japanese Patent Application Laid-Open No. Hei 6-183008 is directly used in Japanese Patent Application Laid-Open No. Hei 6-183008.
  • an object of the present invention is to manufacture a portion of an ink cavity, an orifice, and the like on a silicon single crystal substrate with higher accuracy than in a conventional method in manufacturing an ink jet head. To make it possible.
  • the present invention provides a plurality of ink nozzles, an ink cavity communicating with each of the ink nozzles, a common ink reservoir for supplying ink to each of the ink cavities, and an ink reservoir for each of the ink cavities.
  • an ink jet head provided with an orifice communicating with a base and a diaphragm defining the bottom surface of each of the above-mentioned ink cavities,
  • the first and second silicon single crystal substrates having the ink cavities, the orifices, and the ink reservoir formed by being bonded to each other.
  • the first silicon single crystal substrate has an ink communicating with the ink nozzle, the orifice, or the ink reservoir formed by performing wet-crystal anisotropic etching on the surface of the substrate on the bonding side. It has a groove to form an intake.
  • the shape of these grooves is (1 1 1) crystal plane Is defined by the wall surface formed by
  • the second silicon single crystal substrate has a groove for forming the ink cavity and the ink reservoir formed by performing wet-crystal anisotropic etching on the surface of the substrate on the bonding side. There is a groove for
  • relatively small-sized ink nozzles and grooves for forming orifices are formed in the first silicon single crystal substrate, and relatively large-sized ink cavities and ink reservoirs are formed.
  • a forming groove is formed in the second silicon single crystal substrate. Therefore, compared to a case where all the grooves for forming the ink supply passages are etched only on one substrate, it is easier to control the etching conditions for forming the grooves of each dimension. It becomes easy to accurately etch the groove.
  • the first silicon single crystal substrate is used as the first silicon single crystal substrate.
  • the crystal plane orientation of the substrate surface of (100) plane or (110) plane is used.
  • the crystal plane orientation is (100)
  • the crystal plane orientation is (100)
  • the second silicon single crystal substrate is formed on the surface of the substrate on the bonding side.
  • the grooves for ink cavities can be formed with high density and high precision.
  • a groove for forming the orifice is formed in a partition wall between the groove for forming each of the ink cavities and the groove for forming the ink reservoir in the second silicon single crystal substrate.
  • the wall portions located at both ends in the longitudinal direction can be defined by the (111) crystal plane.
  • the length of the orifice is defined by the (111) crystal plane. Therefore, the length dimension of the formed orifice can be made with high accuracy.
  • the present invention relates to a method for manufacturing an ink jet head having the above-described configuration, and is characterized in that the ink head is manufactured as follows. That is, first, a first silicon single crystal substrate having a (100) or (110) crystal plane orientation on the substrate surface is prepared, and a wet crystal is formed on the substrate surface of the first silicon single crystal substrate. Anisotropic etching is performed to form at least the groove for forming the orifice. Next, a second silicon single crystal substrate having a crystal plane orientation of (110) or (100) crystal plane on the substrate surface is prepared, and a wet crystal anisotropic is provided on the substrate surface of the second silicon single crystal substrate. The grooves for forming the ink cavities and the grooves for forming the ink reservoir are formed by performing a reactive etching. After that, the first and the second
  • both side walls in the width direction of the groove for forming the orifice in the first silicon single crystal substrate are (1 1 1) crystal planes
  • Etching of the groove for forming the orifice is performed, and the groove for forming the ink cavities in the second silicon single crystal substrate is separated from the groove for forming the ink reservoir.
  • the groove for the ink cavity and the groove for the ink reservoir be etched so that the wall surfaces at both ends in the longitudinal direction of the orifice in the partition wall are (111) crystal planes.
  • the cross-sectional area and length of the orifice can be accurately defined using the (111) crystal plane.
  • a high concentration of polon or the like is dropped on the back surface of the substrate surface. was it Nozomu Mashiku of forming an etch stop layer, thereby further bRIEF dESCRIPTION oF c drawings the thickness of the diaphragm can be formed with high accuracy
  • FIG. 1 is a schematic sectional view of an ink jet head to which the present invention is applied.
  • FIG. 2 is an exploded perspective view of the ink jet head of FIG.
  • FIG. 3 is an exploded perspective view showing a modified example of the ink jet head of FIG.
  • FIG. 4 is a schematic sectional view showing another modified example of the ink jet head of FIG.
  • FIG. 5 is an exploded perspective view of the ink jet head of FIG.
  • FIG. 6 is a view showing an ink jet head to which the present invention is applied
  • (A) is a schematic cross-sectional view
  • (B) is a partial plan view of the first silicon single crystal substrate
  • FIG. 4 is a partial plan view of the second silicon single crystal substrate.
  • FIG. 7 shows an etching process for the second silicon single crystal substrate of FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic sectional view of an ink jet head driven by a piezoelectric element manufactured by applying the present invention
  • FIG. 2 is an exploded perspective view.
  • the ink jet head 1 of this example is composed of a first silicon single crystal substrate 2 and a second silicon single crystal substrate 3 bonded to each other.
  • the substrates 2 and 3 form a plurality of ink nozzles 4, an ink cavity 5 communicating with each ink nozzle 4, and a common ink reservoir 6 for supplying ink to each ink cavity 5.
  • the orifices 7 communicate between the ink cavities 5 and the ink reservoirs 6, respectively.
  • the bottom surface of each ink cavity 5 is defined by a thin vibrating plate 8, and a piezoelectric element 9 for driving the vibrating plate is adhered and fixed to the back surface of the vibrating plate 8.
  • Ink is supplied to the ink reservoir 6 from the outside via an ink supply tube 12 connected to an ink intake port 11 communicating with the ink reservoir.
  • the ink supplied to the ink reservoir 6 is supplied to each ink cavity 5 through each orifice 7.
  • the diaphragm 8 reduces the volume of the ink cavity 5 due to the bimorph effect of the piezoelectric element 9 and the diaphragm 8. Ink drops are ejected from the ink nozzle 4.
  • the inkjet head 1 having this configuration supplies the above-described ink to the substrate surfaces 2a and 3a on the bonding side of the first and second silicon single crystal substrates 2 and 3 respectively.
  • the groove for forming the road is etched, and then the substrates 2 and 3 are bonded to each other.
  • the first silicon single crystal substrate 2 has a (100) plane crystal plane orientation of the substrate surface 2a on the bonding side, and the ink passes through the first silicon single crystal substrate 2 in a direction perpendicular to the substrate surface 2a.
  • Nozzle 4 is formed.
  • a groove 7A for forming the orifice 7 is formed on the substrate surface 2a.
  • the groove 7A for orifice formation is formed by wet-crystal anisotropic etching of the substrate surface 2a having a (100) crystal plane orientation. Therefore, the formed groove 7A has a quadrangular pyramid shape which is narrowed from the substrate surface side toward the groove bottom surface, and its four side surfaces are 54.7 degrees with respect to the substrate surface 2a. (11 1) defined by the crystal plane.
  • the cross-sectional area of the groove can be accurately defined by the etching width of the substrate surface. Therefore, by prescribing the dimension of the mask opening covering the substrate surface with high precision, the cross-sectional area of the formed groove can be adjusted to the target value with high precision.
  • the cross-sectional area of each groove 7A for forming the orifice can be formed with high accuracy by suppressing the variation.
  • the length of the orifice 7 can be formed with high precision, the variation in the fluid resistance of the orifice 7 can be suppressed, so that the ink supply amount through the orifice 7 can be kept constant.
  • variations in the ink ejection characteristics of each ink nozzle can be suppressed, and print quality can be improved.
  • the ink nozzle 4 formed on the first silicon single crystal substrate 2 has a straight portion 4a having a constant cross-sectional area in the direction of the nozzle axis, and ink from the straight portion 4a. It has a cross-sectional shape with a tapered portion 4b whose cross-sectional area gradually increases toward the cavity 5.
  • the flat portion 4a is a portion provided with a high fluid resistance necessary to attenuate the vibration of the meniscus after the ink is ejected, and the tapered portion 4b communicates with the straight portion 4a to form bubbles. This is a necessary part for discharging.
  • the straight portion 4a is a circular opening formed by dry etching the back surface 2b of the first silicon single crystal substrate 2.
  • the tapered portion 4b is formed by wet anisotropic etching of the substrate surface 2a on the bonding side of the first silicon single crystal substrate 2 having the (100) crystal orientation. It is formed by doing. Therefore, the tapered portion 4b has a truncated pyramid shape in which the cross-sectional area is reduced from the side of the substrate surface to the opposite straight portion 4a, and the four side surfaces are formed on the substrate surface. Appears with an inclination of 54.7 degrees to 2a. (1 1 1) Defined by crystal plane.
  • the cross-sectional area of the groove is determined by the etching width of the substrate surface.
  • the ink nozzle 4 composed of the tapered portion 4b formed with high accuracy and the straight portion 4a formed with high accuracy by dry etching as described above has a dimension and shape with little variation. ing. Accordingly, the ink ejection characteristics of each ink nozzle can be made constant, and as a result, a decrease in print quality can be suppressed.
  • the crystal plane orientation of the substrate surface 3a on the bonding side is the (110) plane orientation
  • an ink cavity 5 is formed on the substrate surface 3a.
  • 5A and a groove 6A for forming the ink reservoir 6 are formed.
  • an ink inlet 11 is opened on the bottom surface of the groove 6A for forming the ink reservoir.
  • a partition 15 is formed between the formed groove 5A for the ink cavity and the groove 6A for the ink reservoir.
  • the side surfaces 15a and 15b facing the groove 5A and the groove 6A in the partition wall 15 are (111) crystal planes inclined by 35 degrees with respect to the substrate surface 3a.
  • the first and second silicon single crystal substrates 2 and 3 having the respective grooves formed in this way are bonded together with their bonded substrate surfaces 2a and 3a aligned with each other. It has a cross-sectional shape as shown in FIG. In this state, both side surfaces 15a and 15b of the partition wall 15 defining the length of the orifice 7 are (1 1 1) crystal planes. Well set. As described above, since the cross-sectional area of the orifice 7 is also set with high accuracy, the variation in the fluid resistance of each orifice 7 is small, and accordingly, the variation in the ink flow rate in each orifice 7 is small. Further, as described above, each ink nozzle 4 is also formed without variation. As a result, in the ink jet head 1 of this example, there is little variation in the ink ejection characteristics of each ink nozzle.
  • an etching solution used for wet anisotropic etching of each of the silicon single crystal substrates 2 and 3 is, for example, 20 weight percent heated to 80 degrees Celsius.
  • An aqueous solution of the hydroxide of potassium hydroxide can be used. The concentration of this aqueous solution should be appropriately changed depending on the shape of the groove to be formed.
  • the etchant used should be A different composition such as an aqueous ammonia solution or an organic amine-based aqueous solution may be used.
  • both silicon single crystal substrates 2 and 3 can be performed as follows. In other words, these silicon single crystal substrates 2 and 3 are aligned, bonded at room temperature, and then directly heated to 100 degrees Celsius for direct bonding. Instead, it is also possible to form eutectic film of gold on the interface between both substrates in advance and to form a eutectic bond at a low temperature by heating to 400 degrees Celsius in close contact. is there. In addition, an adhesive may be used, which enables bonding at room temperature.
  • the dimensional error in the width and length of each orifice 7 was ⁇ 2 microns with respect to the standard value.
  • the average weight of the ink droplets ejected from each ink nozzle was 0.025 micrograms and the average ink speed was 12 m / s.
  • the variation in ink weight and ink speed was less than 5% in each case, and extremely uniform ejection characteristics were obtained.
  • a silicon substrate having a (110) plane crystal plane orientation on the bonding-side substrate surface was used as the second substrate, but a silicon substrate having a (100) plane crystal orientation was used.
  • a substrate may be used.
  • FIG. 3 is an exploded perspective view of an inkjet head 1A according to a modification of the first embodiment.
  • the substrate surface 2a of the first silicon single crystal substrate 2 has the same crystal plane orientation as that of the substrate surface 3a of the second silicon single crystal substrate 3 (110). ).
  • the other configuration is the same as that of the ink jet head 1 of the first embodiment, and accordingly, corresponding portions in the drawings are denoted by the same reference numerals.
  • each orifice 7B for forming each orifice are formed by anisotropic etching.
  • the two side surfaces of each orifice 7 are defined by (111) crystal planes that appear with an inclination of 35 degrees with respect to the substrate surface 2a.
  • the other two sides are defined by (1 1 1) crystal planes that appear perpendicular to the substrate surface 2a.
  • each ink nozzle 4 is formed along the 2 1 1> axis, so that the roof surface in which the groove opening shape of the substrate surface 2 a is a parallelogram is formed. It is a type.
  • the inkjet head 1A of this embodiment has an advantage that, in addition to the effects of the first embodiment, silicon single crystal substrates of the same standard can be used as the first and second silicon single crystal substrates 2 and 3.
  • FIGS. 4 and 5 are a cross-sectional view and an exploded perspective view of an ink jet head 1B according to another modification of the first embodiment.
  • the crystal plane orientation of the substrate surface 2a on the bonding side of the first silicon single crystal substrate 2 is the (1 10) is there.
  • the groove 7C for forming the orifice 7 is formed along the 211> axis, and the substrate surface has a parallelogram roof shape.
  • the two inclined surfaces of the groove 7C are defined from the (1 1 1) crystal plane inclined at 35 degrees with respect to the substrate surface 2a, and the two side surfaces of the remaining triangle are formed on the substrate surface 2a. It is defined by a (111) crystal plane perpendicular to it.
  • the groove 7C for forming the orifice can have a greater groove depth by increasing its length. Therefore, even if the width of the groove 7C for forming the orifice is reduced, a necessary orifice cross-sectional area can be secured. Therefore, it is easy to cope with an increase in the nozzle pitch.
  • FIG. 6 is a sectional view of an ink jet head according to a second embodiment to which the present invention is applied.
  • the ink jet head 1C of the present embodiment is an electrostatically driven ink jet head disclosed in Japanese Patent Application Laid-Open No. 5-50601 proposed by the present applicant.
  • the ink jet head 1C uses an electrostatic force acting between the opposing electrodes to vibrate the vibration plate 8 instead of the piezoelectric element 9, thereby discharging ink droplets.
  • the ink head 1C also forms an ink supply path by joining the first and second silicon single crystal substrates 20 and 3 °.
  • a third substrate (electrode glass) 40 is bonded to the back surface of the second silicon single crystal substrate 30, and a groove is formed on the surface of the third substrate 40 facing the diaphragm 8. 40 a is formed, and an individual electrode layer 40 b is formed in the groove 40 a while maintaining a predetermined gap with respect to the diaphragm 8.
  • each diaphragm 8 By applying a driving voltage between the second silicon single crystal substrate 30 on which each diaphragm 8 is formed and each individual electrode 40b, each diaphragm 8 functioning as a common electrode and each individual electrode Electrostatic force is generated between the electrodes 40b, whereby the diaphragm 8 vibrates, the volume of the ink cavity 5 fluctuates, and ink droplets are ejected.
  • the first silicon single crystal substrate 20 of the ink jet head 1C of this example has a groove 4D for forming an ink nozzle, a groove 7D for forming an orifice, and a groove 7D for forming an ink inlet. A groove 11D is formed.
  • a groove 5D for forming a cavity and a groove 6D for forming an reservoir are formed in the second silicon single crystal substrate 30 in the second silicon single crystal substrate 30 in the second silicon single crystal substrate 30 in the second silicon single crystal substrate 30, a groove 5D for forming a cavity and a groove 6D for forming an reservoir are formed.
  • the first silicon single crystal substrate 20 has a (100) crystal plane orientation of the substrate surface 20a on the bonding side, and the first silicon single crystal substrate 20 has a (100) crystal plane orientation.
  • the crystal plane orientation of the substrate surface 30a is defined as the (110) crystal plane. ing.
  • each groove can be formed by wet-crystal anisotropic etching in the same manner as in each of the above-described embodiments.
  • the depth dimension of the groove 5 D for ink cavities is precisely controlled, and the diaphragm 8 defining the bottom surface is accurately targeted.
  • an etch stop layer may be formed by doping boron or the like on the back surface of the substrate, and then etching may be performed after a short time.
  • FIG. 7 shows an etching method for this purpose.
  • the thickness of the second single crystal silicon substrate 30 used was set to 180 microns.
  • the groove 5D for ink cavities as a deep groove formed on this substrate is, for example, a width of 108 microns, a length of 3.6 millimeters and a depth of 178 microns, and has a common ink reservoir.
  • the shallow groove 6D has a width of 1.5 millimeters, a length of 3.0 millimeters and a depth of 160 microns.
  • the single crystal silicon substrate 30 may be etched as follows.
  • boron is uniformly doped at a high concentration on the back surface of the silicon single crystal substrate 30 to form an etch stop layer 32 having a thickness of 2 to 3 ⁇ m. . Further, a SiO 2 film 33 was formed on the surface of the silicon substrate 30.
  • the Sio2 film 33 is etched with hydrofluoric acid while the Sio3 33 is subjected to a predetermined masking, and the deep groove 5 is etched.
  • the opening 35 is formed by removing the portion that becomes D, and the shallow groove 6 D is subjected to half-etching to form a Si 2 having a width of 200 ⁇ m or less.
  • a plurality of thin film portions 37 were formed.
  • the concentration is 35% and the temperature is 80.
  • Etching was performed with an aqueous solution of potassium hydroxide C for about 20 to 30 minutes. As a result, as shown in FIG. 7 (C), only the portion where the deep groove 5D was formed was etched by about 80 to 90 microns.
  • etching was performed again using a potassium hydroxide aqueous solution having a concentration of 35% and a temperature of 80 ° C. for about 20 to 30 minutes.
  • a potassium hydroxide aqueous solution having a concentration of 35% and a temperature of 80 ° C. for about 20 to 30 minutes.
  • etching was performed for about 40 to 50 minutes using an aqueous solution of hydrating hydroxide at 80 ° C. at a concentration of 2 to 5% as an etching solution.
  • aqueous solution of hydrating hydroxide at 80 ° C. at a concentration of 2 to 5% as an etching solution.
  • FIG. 7 (F) in the portion where the deep groove 5D is formed, a groove having a depth reaching the etch stop layer 32 formed on the back side of the silicon substrate is formed, and the other shallow groove 6D is formed.
  • etching proceeded in the lateral direction, and a wide groove was formed.
  • the ink nozzle 4, the orifice 7, and the ink supply port can be formed with high accuracy, as in the first embodiment. Further, the thickness of the diaphragm 8 can be formed with high accuracy. Therefore, it is possible to suppress variations in the ink ejection characteristics of each ink nozzle, and to realize an ink jet head capable of performing printing with high print quality.
  • Industrial applicability As described above, the present invention relates to an ink jet head having first and second silicon single crystal substrates each having an ink cavity, an orifice, and an ink reservoir formed by bonding the first silicon substrate to each other.
  • the single-crystal substrate is subjected to wet-crystal anisotropic etching or dry-etching on the substrate surface on the bonding side to form an ink nozzle and a groove for forming an orifice.
  • a groove for forming an ink cavity and a groove for forming an ink reservoir are formed by performing wet crystal anisotropic etching on the surface of the substrate on the bonding side. I have to.
  • the inkjet head of the present invention relatively small-sized ink nozzles and grooves for forming orifices are formed in the first silicon single crystal substrate, and relatively large-sized ink cavities are formed. And a groove for forming an ink reservoir is formed in the second silicon single crystal substrate. As a result, compared to the case where the groove for forming the ink supply passage is etched only on one of the substrates, it is easier to control the etching conditions for forming the groove of each dimension. Good etching becomes easy.
  • wet crystal anisotropic etching is performed.
  • these parts can be formed with higher accuracy than in the case of employing.
  • the first silicon single crystal substrate when a groove is formed on the first silicon single crystal substrate by using wet-crystal anisotropic etching, the first silicon single crystal substrate is formed as the first silicon single crystal substrate.
  • the substrate surface on the bonding side has a (100) plane orientation or a (110) plane orientation, preferably a (100) crystal plane.
  • both side walls in the width direction of the formed orifice forming groove are defined by the (111) crystal plane. It is possible to accurately set the cross-sectional area of the groove to a target value. As a result, variations in the fluid resistance of the orifice can be suppressed, and the ink ejection characteristics can be improved.
  • the second silicon single crystal substrate one having a (110) plane orientation of the substrate surface on the bonding side is used. If a plurality of grooves for ink cavities are formed by performing anisotropic etching from the substrate surface with this crystal plane orientation, each ink cavity can be formed with high precision and high density, making it easy to increase the nozzle pitch. Can respond to.
  • the groove for forming the orifice is formed in the partition wall between the groove for forming each of the ink cavities in the second silicon single crystal substrate and the groove for forming the ink reservoir.
  • the wall portions located at both ends in the longitudinal direction can be defined by the (111) crystal plane.
  • the length of the orifice is precisely defined by the (1 1 1) crystal plane.

Abstract

In an ink jet head (1), a first silicon single crystal substrate (2) having a substrate surface (2a), of which a crystal face orientation corresponds to a crystal face (100), is subjected to a wet type crystal anisotropic etching to form ink nozzles (4) and grooves (7A) for formation of orifices, a second silicon single crystal substrate (3) having a substrate surface (3a), of which a crystal face orientation corresponds to a crystal face (110), is subjected to a wet type crystal anisotropic etching to form grooves (5A) for formation of ink cavities and grooves (6A) for formation of an ink reservoir, and these silicon single crystal substrates are joined to each other to define the ink nozzles (4), ink cavities (5) communicating with the respective ink nozzles, a common ink reservoir (6) for supplying ink to the respective ink cavities and orifices (7) which establishes communication between the respective ink cavities and the ink reservoir. Thus crystal face orientations of the respective substrates (2, 3) are set in such manner whereby the respective grooves can be formed with high precision, the respective nozzles vary least in ink delivery characteristics and ink jet heads with high printing qualities can be manufactured.

Description

明 細 書 インクジエツ トへッドおよびその製造方法 技術分野  Description Inkjet head and method of manufacturing the same
本発明は、 インクジェッ トプリン夕のインクジェットヘッ ドに関し、 特 に、 半導体基板上に精度良くインクキヤビティ等の溝がエッチングされた ィンクジヱッ トへッ ドおよびその製造方法に関するものである。 背景技術  The present invention relates to an ink jet head for an ink jet printer, and more particularly to an ink jet head in which a groove such as an ink cavity is accurately etched on a semiconductor substrate and a method for manufacturing the same. Background art
インクジェッ トプリン夕のインクジェットヘッ ドは、 一般に、 インク滴 を外部に吐出する複数のインクノズルと、 これらのィンクノズルに連通し たインク供給路とが半導体基板上に作り込まれた構造となっている。 近年、 インクジエツ トへッ ドに対しては、 高精細文字を印字可能にするために、 より精密でより微細な加工が要求されている。 このために、 様々なインク ジェットへッ ドの製造方法が開発されている。  In general, the ink jet head of an ink jet printer has a structure in which a plurality of ink nozzles for discharging ink droplets to the outside and an ink supply path communicating with these ink nozzles are formed on a semiconductor substrate. In recent years, there has been a demand for more precise and finer processing of ink jet heads so that high-definition characters can be printed. To this end, various inkjet head manufacturing methods have been developed.
例えば、 本願人による日本国特開平 5— 5 0 6 0 1号公報には、 静電駆 動方式のインクジエツ トブリン夕において、 シリコン単結晶基板にホトリ ソグラフィ一技術および湿式結晶異方性エッチングを適用することによつ て、 インクノズルおよびインク供給路を高精度に形成するためのインクジ エツ トへッ ドの製造方法が開示されている。  For example, in Japanese Patent Application Laid-Open No. 5-50601 by the present applicant, a photolithography technique and wet crystal anisotropic etching are applied to a silicon single crystal substrate in an ink jet printer of an electrostatic drive system. Thus, a method of manufacturing an ink jet head for forming an ink nozzle and an ink supply path with high precision is disclosed.
- この公開公報に開示されているインクジヱッ トヘッ ドは、 複数個のイン クノズルと、 各インクノズルに連通したインクキヤビティと、 インクキヤ ビティにィンクを供給する共通のインクリザーバとを備えた構成となって いる。 外部のィンク供給源からィンクジヱヅ トへッ ドのィンクリザーバに 供給されたインクは、 インクリザ一バから各オリフィスを経由して対応す るインクキヤビティに供給される。 各インクキヤビティの底面は振動板と して機能し、 当該振動板を静電気力によって振動させることにより変動す るインクキヤビティの容積変動を利用して、 インクキヤビティに連通した インクノズルからィンク滴を外部に向けて吐出することが可能となってい な。 -The ink jet head disclosed in this publication has a configuration including a plurality of ink nozzles, ink cavities communicating with the respective ink nozzles, and a common ink reservoir for supplying ink to the ink cavities. ing. Ink supplied from the external ink supply to the ink reservoir of the ink jet head is supplied from the ink reservoir via each orifice. Supplied to the ink cavity. The bottom surface of each ink cavity functions as a diaphragm, and the ink nozzles communicate with the ink nozzles using the ink volume fluctuations that fluctuate by vibrating the diaphragms by electrostatic force. Drops cannot be ejected to the outside.
ここで、 ィンクジヱッ トへッ ドの各ィンクノズルのィンク吐出特性のば らっきを抑制するためには、 各インクノズル、 インクキヤビティ、 オリフ イス等のインク供給路を構成する部分を精度良く形成する必要がある。 特 に、 ノズル、 オリフィスおよび振動板を精度良く形成する必要がある。 オリフィスの形状がばらつくと、 各オリフィスの部分の流体抵抗値にば らつきが発生するので、 各ィンクキヤビティに対するインク供給量が変動 し、 この結果、 各インクノズルのインク吐出量が変動してしまう。 オリフ イスによって生じる流体抵抗は、 その断面積および長さによって異なる。 例えば、 その断面積が同一である場合には、 オリフィスの流体抵抗は長さ に比例する。 一般的なインクジェッ トヘッ ドでは、 オリフィスの長さはィ ンクの供給量、 振動板の減衰特性、 インク吐出時のインクキヤビティから ィンクリザーバへのィンクの後戻り量を考慮して、 1 5 0 ~ 3 0 0ミクロ ンに設定される。 このオリフィスの長さが例えば 1 0 %変動すると、 イン ク供給量も 1 0 %変動することにある。 ここで、 インク重量が 5 %変動す ると印字品質に悪影響が現れるので、オリフィスの長さのばらつきは、 5 % 未満、 すなわち 2 0ミクロン未満に抑制することが望ましい。  Here, in order to suppress the dispersion of the ink ejection characteristics of each ink nozzle of the ink jet head, a portion constituting the ink supply path such as each ink nozzle, ink cavity, and orifice is formed with high precision. There is a need to. In particular, it is necessary to form the nozzle, orifice and diaphragm with high precision. If the shape of the orifice varies, the fluid resistance value of each orifice portion varies, so that the ink supply amount to each ink cavity varies, and as a result, the ink ejection amount of each ink nozzle varies. The fluid resistance created by an orifice depends on its cross-sectional area and length. For example, if the cross-sectional areas are the same, the fluid resistance of the orifice is proportional to the length. In a typical inkjet head, the length of the orifice is 150 to 3 in consideration of the amount of ink supplied, the damping characteristics of the diaphragm, and the amount of ink returning from the ink cavity to the ink reservoir during ink ejection. Set to 0 micron. If the length of this orifice fluctuates, for example, by 10%, the amount of ink supply also fluctuates by 10%. Here, if the ink weight fluctuates by 5%, the print quality will be adversely affected. Therefore, it is desirable that the variation in the orifice length be suppressed to less than 5%, that is, less than 20 microns.
しかしながら、 例えば、 ( 1 0 0 ) 結晶面方位の半導体基板を用いて、 ィンクキヤビティとオリフイスを同時にエッチングした場合、 オリフィス の幅方向は異方性エッチングにより ( 1 1 1 ) 結晶面が出現するので、 ォ リフィスの断面形状は精度良く形成できる。 しかし、 その長さ方向はエツ チング速度の速い ( 1 1 2 ) 結晶面がアンダーエッチにより出現するので、 オリフイスの長さを精度良く設定することが困難である。 However, for example, when the ink cavity and the orifice are simultaneously etched using a semiconductor substrate having the (100) crystal plane orientation, the (111) crystal plane appears due to anisotropic etching in the width direction of the orifice. The sectional shape of the orifice can be formed with high accuracy. However, in the length direction, the etching speed is high (1 1 2). It is difficult to accurately set the length of the orifice.
一方、 振動板の形状がばらつくと、 各インクキヤビティにおけるインク 内圧の振動特性が異なつたものとなってしまう。 この振動板の振動特性の ばらつきは、 直接に、 インクノズルのインク吐出量、 インク吐出速度等の 変動に繋がるので、 印字品質が低下してしまう。  On the other hand, if the shape of the diaphragm varies, the vibration characteristics of the ink internal pressure in each ink cavity will be different. This variation in the vibration characteristics of the diaphragm directly leads to variations in the ink ejection amount, ink ejection speed, and the like of the ink nozzles, so that the print quality deteriorates.
ここで、 上記の公開公報に開示されているインクジエツトへッ ドの製造 方法においては、 同一のシリコン単結晶基板の表面にエッチングによって インクキヤビティ用の溝、 当該キヤビティの底面を規定している振動板、 オリフィス用の溝およびインクリザ一バ用の溝を作り込み、 各溝を形成し たシリコン単結晶基板を平坦な表面を備えたシリコン単結晶基板と重ね合 わせることにより、 インクキヤビティ、 オリフィスおよびインクリザーバ を備えたインクジェッ トへヅ ドを構成するようにしている。 しかし、 この 方法では、 単一のシリコン単結晶基板に適用するエツチング条件を制御す ることにより、 作り込まれる溝の寸法管理を行う必要があるので、 各溝の 寸法を高精度で作り込むことが困難な場合がある。  Here, in the method for manufacturing an ink jet head disclosed in the above-mentioned publication, the grooves for ink cavities and the bottom surface of the cavities are defined by etching the surface of the same silicon single crystal substrate. By forming a plate, a groove for an orifice and a groove for an ink reservoir, and overlaying the silicon single crystal substrate having each groove with a silicon single crystal substrate having a flat surface, ink cavities, An inkjet head having an orifice and an ink reservoir is configured. However, in this method, it is necessary to control the dimensions of the grooves to be formed by controlling the etching conditions applied to a single silicon single crystal substrate. Can be difficult.
一方、 日本国特開平 6— 1 8 3 0 0 8号公報に記載されているサ一マル インクジエツ ト記録へッ ドの製造方法では、 二枚のシリコン基板のそれそ れに異方性エッチングを施すことにより寸法の異なる複数の溝を形成し、 しかる後に、 これらのシリコン基板を重ね合わせる方法が開示されている c しかしながら、 これらのシリコン基板は、 共に ( 1 0 0 ) 結晶面を表面 にもつシリコン基板である。 そして、 二枚のシリコン基板の内、 下側のシ リコン基板に、 異方性エッチングを行って溝を形成した後、 裏面側から研 磨を行い貫通孔を形成した後、 上面側にノズルが形成されたシリコン基板 を積層し、 下面側に更に平坦な三枚目のシリコン基板を貼合わあせてィン クジェッ トヘッ ドを形成するものである。 このため、 中間にあるシリコン 基板に溝を形成するためには、 異方性エッチングを行う工程以外に基板を 研磨をする工程が必要になり、 工程が煩雑になるばかりでなく、 形成され た溝の深さの精度もエッチングのみで形成されたものに比べ低下する。 即ち、 日本国特開平 6— 1 8 3 0 0 8号公報に開示されたサ一マルイン クジヱッ トへッ ドの製造方法を、 そのまま、 日本国特開平 6— 1 8 3 0 0 8号公報に記載されているインクジエツ 卜へッ ドの製造方法に応用しても、 インクキヤビティ一とィンクリザ一バをつなぐオリフィスの断面積を精度 良く形成すると共に、 振動板の厚みを精度良く形成することはできない。 発明の開示 On the other hand, in the method for manufacturing a thermal ink jet recording head described in Japanese Patent Application Laid-Open No. 6-183008, anisotropic etching is performed on each of two silicon substrates. forming a plurality of grooves having different sizes by subjecting, thereafter, however c method to superimpose these silicon substrate is disclosed, these silicon substrate has both (1 0 0) crystal plane on the surface It is a silicon substrate. Then, after forming a groove by performing anisotropic etching on the lower silicon substrate of the two silicon substrates, forming a through-hole by polishing from the rear surface side, a nozzle is formed on the upper surface side. The formed silicon substrates are laminated, and a flatter third silicon substrate is bonded to the lower surface side to form an ink jet head. For this reason, in order to form a groove in the intermediate silicon substrate, the substrate must be processed in addition to the step of performing anisotropic etching. This requires a polishing step, which not only complicates the process, but also lowers the accuracy of the depth of the formed groove as compared with the one formed only by etching. That is, the method for manufacturing a thermal ink jet head disclosed in Japanese Patent Application Laid-Open No. Hei 6-183008 is directly used in Japanese Patent Application Laid-Open No. Hei 6-183008. Even if it is applied to the described method of manufacturing an ink jet head, it is not possible to accurately form the cross-sectional area of the orifice connecting the ink cavity and the ink reservoir and to form the diaphragm with high precision. Can not. Disclosure of the invention
本発明の目的は、 上記の点に鑑みて、 インクジェッ トヘッ ドを製造する に当たり、 従来の方法よりも一段と高精度にインクキヤビティ、 オリフィ ス等の部分をシリコン単結晶基板上に作り込むことを可能にすることにあ る。  In view of the above, an object of the present invention is to manufacture a portion of an ink cavity, an orifice, and the like on a silicon single crystal substrate with higher accuracy than in a conventional method in manufacturing an ink jet head. To make it possible.
この目的を達成するために、 本発明は、 複数のインクノズルと、 各イン クノズルに連通したインクキヤビティと、 各インクキヤビティにインクを 供給する共通のィンクリザーバと、 各インクキヤビティを前記インクリザ —バに連通させているオリフィスと、 前記の各ィンクキヤビティの底面を 規定している振動板とを備えたィンクジェッ トヘッ ドにおいて、 以下の In order to achieve this object, the present invention provides a plurality of ink nozzles, an ink cavity communicating with each of the ink nozzles, a common ink reservoir for supplying ink to each of the ink cavities, and an ink reservoir for each of the ink cavities. —In an ink jet head provided with an orifice communicating with a base and a diaphragm defining the bottom surface of each of the above-mentioned ink cavities,
( 1 ) 〜 (3 ) の構成を採用したことを特徴としている。 It is characterized by adopting the configurations of (1) to (3).
( 1 ) 相互に貼り合わせることにより、 前記インクキヤビティ、 前記オリ フィスおよび前記インクリザ一バが構成されている第 1および第 2のシリ コン単結晶基板を有している。  (1) The first and second silicon single crystal substrates having the ink cavities, the orifices, and the ink reservoir formed by being bonded to each other.
( 2 ) 前記第 1のシリコン単結晶基板は、 その貼り合わせ側の基板表面に、 湿式結晶異方性ェッチングを施すことにより形成された前記ィンクノズル、 前記オリフィス、 あるいは前記インクリザ一バに連通するインク取込口を 形成するための溝を備えている。 これらの溝の形状は、 ( 1 1 1 ) 結晶面 で形成された壁面によって規定される。 (2) The first silicon single crystal substrate has an ink communicating with the ink nozzle, the orifice, or the ink reservoir formed by performing wet-crystal anisotropic etching on the surface of the substrate on the bonding side. It has a groove to form an intake. The shape of these grooves is (1 1 1) crystal plane Is defined by the wall surface formed by
( 3 ) 前記第 2のシリコン単結晶基板は、 その貼り合わせ側の基板表面に、 湿式結晶異方性ェッチングを施すことにより形成された前記インクキヤビ ティを形成するための溝と前記インクリザーバを形成するための溝とを備 えている。  (3) The second silicon single crystal substrate has a groove for forming the ink cavity and the ink reservoir formed by performing wet-crystal anisotropic etching on the surface of the substrate on the bonding side. There is a groove for
本発明のインクジエツ トへッ ドにおいては、 相対的に寸法の小さなイン クノズルおよびォリフィス形成用の溝が第 1のシリコン単結晶基板に作り 込まれ、 相対的に寸法の大きなィンクキヤビティおよびィンクリザ一バ形 成用の溝が第 2のシリコン単結晶基板に作り込まれる。 従って、 一方の基 板にのみインク供給通路形成用の全ての溝をエッチングする場合に比べて、 各寸法の溝を形成するためのエッチング条件の管理が容易となるので、 目 標とする寸法の溝を精度良くエッチングすることが容易になる。  In the ink jet head of the present invention, relatively small-sized ink nozzles and grooves for forming orifices are formed in the first silicon single crystal substrate, and relatively large-sized ink cavities and ink reservoirs are formed. A forming groove is formed in the second silicon single crystal substrate. Therefore, compared to a case where all the grooves for forming the ink supply passages are etched only on one substrate, it is easier to control the etching conditions for forming the grooves of each dimension. It becomes easy to accurately etch the groove.
また、 本発明において、 前記第 1のシリコン単結晶基板に対して、 イン クノズルを形成するために乾式エッチングを併用した場合には、 湿式結晶 異方性エッチングのみを採用する場合に比べて一般的に精度良くこのの部 分を作り込むことができる。  Further, in the present invention, when dry etching is used in combination with the first silicon single crystal substrate to form an ink nozzle, it is more general than when only wet crystal anisotropic etching is employed. This part can be created with high accuracy.
一方、 本発明において、 前記第 1のシリコン単結晶基板に対して湿式結 晶異方性ェツチングを用いて溝を形成する場合には、 当該第 1のシリコン 単結晶基板として、 その前記貼り合わせ側の基板表面の結晶面方位が ( 1 0 0 ) 面方位あるいは ( 1 1 0 ) 面方位のものを使用するようにしている c 特に、 結晶面方位が ( 1 0 0 ) の場合には、 この結晶面方位の基板表面 からエッチングを行うことにより、 形成される溝の幅方向の両側壁面には エッチング速度の遅い ( 1 1 1 ) 結晶面が現れる。 従って、 溝の断面積は、 その基板表面のエッチング幅を調整することにより、 精度良く規定できる また、 本発明においては、 前記第 2のシリコン単結晶基板として、 その 前記貼り合わせ側の基板表面の結晶方位が ( 1 1 0 ) 面方位のものを使用 するようにしている。 この結晶面方位の基板表面から異方性エッチングを 行うことにより複数の前記ィンクキヤビティ用の溝を形成すれば、 各ィン クキヤビティの間の隔壁側面には基板表面に垂直な (11 1) 方位面が現 れる。 従って、 インクキヤビティ用の溝を高密度で精度良く形成できる。 この場合、 前記第 2のシリコン単結晶基板における前記インクキヤビテ ィのそれそれを形成するための溝と前記インクリザーバを形成するための 溝との間を隔てる隔壁において、 前記オリフィスを形成するための溝の長 手方向の両端側に位置する壁面部分を (11 1) 結晶面によって規定する ことができる。 この (1 11) 結晶面によって前記オリフィスの長さが規 定される。 従って、 形成されるオリフィスの長さ寸法を精度良く作り込む ことができる。 On the other hand, in the present invention, in the case where a groove is formed on the first silicon single crystal substrate by using wet crystal anisotropic etching, the first silicon single crystal substrate is used as the first silicon single crystal substrate. The crystal plane orientation of the substrate surface of (100) plane or (110) plane is used. C In particular, when the crystal plane orientation is (100), By etching from the substrate surface with the crystal plane orientation, a (111) crystal plane with a low etching rate appears on both side walls in the width direction of the formed groove. Therefore, the cross-sectional area of the groove can be accurately defined by adjusting the etching width of the surface of the substrate.In the present invention, the second silicon single crystal substrate is formed on the surface of the substrate on the bonding side. Use the crystal orientation of (110) plane I am trying to do it. If a plurality of the grooves for the ink cavities are formed by performing anisotropic etching from the substrate surface having the crystal plane orientation, the (111) azimuthal plane perpendicular to the substrate surface is formed on the side wall of the partition wall between the respective ink cavities. Appears. Therefore, the grooves for ink cavities can be formed with high density and high precision. In this case, a groove for forming the orifice is formed in a partition wall between the groove for forming each of the ink cavities and the groove for forming the ink reservoir in the second silicon single crystal substrate. The wall portions located at both ends in the longitudinal direction can be defined by the (111) crystal plane. The length of the orifice is defined by the (111) crystal plane. Therefore, the length dimension of the formed orifice can be made with high accuracy.
一方、 本発明は上記構成のインクジエツトへッ ドの製造方法に関するも のであり、 次のようにして当該ィンクジェッ トへッ ドを製造することを特 徴としている。 すなわち、 先ず、 基板表面の結晶面方位が (100) ある いは ( 110) 結晶面の第 1のシリコン単結晶基板を用意して、 当該第 1 のシリコン単結晶基板の前記基板表面に湿式結晶異方性ェツチングを施し て、 少なくとも前記オリフィス形成用の溝を形成する。 次に、 基板表面の 結晶面方位が ( 110) あるいは (100) 結晶面の第 2のシリコン単結 晶基板を用意して、 当該第 2のシリコン単結晶基板の前記基板表面に湿式 結晶異方性エッチングを施して、 前記インクキヤビティ形成用の溝と、 前 記インクリザーバ形成用の溝を形成する。 しかる後は、 前記第 1および第 On the other hand, the present invention relates to a method for manufacturing an ink jet head having the above-described configuration, and is characterized in that the ink head is manufactured as follows. That is, first, a first silicon single crystal substrate having a (100) or (110) crystal plane orientation on the substrate surface is prepared, and a wet crystal is formed on the substrate surface of the first silicon single crystal substrate. Anisotropic etching is performed to form at least the groove for forming the orifice. Next, a second silicon single crystal substrate having a crystal plane orientation of (110) or (100) crystal plane on the substrate surface is prepared, and a wet crystal anisotropic is provided on the substrate surface of the second silicon single crystal substrate. The grooves for forming the ink cavities and the grooves for forming the ink reservoir are formed by performing a reactive etching. After that, the first and the second
2のシリコン単結晶基板の基板表面を相互に接合することにより、 肖 ϋ記ィ ンクノズル、 前記インクキヤビティ、 前記インクリザーバ、 前記インクキ ャビティと前記インクリザ一バを連通する前記オリフィスを構成する。 この方法においては、 前記第 1のシリコン単結晶基板における前記オリ フィス形成用の溝の幅方向の両側壁面が (1 1 1) 結晶面となるように、 当該ォリフィス形成用の溝のェヅチングを行うと共に、 前記第 2のシリコ ン単結晶基板における前記インクキヤビティのそれそれを形成するための 溝と前記インクリザーバを形成するための溝との間を隔てる隔壁における 前記オリフィスの長手方向の両端側に位置する壁面部分が ( 1 1 1 ) 結晶 面となるように、 当該インクキヤビティ用の溝およびインクリザ一バ用の 溝のエッチングを行うことが望ましい。 このようにすれば、 オリフィスの 断面積および長さを ( 1 1 1 ) 結晶面を利用して精度良く規定できる。 更に、 これらの方法において、 前記第 2のシリコン単結晶基板の前記基 板表面に湿式結晶異方性エッチングを施す前に、 前記基板表面の裏側の面 に、 ポロン等を高濃度でド一プしたエッチストップ層を形成することが望 ましく、 これにより、 更に振動板の厚みを精度良く形成することができる c 図面の簡単な説明 By joining the substrate surfaces of the two silicon single crystal substrates to each other, the ink nozzle, the ink cavity, the ink reservoir, and the orifice that connects the ink cavity and the ink reservoir are formed. In this method, both side walls in the width direction of the groove for forming the orifice in the first silicon single crystal substrate are (1 1 1) crystal planes, Etching of the groove for forming the orifice is performed, and the groove for forming the ink cavities in the second silicon single crystal substrate is separated from the groove for forming the ink reservoir. It is preferable that the groove for the ink cavity and the groove for the ink reservoir be etched so that the wall surfaces at both ends in the longitudinal direction of the orifice in the partition wall are (111) crystal planes. In this way, the cross-sectional area and length of the orifice can be accurately defined using the (111) crystal plane. Further, in these methods, before performing wet-crystal anisotropic etching on the substrate surface of the second silicon single crystal substrate, a high concentration of polon or the like is dropped on the back surface of the substrate surface. was it Nozomu Mashiku of forming an etch stop layer, thereby further bRIEF dESCRIPTION oF c drawings the thickness of the diaphragm can be formed with high accuracy
第 1図は、 本発明を適用したィンクジェットへッ ドの概略断面図である 第 2図は、 第 1図のインクジェッ トヘッ ドの分解斜視図である。 第 3図は、 第 1図のインクジエツ 卜へッ ドの変形例を示す分解斜視図で ある。  FIG. 1 is a schematic sectional view of an ink jet head to which the present invention is applied. FIG. 2 is an exploded perspective view of the ink jet head of FIG. FIG. 3 is an exploded perspective view showing a modified example of the ink jet head of FIG.
第 4図は、 第 1図のィンクジェッ トへッ ドの別の変形例を示す概略断面 図である。  FIG. 4 is a schematic sectional view showing another modified example of the ink jet head of FIG.
第 5図は、 第 4図のインクジヱッ トへッ ドの分解斜視図である。 第 6図は、本発明を適用したィンクジヱッ 卜へッ ドを示す図であり、(A ) はその概略断面図、 (B ) はその第 1のシリコン単結晶基板の部分平面図、 ( C ) はその第 2のシリコン単結晶基板の部分平面図である。  FIG. 5 is an exploded perspective view of the ink jet head of FIG. FIG. 6 is a view showing an ink jet head to which the present invention is applied, (A) is a schematic cross-sectional view, (B) is a partial plan view of the first silicon single crystal substrate, (C) FIG. 4 is a partial plan view of the second silicon single crystal substrate.
第 7図は、 第 6図の第 2のシリコン単結晶基板に対するエッチング工程 を示す工程図である。 発明を実施するための最良の形態 FIG. 7 shows an etching process for the second silicon single crystal substrate of FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に図面を参照して本発明によるインクジエツ トへッ ドおよびその製 造方法を説明する。  Hereinafter, an ink jet head and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
(実施例 1 )  (Example 1)
^ 1図は本発明を適用して製造した圧電素子により駆動されるインクジ エツ トへッ ドの概略断面図であり、 第 2図は分解斜視図である。  FIG. 1 is a schematic sectional view of an ink jet head driven by a piezoelectric element manufactured by applying the present invention, and FIG. 2 is an exploded perspective view.
これらの図を参照して説明すると、 本例のィンクジエツ トへヅ ド 1は、 相互に貼り合わされた第 1のシリコン単結晶基板 2と、 第 2のシリコン単 結晶基板 3とによって構成され、 これらの基板 2、 3によって、 複数のィ ンクノズル 4と、 各インクノズル 4に連通したインクキヤビティ 5と、 各 インクキヤビティ 5にインクを供給する共通のインクリザーパ 6が構成さ れている。 また、 各インクキヤビティ 5とインクリザ一バ 6の間はオリフ イス 7によって連通されている。 さらに、 各インクキヤビティ 5の底面は 薄い振動板 8によって規定されており、 この振動板 8の裏面には振動板駆 動用の圧電素子 9が接着固定されている。  Explaining with reference to these figures, the ink jet head 1 of this example is composed of a first silicon single crystal substrate 2 and a second silicon single crystal substrate 3 bonded to each other. The substrates 2 and 3 form a plurality of ink nozzles 4, an ink cavity 5 communicating with each ink nozzle 4, and a common ink reservoir 6 for supplying ink to each ink cavity 5. The orifices 7 communicate between the ink cavities 5 and the ink reservoirs 6, respectively. Further, the bottom surface of each ink cavity 5 is defined by a thin vibrating plate 8, and a piezoelectric element 9 for driving the vibrating plate is adhered and fixed to the back surface of the vibrating plate 8.
インクリザ一バ 6には、 ここに連通しているインク取り入れ口 1 1に接 続したィンク供給用チューブ 1 2を経由して外部からインクが供給される。 インクリザーバ 6に供給されたインクは、 各オリフィス 7を通って各イン クキヤビティ 5に供給される。 インクキヤビティ 5の底面を規定している 板 8に接着固定した圧電素子 9に駆動電圧を印加すると、 圧電素子 9 と振動板 8のバイモルフ効果によって、 振動板 8はィンクキヤビティ 5の 容積を減ずる方向に橈み、 ィンク滴がインクノズル 4から吐出する。  Ink is supplied to the ink reservoir 6 from the outside via an ink supply tube 12 connected to an ink intake port 11 communicating with the ink reservoir. The ink supplied to the ink reservoir 6 is supplied to each ink cavity 5 through each orifice 7. When a drive voltage is applied to the piezoelectric element 9 bonded and fixed to the plate 8 that defines the bottom surface of the ink cavity 5, the diaphragm 8 reduces the volume of the ink cavity 5 due to the bimorph effect of the piezoelectric element 9 and the diaphragm 8. Ink drops are ejected from the ink nozzle 4.
この構成のインクジェッ トヘッ ド 1は、 第 1および第 2のシリコン単結 晶基板 2、 3の貼り合わせ側の基板表面 2 a、 3 aに上記の各インク供給 路構成用の溝をエッチングし、 しかる後に、 これらの基板 2、 3を貼り合 わせることにより構成される。 The inkjet head 1 having this configuration supplies the above-described ink to the substrate surfaces 2a and 3a on the bonding side of the first and second silicon single crystal substrates 2 and 3 respectively. The groove for forming the road is etched, and then the substrates 2 and 3 are bonded to each other.
第 1のシリコン単結晶基板 2は、 その貼り合わせ側の基板表面 2 aの結 晶面方位が ( 1 0 0 ) 面方位であり、 この基板表面 2 aに直交する方向に 貫通した状態にインクノズル 4が形成されている。 また、 基板表面 2 aに はオリフィス 7を形成するための溝 7 Aが形成されている。  The first silicon single crystal substrate 2 has a (100) plane crystal plane orientation of the substrate surface 2a on the bonding side, and the ink passes through the first silicon single crystal substrate 2 in a direction perpendicular to the substrate surface 2a. Nozzle 4 is formed. A groove 7A for forming the orifice 7 is formed on the substrate surface 2a.
オリフィス形成用の溝 7 Aは、 結晶面方位が ( 1 0 0 ) 面方位の基板表 面 2 aを湿式結晶異方性エッチングすることにより形成されている。 従つ て、 形成された溝 7 Aは基板表面側から溝底面に向けてすぼまった四角錐 状をしており、 その 4つの側面は、 基板表面 2 aに対して 5 4 . 7度の傾 斜をもって出現する ( 1 1 1 )結晶面によって規定される。このような( 1 0 0 ) 面方位の基板表面を湿式結晶異方性エッチングすることにより溝を 形成する場合には、 その溝の断面積は、 基板表面のエッチング幅によって 精度良く規定できる。 従って、 基板表面を覆うマスク開口の寸法を精度良 く規定しておくことにより、 形成される溝の断面積を精度良く目標とする 値となるように調整できる。  The groove 7A for orifice formation is formed by wet-crystal anisotropic etching of the substrate surface 2a having a (100) crystal plane orientation. Therefore, the formed groove 7A has a quadrangular pyramid shape which is narrowed from the substrate surface side toward the groove bottom surface, and its four side surfaces are 54.7 degrees with respect to the substrate surface 2a. (11 1) defined by the crystal plane. When a groove is formed by wet-crystal anisotropic etching of the substrate surface having such a (100) plane orientation, the cross-sectional area of the groove can be accurately defined by the etching width of the substrate surface. Therefore, by prescribing the dimension of the mask opening covering the substrate surface with high precision, the cross-sectional area of the formed groove can be adjusted to the target value with high precision.
このため、 本例のインクジェッ トヘッ ド 1においては、 オリフィス形成 用の各溝 7 Aの断面積をばらつきを抑制して精度良く形成できる。 後述の ようにオリフィス 7の長さも精度良く形成できるので、 当該ォリフィス 7 の流体抵抗のばらつきを抑制できるので、 ここを介してのインク供給量を 一定に保持できる。 この結果、 各インクノズルのインク吐出特性のばらつ きを抑制でき、 印字品質を高めることができる。  For this reason, in the inkjet head 1 of the present example, the cross-sectional area of each groove 7A for forming the orifice can be formed with high accuracy by suppressing the variation. As described later, since the length of the orifice 7 can be formed with high precision, the variation in the fluid resistance of the orifice 7 can be suppressed, so that the ink supply amount through the orifice 7 can be kept constant. As a result, variations in the ink ejection characteristics of each ink nozzle can be suppressed, and print quality can be improved.
次に、 この第 1のシリコン単結晶基板 2に形成されたインクノズル 4は、 ノズル軸線方向に向けて断面積が一定となっているストレー卜部分 4 aと、 このス トレート部分 4 aからインクキヤビティ 5の側に向けて断面積が漸 増しているテーパー付き部分 4 bとを備えた断面形状をしている。 ス 卜レ ート部分 4 aは、 インク吐出後のメニスカスの振動を減衰させるために必 要な高流体抵抗が付与された部分であり、 テーパー付き部分 4 bは、 スト レート部分 4 aに連通して気泡排出を行うために必要な部分である。 ストレート部分 4 aは、 第 1のシリコン単結晶基板 2の裏面 2 bをドラ ィエッチングすることにより形成された円形開口部分である。 これに対し て、 テーパー付き部分 4 bは、 結晶面方位が ( 1 0 0 ) 面方位となってい る第 1のシリコン単結晶基板 2の貼り合わせ側の基板表面 2 aを湿式異方 性エッチングすることにより形成したものである。 従って、 このテ一パ一 付き部分 4 bは、 基板表面の側から反対側のストレート部分 4 aに向けて 断面積がすぼまった角錐台形状をしており、 その 4つの側面は基板表面 2 aに対して 5 4 . 7度の傾斜をもって出現する ( 1 1 1 ) 結晶面によって 規定されている。 Next, the ink nozzle 4 formed on the first silicon single crystal substrate 2 has a straight portion 4a having a constant cross-sectional area in the direction of the nozzle axis, and ink from the straight portion 4a. It has a cross-sectional shape with a tapered portion 4b whose cross-sectional area gradually increases toward the cavity 5. Story The flat portion 4a is a portion provided with a high fluid resistance necessary to attenuate the vibration of the meniscus after the ink is ejected, and the tapered portion 4b communicates with the straight portion 4a to form bubbles. This is a necessary part for discharging. The straight portion 4a is a circular opening formed by dry etching the back surface 2b of the first silicon single crystal substrate 2. On the other hand, the tapered portion 4b is formed by wet anisotropic etching of the substrate surface 2a on the bonding side of the first silicon single crystal substrate 2 having the (100) crystal orientation. It is formed by doing. Therefore, the tapered portion 4b has a truncated pyramid shape in which the cross-sectional area is reduced from the side of the substrate surface to the opposite straight portion 4a, and the four side surfaces are formed on the substrate surface. Appears with an inclination of 54.7 degrees to 2a. (1 1 1) Defined by crystal plane.
前述のように、 このような ( 1 0 0 ) 面方位の基板表面を湿式結晶異方 性エッチングすることにより溝を形成する場合には、 その溝の断面積は、 基板表面のエッチング幅によって精度良く規定できる。 従って、 このよう に精度良く形成されたテーパー付き部分 4 bと、 上記のようにドライエツ チングによって精度良く形成されたストレート部分 4 aから構成されてい るインクノズル 4は、 ばらつきの少ない寸法形状となっている。 従って、 各インクノズルのインク吐出特性を一定にすることができ、 この結果、 印 字品質の低下を抑制できる。  As described above, when a groove is formed by wet-crystal anisotropic etching of a substrate surface having such a (100) plane orientation, the cross-sectional area of the groove is determined by the etching width of the substrate surface. Can be well defined. Accordingly, the ink nozzle 4 composed of the tapered portion 4b formed with high accuracy and the straight portion 4a formed with high accuracy by dry etching as described above has a dimension and shape with little variation. ing. Accordingly, the ink ejection characteristics of each ink nozzle can be made constant, and as a result, a decrease in print quality can be suppressed.
一方、 第 2のシリコン単結晶基板 3は、 その貼り合わせ側の基板表面 3 aの結晶面方位が ( 1 1 0 ) 面方位であり、 この基板表面 3 aには、 イン クキヤビティ 5を形成するための溝 5 Aと、 インクリザ一バ 6を形成する ための溝 6 Aとが形成されている。 さらに、 インクリザ一バ形成用の溝 6 Aの底面にはインク取り入れ口 1 1が開いている。  On the other hand, in the second silicon single crystal substrate 3, the crystal plane orientation of the substrate surface 3a on the bonding side is the (110) plane orientation, and an ink cavity 5 is formed on the substrate surface 3a. 5A and a groove 6A for forming the ink reservoir 6 are formed. Further, an ink inlet 11 is opened on the bottom surface of the groove 6A for forming the ink reservoir.
結晶面方位が ( 1 1 0 ) 面方位である基板表面 3 aを湿式異方性エッチ ングすることによりインクキヤビティ用の溝 5 Aを形成した場合には、 第 2図に示すように、 溝 5 Aを規定している 6つの側面のうちの 4つの側面 が基板表面 3 aに垂直な ( 1 1 1 ) 結晶面となり、 残りの 2つの側面が基 板表面 3 aに対して 3 5度の傾斜をもって出現する ( 1 1 1 ) 結晶面とな る。 また、 第 2のシリコン単結晶基板 3の基板表面 3 aのインクリザーバ 用の溝 6 Aも同様に湿式異方性エッチングにより形成されている。 Wet anisotropic etching of substrate surface 3a with crystal plane orientation of (110) plane In the case where the groove 5A for ink cavities is formed by forming, as shown in FIG. 2, four of the six sides defining the groove 5A are formed on the substrate surface 3a. A vertical (111) crystal plane is formed, and the remaining two side surfaces become (111) crystal planes that appear at an inclination of 35 degrees with respect to the substrate surface 3a. The groove 6A for the ink reservoir on the substrate surface 3a of the second silicon single crystal substrate 3 is also formed by wet anisotropic etching.
ここで、 形成されたィンクキヤビティ用の溝 5 Aとィンクリザーバ用の 溝 6 Aの間には隔壁 1 5が形成された状態となっている。 この隔壁 1 5に おける溝 5 Aおよび溝 6 Aに面している側面 1 5 a、 1 5 bは基板表面 3 aに対して 3 5度傾斜した ( 1 1 1 ) 結晶面である。  Here, a partition 15 is formed between the formed groove 5A for the ink cavity and the groove 6A for the ink reservoir. The side surfaces 15a and 15b facing the groove 5A and the groove 6A in the partition wall 15 are (111) crystal planes inclined by 35 degrees with respect to the substrate surface 3a.
このように各溝が形成された第 1および第 2のシリコン単結晶基板 2、 3は、 それらの貼り合わせ側の基板表面 2 a、 3 aを相互に位置合わせし た状態で接合され、 第 1図に示すような断面形状となっている。 この状態 においては、 オリフィス 7の長さを規定している隔壁 1 5の両側面 1 5 a、 1 5 bは ( 1 1 1 ) 結晶面であり、 従って、 オリフィス 7の長さ寸法が精 度良く設定されている。 前述のように、 オリフィス 7の断面積も精度良く 設定されているので、 各オリフィス 7の流体抵抗のばらつきが少なく、 従 つて、 各オリフィス 7のインク流量のばらつきが少ない。 また、 前述した ように各インクノズル 4もばらつきなく形成されている。 この結果、 本例 のインクジヱッ トヘッ ド 1では、 各インクノズルのインク吐出特性のばら つきが少ない。  The first and second silicon single crystal substrates 2 and 3 having the respective grooves formed in this way are bonded together with their bonded substrate surfaces 2a and 3a aligned with each other. It has a cross-sectional shape as shown in FIG. In this state, both side surfaces 15a and 15b of the partition wall 15 defining the length of the orifice 7 are (1 1 1) crystal planes. Well set. As described above, since the cross-sectional area of the orifice 7 is also set with high accuracy, the variation in the fluid resistance of each orifice 7 is small, and accordingly, the variation in the ink flow rate in each orifice 7 is small. Further, as described above, each ink nozzle 4 is also formed without variation. As a result, in the ink jet head 1 of this example, there is little variation in the ink ejection characteristics of each ink nozzle.
ここで、 本例のインクジェッ トヘッ ド 1の製造において、 各シリコン単 結晶基板 2、 3の湿式異方性エッチングに使用するエッチング液としては、 例えば、 摂氏 8 0度に加熱した 2 0重量パ一セン卜の水酸化力リウム水溶 液を用いることができる。 この水溶液の濃度は形成すべき溝形状等に応じ て適宜変更すべき性質のものである。 また、 使用するエッチング液も、 ァ ンモニァ水溶液、 有機アミン系アル力リ水溶液等の別の組成のものを用い てもよい。 Here, in the manufacture of the inkjet head 1 of the present example, an etching solution used for wet anisotropic etching of each of the silicon single crystal substrates 2 and 3 is, for example, 20 weight percent heated to 80 degrees Celsius. An aqueous solution of the hydroxide of potassium hydroxide can be used. The concentration of this aqueous solution should be appropriately changed depending on the shape of the groove to be formed. Also, the etchant used should be A different composition such as an aqueous ammonia solution or an organic amine-based aqueous solution may be used.
また、 双方のシリコン単結晶基板 2、 3の接合は次のように行うことが できる。 すなわち、 これらのシリコン単結晶基板 2、 3をァライメン卜し て室温で貼り合わせた後に、 摂氏 1 0 0 0度に加熱することにより直接接 合すればよい。 この代わりに、 双方の基板の界面に、 予め金を 2 0 0 0ォ グストロ一ム成膜し、 密着状態で摂氏 4 0 0度に加熱することにより低 温で共晶接合することも可能である。 また、 接着剤を用いてもよく、 これ により室温での接合も可能となる。  The bonding of both silicon single crystal substrates 2 and 3 can be performed as follows. In other words, these silicon single crystal substrates 2 and 3 are aligned, bonded at room temperature, and then directly heated to 100 degrees Celsius for direct bonding. Instead, it is also possible to form eutectic film of gold on the interface between both substrates in advance and to form a eutectic bond at a low temperature by heating to 400 degrees Celsius in close contact. is there. In addition, an adhesive may be used, which enables bonding at room temperature.
本例のィンクジエツ トへッ ド 1を実際に試作したところ、 各オリフィス 7の幅および長さの寸法誤差は規格値に対して ± 2ミクロンであった。 ま た、 振動板を 8 K H zで駆動したところ、 各インクノズルから吐出される インク滴の重量の平均は 0 . 0 2 5マイクログラム、 インク速度の平均は 1 2 m/ sであり、 これらのインク重量およびインク速度のばらつきは、 それそれ 5パーセント以下であり、 極めて均一な吐出特性が得られた。  When the ink jet head 1 of this example was actually manufactured as a prototype, the dimensional error in the width and length of each orifice 7 was ± 2 microns with respect to the standard value. When the diaphragm was driven at 8 KHz, the average weight of the ink droplets ejected from each ink nozzle was 0.025 micrograms and the average ink speed was 12 m / s. The variation in ink weight and ink speed was less than 5% in each case, and extremely uniform ejection characteristics were obtained.
また、 本例では、 第 2の基板に、 張り合わせ側の基板表面の結晶面方位 が ( 1 1 0 ) 面方位のシリコン基板を用いたが、 結晶面方位が ( 1 0 0 ) 面方位のシリコン基板を用いても良い。  In this example, a silicon substrate having a (110) plane crystal plane orientation on the bonding-side substrate surface was used as the second substrate, but a silicon substrate having a (100) plane crystal orientation was used. A substrate may be used.
(実施例 1の変形例 1 )  (Modification 1 of Embodiment 1)
第 3図には、 上記の実施例 1の変形例に係るインクジェッ トヘッド 1 A の分解斜視図である。 このインクジェッ トヘッ ド 1 Aでは、 第 1のシリコ ン単結晶基板 2の基板表面 2 aも、 第 2のシリコン単結晶基板 3の基板表 面 3 aと同じく、 その結晶面方位を ( 1 1 0 ) としたものである。 その他 の構成は実施例 1のィンクジエツ トへヅ ド 1と同一であるので、 図面にお いて対応する箇所には同一の番号を付してある。  FIG. 3 is an exploded perspective view of an inkjet head 1A according to a modification of the first embodiment. In the inkjet head 1A, the substrate surface 2a of the first silicon single crystal substrate 2 has the same crystal plane orientation as that of the substrate surface 3a of the second silicon single crystal substrate 3 (110). ). The other configuration is the same as that of the ink jet head 1 of the first embodiment, and accordingly, corresponding portions in the drawings are denoted by the same reference numerals.
本例でも、 各オリフィス形成用の溝 7 Bは、 異方性エッチングにより形 成されており、 各オリフィス 7の 2つの側面は、 基板表面 2 aに対して 3 5度の傾斜をもって出現する ( 1 1 1 ) 結晶面で規定されている。 他の 2 つの側面は、 基板表面 2 aに対して垂直に出現する ( 1 1 1 ) 結晶面で規 定されている。 Also in this example, the grooves 7B for forming each orifice are formed by anisotropic etching. The two side surfaces of each orifice 7 are defined by (111) crystal planes that appear with an inclination of 35 degrees with respect to the substrate surface 2a. The other two sides are defined by (1 1 1) crystal planes that appear perpendicular to the substrate surface 2a.
また、 本例では、 各インクノズル 4のテーパー付き部分 4 bは、 く 2 1 1 >軸に沿って形成されているので、 基板表面 2 aの溝開口形状が平行四 辺形となつた屋根型となっている。  In this example, the tapered portion 4 b of each ink nozzle 4 is formed along the 2 1 1> axis, so that the roof surface in which the groove opening shape of the substrate surface 2 a is a parallelogram is formed. It is a type.
本例のインクジェッ トヘッ ド 1 Aでは、 上記の実施例 1の効果に加えて、 第 1および第 2のシリコン単結晶基板 2、 3として同一規格のシリコン単 結晶基板を使用できるという利点がある。  The inkjet head 1A of this embodiment has an advantage that, in addition to the effects of the first embodiment, silicon single crystal substrates of the same standard can be used as the first and second silicon single crystal substrates 2 and 3.
(実施例 1の変形例 2)  (Modification 2 of Embodiment 1)
第 4図および第 5図には、 上記の実施例 1の別の変形例に係るインクジ エツ 卜ヘッ ド 1 Bの断面図および分解斜視図である。 本例のイクジヱッ 卜 ヘッ ド 1 Bにおいても、 上記の変形例 1と同様に、 第 1のシリコン単結晶 基板 2の貼り合わせ側の基板表面 2 aの結晶面方位は ( 1 10) 結晶面で ある。 しかし、 オリフィス 7を形成するための溝 7 Cは、 く 2 1 1 >軸に 沿つて形成されており、 基板表面側閧口が平行四辺形の屋根型となってい る。 この溝 7 Cの 2つの傾斜面は、 基板表面 2 aに対して 35度傾斜した ( 1 1 1 ) 結晶面から規定されており、 残りの三角形の 2つの側面は、 基 板表面 2 aに対して垂直な ( 1 1 1 ) 結晶面によって規定されている。 このように構成した本例のィンクジェッ トヘッ ド 1 Bは、 オリフィス形 成用の溝 7 Cは、 その長さを大きくすれば、 その溝深さも大きくできる。 従って、 オリフィス形成用の溝 7 Cの幅を小さく しても、 必要なオリフィ ス断面積を確保できる。 よって、 ノズルピッチの高密度化に対処すること が容易である。  FIGS. 4 and 5 are a cross-sectional view and an exploded perspective view of an ink jet head 1B according to another modification of the first embodiment. Also in the eject head 1B of the present example, the crystal plane orientation of the substrate surface 2a on the bonding side of the first silicon single crystal substrate 2 is the (1 10) is there. However, the groove 7C for forming the orifice 7 is formed along the 211> axis, and the substrate surface has a parallelogram roof shape. The two inclined surfaces of the groove 7C are defined from the (1 1 1) crystal plane inclined at 35 degrees with respect to the substrate surface 2a, and the two side surfaces of the remaining triangle are formed on the substrate surface 2a. It is defined by a (111) crystal plane perpendicular to it. In the thus configured ink jet head 1B of the present example, the groove 7C for forming the orifice can have a greater groove depth by increasing its length. Therefore, even if the width of the groove 7C for forming the orifice is reduced, a necessary orifice cross-sectional area can be secured. Therefore, it is easy to cope with an increase in the nozzle pitch.
(実施例 2) 第 6図は、 本発明を適用した実施例 2に係るインクジエツ 卜へッ ドの断 面図である。 本例のインクジェッ トヘッ ド 1 Cは、 本願人が提案している 特開平 5— 5 0 6 0 1号公報に開示されている静電駆動形のインクジエツ トへッ ドである。 このィンクジエツ トへッ ド 1 Cは、 圧電素子 9の代わり に、 対向電極間に働く静電気力を利用して振動板 8を振動させて、 インク 滴の吐出を行うものである。 (Example 2) FIG. 6 is a sectional view of an ink jet head according to a second embodiment to which the present invention is applied. The ink jet head 1C of the present embodiment is an electrostatically driven ink jet head disclosed in Japanese Patent Application Laid-Open No. 5-50601 proposed by the present applicant. The ink jet head 1C uses an electrostatic force acting between the opposing electrodes to vibrate the vibration plate 8 instead of the piezoelectric element 9, thereby discharging ink droplets.
すなわち、 このインクジェッ トヘッ ド 1 Cも、 第 1および第 2のシリコ ン単結晶基板 2 0、 3◦を接合することにより、 インク供給経路が構成さ れている。 図においては、 上記の各例と対応する部分には同一の符号を付 してある。 また、 第 2のシリコン単結晶基板 3 0の裏面に第 3の基板 (電 極ガラス) 4 0が接合されており、 この第 3の基板 4 0における振動板 8 に対峙する基板表面には溝 4 0 aが形成され、 この溝 4 0 aには、 振動板 8に対して所定のギヤップを保った状態で個別電極層 4 0 bが形成されて いる。 各振動板 8が形成されている第 2のシリコン単結晶基板 3 0と、 各 個別電極 4 0 bとの間に駆動電圧を印加することにより、 共通電極として 機能する各振動板 8と各個別電極 4 0 bの間に静電力が発生し、 これによ つて、 振動板 8が振動して、 インクキヤビティ 5の容積が変動し、 インク 滴の吐出が行われる。  That is, the ink head 1C also forms an ink supply path by joining the first and second silicon single crystal substrates 20 and 3 °. In the figure, portions corresponding to the above-described examples are denoted by the same reference numerals. A third substrate (electrode glass) 40 is bonded to the back surface of the second silicon single crystal substrate 30, and a groove is formed on the surface of the third substrate 40 facing the diaphragm 8. 40 a is formed, and an individual electrode layer 40 b is formed in the groove 40 a while maintaining a predetermined gap with respect to the diaphragm 8. By applying a driving voltage between the second silicon single crystal substrate 30 on which each diaphragm 8 is formed and each individual electrode 40b, each diaphragm 8 functioning as a common electrode and each individual electrode Electrostatic force is generated between the electrodes 40b, whereby the diaphragm 8 vibrates, the volume of the ink cavity 5 fluctuates, and ink droplets are ejected.
本例のインクジェヅ 卜へッ ド 1 Cの第 1のシリコン単結晶基板 2 0には、 インクノズル形成用の溝 4 Dと、 オリフィス形成用の溝 7 Dと、 インク取 り入れ口形成用の溝 1 1 Dが形成されている。 これに対して、 第 2のシリ コン単結晶基板 3 0には、 キヤビティ形成用の溝 5 Dと、 インクリザーバ 形成用の溝 6 Dが形成されている。  The first silicon single crystal substrate 20 of the ink jet head 1C of this example has a groove 4D for forming an ink nozzle, a groove 7D for forming an orifice, and a groove 7D for forming an ink inlet. A groove 11D is formed. On the other hand, in the second silicon single crystal substrate 30, a groove 5D for forming a cavity and a groove 6D for forming an reservoir are formed.
第 1のシリコン単結晶基板 2 0は、 その貼り合わせ側の基板表面 2 0 a の結晶面方位が ( 1 0 0 ) 結晶面とされ、 第 2のシリコン単結晶基板 3 0 の貼り合わせ側の基板表面 3 0 aの結晶面方位が ( 1 1 0 ) 結晶面とされ ている。 The first silicon single crystal substrate 20 has a (100) crystal plane orientation of the substrate surface 20a on the bonding side, and the first silicon single crystal substrate 20 has a (100) crystal plane orientation. The crystal plane orientation of the substrate surface 30a is defined as the (110) crystal plane. ing.
本例における第 1および第 2のシリコン単結晶基板 2 0 , 3 0も前述し た各実施例における場合と同様にして湿式結晶異方性エッチングにより各 溝を作り込むことができる。  In the first and second silicon single crystal substrates 20 and 30 in this example, each groove can be formed by wet-crystal anisotropic etching in the same manner as in each of the above-described embodiments.
ここで、 第 2のシリコン単結晶基板 3 0において、 インクキヤビティ用 の溝 5 Dの深さ寸法を精度良く管理して、 その底面を規定している振動板 8を精度良く目標とする厚みに設定するためには、 基板の裏面側にボロン 等をドーブすることによりエッチストヅプ層を形成し、 しかる後にエッチ ングを行えばよい。  Here, in the second silicon single crystal substrate 30, the depth dimension of the groove 5 D for ink cavities is precisely controlled, and the diaphragm 8 defining the bottom surface is accurately targeted. In order to set the etching rate, an etch stop layer may be formed by doping boron or the like on the back surface of the substrate, and then etching may be performed after a short time.
第 7図には、 このためのエッチング方法を示してある。 この図を参照し て説明すると、 使用する第 2の単結晶シリコン基板 3 0の厚さを 1 8 0ミ クロンとした。 この基板に形成される深溝としてのインクキヤビティ用の 溝 5 Dは、 例えば、 幅 1 0 8ミクロン X長さ 3 . 6ミ リメートル X深さ 1 7 8ミクロンであり、 共通のインクリザーバー用の浅い溝 6 Dは、 例えば、 幅 1 . 5ミ リメートル X長さ 3 . 0ミリメートル X深さ 1 6 0ミクロンで め 。  FIG. 7 shows an etching method for this purpose. Referring to this figure, the thickness of the second single crystal silicon substrate 30 used was set to 180 microns. The groove 5D for ink cavities as a deep groove formed on this substrate is, for example, a width of 108 microns, a length of 3.6 millimeters and a depth of 178 microns, and has a common ink reservoir. The shallow groove 6D has a width of 1.5 millimeters, a length of 3.0 millimeters and a depth of 160 microns.
このような形状の溝 5 D、 6 Dを形成するために次のように単結晶シリ コン基板 3 0のエッチングを行えばよい。  In order to form the grooves 5D and 6D having such a shape, the single crystal silicon substrate 30 may be etched as follows.
まず、 第 7図 (A ) に示すように、 シリコン単結晶基板 3 0の裏面に、 ボロンのドービングを高濃度で均一に行い、 2〜 3ミクロンの厚さのエツ チストップ層 3 2を形成した。また、シリコン基板 3 0の表面に S i 0 2膜 3 3を形成した。  First, as shown in FIG. 7 (A), boron is uniformly doped at a high concentration on the back surface of the silicon single crystal substrate 30 to form an etch stop layer 32 having a thickness of 2 to 3 μm. . Further, a SiO 2 film 33 was formed on the surface of the silicon substrate 30.
次に、 第 7図 (B ) に示すように、 S i 0 莫 3 3に所定のマスキング を施した状態でフッ酸を用いて当該 S i 0 2膜 3 3のエッチングを行い、 深い溝 5 Dとなる部分を除去して開口部 3 5を形成し、 浅い溝 6 Dとなる 部分にはハーフエッチングを施して幅が 2 0 0ミクロン以下の S i◦ 2の 薄膜部分 37を複数形成した。 Next, as shown in FIG. 7 (B), the Sio2 film 33 is etched with hydrofluoric acid while the Sio3 33 is subjected to a predetermined masking, and the deep groove 5 is etched. The opening 35 is formed by removing the portion that becomes D, and the shallow groove 6 D is subjected to half-etching to form a Si 2 having a width of 200 μm or less. A plurality of thin film portions 37 were formed.
このようにしてマスクパターンを形成した後は、濃度 35%、温度 80。 Cの水酸化カリウム水溶液で約 20〜30分間エッチングを行った。 この 結果、 第 7図 (C) に示すように、 深い溝 5 Dの形成部分のみが約 80〜 90ミクロン程度エッチングされた。  After forming the mask pattern in this manner, the concentration is 35% and the temperature is 80. Etching was performed with an aqueous solution of potassium hydroxide C for about 20 to 30 minutes. As a result, as shown in FIG. 7 (C), only the portion where the deep groove 5D was formed was etched by about 80 to 90 microns.
この後は、 再び基板全体をフッ酸によりエッチングして、 S i02の薄 3臭部分 37を除去した。 この結果、 他の S i 02膜 33の部分も全体的に 薄くなる。 この状態を図 7 (D) に示してある。  Thereafter, the entire substrate was etched again with hydrofluoric acid to remove the thin three odor portion 37 of Si02. As a result, the other Si 02 film 33 becomes thinner as a whole. This state is shown in FIG. 7 (D).
しかる後に、 再び、 濃度 35%、 温度 80° Cの水酸化カリウム水溶液 を用いて約 20〜30分間エッチングを行った。 この結果、 第 7図 (E) に示すように、 深い溝 5 Dの形成部分は約 165〜 170ミクロン程度ェ ツチングされ、 浅い溝 6 Dの形成部分は約 80-90ミクロン程度エッチ ングされた。  Thereafter, etching was performed again using a potassium hydroxide aqueous solution having a concentration of 35% and a temperature of 80 ° C. for about 20 to 30 minutes. As a result, as shown in FIG. 7 (E), the portion where the deep groove 5D was formed was etched by about 165 to 170 microns, and the part where the shallow groove 6D was formed was etched by about 80 to 90 microns. .
この後は、 エッチング液として、 濃度 2~5%で温度が 80° Cの水酸 化力リゥム水溶液を用いて約 40〜50分間エッチングを行った。 この結 果、 第 7図 (F) に示すように深い溝 5Dの形成部分では、 シリコン基板 裏面側に形成したエッチストップ層 32に到る深さの溝が形成され、 他方 の浅い溝 6 Dの形成部分では、 横方向にもエッチングが進み、 幅広の溝が 形成された。  Thereafter, etching was performed for about 40 to 50 minutes using an aqueous solution of hydrating hydroxide at 80 ° C. at a concentration of 2 to 5% as an etching solution. As a result, as shown in FIG. 7 (F), in the portion where the deep groove 5D is formed, a groove having a depth reaching the etch stop layer 32 formed on the back side of the silicon substrate is formed, and the other shallow groove 6D is formed. At the formation portion of, etching proceeded in the lateral direction, and a wide groove was formed.
このように本例のィンクジェッ トヘッ ド 1 Cにおいても、 上記の実施例 1と同様に、 インクノズル 4、 オリフィス 7およびインク供給口を精度良 く形成できる。 また、 振動板 8の厚さも精度良く形成できる。 従って、 各 インクノズルのインク吐出特性のばらつきを抑制でき、 印字品質の高い印 字を行うことの可能なィンクジェットへッ ドを実現できる。 産業上の利用の可能性 以上説明したように、 本発明は、 相互に貼り合わせることにより、 イン クキヤビティ、 オリフィスおよびィンクリザーバが構成される第 1および 第 2のシリコン単結晶基板を有するインクジエツ トへッ ドにおいて、 第 1 のシリコン単結晶基板には、 その貼り合わせ側の基板表面に、 湿式結晶異 方性エッチングあるいは乾式エッチングを施して、 インクノズルとオリフ イスを形成するための溝とを形成し、 第 2のシリコン単結晶基板には、 そ の貼り合わせ側の基板表面に、 湿式結晶異方性ェッチングを施すことによ りインクキヤビティを形成するための溝とィンクリザ一パを形成するため の溝とを形成するようにしている。 As described above, also in the ink jet head 1C of the present embodiment, the ink nozzle 4, the orifice 7, and the ink supply port can be formed with high accuracy, as in the first embodiment. Further, the thickness of the diaphragm 8 can be formed with high accuracy. Therefore, it is possible to suppress variations in the ink ejection characteristics of each ink nozzle, and to realize an ink jet head capable of performing printing with high print quality. Industrial applicability As described above, the present invention relates to an ink jet head having first and second silicon single crystal substrates each having an ink cavity, an orifice, and an ink reservoir formed by bonding the first silicon substrate to each other. The single-crystal substrate is subjected to wet-crystal anisotropic etching or dry-etching on the substrate surface on the bonding side to form an ink nozzle and a groove for forming an orifice. On the substrate, a groove for forming an ink cavity and a groove for forming an ink reservoir are formed by performing wet crystal anisotropic etching on the surface of the substrate on the bonding side. I have to.
従って、 本発明のインクジェッ トヘッ ドにおいては、 相対的に寸法の小 さなインクノズルおよびォリフィス形成用の溝が第 1のシリコン単結晶基 板に作り込まれ、 相対的に寸法の大きなインクキヤビティおよびインクリ ザ一バ形成用の溝が第 2のシリコン単結晶基板に作り込まれる。 この結果、 一方の基板にのみィンク供給通路形成用の溝をエッチングする場合に比べ て、 各寸法の溝を形成するためのエッチング条件の管理が容易となるので、 目標とする寸法の溝を精度良くエッチングすることが容易になる。  Therefore, in the inkjet head of the present invention, relatively small-sized ink nozzles and grooves for forming orifices are formed in the first silicon single crystal substrate, and relatively large-sized ink cavities are formed. And a groove for forming an ink reservoir is formed in the second silicon single crystal substrate. As a result, compared to the case where the groove for forming the ink supply passage is etched only on one of the substrates, it is easier to control the etching conditions for forming the groove of each dimension. Good etching becomes easy.
また、 本発明において、 第 1のシリコン単結晶基板に対して、 インクノ ズルと、 オリフイスを形成するための溝とを形成するために乾式エツチン グを採用した場合には、 湿式結晶異方性エッチングを採用する場合に比べ て一般的に精度良くこれらの部分を作り込むことができる。  Further, in the present invention, when dry etching is used to form an ink nozzle and a groove for forming an orifice in the first silicon single crystal substrate, wet crystal anisotropic etching is performed. In general, these parts can be formed with higher accuracy than in the case of employing.
更に、 本発明のインクジェッ トヘッ ドにおいては、 第 1のシリコン単結 晶基板に対して湿式結晶異方性エッチングを用いて溝を形成する場合には、 当該第 1のシリコン単結晶基板として、 その貼り合わせ側の基板表面の結 晶面方位が ( 1 0 0 ) 面方位あるいは ( 1 1 0 ) 面方位のもの、 好ましく は ( 1 0 0 ) 結晶面を使用するようにしている。 この結果、 形成されるォ リフィス形成用の溝の幅方向の両側壁面を ( 1 1 1 ) 結晶面によって規定 でき、 溝の断面積を目標とする値に精度良く設定できる。 この結果、 オリ フィスの流体抵抗のばらつきを抑制でき、 インク吐出特性を改善できる。 更にまた、 本発明においては、 第 2のシリコン単結晶基板として、 その 貼り合わせ側の基板表面の結晶方位が (1 10) 面方位のものを使用する ようにしている。 この結晶面方位の基板表面から異方性エッチングを行う ことにより複数のインクキヤビティ用の溝を形成すれば、 各インクキヤビ ティを精度良く高密度で形成できるので、 ノズルピッチの高密度化に容易 に対応できる。 Further, in the inkjet head of the present invention, when a groove is formed on the first silicon single crystal substrate by using wet-crystal anisotropic etching, the first silicon single crystal substrate is formed as the first silicon single crystal substrate. The substrate surface on the bonding side has a (100) plane orientation or a (110) plane orientation, preferably a (100) crystal plane. As a result, both side walls in the width direction of the formed orifice forming groove are defined by the (111) crystal plane. It is possible to accurately set the cross-sectional area of the groove to a target value. As a result, variations in the fluid resistance of the orifice can be suppressed, and the ink ejection characteristics can be improved. Furthermore, in the present invention, as the second silicon single crystal substrate, one having a (110) plane orientation of the substrate surface on the bonding side is used. If a plurality of grooves for ink cavities are formed by performing anisotropic etching from the substrate surface with this crystal plane orientation, each ink cavity can be formed with high precision and high density, making it easy to increase the nozzle pitch. Can respond to.
これに加えて、 第 2のシリコン単結晶基板におけるィンクキヤビティの それそれを形成するための溝と、 インクリザーバを形成するための溝との 間を隔てる隔壁においては、 オリフィスを形成するための溝の長手方向の 両端側に位置する壁面部分を (111) 結晶面によって規定できる。 この (1 1 1) 結晶面によってオリフィスの長さが精度良く規定される。 この ようにオリフィスの長さ寸法を精度良く作り込むことができるので、 オリ フィスの流体抵抗のばらつきを抑制でき、 インク吐出特性を改善できる。  In addition to the above, in the partition wall between the groove for forming each of the ink cavities in the second silicon single crystal substrate and the groove for forming the ink reservoir, the groove for forming the orifice is formed. The wall portions located at both ends in the longitudinal direction can be defined by the (111) crystal plane. The length of the orifice is precisely defined by the (1 1 1) crystal plane. As described above, since the length of the orifice can be made with high accuracy, the variation in the fluid resistance of the orifice can be suppressed, and the ink ejection characteristics can be improved.

Claims

請 求 の 範 囲 The scope of the claims
1. 複数のインクノズルと、 各インクノズルに連通したインクキヤビテ ィと、 各インクキヤビティにインクを供給する共通のインクリザ一バと、 各インクキヤビティを前記ィンクリザーパに連通させているオリフィスと、 前記の各インクキヤビティの底面を規定している振動板とを備えたインク ジエツ トへッドにおいて、 1. a plurality of ink nozzles, an ink cavity communicating with each ink nozzle, a common ink reservoir for supplying ink to each ink cavity, and an orifice communicating each ink cavity with the ink reservoir. A diaphragm defining the bottom surface of each of the ink cavities of
相互に貼り合わせることにより、 前記インクキヤビティ、 前記オリフィ スおよび前記ィンクリザーバが構成されている第 1および第 2のシリコン 単結晶基板を有し、  A first and a second silicon single crystal substrate on which the ink cavities, the orifices, and the ink reservoir are formed by being bonded to each other;
前記第 1のシリコン単結晶基板は、 その貼り合わせ側の基板表面に、 前 記ォリフィスを形成するための第 1の溝を備え、  The first silicon single crystal substrate has a first groove for forming the orifice on the surface of the substrate on the bonding side,
前記第 2のシリコン単結晶基板は、 その貼り合わせ側の基板表面に形成 された前記インクキヤビティを形成するための第 2の溝と前記ィンクリザ ーバを形成するための第 3の溝とを備え  The second silicon single crystal substrate includes a second groove for forming the ink cavity and a third groove for forming the ink reservoir formed on the surface of the substrate on the bonding side. Preparation
前記第 1の溝の形状が ( 1 1 1 ) 結晶面で形成された壁面によって規定 されていることを特徴とするインクジエツ トへッ ド。  An ink jet head, wherein the shape of the first groove is defined by a wall surface formed by a (111) crystal plane.
2. 請求の範囲第 1項において、 前記第 1のシリコン単結晶基板の前 記貼り合わせ側の基板表面の結晶面方位は ( 100) 面方位あるいは ( 12. In Claim 1, the crystal plane orientation of the substrate surface on the bonding side of the first silicon single crystal substrate is (100) plane orientation or (1).
: )) 面方位であることを特徴とするインクジエツ 卜ヘッ ド。 :)) An ink jet head characterized by a plane orientation.
3. 請求の範囲第 2項において、 前記第 2のシリコン単結晶基板の前 記貼り合わせ側の基板表面の結晶方位は ( 1 1 0) 面方位であることを特 徴とするインクジエツ トへッ ド。 3. The ink jet head according to claim 2, wherein the crystal orientation of the substrate surface on the bonding side of the second silicon single crystal substrate is a (110) plane orientation. De.
4. 請求の範囲第 3項において、 前記第 2のシリコン単結晶基板にお ける前記ィンクキヤビティのそれそれを形成するための溝と前記ィンクリ ザーバを形成するための溝との間を隔てる隔壁は、 前記オリフイスを形成 するための溝の長手方向の両端側に位置する壁面部分が (11 1) 結晶面 であることを特徴とするインクジヱヅ 卜ヘッ ド。 4. The partition according to claim 3, wherein a partition wall between the groove for forming each of the ink cavities and the groove for forming the ink reservoir in the second silicon single crystal substrate is: An ink jet head, characterized in that the wall portions located at both ends in the longitudinal direction of the groove for forming the orifice are (111) crystal planes.
5. 請求の範囲第 1項において、 前記第 1のシリコン単結晶基板は、 その貼り合わせ側の基板表面に、 前記ィンクノズルを形成するための第 4 の溝を備え、 前記第 4の溝の形状が ( 111) 結晶面で形成された壁面に よって規定されていることを特徴とするィンクジェットヘッド。 5. The first silicon single crystal substrate according to claim 1, wherein the first silicon single crystal substrate includes a fourth groove for forming the ink nozzle on a surface of the substrate on a bonding side thereof, and a shape of the fourth groove. An ink jet head, wherein is defined by a wall surface formed by a (111) crystal plane.
6. 請求の範囲第 1項において、更に前記インクリザ一バに連通する インク取り入れ口を有し、 前記第 1のシリコン単結晶基板は、 その貼り合 わせ側の基板表面に、 前記インク取り入れ口を形成するための第 5の溝を 備え、 前記第 5の溝の形状が (111) 結晶面で形成された壁面によって 規定されていることを特徴とするインクジヱッ トヘッ ド。 6. The method according to claim 1, further comprising an ink intake port communicating with the ink reservoir, wherein the first silicon single crystal substrate has the ink intake port on a substrate surface on a bonding side thereof. An ink jet head comprising: a fifth groove to be formed, wherein the shape of the fifth groove is defined by a wall surface formed by a (111) crystal plane.
7. 複数のインクノズルと、 各インクノズルに連通したインクキヤビ ティと、 各インクキヤビティにインクを供給する共通のインクリザ一バと、 各ィンクキヤビティを前記ィンクリザ一バに連通させているオリフィスと、 前記の各インクキヤビティの底面を規定している振動板とを備えたインク ジェッ トへッ ドの製造方法において、 7. a plurality of ink nozzles, ink cavities communicating with the respective ink nozzles, a common ink reservoir for supplying ink to the respective ink cavities, and an orifice communicating the respective ink cavities with the ink reservoir, A method of manufacturing an ink head having a diaphragm defining a bottom surface of each ink cavity of the above.
基板表面の結晶面方位が ( 100) あるいは (1 10) 結晶面の第 1の シリコン単結晶基板を用意し、  Prepare a first silicon single crystal substrate with a (100) or (1 10) crystal plane orientation on the substrate surface,
当該第 1のシリコン単結晶基板の前記基板表面に湿式結晶異方性エッチ ングを施して、 壁面の結晶面方位が ( 1 1 1 ) 結晶面となるように、 少な くとも前記オリフィス形成用の溝を形成し、 Wet crystal anisotropic etching on the substrate surface of the first silicon single crystal substrate Forming at least the groove for forming the orifice so that the crystal plane orientation of the wall surface becomes the (111) crystal plane.
基板表面の結晶面方位が ( 100) あるいは ( 1 10) 結晶面の第 2の シリコン単結晶基板を用意し、  Prepare a second silicon single crystal substrate with a (100) or (1 10) crystal plane orientation of the substrate surface,
当該第 2のシリコン単結晶基板の前記基板表面に湿式結晶異方性ェッチ ングを施して、 前記インクキヤビティ形成用の溝と、 前記インクリザーバ 形成用の溝を形成し、  Performing a wet crystal anisotropic etching on the substrate surface of the second silicon single crystal substrate to form a groove for forming the ink cavity and a groove for forming the ink reservoir;
前記第 1および第 2のシリコン単結晶基板の基板表面を相互に接合する ことにより、 前記インクノズル、 前記インクキヤビティ、 前記インクリザ ーバ、 前記ィンクキヤビティと前記ィンクリザ一バを連通する前記オリフ イスを構成することを特徴とするインクジェツ トへッドの製造方法。  By bonding the substrate surfaces of the first and second silicon single crystal substrates to each other, the ink nozzle, the ink cavity, the ink reservoir, and the orifice communicating the ink cavity and the ink reservoir are formed. A method for manufacturing an inkjet head, comprising:
8. 請求の範囲第 7項において、 前記第 2のシリコン単結晶基板にお ける前記ィンクキヤビティのそれそれを形成するための溝と前記インクリ ザ一バを形成するための溝との間を隔てる隔壁における前記オリフィスの 長手方向の両端側に位置する壁面部分が ( 1 1 1 ) 結晶面となるように、 当該インクキヤビティ用の溝およびィンクリザ一バ用の溝のエッチングを 行うことを特徴とするインクジエツ トへッ ドの製造方法。 8. The partition wall according to claim 7, which separates a groove for forming each of the ink cavities and a groove for forming the ink reservoir in the second silicon single crystal substrate. The groove for ink cavity and the groove for ink reservoir are etched so that the wall portions located at both ends in the longitudinal direction of the orifice in (1) are (111) crystal planes. Inkjet manufacturing method.
9. 請求の範囲第 7項において、 前記第 1のシリコン単結晶基板の前 記基板表面に湿式結晶異方性エッチングを施して、 更に壁面の結晶面方位 が ( 1 1 1 ) 結晶面となるように、 前記インクノズル形成用の溝を形成し たことを特徴とするインクジエツ トへッ ドの製造方法。 9. In Claim 7, the surface of the first silicon single crystal substrate is subjected to wet-crystal anisotropic etching, and the crystal plane orientation of the wall surface becomes (111) crystal plane. Thus, a method for manufacturing an ink jet head, wherein the groove for forming the ink nozzle is formed.
1 0. 請求の範囲第 9項において、 前記インクノズル形成用の溝を形 成した面の裏側から乾式エッチングを施して前記インクノズルを形成した ことを特徴とするインクジエツ 卜へッ ドの製造方法。 10. In claim 9, the ink nozzle is formed by performing dry etching from a back side of a surface on which the groove for forming the ink nozzle is formed. A method for producing an ink jet head.
1 1 . 請求の範囲第 7項において、 前記第 1のシリコン単結晶基板の 前記基板表面に湿式結晶異方性エッチングを施して、 更に壁面の結晶面方 位が ( 1 1 1 ) 結晶面となるように、 前記インクリザーバに連通するイン ク取込口形成用の溝を形成したことを特徴とするィンクジェッ トヘッ ドの 製造方法。 11. The method according to claim 7, wherein the surface of the first silicon single crystal substrate is subjected to wet crystal anisotropic etching, and the crystal plane orientation of the wall surface is set to (111) crystal plane. A method for manufacturing an ink jet head, comprising forming a groove for forming an ink intake port communicating with the ink reservoir.
1 2 . 請求の範囲第 7項において、 前記第 2のシリコン単結晶基板 の前記基板表面に湿式結晶異方性エッチングを施す前に、 前記基板表面の 裏側の面に、 エッチストップ層を形成することを特徴とするインクジエツ トへッ ドの製造方法。 12. The method according to claim 7, wherein an etch stop layer is formed on a back surface of the substrate surface before performing wet-crystal anisotropic etching on the substrate surface of the second silicon single crystal substrate. A method for producing an ink jet head.
PCT/JP1997/000830 1996-03-18 1997-03-14 Ink jet head and method of manufacturing same WO1997034769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6149996 1996-03-18
JP8/61499 1996-03-18

Publications (1)

Publication Number Publication Date
WO1997034769A1 true WO1997034769A1 (en) 1997-09-25

Family

ID=13172856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000830 WO1997034769A1 (en) 1996-03-18 1997-03-14 Ink jet head and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO1997034769A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950525A3 (en) * 1998-04-17 2000-08-23 Nec Corporation Ink jet recording head
WO2001002122A1 (en) * 1999-07-06 2001-01-11 Ekra Eduard Kraft Gmbh Print chip for a printing head working according to the ink printing principle
WO2001010646A1 (en) * 1999-08-04 2001-02-15 Seiko Epson Corporation Ink jet recording head, method for manufacturing the same, and ink jet recorder
US6712456B2 (en) 2000-01-17 2004-03-30 Seiko Epson Corporation Ink-jet recording head, manufacturing method of the same and ink-jet recording apparatus
EP1681169A1 (en) * 2005-01-18 2006-07-19 Samsung Electronics Co., Ltd. Piezoelectric inkjet printhead and method of manufacturing the same
JP2007069127A (en) * 2005-09-07 2007-03-22 Ulvac Japan Ltd Printing head, printer and manufacturing method of printing head
JP2017132210A (en) * 2016-01-29 2017-08-03 セイコーエプソン株式会社 Liquid injection head, liquid injection device, and manufacturing method for liquid injection device
JP2018199293A (en) * 2017-05-29 2018-12-20 セイコーエプソン株式会社 Piezoelectric device, liquid discharge head, liquid discharge device
JP2018199292A (en) * 2017-05-29 2018-12-20 セイコーエプソン株式会社 Piezoelectric device, liquid discharge head, liquid discharge device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126460A (en) * 1980-03-12 1981-10-03 Ricoh Co Ltd Nozzle plate for liquid injection
JPH03293141A (en) * 1990-04-11 1991-12-24 Seiko Epson Corp Liquid ejection head
JPH0631914A (en) * 1992-07-14 1994-02-08 Seiko Epson Corp Inkjet head and its manufacture
JPH0655733A (en) * 1992-08-06 1994-03-01 Seiko Epson Corp Manufacture of ink jet head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126460A (en) * 1980-03-12 1981-10-03 Ricoh Co Ltd Nozzle plate for liquid injection
JPH03293141A (en) * 1990-04-11 1991-12-24 Seiko Epson Corp Liquid ejection head
JPH0631914A (en) * 1992-07-14 1994-02-08 Seiko Epson Corp Inkjet head and its manufacture
JPH0655733A (en) * 1992-08-06 1994-03-01 Seiko Epson Corp Manufacture of ink jet head

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305792B1 (en) 1998-04-17 2001-10-23 Nec Corporation Ink jet recording head
EP0950525A3 (en) * 1998-04-17 2000-08-23 Nec Corporation Ink jet recording head
US6773084B1 (en) 1999-07-06 2004-08-10 Ekra Edward Kraft Gmbh Printing chip for a printing head working according to the ink-jet printing principle
WO2001002122A1 (en) * 1999-07-06 2001-01-11 Ekra Eduard Kraft Gmbh Print chip for a printing head working according to the ink printing principle
WO2001010646A1 (en) * 1999-08-04 2001-02-15 Seiko Epson Corporation Ink jet recording head, method for manufacturing the same, and ink jet recorder
US6502930B1 (en) 1999-08-04 2003-01-07 Seiko Epson Corporation Ink jet recording head, method for manufacturing the same, and ink jet recorder
US7135121B2 (en) 2000-01-17 2006-11-14 Seiko Epson Corporation Ink-jet recording head, manufacturing method of the same and ink-jet recording apparatus
US6712456B2 (en) 2000-01-17 2004-03-30 Seiko Epson Corporation Ink-jet recording head, manufacturing method of the same and ink-jet recording apparatus
EP1681169A1 (en) * 2005-01-18 2006-07-19 Samsung Electronics Co., Ltd. Piezoelectric inkjet printhead and method of manufacturing the same
US7703895B2 (en) 2005-01-18 2010-04-27 Samsung Electro-Mechanics Co., Ltd. Piezoelectric inkjet printhead and method of manufacturing the same
JP2007069127A (en) * 2005-09-07 2007-03-22 Ulvac Japan Ltd Printing head, printer and manufacturing method of printing head
JP4634258B2 (en) * 2005-09-07 2011-02-16 株式会社アルバック Print head, printing apparatus, and print head manufacturing method
JP2017132210A (en) * 2016-01-29 2017-08-03 セイコーエプソン株式会社 Liquid injection head, liquid injection device, and manufacturing method for liquid injection device
US10479078B2 (en) 2016-01-29 2019-11-19 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus, and manufacturing method of liquid ejecting apparatus
JP2018199293A (en) * 2017-05-29 2018-12-20 セイコーエプソン株式会社 Piezoelectric device, liquid discharge head, liquid discharge device
JP2018199292A (en) * 2017-05-29 2018-12-20 セイコーエプソン株式会社 Piezoelectric device, liquid discharge head, liquid discharge device

Similar Documents

Publication Publication Date Title
EP1321294B1 (en) Piezoelectric ink-jet printhead and method for manufacturing the same
US5992978A (en) Ink jet recording apparatus, and an ink jet head manufacturing method
US7637601B2 (en) Droplet discharging head, droplet discharging apparatus, method for manufacturing droplet discharging head and method for manufacturing droplet discharging apparatus
JPH06218917A (en) Ink jet head
US6371598B1 (en) Ink jet recording apparatus, and an ink jet head
WO1997034769A1 (en) Ink jet head and method of manufacturing same
JP3166268B2 (en) Ink jet print head and method of manufacturing the same
JPH0796605A (en) Ink jet type recording head
JP2002067307A (en) Liquid drop jet head
JPS5840509B2 (en) inkjet gun
JP4649762B2 (en) Inkjet head
JP5050743B2 (en) Nozzle substrate manufacturing method, droplet discharge head manufacturing method, droplet discharge device manufacturing method, nozzle substrate, droplet discharge head, and droplet discharge device
JPH10166572A (en) Ink jet type recording head
JPH03187756A (en) Liquid drop jetting device
JPH10315461A (en) Ink jet head and production thereof
JP2000127382A (en) Ink jet recording head and ink jet recorder
JPH06316069A (en) Ink jet head
JP2861117B2 (en) Ink jet printer head and method of manufacturing the same
JP3454258B2 (en) Ink jet recording device
JP2000168076A (en) Ink jet head and liquid chamber substrate therefor
JP2001205808A (en) Ink-jet recording head, its manufacturing method, and ink-jet recording apparatus
JP2005014618A (en) Manufacturing method of inkjet head and inkjet device
JP2000168072A (en) Ink jet head
JP2002248756A (en) Ink-jet head
JP2002210962A (en) Ink jet recording head and ink jet recorder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase