WO1997021034A1 - Radial steam-mixing machine - Google Patents

Radial steam-mixing machine Download PDF

Info

Publication number
WO1997021034A1
WO1997021034A1 PCT/DE1996/002224 DE9602224W WO9721034A1 WO 1997021034 A1 WO1997021034 A1 WO 1997021034A1 DE 9602224 W DE9602224 W DE 9602224W WO 9721034 A1 WO9721034 A1 WO 9721034A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
steam
pressure steam
impeller
blades
Prior art date
Application number
PCT/DE1996/002224
Other languages
German (de)
French (fr)
Inventor
Yuyao Qin
Guowen Yuan
Original Assignee
Yuyao Qin
Guowen Yuan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuyao Qin, Guowen Yuan filed Critical Yuyao Qin
Priority to JP9520852A priority Critical patent/JP2000505169A/en
Publication of WO1997021034A1 publication Critical patent/WO1997021034A1/en
Priority to EP97110485A priority patent/EP0849472A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/289Compressor features (e.g. constructions, details, cooling, lubrication, driving systems)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • F04D25/045Units comprising pumps and their driving means the pump being fluid-driven the pump wheel carrying the fluid driving means, e.g. turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the present invention relates to a machine for compressing vapors by mixing with high pressure steam.
  • Numerous steam-heated evaporators are used in the chemical and liver drug industry, for example in seawater and wastewater desalination, in sugar factories, pulp factories, in milk concentration, etc.
  • the energy consumption of steam-heated evaporation processes is quite high.
  • Even the energy consumption of the ME (Multi-Effect Evaporating) and MSF (Muhi-Stage : Flash Evaporating) processes used in seawater desalination is 210-300 MJ per ton of production water.
  • ME Multi-Effect Evaporating
  • MSF Mohi-Stage : Flash Evaporating
  • an effective measure to improve the thermal efficiency of the evaporators is that the vapor formed from an evaporator is compressed again and used for heating in the same evaporator.
  • Dar-r ⁇ fstraMpvimpen and turbo compressors are used for this.
  • the drying pump Due to its low thermal efficiency (400-500MJ / ton of production water in seawater desalination), the drying pump is only used for smaller quantities.
  • the energy consumption can be reduced considerably when using a turbo compressor in the evaporative mode (150-180MJ / ton of production water in seawater desalination), but disadvantageously it only uses electrical or mechanical energy. Since electrical energy is very expensive compared to thermal energy, the production costs in the process are generally increased.
  • the invention specified in the claims is based on the problem of reducing the energy consumption of steam-heated solidification processes for uniform production by 30 to 60%, and of being more than 70% energy consumption of thermal energy.
  • This problem is solved by using the radial steam mixing machine listed in the claims to improve the conventional evaporation process.
  • the pressure of the live steam before it enters the evaporator is reduced by a pressure reducing valve.
  • live steam emits higher pressure through nozzles from a rotating rotor and mixes with the vapor accelerated by the blades of an impeller, so that the energy used by the pressure reducing valve can be used profitably to increase the pressure of the vapor.
  • Fig. 1 shows the construction of RadMdampfmiscl - ⁇ -aschine.
  • the machine consists mainly of a housing and a rotor multiplied on both sides by bearings.
  • the rotor consists of an impeller (8 in Fig.l) with blades (9 in Fig.l), a drive shaft (12 in Fig.l), a plate-shaped casing (5 in Fig.l) and a rotary tube (4 in Fig .l).
  • a round plate (1 in Fig. 1) for balancing the axial force caused by the pressure difference of the steam in the high and low pressure steam chamber (2 and 10 in Fig. 1).
  • the round plate is sealed against the housing.
  • the blades are evenly arranged on the right side of the impeller. Two adjacent blades form a channel, the outlet of which is open to the outer edge of the rotor.
  • the rotary tube is connected to the drive shaft concentrically on the plate-shaped casing and sealed against the housing.
  • the plate-shaped jacket is arranged on the left side of the impeller.
  • the jacket and the impeller are reinforced by arch plates (15 in Fig.l).
  • a rotating space (6 in Fig.l) for high pressure steam is formed between the jacket and impeller.
  • a row of nozzles (14 in Fig. 1 and individual enlargement in Fig. 1) is evenly opened along the circumference at the outer edge of the turning room.
  • the exits of the nozzles and the exits of the channels formed by the blades are adjacent in the axial direction on the outer edge of the rotor and point radially towards the guide ring (7 in Fig.l).
  • the angle between the center line of the nozzle (the direction of the vector W2 in Fig. 1) and the direction of the primary speed of the rotor (the direction of the vector U2 in Fig. 1) is generally greater than 90 °.
  • Thermal insulation material is smeared on the left side of the impeller.
  • the housing is of the rotor in three rooms: spiral housing (13 in Fig.l) with the guide ring (7 in Fig.l), high-pressure steam room (2 in Fig.l) next to the left side of the rotor, low-pressure steam room (10 in Fig. l) next to the right side of the rotor.
  • Mixed steam outlet (16 in Fig. 1) is connected to the volute casing, high pressure steam inlet (3 in Fig.
  • the live steam passes through the High-pressure steam inlet, the high-pressure steam chamber and the rotary tube into the rotary chamber, then it is sprayed at high speed (W2 in Fig.l indicates the direction of the relative speed of the sprayed steam) through the nozzles into the guide ring, where the live steam with that coming from the low-pressure steam inlet Mixes broths together, whereby the broth is accelerated again by the live steam.
  • the live steam can provide a driving torque for the rotor in its radiation according to the swirl theorem.
  • the relative speed of the sprayed vapor can be broken down into radial speed (C2 in Fig.l) and tangential speed (their direction is opposite U2 in Fig.l).
  • the radial speed is used to accelerate the broth and the tangential speed is used to generate the drive torque.
  • the pressure of the mixed steam is increased by the delay in the volute casing (or other guiding devices) and emerges through the mixed steam discharge from the radial steam jet machine.
  • the mixed steam is used for heating in evaporators.
  • the invention has the following advantages: 1. Since the increase in vapor pressure in radial steam mixing machines is mainly achieved by the expansion of high pressure steam, wheel steam mixing machines can consume about 70% less electrical or mechanical energy. 2.
  • Fig. 2 shows, for example, the evaporation method for sea water desalination improved by the invention.
  • D F means live steam;
  • Fig.2 1 in Fig.2 is a radial steam mixer
  • 2 in Fig.2 is the first multi-stage evaporator system (MSF or ME)
  • 3 in Fig.2 is a second multi-stage evaporator system (MSF or ME).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The invention concerns a machine for compressing vapours by mixing with high-pressure steam. The aim of the invention is to increase the energetic efficiency of conventional steam-heated evaporation and distillation processes. The pressure of the vapours is first increased in the radial steam-mixing machine by the blades (9) of a rotor (8) and then mixed in the blade ring (7) with live steam sprayed in through nozzles (14). The nozzles (14) are mounted on the rotor (8). The steam sprayed in provides, in accordance with the law of angular momentum, drive torque for the rotor (8). This enables the energy consumed by the pressure-reduction valve in conventional evaporation equipment to be made use of. The invention makes it possible to improve conventional steam-heated evaporation and distillation processes by employing the radial steam-mixing machine.

Description

Beschreibung Radialdampfmischmaschine Description Radial steam mixer
Die vorliegende Erfindung betrifft eine Maschine zum Komprimieren von Brueden durch das Mischen mit Hochdruckdampf.The present invention relates to a machine for compressing vapors by mixing with high pressure steam.
In der chemischen- und Leberamittelindustrie werden zahlreiche dampfbeheizte Verdampfer eingesetzt, z.B. bei der Meerwasser- und Abwasserentsalzung, in Zuckerfabriken, Zellstoff¬ fabriken, bei der Milchkonzentration usw. Der Energieverbrauch von dampfbeheiztem Verdampfungsverfahren ist ziemlich hoch. Selbst der Energieverbrauch vom bei der Meerwasserentsalzung eingesetzten ME (Multi-Effect Evaporating) und MSF (Muhi-Stage: Flash Evaporating) Verfahren betraegt 210-300 MJ pro Tonne Produktionswasser. Es ist bekannt, effektive Massnahme zur Verbesserung der thermischen Effizienz der Verdampfer ist, dass der aus einem Verdampfer entstandene Brueden wieder komprimiert und zur Beheizung im selben Verdampfer benutzt wird. Dazu werden Dar-rψfstraMpvimpen und Turbokompressoren verwendet. Darrφfsteώlpumpe wird wegen seiner niedrigen thermischen Effizienz (400-500MJ/Tonne Produktionswasser in Meerwasserentsalzung) nur füer kleinere Mengeleistung benutzt. Der Energieverbrauch kann bei Einsatz eines Turbokompressors im Verdampftuigsverfahren betraechtlich reduziert wird (150-180MJ/Tonne Produktionswasser in Meerwasserentsalzung), aber nachteilig verbraucht es nur elektrische oder mechanische Energie. Da elektrische Energie gegenueber thermisher Energie sehr teuer ist, werden die Produktionskosten bei dem Verfahren im allgemeinen gesteigert.Numerous steam-heated evaporators are used in the chemical and liver drug industry, for example in seawater and wastewater desalination, in sugar factories, pulp factories, in milk concentration, etc. The energy consumption of steam-heated evaporation processes is quite high. Even the energy consumption of the ME (Multi-Effect Evaporating) and MSF (Muhi-Stage : Flash Evaporating) processes used in seawater desalination is 210-300 MJ per ton of production water. It is known that an effective measure to improve the thermal efficiency of the evaporators is that the vapor formed from an evaporator is compressed again and used for heating in the same evaporator. Dar-rψfstraMpvimpen and turbo compressors are used for this. Due to its low thermal efficiency (400-500MJ / ton of production water in seawater desalination), the drying pump is only used for smaller quantities. The energy consumption can be reduced considerably when using a turbo compressor in the evaporative mode (150-180MJ / ton of production water in seawater desalination), but disadvantageously it only uses electrical or mechanical energy. Since electrical energy is very expensive compared to thermal energy, the production costs in the process are generally increased.
Der in der Patentansprueche angegebenen Erfindung liegt das Problem zugrunde, Energie¬ verbrauch von dampfbeheizten Verdarrφfungsverfahren fuer einheitliche Produktion um 30 bis 60% zu reduzieren, und mehr als 70% Energieverbrauch thermische Energie zu sein. Dieses Problem wird durch Einsatz der in der Patentansprueche aufgefuehrten Radialdampf- mischmaschine zur Verbesserung des konventionellen Verdampfungsverfahrens geloest. Beim konventionellen dampfbeheizten Verdampfungsverfahren wird der Druck des Frischdampfs vor seinem Eintritt in Verdampfer durch ein Dmckminderventil reduziert. Dagegen bei neuem Verfahren strahlt Frischdampf von hoeherem Druck durch Duesen aus einem drehenden Rotor aus, und mischt rnit dem von Schaufeln eines Laufrades beschleunigten Brueden, dadurch kann die von Drackminderventil aufgewandte Energie possitiv benutzt werden, um den Druck des Bruedens zu erhoehen. Fuer Brueden funktioniert die Radial- danrpimischirjaschine wie ein Verdichter und fuer Hochdruckdampf funktioniert sie wie ein
Figure imgf000003_0001
In Abb.l ist die Konstruktion von RadMdampfmiscl--α-aschine dargestellt. Die Maschine besteht hauptsaechlich aus einem Gehaeuse und einem beiderseitig von Lagern gemehrten Rotor.
The invention specified in the claims is based on the problem of reducing the energy consumption of steam-heated solidification processes for uniform production by 30 to 60%, and of being more than 70% energy consumption of thermal energy. This problem is solved by using the radial steam mixing machine listed in the claims to improve the conventional evaporation process. In the conventional steam-heated evaporation process, the pressure of the live steam before it enters the evaporator is reduced by a pressure reducing valve. In contrast, in the new process, live steam emits higher pressure through nozzles from a rotating rotor and mixes with the vapor accelerated by the blades of an impeller, so that the energy used by the pressure reducing valve can be used profitably to increase the pressure of the vapor. For brothers, the radial pressure mixer works like a compressor and for high pressure steam it works like a
Figure imgf000003_0001
Fig. 1 shows the construction of RadMdampfmiscl - α-aschine. The machine consists mainly of a housing and a rotor multiplied on both sides by bearings.
Der Rotor besteht aus einem Laufrad (8 in Abb.l) mit Schaufeln (9 in Abb.l), einer Antriebsachse (12 in Abb.l), einem tellerfoermigen Mantel (5 in Abb.l) und einem Drehrohr (4 in Abb.l). An das linke Ende der Antriebsachse ist eine runde Platte (1 in Abb.l) zum Balancieren der durch die Druckdifferenz des Dampfes im Hoch- und Niederdruckdampfraum (2 und 10 in Abb.l) verursachten axialen Kraft angeordnet. Die runde Platte ist gegen das Gehaeuse abgedichtet. Die Schaufeln sind an die rechte Seite des Laufrades gleichmaessig angeordnet. Zwei benachbarte Schaufeln bilden sich eine Kanal, deren Ausgang an den aeusseren Rand des Rotors geoeffhet ist. Das Drehrohr ist der Antriebsachse konzentrisch an den tellerfoermigen Mantel angeschlossen und gegen das Gehaeuse abgedichtet. Der tellerfoermige Mantel ist an die linke Seite des Laufrades angeordnet. Der Mantel und das Laufrad sind von Bogenplatten (15 in Abb.l) verstaerkt. Ein Drehraum (6 in Abb.l) fuer Hochdruckdampf ist zwischen dem Mantel und Laufrad gebildet. An den aeusseren Rand des Drehraums ist eine Reihe Duese ( 14 in Abb.1 und einzelne Vergroesserung in Abb.1 ) entlang dem Umfang gleichmaessig geoeffhet. Die Ausgaenge der Duesen und die Ausgaenge der von den Schaufeln gebildeten Kaenale sind in der axialen Richtung am aeusseren Rand des Rotors benachbart und radial auf den Leitring (7 in Abb.l) richten. Der Winkel zwischen der Mittellinie der Duese (die Richtung des Vektors W2 in Abb.l) und der Richtung der Urrrj-anggeschwindigkeit des Rotors (die Richtung des Vektors U2 in Abb.1 ) ist im allgemeinen groesser als 90°. An die linke Seite des Laufrades ist Waermeisolationsstoff beschmiert. Das Gehaeuse ist von dem Rotor in drei Raeume: Spiralgehaeuse (13 in Abb.l) mit dem Leitring (7 in Abb.l), Hochdruckdampfraum (2 in Abb.l) neben der linken Seite des Rotors, Niederdruckdampfraum (10 in Abb.l) neben der rechten Seite des Rotors, abgeteilt ist. An das Spiralgehaeuse ist Mischdampfablauf ( 16 in Abb.1 ), an den Hochdruckdampfraum ist Hoch¬ druckdampfzulauf (3 in Abb.l) und an den Niederdruckdampfraum ist Niederdruckdampf¬ zulauf (11 in Abb.l) angeschlossen. Der aeussere Rand des Rotors liegt in der radialen Richtung dem Leitring des Gehaeuses gegenueber. Bei der Setzung einer Radialdampfmischmaschine in Betrieb ist der aus einem Verdampfer entweichende Brueden zu dem Niederdmckdampfzulauf und der Frischdampf von hoeherem Druck und hoeherer Temperatur aus einem Dampfkessel zu dem Hochdruckdampfzulauf geleitet. Wenn der von Motor angetriebe Rotor eine Bewegung entgegen der Uhrzeiger¬ richtung (s. Schnitt A-A in Abb.l) ausfuehrt, wird der Brueden durch die Schaufeln aus Niederdruckzulauf in die Radialdampfmischinaschine angesaugt und beschleunigt, dann stroemt er aus dem Rotor in den Leitring. Gleichzeitig tritt der Frischdampf durch den Hochdmckdampfzulauf, den Hochdruckdampfraum und das Drehrohr in den Drehraum ein, dann ist er mit Hochgeschwindigkeit (W2 in Abb.l bezeichnet die Richtung der relativen Geschwindigkeit des gespruehten Dampfes) durch die Duesen in den Leitring gesprueht, wo der Frischdampf mit dem aus dem Niederdruckdampfzulauf kommenden Brueden zusammen mischt, wobei der Brueden durch den Frischdampf nochmals beschleunigt wird. Der Frischdampf kann bei seiner Strahlung nach Drallsatz ein Antriebsmoment fuer den Rotor leisten. Die relative Geschwindigkeit des gespruehten Dampfes (W2 in Abb.l) kann in radiale Geschwindigkeit (C2 in Abb.l) und tangentiale Geschwindigkeit (ihre Richtung ist entgegen U2 in Abb.l) zerlegt werden. Die radiale Geschwindigkeit ist zur Beschleunigung des Bruedens und die tangentiale Geschwindigkeit ist zur Leistung des Antriebsmomentes benutzt. Der Druck des Mischdampfes wird durch die Verzuegerung im Spiralgehaeuse (oder anderen Leitvorrichtungen) erhoeht und tritt durch Mischdampf ablauf von Radialdampfhrjschmaschine aus. Der Mischdampf ist zur Beheizung in Verdampfer benutzt. Im Vergleich mit Turbokompressor besetzt die Erfindung folgende Vorteile: 1. Da die Erhoehung von Bruedendruck bei Radialdampfmischrnaschine hauptsaechlich durch die Expansion von Hochdruckdampf verwirklicht ist, kann RadMdampfmischmaschine um ca. 70% wenigere elektrische oder mechanische Energie verbrauchen. 2. Beim gleichen Foerderstrom und gleichen Ein- und Austrittdruck von Brueden ist die Konstruktion der Radialdan-φfmischrnaschine sehr simpeler als Turbokompressor . 3. Mit Hilfe von
Figure imgf000005_0001
kann dampfbeheiztes Verdampfungsverfahren verbessert werden, damit der Energieverbrauch um 30% bis 60% reduziert werden kann. Radialdampfmischmaschine kann auch zum Verbesserung von konventionellem Destillations¬ verfahren benutzt werden, damit der Energieverbrauch um ca. 30% und Wasserverbrauch fuer Kondensation um mehr als 50% abgenommen wird. In Abb.2 ist z.B. das durch die Erfindung verbesserte Verdampfungsverfahren fuer Meer¬ wasserentsalzung dargestellt. Dabei bedeuten DF Frischdampf; DB1 und DB2 der aus erster mehrstufiger Verdampferanlage (MSF oder ME) entweichende Brueden; Dm Mischdampf, Ws Meerwasser; Wτ2 und WT1 Trinkenwasser. 1 in Abb.2 ist Radialdampf-mischmaschine, 2 in Abb.2 ist erste mehrstufige Verdampferanlage (MSF oder ME) und 3 in Abb.2 ist zweite mehrstufige Verdampferanlage (MSF oder ME). Mit dem in Abb.2 angeschaulichten neuen Verfahren kann der Energieverbrauch auf ca. 140 MJ/Tonne Trinkenwasser abgenommen werden, und davon mehr als 70% ist thermische Energie.
The rotor consists of an impeller (8 in Fig.l) with blades (9 in Fig.l), a drive shaft (12 in Fig.l), a plate-shaped casing (5 in Fig.l) and a rotary tube (4 in Fig .l). At the left end of the drive axle there is a round plate (1 in Fig. 1) for balancing the axial force caused by the pressure difference of the steam in the high and low pressure steam chamber (2 and 10 in Fig. 1). The round plate is sealed against the housing. The blades are evenly arranged on the right side of the impeller. Two adjacent blades form a channel, the outlet of which is open to the outer edge of the rotor. The rotary tube is connected to the drive shaft concentrically on the plate-shaped casing and sealed against the housing. The plate-shaped jacket is arranged on the left side of the impeller. The jacket and the impeller are reinforced by arch plates (15 in Fig.l). A rotating space (6 in Fig.l) for high pressure steam is formed between the jacket and impeller. A row of nozzles (14 in Fig. 1 and individual enlargement in Fig. 1) is evenly opened along the circumference at the outer edge of the turning room. The exits of the nozzles and the exits of the channels formed by the blades are adjacent in the axial direction on the outer edge of the rotor and point radially towards the guide ring (7 in Fig.l). The angle between the center line of the nozzle (the direction of the vector W2 in Fig. 1) and the direction of the primary speed of the rotor (the direction of the vector U2 in Fig. 1) is generally greater than 90 °. Thermal insulation material is smeared on the left side of the impeller. The housing is of the rotor in three rooms: spiral housing (13 in Fig.l) with the guide ring (7 in Fig.l), high-pressure steam room (2 in Fig.l) next to the left side of the rotor, low-pressure steam room (10 in Fig. l) next to the right side of the rotor. Mixed steam outlet (16 in Fig. 1) is connected to the volute casing, high pressure steam inlet (3 in Fig. 1) to the high pressure steam chamber and low pressure steam inlet (11 in Fig. 1) to the low pressure steam chamber. The outer edge of the rotor is in the radial direction opposite the guide ring of the housing. When a radial steam mixing machine is put into operation, the vapor escaping from an evaporator is directed to the low-pressure steam inlet and the live steam of higher pressure and temperature from a steam boiler to the high-pressure steam inlet. When the rotor driven by the motor executes a movement counterclockwise (see section AA in Fig. 1), the vapors are sucked in and accelerated by the blades from the low-pressure inlet into the radial steam mixing machine, then they flow out of the rotor into the guide ring. At the same time, the live steam passes through the High-pressure steam inlet, the high-pressure steam chamber and the rotary tube into the rotary chamber, then it is sprayed at high speed (W2 in Fig.l indicates the direction of the relative speed of the sprayed steam) through the nozzles into the guide ring, where the live steam with that coming from the low-pressure steam inlet Mixes broths together, whereby the broth is accelerated again by the live steam. The live steam can provide a driving torque for the rotor in its radiation according to the swirl theorem. The relative speed of the sprayed vapor (W2 in Fig.l) can be broken down into radial speed (C2 in Fig.l) and tangential speed (their direction is opposite U2 in Fig.l). The radial speed is used to accelerate the broth and the tangential speed is used to generate the drive torque. The pressure of the mixed steam is increased by the delay in the volute casing (or other guiding devices) and emerges through the mixed steam discharge from the radial steam jet machine. The mixed steam is used for heating in evaporators. In comparison with a turbo compressor, the invention has the following advantages: 1. Since the increase in vapor pressure in radial steam mixing machines is mainly achieved by the expansion of high pressure steam, wheel steam mixing machines can consume about 70% less electrical or mechanical energy. 2. With the same flow rate and the same inlet and outlet pressure of brothers, the construction of the radial dan mixer is very simpler than the turbo compressor. 3. With the help of
Figure imgf000005_0001
steam-heated evaporation process can be improved so that energy consumption can be reduced by 30% to 60%. Radial steam mixing machines can also be used to improve conventional distillation processes so that energy consumption is reduced by approximately 30% and water consumption for condensation by more than 50%. Fig. 2 shows, for example, the evaporation method for sea water desalination improved by the invention. D F means live steam; D B1 and D B2 of the vapors escaping from the first multi-stage evaporator system (MSF or ME); D m mixed steam, W s sea water; W τ2 and W T1 drinking water. 1 in Fig.2 is a radial steam mixer, 2 in Fig.2 is the first multi-stage evaporator system (MSF or ME) and 3 in Fig.2 is a second multi-stage evaporator system (MSF or ME). With the new process shown in Fig.2, the energy consumption can be reduced to approx. 140 MJ / ton of drinking water, of which more than 70% is thermal energy.

Claims

Patentansprueche Claims
1. Mechanisch betriebene und hauptsaechlich aus Gehaeuse und Rotor bestehende Dampfmischmaschine zum Komprimieren von Brueden bei Verdampfungs- und Destillationsverfahren, dadurch gekennzeichnet, dass der Rotor, der beiderseitig von Lagern gestuetzt ist, hauptsaechlich aus Laufrad, Schaufeln, Drehrohr, tellerfoermigem Mantel und1. Mechanically operated and mainly consisting of housing and rotor steam mixer for compressing vapors in evaporation and distillation processes, characterized in that the rotor, which is supported on both sides by bearings, mainly consists of impeller, blades, rotary tube, plate-shaped jacket and
Antriebsachse besteht; und dass die Schaufeln an eine Seite des Laufrades gleichmaessig angeordnet sind und der tellerfoermige Mantel an andere Seite des Laufrades angeordnet ist; und dass zwischen dem Mantel und Laufrad eine Reihe Duese fuer Dampfstrahlung an den aeusseren Rand des Rotors geoeffhet ist; und dass das Gehaeuse durch den Rotor in drei Raeume (Spiralgehaeuse mit dem Leitring, Hochdruckdampfraum neben dem tellerfoermigenDrive axle exists; and that the blades are arranged uniformly on one side of the impeller and the plate-shaped casing is arranged on the other side of the impeller; and that a row of nozzles for steam radiation is open to the outer edge of the rotor between the casing and the impeller; and that the housing through the rotor in three spaces (spiral housing with the guide ring, high-pressure steam room next to the plate-shaped
Mantel, Niederdruckdampfraum neben der Schaufeln) abgeteilt ist; und dass an das Spiralgehaeuse Mischdampfablauf, an den Hochdruckdampfraum Hochdruckdampfzulauf und an den Niederdruckdampfraum Niederdruckdampfzulauf angeschlossen sind; und dass der aeussere Rand des Rotors radial dem Leitring des Gehaeuses gegenueberliegt.Jacket, low-pressure steam chamber next to the blades) is divided; and that mixed steam outlet to the volute casing, to the high pressure steam chamber high pressure steam inlet and to the low pressure steam chamber low pressure steam inlet are connected; and that the outer edge of the rotor is radially opposite the guide ring of the housing.
2. An das Laufrad angeordneter tellerfoermiger Mantel nach Anspruch 1 , dadurch gekennzeichnet, dass ein Drehraum für Hochdruckdampf zwischen dem tellerfoermigen Mantel und Laufrad gebildet ist.2. arranged on the impeller plate-shaped jacket according to claim 1, characterized in that a rotating space for high pressure steam is formed between the plate-shaped jacket and the impeller.
3. Drehrohr nach Anspruch 1. dadurch gekennzeichnet, dass der Hochdruckdampfraum und der in Aspruch 2 genannte Drehraum durch das an den tellerfoermigen Mantel angeordneten Drehrohr, das der Antriebsachse des Rotors konzentrisch und gegen das Gehaeuse abgedichtet ist, miteinander angeschlossen sind.3. Rotary tube according to claim 1, characterized in that the high-pressure steam chamber and the rotary space mentioned in claim 2 are connected to one another by the rotary tube arranged on the plate-shaped jacket, which is concentric with the drive axis of the rotor and sealed against the housing.
4. Schaufeln nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen zwei benachbarten Schaufeln ein Kanal, dessen Ausgang an den aeusseren Rand des Rotors angeordnet ist, gebildet ist.4. blades according to claim 1, characterized in that between two adjacent blades, a channel, the output of which is arranged at the outer edge of the rotor, is formed.
5. Eine Reihe Duese nach Anspruch 1 , dadurch gekennzeichnet, dass die Duesen. deren Ausgaenge und der Ausgaenge der in Anspruch 4 genannten Kaenale in der axialen Richtung miteinander benachbart sind, an den aeusseren Rand des in Anspruch 2 genannten Drehraums gleichmaessig geoeffhet sind, die Ausgaenge der Duesen und Kaenale in der radialen Richtung auf den Leitring richtet sind5. A row of nozzles according to claim 1, characterized in that the nozzles. whose exits and the exits of the channels mentioned in claim 4 are adjacent to each other in the axial direction, are evenly opened on the outer edge of the rotating space mentioned in claim 2, the outputs of the nozzles and channels are directed in the radial direction onto the guide ring
ERSATZBLAπ (REGEL 26) REPLACEMENT BLAπ (RULE 26)
PCT/DE1996/002224 1995-12-02 1996-11-21 Radial steam-mixing machine WO1997021034A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9520852A JP2000505169A (en) 1995-12-02 1996-11-21 Centrifugal steam mixer
EP97110485A EP0849472A1 (en) 1996-11-21 1997-06-25 Radial steam mixing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545031.0 1995-12-02
DE19545031A DE19545031A1 (en) 1995-12-02 1995-12-02 Radial steam mixer

Publications (1)

Publication Number Publication Date
WO1997021034A1 true WO1997021034A1 (en) 1997-06-12

Family

ID=7779047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/002224 WO1997021034A1 (en) 1995-12-02 1996-11-21 Radial steam-mixing machine

Country Status (4)

Country Link
JP (1) JP2000505169A (en)
CN (1) CN1079141C (en)
DE (1) DE19545031A1 (en)
WO (1) WO1997021034A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849472A1 (en) * 1996-11-21 1998-06-24 Guowen, Yuan Radial steam mixing machine
US20160297694A1 (en) * 2015-04-07 2016-10-13 General Electric Company Hybrid vapor compression membrane distillation drive assemblyand method of use
CN104806568A (en) * 2015-04-07 2015-07-29 罗明哲 Pressurizer for centrifugal fan
US10413902B2 (en) * 2015-07-17 2019-09-17 Stat-Diagnostica & Innovation, S.L. Apparatus for sample separation and collection
CN105201873B (en) * 2015-10-09 2017-06-23 常胜 A kind of multistage pressure centrifugal compressor
CN112727762B (en) * 2021-01-11 2023-03-31 桂林航天工业学院 Sliding vane type pressure matcher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE474688A (en) *
US1640784A (en) * 1925-01-27 1927-08-30 Lorenzen Turbinen Ag Turbine and rotary compressor
US3748057A (en) * 1972-01-11 1973-07-24 M Eskeli Rotary compressor with cooling
WO1994002789A1 (en) * 1992-07-23 1994-02-03 Alsenz Richard H Refrigeration system utilizing an expansion jet compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU81168A1 (en) * 1979-04-19 1980-12-16 Laguilharre Sa IMPROVEMENT IN MECHANICAL VAPOR RECOMPRESSION EVAPORATORS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE474688A (en) *
US1640784A (en) * 1925-01-27 1927-08-30 Lorenzen Turbinen Ag Turbine and rotary compressor
US3748057A (en) * 1972-01-11 1973-07-24 M Eskeli Rotary compressor with cooling
WO1994002789A1 (en) * 1992-07-23 1994-02-03 Alsenz Richard H Refrigeration system utilizing an expansion jet compressor

Also Published As

Publication number Publication date
JP2000505169A (en) 2000-04-25
CN1179995A (en) 1998-04-29
CN1079141C (en) 2002-02-13
DE19545031A1 (en) 1997-06-05

Similar Documents

Publication Publication Date Title
EP0365652B1 (en) Turbomixer with rotating injector for mixing liquid and/or gaseous media
DE4431887C2 (en) heat pump system
CH674552A5 (en)
WO1997021034A1 (en) Radial steam-mixing machine
EP0363503B1 (en) Pump stage for a high vacuum pump
DE69809540T2 (en) CENTRIFUGAL LIQUID PUMP WITH INTERNAL GAS INJECTION
EP1937980A1 (en) Rotor for a rotary machine and a rotary machine
EP0347706B1 (en) Multistage vacuum pump unit
EP0097924B1 (en) Turbine pump
EP0849472A1 (en) Radial steam mixing machine
DE69722412T2 (en) DRIVE DEVICE LIKE e.g. LIQUID RING MACHINE AND METHOD FOR DRIVING SUCH A DEVICE, E.g. DELIVERY OF LIQUID
DE1428074A1 (en) Compressor for desalination system
DE3922782A1 (en) Molecular pump in a unit design
CH682441A5 (en) Apparatus for thickening liquids, in particular natural juices.
CH669429A5 (en)
DE102006056820A1 (en) Seawater desalination plant comprises mechanical flow compressor made of radial carbon-fiber-reinforced wheel, a wheel-attachment and housing comprising wheels
EP0592817B1 (en) Gas turbine plant with a pressure wave machine
CH225426A (en) Pressure exchanger.
DE219901C (en)
DE19506311A1 (en) Mechanically operated steam mixing machine
EP3948127B1 (en) Device for drying moist, flowable products
DE3613801A1 (en) Arrangement for cooling surfaces
CN220449850U (en) Split type low temperature evaporator for wastewater treatment
DE4335165B4 (en) radial fans
DE102019126199A1 (en) ROTARY LISTON MACHINE AND EVAPORATOR SYSTEM

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase