WO1997016544A1 - Water soluble cross-linking agents - Google Patents

Water soluble cross-linking agents Download PDF

Info

Publication number
WO1997016544A1
WO1997016544A1 PCT/US1996/017645 US9617645W WO9716544A1 WO 1997016544 A1 WO1997016544 A1 WO 1997016544A1 US 9617645 W US9617645 W US 9617645W WO 9716544 A1 WO9716544 A1 WO 9716544A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
linking agent
groups
charged
compound
Prior art date
Application number
PCT/US1996/017645
Other languages
French (fr)
Inventor
Dale G. Swan
Richard A. Amos
Terrence P. Everson
Original Assignee
Bsi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bsi Corporation filed Critical Bsi Corporation
Priority to EP96937893A priority Critical patent/EP0862624B1/en
Priority to CA002236588A priority patent/CA2236588C/en
Priority to JP51760797A priority patent/JP4602480B2/en
Priority to DE69632541T priority patent/DE69632541T2/en
Priority to AU75531/96A priority patent/AU731249B2/en
Publication of WO1997016544A1 publication Critical patent/WO1997016544A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/10Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms
    • C07D295/112Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms with the ring nitrogen atoms and the doubly bound oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated
    • C07C225/16Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/13Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton
    • C07C309/14Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing nitrogen atoms, not being part of nitro or nitroso groups, bound to the carbon skeleton containing amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/63Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/06Peptides being immobilised on, or in, an organic carrier attached to the carrier via a bridging agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier
    • Y10S530/815Carrier is a synthetic polymer
    • Y10S530/816Attached to the carrier via a bridging agent

Definitions

  • the present invention relates to chemical and/or physical modification of the surface properties of industrially and medically important substrates.
  • the present invention relates to the various processes useful for modifying the surface properties of bulk materials for specific applications.
  • the present invention relates to such surface modification techniques as plasma deposition, radiation grafting, grafting by photopolymerization, ion implantation, and chemical derivatization.
  • the present invention further relates to photoactivatable cross-linking agents for use in attaching chemical compounds to other compounds and/or to a substrate surface.
  • Such latent reactive groups can be used to first derivatize a desired compound (e.g., thermochemically), followed by the photochemical attachment of the derivatized compound to a surface.
  • a desired compound e.g., thermochemically
  • Such a sequential approach is suitable in many situations, but can lack such attributes as speed, versatility, and ease of use, particularly when used with target molecules that are inherently difficult to first derivatize.
  • Latent reactive groups can also be used to prepare photoactivatable
  • heterobifunctional molecules as linking agents, e.g., having a photoreactive group at one end with a thermochemical attachment group at the other.
  • linking agents can be used for either attaching nonreactive compounds to a surface or for priming a relatively inert surface in order to render it reactive upon exposure to suitable actinic radiation.
  • U.S. Patent No. 5,414,075 commonly owned by the assignee of the present application, describes the use of linking agents to prime a surface to provide the surface with photoactivatable groups.
  • This patent describes a restrained, multifunctional reagent useful for priming a support surface, or for simultaneous application with a target molecule to a support.
  • Reagents such as those described above, including those described in the '075 patent, are generally hydrophobic. As a result, they are of relatively low solubility in aqueous systems, thereby often limiting their usefulness to hydrophobic applications.
  • linking agents of the prior art are rarely, if ever, coated in compositions that employ water as a primary (e.g., greater than about 50% by vol.) solvent.
  • polyelectrolytes is described, for instance, in "Polyamines and Polyquatemary Ammonium Salts", pp. 761-763, in Concise Encyclopedia of Polymer Science and Engineering, Kroschwitz, ed., John Wiley and Sons, 1990, the disclosure of which is incorporated herein by reference.
  • Such polyamines and “polyquats” are described as being useful by virtue of their cationicity in applications involving interactions with anionically charged colloidal particles in aqueous media in nature. They are employed, for instance, in the flocculation of particulate matter from turbid natural waters, as pigment retention aids in the manufacture of paper, and as filtration aids, emulsion breakers, and so on.
  • Applicants are unaware of the existence of a nonpolymeric photoactivatable linking agent having both improved aqueous solubility and the ability to cross-link or bind otherwise nonreactive molecules to a surface.
  • the present invention provides a chemical linking agent comprising a di- or higher functional photoactivatable charged compound.
  • the linking agent of the invention provides at least one group that is charged under the conditions of use in order to provide improved water solubility.
  • the agent further provides two or more photoactivatable groups in order to allow the agent to be used as a cross-linking agent in aqueous systems.
  • the charge is provided by the inclusion of one or more quaternary ammonium radicals
  • the photoreactive groups are provided by two or more radicals of an aryl ketone such as benzophenone.
  • the invention provides a linking agent of the general formula:
  • each X independently, is a radical containing a photoreactive group and Y is a radical containing, inter alia, one or more charged groups.
  • the number and/or type of charged group(s) is sufficient to provide the molecule with sufficient aqueous solubility to allow the agent to be used (i.e. , applied to a surface and activated) in a solvent system having water as a major component.
  • Y contains one or more nitrogencontaining (e.g. , quaternary ammonium) groups. More preferably Y contains a linear or heterocyclic radical selected from the group consisting of:
  • each R 1 independently is a radical containing an alkylene, oxyalkylene, cycloalkylene, arylene, or aralkylene group
  • each R 2 independently is a radical containing an alkyl, oxyalkyl, cycloalkyl, aryl, or aralkyl group
  • each R 3 independently is either a non-bonding pair of electrons, a hydrogen atom, or a radical of the same definition as
  • R 1 , R 2 and R 3 groups can contain noninterfering heteroatoms such as O, N, S, P and the like, and/or noninterfering substituents such as halo (e.g., CI) and the like.
  • noninterfering heteroatoms such as O, N, S, P and the like
  • noninterfering substituents such as halo (e.g., CI) and the like.
  • one or more R 2 radicals contains an aralkyl group in the form of a photoactivatable aryl ketone.
  • These groups in addition to the two photoactivatable groups provided by the above-defined X groups, can be used to provide the "triphoto", "tetraphoto” and higher order photoactivatable groups described herein.
  • the use of three or more total photoreactive groups provides the linking agent with further ability to cross-link the agent to a target molecule and/or to a surface.
  • the R 2 and R 3 groups of the above linear radicals can, in effect, be fused (e.g.
  • the specific choice and relationship between R groups in a linking agent of the present invention is not critical, so long as the linking agent provides two or more photoactivatable groups and retains sufficient water solubility for its intended use.
  • noninterfering shall refer to groups, heteroatoms or substituents, the presence of which does not prevent the photoactivatable linking agent from being used for its intended purpose.
  • the linking agent of the present invention has broad applicability, particularly since it can be used in cross-linking applications where previous linking agents have not been effective.
  • the presence of one or more charged groups e.g., salts of organic acids, onium compounds, or protonated amines
  • linking agents of the invention can be used in aqueous systems requiring agents having improved water solubility. This, in turn, provides a cost effective method for the immobilization of inexpensive nonphotoreactive molecules to a surface. Since the linking agents themselves can be prepared from inexpensive starting materials, such as amines and 4-bromomethylbenzophenone (BMBP), the final cost of preparing and using such linking agents can be significantly less than conventional photoreactive agents.
  • inexpensive starting materials such as amines and 4-bromomethylbenzophenone (BMBP)
  • Linking agents of the present invention can be used to simultaneously immobilize (e.g., by cross-linking) otherwise nonreactive molecules to a surface.
  • the agents can also be used to prepare a primed latent reactive surface, which can be used for the later application of a target molecule.
  • water soluble shall refer to a linking agent of the present invention having sufficient solubility to allow it to be effectively used under aqueous conditions;
  • (Mono, di, etc,)photo-(mono, di. etc.) charge shall be used as a shorthand reference to refer to the total number of photoreactive groups and the total number and type of charged groups in a linking agent of this invention.
  • “DiphotoDiquat” shall mean a linking agent of the present invention having two photoreactive groups and two quaternary ammonium groups, examples of which include, but are not limited to, those shown in Formulas II through V of Table I.
  • Triphoto-Triquat shall mean a linking agent of the present invention having three photoreactive groups and three quaternary ammonium groups (e.g., Formula VI); and "Diphoto-Monosulfonate” shall mean a linking agent having two photoreactive groups and a sulfonate group (e.g., Formula X); and so forth.
  • the invention provides a linking agent of the general formula:
  • each X is independently a radical containing a photoreactive group and Y is a radical containing one or more charged groups.
  • the linking compound of the present invention includes one or more charged groups, and optionally one or more additional photoreactive groups, included in the radical identified in the empirical formula as "Y".
  • a "charged” group when used in this sense, refers to groups that are present in ionic form, i.e., carry an electrical charge under the conditions (e.g., pH) of use. The charged groups are present, in part, to provide the compound with the desired water solubility.
  • Preferred Y groups are nonpolymeric, that is, they are not formed by
  • Nonpolymeric linking agents are preferred since they will tend to have lower molecular mass, which in turn means that they can generally be prepared to have a higher concentration of photoreactive groups per unit mass. In turn, they can generally provide a higher coating density of photoreactive groups than comparable photoreactive polymeric agents (e.g., the photoPVP reagents described in the '582 patent described above).
  • the type and number of charged groups in a preferred linking agent are sufficient to provide the agent with a water solubility (water at room temperature and optimal pH) of at least about 0.1 mg/ml, and preferably at least about 0.5 mg/ml, and more preferably at least about 1 mg/ml.
  • water solubility water at room temperature and optimal pH
  • linking agent solubility levels of at least about 0.1 mg/ml are generally adequate for providing useful coatings of target molecules on surfaces.
  • linking agents in the art which are typically considered to be insoluble in water (e.g., have a comparable water solubility in the range of about 0.1 mg/ml or less, and more often about 0.01 mg/ml or less).
  • conventional linking agents are typically provided and used in solvent systems in which water is either absent or is provided as a minor (i.e., ⁇ 50% by volume) component.
  • Suitable charged groups include, but are not limited to, salts of organic acids (such as sulfonate, phosphonate, and carboxylate groups), onium
  • Formula X of Table I.
  • R 3 in Formula X would be a lone pair of electrons, in order to provide a tertiary amine group, and R 2 would contain a charged sulfonate group in a radical of the formula - CH 2 -CH 2 -SO 3 Na.
  • Sufficient overall charge to render the compound water soluble is provided by the negative charge of the remote sulfonate group.
  • a preferred charged group for use in preparing linking compounds of the present invention is a quaternary ammonium group.
  • quaternary ammonium refers to organic derivatives of NH 4 + in which the hydrogen atoms are each replaced by radicals, thereby imparting a net positive charge on the radical.
  • the remaining counterion can be provided by any suitable anionic species, e.g., as a chloride, bromide, iodine, or sulfate ion.
  • photoreactive group refers to a chemical group that responds to an applied external energy source in order to undergo active specie generation, resulting in covalent bonding to an adjacent chemical structure (e.g. , an abstractable hydrogen).
  • Preferred X groups will be sufficiently photoreactive to provide a visual indication of crosslinking in a standardized evaluation of the following type (where additional experimental conditions are provided in the Examples below).
  • a solution containing linking agent of the present invention is used to prepare a coating solution with a water or water/cosolvent system as described herein, the solution having a linking agent concentration between 0.1 to 1 mg/ml.
  • Reagent grade polyvinylpyrrolidone (“PVP", MW approx. 1.5 million daltons), such as that identified as Kollidon 90F (“K-90F”) and available from BASF Corporation is added to the coating solution to achieve a final PVP concentration of about 20 mg/ml, and the resulting composition used to coat onto the surface of a polystyrene slip.
  • the coating composition is then exposed for approximately 4 minutes, in situ, to a suitable light source such as a lamp providing an exposure wavelength of between 250 nm and 450 nm, with an intensity of at least about 1.5 mwatts/sq. cm. at the wavelength range required to promote hydrogen abstraction.
  • a suitable light source such as a lamp providing an exposure wavelength of between 250 nm and 450 nm, with an intensity of at least about 1.5 mwatts/sq. cm. at the wavelength range required to promote hydrogen abstraction.
  • a suitable light source such as a lamp providing an exposure wavelength of between 250 nm and 450 nm, with an intensity of at least about 1.5 mwatts/sq. cm. at the wavelength range required to promote hydrogen abstraction.
  • the existence of coated PVP i.e., crosslinked by the linking agent to the polystyrene surface
  • Congo Red Sigma
  • Latent reactive groups are sufficiently stable to be stored under conditions in which they retain such properties. See, e.g., U.S. Patent No. 5,002,582, the disclosure of which is incorporated herein by reference.
  • Latent reactive groups can be chosen that are responsive to various portions of the electromagnetic spectrum, with those responsive to ultraviolet and visible portions of the spectrum (referred to herein as "photoreactive") being particularly preferred.
  • Photoreactive aryl ketones are preferred, such as acetophenone, benzophenone, anthraquinone, anthrone, and anthrone-like heterocycles (i.e., heterocyclic analogues of anthrone such as those having N, O, or S in the 10- position), or their substituted (e.g., ring substituted) derivatives.
  • the functional groups of such ketones are preferred since they are readily capable of undergoing the activation/inactivation/reactivation cycle described herein.
  • Benzophenone is a particularly preferred photoreactive group, since it is capable of photochemical excitation with the initial formation of an excited singlet state that undergoes intersystem crossing to the triplet state.
  • the excited triplet state can insert into carbon-hydrogen bonds by abstraction of a hydrogen atom (for example, from a support surface or target molecule in the solution and in bonding proximity to the agent), thus creating a radical pair. Subsequent collapse of the radical pair leads to formation of a new carbon-carbon bond. If a reactive bond (e.g., carbon-hydrogen) is not available for bonding, the ultraviolet light-induced excitation of the benzophenone group is reversible and the molecule returns to ground state energy level upon removal of the energy source. Hence, photoreactive aryl ketones are particularly preferred.
  • Linking agents of the present invention can be prepared using available reagents and chemical conversions within the skill of those in the relevant art.
  • quaternary ammonium salts can be prepared by the reaction of tertiary amines with alkyl halides using the Kohlutkin reaction (Z. Physik. Chem. 5, 589 (1890)).
  • the reaction rates of such conversions can be enhanced by the use of highly nucleophilic tertiary amines, together with alkyl halides having easily displaced halide anions.
  • the order of reactivity is I- > Br > CI-, with primary halides and other highly reactive compounds such as benzylic halides being preferred for the reaction.
  • the synthesis of benzyltrimethylammonium iodide described in Organic Synthesis Collective Volume IV, 585 (1963), is a representative example of this reaction mechanism.
  • Di-, tri- or higher order quaternary ammonium compounds of the invention can be prepared, for instance, by reaction of 4-bromomethylbenzophenone ("BMBP") with compounds containing two or more tertiary amine groups.
  • BMBP 4-bromomethylbenzophenone
  • Specific examples of such amines include, but are not limited to, N,N,N',N'-tetramethylenediamine, N,N,N',N'-tetramethyl-1 ,6-hexanediamine, N,N,N',N',N"-pentamethylenediethylenetriamine, and 1,4-dimethylpiperazine.
  • Table I shows examples of preferred photoactivatable linking agents of the present invention.
  • Linking agents can be used in any suitable manner, including by the simultaneous or sequential attachment of a chemical compound to a surface.
  • Linking agents of the present invention can be used to modify any suitable surface.
  • the latent reactive group of the agent is a photoreactive group of the preferred type, it is particularly preferred that the surface provide abstractable hydrogen atoms suitable for covalent bonding with the activated group.
  • Plastics such as polyolefins, polystyrenes, poly (methyl) methacrylates,
  • polyacrylonitriles poly(vinylacetates), poly (vinyl alcohols), chlorine-containing polymers such as poly(vinyl) chloride, polyoxymethylenes, polycarbonates, polyamides, polyimides, polyurethanes, phenolics, amino-epoxy resins, polyesters, silicones, cellulose-based plastics, and rubber-like plastics can all be used as supports, providing surfaces that can be modified as described herein. See generally, "Plastics", pp. 462-464, in Concise Encyclopedia of Polymer Science and Engineering. Kroschwitz, ed. , John Wiley and Sons, 1990, the disclosure of which is incorporated herein by reference.
  • targets such as those formed of pyrolytic carbon and silylated surfaces of glass, ceramic, or metal are suitable for surface modification.
  • Suitable target molecules for use in the present invention, for attachment to a support surface encompass a diverse group of substances.
  • Target molecules can be used in either an underivatized form or previously derivatized.
  • target molecules can be immobilized singly or in combination with other types of target molecules.
  • Target molecules can be immobilized to the surface either after (e.g., sequentially) the surface has been primed with linking agent. Preferably, however, target molecules are immobilized during (e.g. , simultaneously with) attachment of the present linking agent to the surface.
  • target molecules are selected so as to confer particular desired properties to the surface and/or to the device or article bearing the surface.
  • suitable target molecules, and the surface properties they are typically used to provide is represented by the following nonlimiting list:
  • linking agent attachment can be any suitable technique, and such techniques can be selected and optimized for each material, process, or device.
  • the linking agent can be successfully applied to clean material surfaces as listed above by spray, dip, or brush coating of a solution of the reactive linking agent.
  • the support intended for coating is first dipped in an aqueous solution of linking agent and target molecule.
  • Suitable aqueous solvents for use in the present invention include at least about 50% water (by volume), and optionally include between about 10% and about 50% of one or more suitable cosolvents such as isopropyl alcohol.
  • the cosolvent typically has little, if any effect on the solubility of the linking agent in the solvent system, and is instead used to reduce the surface tension of the solution in order to promote effective coating of the surface.
  • the coated surface is then exposed to ultraviolet or visible light in order to promote covalent bond formation between the linking agent, target molecule, and material surface, after which the support is washed to remove unbound molecules.
  • the support is first dipped in an aqueous solution of the linking agent and the linking agent-coated support is then exposed to ultraviolet or visible light in order to promote covalent bond formation at the material surface.
  • a solution containing the target molecule is applied, followed by a second UV illumination which results in attachment of the target molecule to the surface via the linking agent.
  • the present invention provides a reagent and method useful for altering the surface properties of a variety of devices of medical, scientific, and industrial importance, using a broad spectrum of suitable target molecules.
  • the product was analyzed by gas chromatography and was found to contain 71 % of the desired 4-bromomethylbenzophenone, 8% of the dibromo product, and 20% unreacted 4-methylbenzophenone.
  • the reaction mixture was washed with 10 g of sodium bisulfite in 100 ml of water, followed by washing with 3 ⁇ 200 ml of water.
  • the product was dried over sodium sulfate and recrystallized twice from 1:3 toluene: hexane. After drying under vacuum, 635 g of 4-bromomethylbenzophenone were isolated, providing a yield of 60%, having a melting point of 112-114°C.
  • N,N,N',N'-Tetramethylethylenediamine 6 g (51.7 mmol) was dissolved in 225 ml of chloroform with stirring.
  • 4-Bromomethylbenzophenone 29.15 g (106.0 mmol) was added as a solid and the reaction mixture was stirred at room temperature for 72 hours. After this time, the resulting solid was isolated by filtration and the white solid was rinsed with cold chloroform. The residual solvent was removed under vacuum and 34.4 g of solid were isolated for a 99.7% yield, melting point 218-220°C.
  • N,N,N',N'-Tetramethyl-1,6-hexanediamine 1 g (5.80 mmol) was dissolved in 50 ml of chloroform.
  • 4-Bromomethylbenzophenone 3.35 g (12.18 mmol) was then added as a solid and the resulting solution was stirred at 50°C for 18 hours. After this time the clear solution was treated with ether.
  • the resulting slurry was allowed to cool to room temperature and the solid allowed to settle. The liquid was decanted and the remaining solid triturated exhaustively with ether. The resulting solid was dried under vacuum to give 4.19g of solid for a quantitative yield, melting point 208-209°C.
  • 1,4-Dimethylpiperazine 1 g (8.76 mmol) was dissolved in 10 ml of chloroform, followed by the addition of 4.94 g (17.96 mmol) of 4-bromomethylbenzophenone. The solid dissolved within 15 minutes with precipitation of the solid product occurring after 30 minutes. The mixture was allowed to stir overnight at room temperature under an argon atmosphere. The product was diluted with ether and the solid was filtered and rinsed with ether. The resulting product was dried under vacuum to give 5.82 g of solid for a quantitative yield, melting point 241-244°C.
  • Morpholine 0.85 g (9.76 mmol), was dissolved in 10 ml of dry tetrahydrofuran ("THF"), followed by the addition of 0.39 g (9.76 mmol) of NaH (60% suspension in oil). The mixture was heated at 50-60°C for 10 minutes to form the anion, followed by the addition of 2.68 g (9.76 mmol) of 4-bromomethylbenzophenone. The mixture was allowed to stir overnight and then was filtered to remove insolubles, washing the filter cake with 3 ⁇ 10 ml of CHCl 3 . The solvents were removed under reduced pressure and the product redissolved in 50 ml of CHCl 3 , followed by washing with 2 ⁇ 30 ml of water.
  • THF dry tetrahydrofuran
  • Piperazine 1 g (11.61 mmol), is dissolved in 20 ml of dry THF, followed by the addition of 0.929 g (23.22 mmol) of NaH (60% suspension in oil). The mixture is warmed at 50-60°C for 10-20 minutes to form the anion, followed by the addition of 6.39 g (23.22 mmol) of 4-bromomethylbenzophenone. The mixture is stirred overnight and filtered to remove insolubles. After evaporation under reduced pressure, the product is redissolved in 50 ml of CHCl 3 and washed with 2 ⁇ 30 ml of water. The product is dried over Na 2 SO 4 and isolated by filtration and evaporation.
  • the t-BOC protected amine 6.7 g (32.6 mmol), was diluted with 50 ml of dry THF, followed by the addition of 19.72 g (71.72 mmol) of 4-bromomethylbenzophenone, 83 mg (0.55 mmol) of sodium iodide, and 1.75 g (5.43 mmol) of tetra-n-butylammonium bromide.
  • 3.1 g (71.7 mmol) of sodium hydride (55% suspension in oil) was then added portion wise until approximately 80% of the quantity had been added. The mixture was allowed to stir overnight at room temperature, followed by the addition of the remaining 20% of the sodium hydride.
  • the bis-benzophenone t-BOC compound 0.52 g (0.877 mmol), was dissolved in 5 ml of ethyl acetate plus 2.5 ml of concentrated HCl and the mixture was stirred 30 minutes at room temperature. The pH was then adjusted to approximately 14 by the addition of 10 N NaOH and the desired product was extracted with 4 ⁇ 10 ml of CHCl 3 . After drying over sodium sulfate, evaporation of solvent gave the secondary amine product which was used without purification.
  • the secondary amine from above was diluted with 5 ml of N,N-dimethylformamide, followed by the addition of 0.185 g (0.877 mmol) of 2-bromoethanesulfonic acid, sodium salt. Once the solid was dissolved, 0.040 g (1 mmol) of 60% sodium hydride were added and the mixture was warmed at 60°C. When the reaction was found to proceed slowly, 6.3 mg ( 0.042 mmol) of sodium iodide were added and the heating was continued for 3 days. The product was diluted with 200 ml of water and the product was extracted with 3 ⁇ 200 ml of CHCl 3 .
  • the desired sulfonate product was isolated by silica gel flash chromatography using CHCl 3 /CH 3 OH/NH 4 OH 90/10/1 (v/v/v) as solvent to give 150 mg of product for a 27% yield.
  • the analysis on an NMR spectrometer was consistent with the desired product: 1 H NMR (CDCl 3 ) aromatic protons 7.10-7.80 (m, 18H), benzylic methylenes 4.50 (s, 4H), and remaining methylenes 2.90-4.00 (m, 12H).
  • a coating solution was prepared by dissolving PVP ("K90F", BASF Corporation) at 20 mg/ml and Compound II at 1 mg/ml in isopropyl alcohol (IPA)/water (1: 1).
  • a high density polyethylene (“HDPE”) rod (15 cm (6 in) long) was first wiped with an IPA soaked tissue, after which the rod was plasma pretreated at 300 mtorr in argon at 250 watts for two minutes. The rod was dip-coated in the coating solution by dipping into the solution at 2 cm (0.75 in.)/sec., dwelling for five seconds, and withdrawing at a rate of 0.5 cm (0.19 in.)/sec.
  • a polyurethane ("PU") rod (15 cm (6 in.) long) was coated in the manner described in Example 11 , except the rod was not plasma pretreated and it was illuminated wet for four minutes (it should be dry after illumination).
  • the PU rod was washed extensively in a flow of running DI water and rubbing the surface with fingers (approx. 30 sec.) indicated a strongly adherent layer of lubricous PVP.
  • the presence of the bound PVP on the surface was verified by staining as described in Example 11.
  • Example 11 subsequently dip-coated in a solution of PVP (K90F) at 20 mg/ml, heparin (Celsus Corp.) at 10 mg/ml, and Compound II at 1 mg/ml in IP A/water (40:60 v/v) by dipping the solution at 2 cm (0.75 in.)/ sec., dwelling for five seconds, and withdrawing at a rate of 0.5cm (0.19 in.)/ sec.
  • the wet PE rod was suspended midway between opposed ELC 4000 lamps, rotated and illuminated for four minutes (should be dry after illumination) as described in Example 11.
  • Rubbing the rod between the thumb and forefinger (approx. 30 seconds) under a flow of DI water indicated a lubricous coating of PVP as compared to uncoated control. Also the presence of the bound heparin on the surface was verified by staining with a 0.1 % solution of Toluidine Blue O (Sigma) in DI water.
  • a PU rod (15 cm (6 in.) long) was coated as described in Example 15 except that no plasma pretreatment was utilized. Evaluation of the rod as described in Example 15 indicated the presence of both PVP and heparin tenaciously bound to the rod surface.
  • a latex rubber urinary catheter (15 cm (6 in.) ⁇ 6 mm (0.24 in.)) outer diameter) was coated and evaluated as described in Example 15, except no plasma pretreatment was necessary and the catheter was coated using only a solution of PVP (K90F) at 20 mg/ml, heparin (Celsus Corp.) at 10 mg/ml, and Compound II at 1 mg/ml in IPA/water (40:60 v/v). Evaluation of the latex catheters described in Example 15 indicated the presence of PVP and heparin bound to the surface.
  • a coating solution was prepared by dissolving PVP (K90F) at 20 mg/ml and
  • the surface of the cured rod was rubbed by hand under a flow of DI water for 15 seconds and then stained with 0.35% solution of Congo Red which indicated the presence of PVP on the surface.
  • the rod was again rubbed as previously described, followed by another staining with Congo Red.
  • the coated section of the rod evenly stained dark red and felt lubricious compared to the uncoated control. There was no indication that the coating had rubbed off.
  • a control rod coated with only a 20 mg/ml solution of PVP in IPA/water (1: 1 v/v) was not lubricious after rubbing, and did not stain with the Congo Red, indicating that the PVP was not tenaciously bound to the PU surface.
  • Solution #1 contained
  • PVO1/PVP(K90F)/Compound II (10/20/1 mg/ml, respectively) in 30% (v/v) IPA in water.
  • Solution #2 contained PVO1/PVP(K90F)/Compound VI (10/20/1 mg/ml, respectively) in 30% (v/v) IPA in water.
  • PVOl (PhotoPVP) was prepared by
  • Example 11 Example 11
  • the wet substrates were rotated and illuminated for four minutes to adequately cure the coatings.
  • the cured substrates were rubbed (10 times) between the thumb and forefinger (approx. 30 sec.) under a flow of DI water, stained with 0.35% solution of Congo Red, re-rubbed (30 times) and restained to demonstrate the presence of bound PVP.
  • the tenacity of the coatings on the substrates was evaluated by coefficient of friction (C.O.F.) using a modified ASTM protocol for tubing. Results indicated that the addition of reagents II and VI agents greatly enhanced the durability of the coatings with only a slight decrease in lubricity as compared to the PVO1/PVP controls.
  • Solution #1 contained PVO1/Compound II (20/0.5 mg/ml, respectively) in 30% (v/v) IPA in water.
  • Solution #2 consisted of PVO1/Compound VI (20/0.5 mg/ml, respectively) in 30% (v/v) IPA in water.
  • the materials were coated and evaluated as described in Example 22. The surface coatings were more tenacious as compared to PVO1/PVP controls without the linking agents but were also less lubricious than the controls, but well within acceptable ranges.
  • Example 24 Example 24
  • PU rods (10 cm (3.9 in.) were wiped with an IPA soaked tissue.
  • the rods were dip-coated in solutions of Compound II (10 mg/ml), Compound III (10 mg/ml),
  • Example 11 Compound IV (4 mg/ml), Compound V (10 mg/ml), or Compound VI (10 mg/ml) in IPA/water (1: 1 v/v) in the manner described in Example 11.
  • the rods were illuminated for one minute with ELC 4000 lamps as previously described (Example 11) and rotated to insure an even cure of the coating.
  • the rods were then dip-coated into a solution of PVP (20 mg/ml) in IPA, allowed to air-dry, and then illuminated for three minutes as previously described (Example 11).
  • the cured rods were rubbed between fingers under running DI water (15sec.) and then stained 0.35% Congo Red to demonstrate the presence of bound PVP on the surface. All of the photoreagents produced tenacious and lubricious coatings on the PU rods except Compound IV coating which exhibited a decrease in the tenacity and lubricity of the PVP coating.
  • Solution #1 contained
  • Solution # 2 contained PVP(K90F) (12 mg/ml) in 50% (v/v) IPA in water.
  • PU rods (16 cm (6.3 in.) were wiped with IPA soaked tissues and dip-coated in each of the coating solutions by dipping into the solution at 2 cm (0.75in)/sec, dwelling for 30 seconds, and withdrawing at a rate of 0.7 cm (0.27 in.)/sec.
  • Samples of both control rods and those coated with Compound VII were either allowed to air-dry for 10 minutes prior to illumination or illuminated wet.
  • the substrates were suspended midway between two opposed ELC 4000 (40 cm (15.7 in.) apart) as previously described
  • Example 11 The rods were rotated and illuminated for two minutes ( dry illumination) or four minutes (wet illumination).
  • a coating solution was prepared by dissolving PVP(K90F) at 20 mg/ml and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Peptides Or Proteins (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A chemical linking agent formed of a di- or higher functional photoactivatable compound and providing at least one group that is charged under the conditions of use in order to provide improved water solubility. The linking agent further provides two or more photoactivatable groups in order to allow the agent to be used as a cross-linking agent in aqueous systems. The charged group can be provided by a radical that includes one or more salts of organic acids, onium compounds, or protonated amines (and optionally one or more additional photoreactive group), and the photoreactive groups can be provided by two or more radicals that include an aryl ketone.

Description

WATER SOLUBLE CROSS-LINKING AGENTS
TECHNICAL FIELD
The present invention relates to chemical and/or physical modification of the surface properties of industrially and medically important substrates. In a further aspect, the present invention relates to the various processes useful for modifying the surface properties of bulk materials for specific applications. In this aspect, the present invention relates to such surface modification techniques as plasma deposition, radiation grafting, grafting by photopolymerization, ion implantation, and chemical derivatization.
The present invention further relates to photoactivatable cross-linking agents for use in attaching chemical compounds to other compounds and/or to a substrate surface.
BACKGROUND OF THE INVENTION
The chemical modification of surfaces to achieve desired chemical and/or physical characteristics has been previously described. U.S. Patent Nos. 4,722,906; 4,973,493; 4,979,959; and 5,002,582 (the disclosures of each of which are incorporated herein by reference), for example, relate to surface modification by the use of latent reactive groups to achieve covalent coupling of reagents such as biomolecules and synthetic polymers to various substrates. The preferred latent reactive group is typically described as a photochemically reactive functional group (i.e., photoreactive group). When exposed to an appropriate energy source, a photoreactive group undergoes a transformation from an inactive state (i.e., ground state) to a reactive intermediate capable of forming covalent bonds with appropriate materials.
Such latent reactive groups can be used to first derivatize a desired compound (e.g., thermochemically), followed by the photochemical attachment of the derivatized compound to a surface. Such a sequential approach is suitable in many situations, but can lack such attributes as speed, versatility, and ease of use, particularly when used with target molecules that are inherently difficult to first derivatize.
Latent reactive groups can also be used to prepare photoactivatable
heterobifunctional molecules as linking agents, e.g., having a photoreactive group at one end with a thermochemical attachment group at the other. (See, e.g., the above captioned '582 patent, and Reiner et al.) Such linking agents can be used for either attaching nonreactive compounds to a surface or for priming a relatively inert surface in order to render it reactive upon exposure to suitable actinic radiation.
U.S. Patent No. 5,414,075, commonly owned by the assignee of the present application, describes the use of linking agents to prime a surface to provide the surface with photoactivatable groups. This patent describes a restrained, multifunctional reagent useful for priming a support surface, or for simultaneous application with a target molecule to a support.
Reagents such as those described above, including those described in the '075 patent, are generally hydrophobic. As a result, they are of relatively low solubility in aqueous systems, thereby often limiting their usefulness to hydrophobic applications. In turn, linking agents of the prior art are rarely, if ever, coated in compositions that employ water as a primary (e.g., greater than about 50% by vol.) solvent.
On a separate subject, the preparation and use of a class of cationic
polyelectrolytes is described, for instance, in "Polyamines and Polyquatemary Ammonium Salts", pp. 761-763, in Concise Encyclopedia of Polymer Science and Engineering, Kroschwitz, ed., John Wiley and Sons, 1990, the disclosure of which is incorporated herein by reference. Such polyamines and "polyquats" are described as being useful by virtue of their cationicity in applications involving interactions with anionically charged colloidal particles in aqueous media in nature. They are employed, for instance, in the flocculation of particulate matter from turbid natural waters, as pigment retention aids in the manufacture of paper, and as filtration aids, emulsion breakers, and so on.
Applicants are unaware of the existence of a nonpolymeric photoactivatable linking agent having both improved aqueous solubility and the ability to cross-link or bind otherwise nonreactive molecules to a surface.
SUMMARY OF THE INVENTION
The present invention provides a chemical linking agent comprising a di- or higher functional photoactivatable charged compound. The linking agent of the invention provides at least one group that is charged under the conditions of use in order to provide improved water solubility. The agent further provides two or more photoactivatable groups in order to allow the agent to be used as a cross-linking agent in aqueous systems. In a preferred embodiment, the charge is provided by the inclusion of one or more quaternary ammonium radicals, and the photoreactive groups are provided by two or more radicals of an aryl ketone such as benzophenone.
In a preferred embodiment, the invention provides a linking agent of the general formula:
X - Y - X
wherein each X, independently, is a radical containing a photoreactive group and Y is a radical containing, inter alia, one or more charged groups. In such an embodiment, the number and/or type of charged group(s) is sufficient to provide the molecule with sufficient aqueous solubility to allow the agent to be used (i.e. , applied to a surface and activated) in a solvent system having water as a major component.
In a particularly preferred embodiment, Y contains one or more nitrogencontaining (e.g. , quaternary ammonium) groups. More preferably Y contains a linear or heterocyclic radical selected from the group consisting of:
Figure imgf000005_0001
,
Figure imgf000005_0002
,
Figure imgf000005_0003
,
Figure imgf000005_0004
,
Figure imgf000006_0001
,
Figure imgf000006_0002
and
Figure imgf000006_0003
wherein each R1 independently is a radical containing an alkylene, oxyalkylene, cycloalkylene, arylene, or aralkylene group, each R2 independently is a radical containing an alkyl, oxyalkyl, cycloalkyl, aryl, or aralkyl group, and each R3 independently is either a non-bonding pair of electrons, a hydrogen atom, or a radical of the same definition as
R2,
in which the R1, R2 and R3 groups can contain noninterfering heteroatoms such as O, N, S, P and the like, and/or noninterfering substituents such as halo (e.g., CI) and the like.
In one preferred embodiment, one or more R2 radicals contains an aralkyl group in the form of a photoactivatable aryl ketone. These groups, in addition to the two photoactivatable groups provided by the above-defined X groups, can be used to provide the "triphoto", "tetraphoto" and higher order photoactivatable groups described herein. The use of three or more total photoreactive groups provides the linking agent with further ability to cross-link the agent to a target molecule and/or to a surface. In yet another preferred embodiment, the R2 and R3 groups of the above linear radicals can, in effect, be fused (e.g. , an R2 and an R3 on a single N atom, or a suitable combination of R2/R3 groups on adjacent N atoms) in order to form heterocyclic structures other than those exemplified above. The specific choice and relationship between R groups in a linking agent of the present invention is not critical, so long as the linking agent provides two or more photoactivatable groups and retains sufficient water solubility for its intended use.
The term "noninterfering" shall refer to groups, heteroatoms or substituents, the presence of which does not prevent the photoactivatable linking agent from being used for its intended purpose.
The linking agent of the present invention has broad applicability, particularly since it can be used in cross-linking applications where previous linking agents have not been effective. In particular, the presence of one or more charged groups (e.g., salts of organic acids, onium compounds, or protonated amines) provides the agent with enhanced water solubility.
As a result, linking agents of the invention can be used in aqueous systems requiring agents having improved water solubility. This, in turn, provides a cost effective method for the immobilization of inexpensive nonphotoreactive molecules to a surface. Since the linking agents themselves can be prepared from inexpensive starting materials, such as amines and 4-bromomethylbenzophenone (BMBP), the final cost of preparing and using such linking agents can be significantly less than conventional photoreactive agents.
Linking agents of the present invention can be used to simultaneously immobilize (e.g., by cross-linking) otherwise nonreactive molecules to a surface. The agents can also be used to prepare a primed latent reactive surface, which can be used for the later application of a target molecule.
DETAILED DESCRIPTION
As used in the present application the following words and terms shall have the meanings ascribed below:
"water soluble" shall refer to a linking agent of the present invention having sufficient solubility to allow it to be effectively used under aqueous conditions; and
"(Mono, di, etc,)photo-(mono, di. etc.) charge" shall be used as a shorthand reference to refer to the total number of photoreactive groups and the total number and type of charged groups in a linking agent of this invention. For instance, "DiphotoDiquat" shall mean a linking agent of the present invention having two photoreactive groups and two quaternary ammonium groups, examples of which include, but are not limited to, those shown in Formulas II through V of Table I. As other examples, "Triphoto-Triquat" shall mean a linking agent of the present invention having three photoreactive groups and three quaternary ammonium groups (e.g., Formula VI); and "Diphoto-Monosulfonate" shall mean a linking agent having two photoreactive groups and a sulfonate group (e.g., Formula X); and so forth.
In a preferred embodiment, the invention provides a linking agent of the general formula:
X - Y - X
wherein each X is independently a radical containing a photoreactive group and Y is a radical containing one or more charged groups. CHARGE-CONTAINING RADICAL "Y"
The linking compound of the present invention includes one or more charged groups, and optionally one or more additional photoreactive groups, included in the radical identified in the empirical formula as "Y". A "charged" group, when used in this sense, refers to groups that are present in ionic form, i.e., carry an electrical charge under the conditions (e.g., pH) of use. The charged groups are present, in part, to provide the compound with the desired water solubility.
Preferred Y groups are nonpolymeric, that is, they are not formed by
polymerization of any combination of monomers. Nonpolymeric linking agents are preferred since they will tend to have lower molecular mass, which in turn means that they can generally be prepared to have a higher concentration of photoreactive groups per unit mass. In turn, they can generally provide a higher coating density of photoreactive groups than comparable photoreactive polymeric agents (e.g., the photoPVP reagents described in the '582 patent described above).
The type and number of charged groups in a preferred linking agent are sufficient to provide the agent with a water solubility (water at room temperature and optimal pH) of at least about 0.1 mg/ml, and preferably at least about 0.5 mg/ml, and more preferably at least about 1 mg/ml. Given the nature of the surface coating process, linking agent solubility levels of at least about 0.1 mg/ml are generally adequate for providing useful coatings of target molecules on surfaces.
This can be contrasted with linking agents in the art, which are typically considered to be insoluble in water (e.g., have a comparable water solubility in the range of about 0.1 mg/ml or less, and more often about 0.01 mg/ml or less). For this reason, conventional linking agents are typically provided and used in solvent systems in which water is either absent or is provided as a minor (i.e., < 50% by volume) component.
Examples of suitable charged groups include, but are not limited to, salts of organic acids (such as sulfonate, phosphonate, and carboxylate groups), onium
compounds (such as quaternary ammonium, sulfonium, and phosphonium groups), and protonated amines, as well as combinations thereof. An example of a linking agent employing charged groups other than quaternary ammonium compounds is provided in Formula X of Table I. By reference to the empirical formula provided above, it can be seen that R3 in Formula X would be a lone pair of electrons, in order to provide a tertiary amine group, and R2 would contain a charged sulfonate group in a radical of the formula - CH2-CH2-SO3Na. Sufficient overall charge to render the compound water soluble is provided by the negative charge of the remote sulfonate group.
A preferred charged group for use in preparing linking compounds of the present invention is a quaternary ammonium group. The term "quaternary ammonium", as used herein, refers to organic derivatives of NH4 + in which the hydrogen atoms are each replaced by radicals, thereby imparting a net positive charge on the radical. The remaining counterion can be provided by any suitable anionic species, e.g., as a chloride, bromide, iodine, or sulfate ion.
PHOTOREACTIVE "X" GROUPS
In a preferred embodiment two or more photoreactive groups are provided by the
X groups attached to the central Y radical. Upon exposure to a suitable light source, each of the photoreactive groups are subject to activation. The term "photoreactive group", as used herein, refers to a chemical group that responds to an applied external energy source in order to undergo active specie generation, resulting in covalent bonding to an adjacent chemical structure (e.g. , an abstractable hydrogen).
Preferred X groups will be sufficiently photoreactive to provide a visual indication of crosslinking in a standardized evaluation of the following type (where additional experimental conditions are provided in the Examples below). A solution containing linking agent of the present invention is used to prepare a coating solution with a water or water/cosolvent system as described herein, the solution having a linking agent concentration between 0.1 to 1 mg/ml. Reagent grade polyvinylpyrrolidone ("PVP", MW approx. 1.5 million daltons), such as that identified as Kollidon 90F ("K-90F") and available from BASF Corporation is added to the coating solution to achieve a final PVP concentration of about 20 mg/ml, and the resulting composition used to coat onto the surface of a polystyrene slip. The coating composition is then exposed for approximately 4 minutes, in situ, to a suitable light source such as a lamp providing an exposure wavelength of between 250 nm and 450 nm, with an intensity of at least about 1.5 mwatts/sq. cm. at the wavelength range required to promote hydrogen abstraction. The existence of coated PVP (i.e., crosslinked by the linking agent to the polystyrene surface) can be qualitatively determined by staining with Congo Red (Sigma). After extensive washing under a flow of deionized ("DI") water and rubbing, the presence of the bound PVP on the surface is visually verified by staining with a 0.35% solution of Congo Red in DI water.
Preferred groups are sufficiently stable to be stored under conditions in which they retain such properties. See, e.g., U.S. Patent No. 5,002,582, the disclosure of which is incorporated herein by reference. Latent reactive groups can be chosen that are responsive to various portions of the electromagnetic spectrum, with those responsive to ultraviolet and visible portions of the spectrum (referred to herein as "photoreactive") being particularly preferred.
Photoreactive aryl ketones are preferred, such as acetophenone, benzophenone, anthraquinone, anthrone, and anthrone-like heterocycles (i.e., heterocyclic analogues of anthrone such as those having N, O, or S in the 10- position), or their substituted (e.g., ring substituted) derivatives. The functional groups of such ketones are preferred since they are readily capable of undergoing the activation/inactivation/reactivation cycle described herein. Benzophenone is a particularly preferred photoreactive group, since it is capable of photochemical excitation with the initial formation of an excited singlet state that undergoes intersystem crossing to the triplet state. The excited triplet state can insert into carbon-hydrogen bonds by abstraction of a hydrogen atom (for example, from a support surface or target molecule in the solution and in bonding proximity to the agent), thus creating a radical pair. Subsequent collapse of the radical pair leads to formation of a new carbon-carbon bond. If a reactive bond (e.g., carbon-hydrogen) is not available for bonding, the ultraviolet light-induced excitation of the benzophenone group is reversible and the molecule returns to ground state energy level upon removal of the energy source. Hence, photoreactive aryl ketones are particularly preferred.
Preparation of Linking Agents.
Linking agents of the present invention can be prepared using available reagents and chemical conversions within the skill of those in the relevant art. For instance, quaternary ammonium salts can be prepared by the reaction of tertiary amines with alkyl halides using the Menschutkin reaction (Z. Physik. Chem. 5, 589 (1890)). The reaction rates of such conversions can be enhanced by the use of highly nucleophilic tertiary amines, together with alkyl halides having easily displaced halide anions. Typically, the order of reactivity is I- > Br > CI-, with primary halides and other highly reactive compounds such as benzylic halides being preferred for the reaction. The synthesis of benzyltrimethylammonium iodide, described in Organic Synthesis Collective Volume IV, 585 (1963), is a representative example of this reaction mechanism.
Di-, tri- or higher order quaternary ammonium compounds of the invention can be prepared, for instance, by reaction of 4-bromomethylbenzophenone ("BMBP") with compounds containing two or more tertiary amine groups. Specific examples of such amines include, but are not limited to, N,N,N',N'-tetramethylenediamine, N,N,N',N'-tetramethyl-1 ,6-hexanediamine, N,N,N',N',N"-pentamethylenediethylenetriamine, and 1,4-dimethylpiperazine.
Table I shows examples of preferred photoactivatable linking agents of the present invention.
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Use of Linking Agents.
Linking agents can be used in any suitable manner, including by the simultaneous or sequential attachment of a chemical compound to a surface. Linking agents of the present invention can be used to modify any suitable surface. Where the latent reactive group of the agent is a photoreactive group of the preferred type, it is particularly preferred that the surface provide abstractable hydrogen atoms suitable for covalent bonding with the activated group.
Plastics such as polyolefins, polystyrenes, poly (methyl) methacrylates,
polyacrylonitriles, poly(vinylacetates), poly (vinyl alcohols), chlorine-containing polymers such as poly(vinyl) chloride, polyoxymethylenes, polycarbonates, polyamides, polyimides, polyurethanes, phenolics, amino-epoxy resins, polyesters, silicones, cellulose-based plastics, and rubber-like plastics can all be used as supports, providing surfaces that can be modified as described herein. See generally, "Plastics", pp. 462-464, in Concise Encyclopedia of Polymer Science and Engineering. Kroschwitz, ed. , John Wiley and Sons, 1990, the disclosure of which is incorporated herein by reference. In addition, supports such as those formed of pyrolytic carbon and silylated surfaces of glass, ceramic, or metal are suitable for surface modification. Suitable target molecules for use in the present invention, for attachment to a support surface, encompass a diverse group of substances. Target molecules can be used in either an underivatized form or previously derivatized. Moreover, target molecules can be immobilized singly or in combination with other types of target molecules.
Target molecules can be immobilized to the surface either after (e.g., sequentially) the surface has been primed with linking agent. Preferably, however, target molecules are immobilized during (e.g. , simultaneously with) attachment of the present linking agent to the surface.
Typically, target molecules are selected so as to confer particular desired properties to the surface and/or to the device or article bearing the surface. Examples of suitable target molecules, and the surface properties they are typically used to provide, is represented by the following nonlimiting list:
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Any suitable technique can be used for linking agent attachment to a surface, and such techniques can be selected and optimized for each material, process, or device. The linking agent can be successfully applied to clean material surfaces as listed above by spray, dip, or brush coating of a solution of the reactive linking agent. In a typical simultaneous application, the support intended for coating is first dipped in an aqueous solution of linking agent and target molecule. Suitable aqueous solvents for use in the present invention include at least about 50% water (by volume), and optionally include between about 10% and about 50% of one or more suitable cosolvents such as isopropyl alcohol. The cosolvent typically has little, if any effect on the solubility of the linking agent in the solvent system, and is instead used to reduce the surface tension of the solution in order to promote effective coating of the surface. The coated surface is then exposed to ultraviolet or visible light in order to promote covalent bond formation between the linking agent, target molecule, and material surface, after which the support is washed to remove unbound molecules.
In a typical sequential application, the support is first dipped in an aqueous solution of the linking agent and the linking agent-coated support is then exposed to ultraviolet or visible light in order to promote covalent bond formation at the material surface. After washing to remove any unbound linking agent, a solution containing the target molecule is applied, followed by a second UV illumination which results in attachment of the target molecule to the surface via the linking agent.
When desired, other approaches can be used for surface modification using the linking agent of the present invention. This approach is particularly useful in those situations in which a support is difficult to modify using conventional chemistry, or for situations that require exceptional durability and stability of the target molecule on the surface.
The present invention provides a reagent and method useful for altering the surface properties of a variety of devices of medical, scientific, and industrial importance, using a broad spectrum of suitable target molecules.
The invention will be further described with reference to the following nonlimiting Examples. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the present invention. Thus the scope of the present invention should not be limited to the embodiments described in this application, but only by embodiments described by the language of the claims and the equivalents of those embodiments. Unless otherwise indicated, all percentages are by weight.
EXAMPLES
Example 1
Preparation of 4-Bromomethylbenzophenone (Compound I)
4-Methylbenzophenone, 750 g (3.82 moles), was added to a 5 liter Morton flask equipped with an overhead stirrer and dissolved in 2850 ml of benzene. The solution was then heated to reflux, followed by the dropwise addition of 610 g (3.82 moles) of bromine in 330 ml of benzene. The addition rate was approximately 1.5 ml/min and the flask was illuminated with a 90 watt (90 joule/sec) halogen spotlight to initiate the reaction. A timer was used with the lamp to provide a 10% duty cycle (on 5 seconds, off 40 seconds), followed in one hour by a 20% duty cycle (on 10 seconds, off 40 seconds). At the end of the addition, the product was analyzed by gas chromatography and was found to contain 71 % of the desired 4-bromomethylbenzophenone, 8% of the dibromo product, and 20% unreacted 4-methylbenzophenone. After cooling, the reaction mixture was washed with 10 g of sodium bisulfite in 100 ml of water, followed by washing with 3 × 200 ml of water. The product was dried over sodium sulfate and recrystallized twice from 1:3 toluene: hexane. After drying under vacuum, 635 g of 4-bromomethylbenzophenone were isolated, providing a yield of 60%, having a melting point of 112-114°C. Nuclear magnetic resonance ("NMR") analysis (1H NMR (CDCl3)) was consistent with the desired product: aromatic protons 7.20-7.80 (m, 9H) and methylene protons 4.48 (s, 2H). All chemical shift values are in ppm downfield from a tetramethylsilane internal standard.
Example 2
Preparation of Ethylenebis(4-benzoylbenzyldimethylammonium) Dibromide (Diphoto¬
Diquat) (Compound II)
N,N,N',N'-Tetramethylethylenediamine, 6 g (51.7 mmol), was dissolved in 225 ml of chloroform with stirring. 4-Bromomethylbenzophenone, 29.15 g (106.0 mmol), was added as a solid and the reaction mixture was stirred at room temperature for 72 hours. After this time, the resulting solid was isolated by filtration and the white solid was rinsed with cold chloroform. The residual solvent was removed under vacuum and 34.4 g of solid were isolated for a 99.7% yield, melting point 218-220°C. Analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (DMSO-d6) aromatic protons 7.20-7.80 (m, 18H), benzylic methylenes 4.80 (br. s, 4H), amine methylenes 4.15 (br. s, 4H), and methyls 3.15 (br. s, 12H).
Example 3
Preparation of Hexamethylenebis(4-benzoylbenzyldimethylammonium) Dibromide
(Diphoto-Diquat) (Compound III)
N,N,N',N'-Tetramethyl-1,6-hexanediamine, 1 g (5.80 mmol), was dissolved in 50 ml of chloroform. 4-Bromomethylbenzophenone, 3.35 g (12.18 mmol), was then added as a solid and the resulting solution was stirred at 50°C for 18 hours. After this time the clear solution was treated with ether. The resulting slurry was allowed to cool to room temperature and the solid allowed to settle. The liquid was decanted and the remaining solid triturated exhaustively with ether. The resulting solid was dried under vacuum to give 4.19g of solid for a quantitative yield, melting point 208-209°C. Analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (DMSO-d6) aromatic protons 7.25-7.90 (m, 18H), benzylic methylenes 4.65 (br. s, 4H), amine methylenes 3.25 (br. s, 4H), methyls 3.00 (br. s, 12H), and methylenes 1.60-2.10 (m, 4H) and 1.20-1.60 (m, 4H).
Example 4
Preparation of 1 ,4-Bis(4-benzoylbenzyl)-1,4-dimethylpiperazinediium Dibromide
(Diphoto-Diquat) (Compound IV)
1,4-Dimethylpiperazine, 1 g (8.76 mmol), was dissolved in 10 ml of chloroform, followed by the addition of 4.94 g (17.96 mmol) of 4-bromomethylbenzophenone. The solid dissolved within 15 minutes with precipitation of the solid product occurring after 30 minutes. The mixture was allowed to stir overnight at room temperature under an argon atmosphere. The product was diluted with ether and the solid was filtered and rinsed with ether. The resulting product was dried under vacuum to give 5.82 g of solid for a quantitative yield, melting point 241-244°C. Analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (DMSO-d6) aromatic protons 7.25-7.90 (m, 18H), benzylic methylenes 4.80-5.30 (m, 4H), ring methylenes 2.90-4.40 (m, 8H), and methyls 3.25 (br. s, 6H).
Example 5
Preparation of Bis(4-benzoylbenzyl)hexamethylenetetraminediium Dibromide
(Diphoto-Diquat) (Compound V)
Hexamethylenetetramine, 1 g (7.13 mmol), and 4-bromomethylbenzophenone, 4.02 g (14.6 mmol), were dissolved in 100 ml of chloroform at room temperature. This solution was then heated at reflux for 48 hours. After cooling to room temperature, the product was precipitated by the addition of 1 liter of ether and the resulting oily solid was extracted three times with warm ether. Residual solvent was removed under vacuum to give 2.69 g of a white solid for a 54.7% yield, melting point 138-141°C. Analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (DMSO-d6) aromatic protons 7.40-7.90 (m, 18H), benzylic methylenes 5.10 (s, 4H), and ring methylenes 5.00 (br. s, 2H), 4.50 (br. s, 8H) and 4.15 (br. s, 2H).
For further purification, a 200 mg sample was loaded on a normal phase flash silica gel column and the nonpolar components were eluted from the column using 10% (v/v) methanol in chloroform. The silica gel bed was then removed and was thoroughly extracted with 10% (v/v) methanol in chloroform to give a purified sample. Example 6
Preparation of Bis[2-(4-benzoylbenzyldimethylammonio)ethyn-4- benzoylbenzylmethylammonium Tribromide (Triphoto-Triquat) (Compound VI) N,N,N',N',N"-Pentamethyldiethylenetriamine, 1 g (5.77 mmol), was dissolved in 20 ml of chloroform with stirring. 4-Bromomethylbenzophenone, 4.84 g (17.60 mmol), was added as a solid and the resulting solution was stirred at 50°C for 48 hours. After cooling, the solution was treated with ether and the resulting solid was allowed to settle. The liquid was decanted and the remaining solid triturated with ether. The resulting oily solid was dried under vacuum for two hours. The resulting solid weighed 5.08 g for an 88.1 % yield, melting point 123-128°C. Analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (CDCl3) aromatic protons 7.20-8.10 (m, 27H), benzylic methylenes 5.15 (s, 6H), methylenes 4.05 (br. s, 8H), and methyls 3.35 (br. s, 15H).
Example 7
Preparation of 4.4-Bis(4-benzoylbenzyl)morpholinium Bromide
(Diphoto-Monoquat) (Compound VII)
Morpholine, 0.85 g (9.76 mmol), was dissolved in 10 ml of dry tetrahydrofuran ("THF"), followed by the addition of 0.39 g (9.76 mmol) of NaH (60% suspension in oil). The mixture was heated at 50-60°C for 10 minutes to form the anion, followed by the addition of 2.68 g (9.76 mmol) of 4-bromomethylbenzophenone. The mixture was allowed to stir overnight and then was filtered to remove insolubles, washing the filter cake with 3 × 10 ml of CHCl3. The solvents were removed under reduced pressure and the product redissolved in 50 ml of CHCl3, followed by washing with 2 × 30 ml of water. After drying over Na2SO4, evaporation of solvent gave 2.9 g of product, >95% pure by gas chromatographic ("GC") analysis. The analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (CDCl3) aromatic protons 7.20-7.80 (m, 9H), methylenes adjacent to oxygen 3.55-3.80 (m, 4H), benzylic methylene 3.50 (s, 2H), and methylenes adjacent to nitrogen 2.30-2.55 (m, 4H).
The above product, 2.4 g (8.07 mmol), was dissolved in 5 ml of CHCl3 with stirring. 4-Bromomethylbenzophenone, 2.22 g (8.07 mmol), was added along with 120 mg (0.80 mmol) of NaI and the mixture was stirred overnight at room temperature. The mixture was filtered and the solid was washed with 3 × 5 ml of CHCl3 to give 0.95 g of a white solid. The filtrate contained significant amounts of less pure material due to the solubility of the product in organic solvents. 1H NMR (DMSO-d6) aromatic protons
7.30-7.85 (m, 18H), benzylic methylenes 4.95 (s, 4H), methylenes adjacent to oxygen 3.90-4.25 (m, 4H), and methylenes adjacent to nitrogen 3.15-3.60 (m, 4H).
Example 8
Preparation of Ethylenebis[(2-(4-benzoylbenzyldimethylammonio)ethyl)-4- benzoylbenzylmethylammonium] Tetrabromide (Tetraphoto-Tetraquat) (Compound VIII)
1,1,4,7, 10, 10-Hexamethyltriethylenetetramine, 1.0 g (4.34 mmol), is dissolved in 20 ml of chloroform with stirring. 4-Bromomethylbenzophenone, 5.02 g (18.23 mmol), is added as a solid and the mixture is stirred at 50°C for 48 hours. After cooling, the mixture is treated with ether and the resulting solid is isolated by filtration. The product is rinsed with ether and dried under vacuum. Example 9
Preparation of 1 , 1,4,4-Tetrakis(4-benzoylbenzyl)piperazinediium Dibromide
(Tetraphoto-Diquat) (Compound IX)
Piperazine, 1 g (11.61 mmol), is dissolved in 20 ml of dry THF, followed by the addition of 0.929 g (23.22 mmol) of NaH (60% suspension in oil). The mixture is warmed at 50-60°C for 10-20 minutes to form the anion, followed by the addition of 6.39 g (23.22 mmol) of 4-bromomethylbenzophenone. The mixture is stirred overnight and filtered to remove insolubles. After evaporation under reduced pressure, the product is redissolved in 50 ml of CHCl3 and washed with 2 × 30 ml of water. The product is dried over Na2SO4 and isolated by filtration and evaporation.
The above product is then dissolved in 10 ml of CHCl3, followed by the addition of 6.39 g (23.22 mmol) of 4-bromomethylbenzophenone. Nal, 120 mg (0.80 mmol), is added as a catalyst and the mixture is stirred until the starting materials are consumed. The product is isolated by precipitation with ether and the resulting solid is rinsed with ether and dried under vacuum.
Example 10
Preparation of N,N-Bis[2-(4-benzoylbenzyloxy)ethyl]-2-aminoethanesulfonic Acid- Sodium Salt (Diphoto-Monosulfonate) (Compound X)
Diethanolamine, 5.43 g (51.7 mmol), was diluted with 60 ml of CH2Cl2, followed by the addition of 5.20 g (51.5 mmol) of triethylamine and 11.3 g (51.7 mmol) of di-t-butyl dicarbonate at room temperature. After complete reaction as indicated by GC analysis, volatiles were removed under reduced pressure and the residue was dissolved in 45 ml of CHCl3. The organic was extracted successively with 2 × 45 ml of 1 N NaOH, 45 ml of 0.1 N NaOH, and 45 ml of 0.01 N NaOH. Each aqueous extract was then back-extracted with 3 × 45 ml of CHCl3. The combined organic extracts were purified on a silica gel flash chromatography column using ethyl acetate to give 6.74 g of t-BOC protected amine as a viscous oil, a 63% yield. The analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (CDCl3) hydroxyl protons and methylenes adjacent to oxygen 3.50-3.90 (m, 6H), methylenes adjacent to nitrogen 3.25- 3.50 (m, 4H), and t-butyl protons 1.45 (s, 9H).
The t-BOC protected amine, 6.7 g (32.6 mmol), was diluted with 50 ml of dry THF, followed by the addition of 19.72 g (71.72 mmol) of 4-bromomethylbenzophenone, 83 mg (0.55 mmol) of sodium iodide, and 1.75 g (5.43 mmol) of tetra-n-butylammonium bromide. 3.1 g (71.7 mmol) of sodium hydride (55% suspension in oil) was then added portion wise until approximately 80% of the quantity had been added. The mixture was allowed to stir overnight at room temperature, followed by the addition of the remaining 20% of the sodium hydride. After an additional hour of reaction, the product was diluted with 200 ml of water and the product was extracted with 3 × 100 ml of CHCl3. The bis-benzophenone t-BOC compound was purified on a silica gel flash chromatography column using 95/5 (v/v) CHCl3/acetonitrile, yielding 15.60 g (81 % of theory). The analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (CDCl3) aromatic protons 7.10-7.80 (m, 18H), benzylic methylenes 4.55 (s, 4H), remaining methylenes 3.30-3.75 (m, 8H), and t-butyl protons 1.45 (s, 9H).
The bis-benzophenone t-BOC compound, 0.52 g (0.877 mmol), was dissolved in 5 ml of ethyl acetate plus 2.5 ml of concentrated HCl and the mixture was stirred 30 minutes at room temperature. The pH was then adjusted to approximately 14 by the addition of 10 N NaOH and the desired product was extracted with 4 × 10 ml of CHCl3. After drying over sodium sulfate, evaporation of solvent gave the secondary amine product which was used without purification. The analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (CDCl3) aromatic protons 7.10-7.80 (m, 18H), benzylic methylenes 4.55 (s, 4H), methylenes adjacent to oxygen 3.60 (t, 4H), methylenes adjacent to nitrogen 2.85 (t, 4H), and amine proton 2.50 (s, 1H).
The secondary amine from above was diluted with 5 ml of N,N-dimethylformamide, followed by the addition of 0.185 g (0.877 mmol) of 2-bromoethanesulfonic acid, sodium salt. Once the solid was dissolved, 0.040 g (1 mmol) of 60% sodium hydride were added and the mixture was warmed at 60°C. When the reaction was found to proceed slowly, 6.3 mg ( 0.042 mmol) of sodium iodide were added and the heating was continued for 3 days. The product was diluted with 200 ml of water and the product was extracted with 3 × 200 ml of CHCl3. The desired sulfonate product was isolated by silica gel flash chromatography using CHCl3/CH3OH/NH4OH 90/10/1 (v/v/v) as solvent to give 150 mg of product for a 27% yield. The analysis on an NMR spectrometer was consistent with the desired product: 1H NMR (CDCl3) aromatic protons 7.10-7.80 (m, 18H), benzylic methylenes 4.50 (s, 4H), and remaining methylenes 2.90-4.00 (m, 12H).
Example 11
Surface Modification of Polyethylene (PE) by Application of PVP with Compound II A coating solution was prepared by dissolving PVP ("K90F", BASF Corporation) at 20 mg/ml and Compound II at 1 mg/ml in isopropyl alcohol (IPA)/water (1: 1). A high density polyethylene ("HDPE") rod (15 cm (6 in) long) was first wiped with an IPA soaked tissue, after which the rod was plasma pretreated at 300 mtorr in argon at 250 watts for two minutes. The rod was dip-coated in the coating solution by dipping into the solution at 2 cm (0.75 in.)/sec., dwelling for five seconds, and withdrawing at a rate of 0.5 cm (0.19 in.)/sec. After removal of the rod from the coating solution, it was air-dried for 10 minutes. The rod was suspended midway between opposed ELC 4000 lamps (40 cm (15.7 in.) apart) containing 400 watt mercury vapor bulbs which put out 1.5 mW/sq. cm from 330 - 340 nm at the distance of illumination. The rod was rotated and illuminated for three minutes to insure an even cure of the coating.
Extensive washing under a flow of deionized ("DI") water and rubbing the surface between the thumb and forefinger (approx. 30 seconds) indicated a strongly adherent layer of lubricous PVP as compared to an uncoated rod. The presence of the bound PVP on the surface was also verified by staining with a 0.35% solution of Congo Red (Sigma) in DI water.
Example 12
Surface Modification of Polyvinyl chloride (PVC) bv Application of PVP with Compound
II A PVC urinary catheter (17.8 cm (7.0 in.)) × (4.0 outer diameter (0.16 in.)) was coated in the manner described in Example 11.
Again extensive washing under a flow of running DI water and rubbing the surface with fingers (approx. 30 sec.) indicated a strongly adherent lubricous coating of PVP as compared to the uncoated control. Also the presence of the bound PVP on the surface was verified by the evenly stained dark red color produced by staining with a 0.35% solution of Congo Red in DI water. Example 13
Surface Modification of Polyurethane (PU) by Application of PVP with Compound II
A polyurethane ("PU") rod (15 cm (6 in.) long) was coated in the manner described in Example 11 , except the rod was not plasma pretreated and it was illuminated wet for four minutes (it should be dry after illumination).
The PU rod was washed extensively in a flow of running DI water and rubbing the surface with fingers (approx. 30 sec.) indicated a strongly adherent layer of lubricous PVP. The presence of the bound PVP on the surface was verified by staining as described in Example 11.
Example 14
Surface Modification of Latex Rubber by Application of PVP with Compound II A latex rubber catheter (16.5 cm (6.5 in.) x 6 mm (0.24 in.) outer diameter) was coated and the presence of the surface bound coating of PVP verified in a manner described in Example 13.
Example 15
Surface Modification of PE by Application of PVP and Heparin with Compound II A piece of HDPE rod (15 cm (6 in.) long) was washed and pretreated in a manner described in Example 11. The rod was initially coated using the coating solution and method described in Example 11. After the initial coat was cured, the rod was
subsequently dip-coated in a solution of PVP (K90F) at 20 mg/ml, heparin (Celsus Corp.) at 10 mg/ml, and Compound II at 1 mg/ml in IP A/water (40:60 v/v) by dipping the solution at 2 cm (0.75 in.)/ sec., dwelling for five seconds, and withdrawing at a rate of 0.5cm (0.19 in.)/ sec. The wet PE rod was suspended midway between opposed ELC 4000 lamps, rotated and illuminated for four minutes (should be dry after illumination) as described in Example 11.
Rubbing the rod between the thumb and forefinger (approx. 30 seconds) under a flow of DI water indicated a lubricous coating of PVP as compared to uncoated control. Also the presence of the bound heparin on the surface was verified by staining with a 0.1 % solution of Toluidine Blue O (Sigma) in DI water.
Example 16
Surface Modification of PVC by Application of PVP and Heparin with Compound II A PVC urinary catheter (20 cm (8 in.) × 4 mm (0.16 in.) outer diameter) was coated and the presence of both PVP and heparin bound on the surface verified as described in Example 15.
Example 17
Surface Modification of PU by Application of PVP and Heparin with Compound II A PU rod (15 cm (6 in.) long) was coated as described in Example 15 except that no plasma pretreatment was utilized. Evaluation of the rod as described in Example 15 indicated the presence of both PVP and heparin tenaciously bound to the rod surface.
Example 18
Surface Modification of Latex Rubber by Application of PVP and Heparin with
Compound II
A latex rubber urinary catheter (15 cm (6 in.) × 6 mm (0.24 in.)) outer diameter) was coated and evaluated as described in Example 15, except no plasma pretreatment was necessary and the catheter was coated using only a solution of PVP (K90F) at 20 mg/ml, heparin (Celsus Corp.) at 10 mg/ml, and Compound II at 1 mg/ml in IPA/water (40:60 v/v). Evaluation of the latex catheters described in Example 15 indicated the presence of PVP and heparin bound to the surface.
Example 19
Surface Modification of PU by Application of PVP with Compound III A coating solution was prepared by dissolving PVP (K90F) at 20 mg/ml and
Compound III at 1 mg/ml in IPA/water (1: 1 v/v). A PU rod (10 cm (3.9 in.) long) was wiped initially with an IPA soaked tissue. The rod was dip-coated in the coating solution by immersing into the solution at 2 cm (0.75 in.)/sec , dwelling for five seconds, and withdrawing at a rate of 1 cm (0.39 in.)/sec.. The PU rod was removed from the coating solution and suspended midway between opposed ELC 4000 lamps (40 cm (15.7 in.) apart) containing 400 watt mercury vapor bulbs which put out 1.5 mW/sq. cm from 330-340 nm, at the distance of illumination. The wet rod was rotated and illuminated for three minutes to insure an even cure of the coating.
The surface of the cured rod was rubbed by hand under a flow of DI water for 15 seconds and then stained with 0.35% solution of Congo Red which indicated the presence of PVP on the surface. The rod was again rubbed as previously described, followed by another staining with Congo Red. The coated section of the rod evenly stained dark red and felt lubricious compared to the uncoated control. There was no indication that the coating had rubbed off. A control rod coated with only a 20 mg/ml solution of PVP in IPA/water (1: 1 v/v) was not lubricious after rubbing, and did not stain with the Congo Red, indicating that the PVP was not tenaciously bound to the PU surface. Example 20
Surface Modification of PU by Application of PVP with Compound IV, V, or VI Polyurethane rods (10 cm (3.9 in.)) were coated as described in Example 19 except, the coating solutions contained 1 mg/ml of Compounds TV, V, or VI. The presence of a lubricious coating using each of the crosslinking agents was verified as indicated in Example 19.
Example 21
Surface Modification of PE by Application of PVP with Compound III, IV, V, or VI HDPE rods (12 cm (4.7 in.)) were coated as described in Example 19 with the same concentrations of PVP and Compounds III, IV, V, or VI, except the rods were plasma pretreated at 300 mtorr in oxygen at 100 watts for three minutes. Evaluation of the surface of the rods by both hand rubbing and Congo Red staining as described in Example 19, for all four linking agents indicated an evenly stained dark red coating which felt lubricious compare to uncoated controls.
Example 22
Surface Modification of HDPE, LDPE, PU, and Nylon with PVO1, PVP, and Compound
II or VI
Two coating solutions were prepared as follows: Solution #1 contained
PVO1/PVP(K90F)/Compound II (10/20/1 mg/ml, respectively) in 30% (v/v) IPA in water. Solution #2 contained PVO1/PVP(K90F)/Compound VI (10/20/1 mg/ml, respectively) in 30% (v/v) IPA in water. PVOl (PhotoPVP) was prepared by
copolymerization of 1-vinyl-2-pyrrolidone and N-(3-aminopropyl)methacrylamide
(APMA), followed by photoderivatization of the polymer using 4-benzoylbenzoyl chloride under Schotten-Baumann conditions e.g., a two phase aqueous/organic reaction system. All four substrates, PU rods and LDPE tubing (31 cm (12.2 in.)), and HDPE rods and nylon tubing (20 cm (7.87 in.)) were wiped with IPA soaked tissues and dip-coated in each of the coating solutions by dipping into the solution at 2 cm (0.75 in.)/sec., dwelling for 30 seconds, and withdrawing at a rate of 0.5 cm (0.19 in.)/sec. The substrates were suspended midway between two opposed ELC 4000 lamps, as previously described
(Example 11), and the wet substrates were rotated and illuminated for four minutes to adequately cure the coatings.
The cured substrates were rubbed (10 times) between the thumb and forefinger (approx. 30 sec.) under a flow of DI water, stained with 0.35% solution of Congo Red, re-rubbed (30 times) and restained to demonstrate the presence of bound PVP. The tenacity of the coatings on the substrates was evaluated by coefficient of friction (C.O.F.) using a modified ASTM protocol for tubing. Results indicated that the addition of reagents II and VI agents greatly enhanced the durability of the coatings with only a slight decrease in lubricity as compared to the PVO1/PVP controls.
Example 23
Surface Modification of HDPE, LDPE, PU, and Nylon with PVO1 and Compound II or
Compound VI
The four different substrates were coated with two different solutions. Solution #1 contained PVO1/Compound II (20/0.5 mg/ml, respectively) in 30% (v/v) IPA in water. Solution #2 consisted of PVO1/Compound VI (20/0.5 mg/ml, respectively) in 30% (v/v) IPA in water. The materials were coated and evaluated as described in Example 22. The surface coatings were more tenacious as compared to PVO1/PVP controls without the linking agents but were also less lubricious than the controls, but well within acceptable ranges. Example 24
Surface Modification of PU by Sequential Application of Compound II, III , IV, V, or VI and PVP
PU rods (10 cm (3.9 in.) were wiped with an IPA soaked tissue. The rods were dip-coated in solutions of Compound II (10 mg/ml), Compound III (10 mg/ml),
Compound IV (4 mg/ml), Compound V (10 mg/ml), or Compound VI (10 mg/ml) in IPA/water (1: 1 v/v) in the manner described in Example 11. The rods were illuminated for one minute with ELC 4000 lamps as previously described (Example 11) and rotated to insure an even cure of the coating. The rods were then dip-coated into a solution of PVP (20 mg/ml) in IPA, allowed to air-dry, and then illuminated for three minutes as previously described (Example 11).
The cured rods were rubbed between fingers under running DI water (15sec.) and then stained 0.35% Congo Red to demonstrate the presence of bound PVP on the surface. All of the photoreagents produced tenacious and lubricious coatings on the PU rods except Compound IV coating which exhibited a decrease in the tenacity and lubricity of the PVP coating.
Example 25
Surface Modification of HDPE by Sequential Application of Compound II, III, IV, V, or
VI and PVP
Flat pieces of HDPE, 5 cm (1.97 in.) x 1.5 cm (0.59 in.) x 4mm(0.16 in.) were first wiped with an IPA soaked tissue and then each side was pretreated at 300 mtorr in oxygen at 100 watts for one minute. The pieces were then dipped in solutions of
Compounds II, III, IV, V, or VI at concentrations previously reported (Example 24). The flat pieces were then illuminated for one minute as described in Example 11. After curing, the pieces were dip-coated into a solution of PVP (20 mg/ml) in IPA, air-dried, and illuminated for three minutes (see Example 11).
Extensive washing under a flow of DI water and rubbing between the thumb and forefinger (2 × 15sec.), followed by staining with 0.35% Congo Red indicated tenacious and lubricious coatings with the use of each of the photoreagents.
Example 26
Modification of PU with PVP and Compound VII
Two coating solutions were prepared as follows: Solution #1 contained
PVP(K90F)/Compound VII (17/1 mg/ml, respectively) in 50% (v/v) IPA in water.
Solution # 2 contained PVP(K90F) (12 mg/ml) in 50% (v/v) IPA in water.
PU rods (16 cm (6.3 in.)) were wiped with IPA soaked tissues and dip-coated in each of the coating solutions by dipping into the solution at 2 cm (0.75in)/sec, dwelling for 30 seconds, and withdrawing at a rate of 0.7 cm (0.27 in.)/sec. Samples of both control rods and those coated with Compound VII were either allowed to air-dry for 10 minutes prior to illumination or illuminated wet. The substrates were suspended midway between two opposed ELC 4000 (40 cm (15.7 in.) apart) as previously described
(Example 11). The rods were rotated and illuminated for two minutes ( dry illumination) or four minutes (wet illumination).
Extensive washing of all the rods under a flow of DI water and rubbing the surface between the thumb and forefinger (appprox. 30 seconds) indicated a strongly adherent layer of lubricious PVP using Compound VII as compared to the controls containing only PVP. Also the presence of the bound PVP on the surfaces treated with PVP and Compound VII was verified by the evenly stained dark red color produced by staining with a 0.35% solution of Congo Red in DI water. Rods only coated with adsorbed PVP exhibited no color or a very light pink stain.
Example 27
Modification of PU with PVP and Compound X
A coating solution was prepared by dissolving PVP(K90F) at 20 mg/ml and
Compound X at 1 mg/ml in DI water containing 0.5 equivalent of 0.1 N NaOH. A PU rod (18 cm (7.1 in.) long) was first wiped with an IPA soaked tissue and dip-coated in the coating solution by dipping into the solution at 2 cm (0.74 in.)/sec., dwelling for 15 seconds, and withdrawing at a rate of 1 cm (0.38 in.)/sec. The wet PU rod was suspended midway between opposed ELC 4000 lamps, rotated and illuminated for 3 minutes as described in Example 11.
Extensive washing under a flow of DI water and rubbing the surface between the thumb and forefinger (approx. 30 seconds) indicated an adherent layer of lubricious PVP as compared to an uncoated rod. The presence of the bound PVP on the surface was also verified with a 0.35% solution of Congo Red in DI water.

Claims

CLAIMS What is claimed is:
1. A photoactivatable chemical linking agent comprising a charged, nonpolymeric di- or higher functional photoactivatable compound.
2. A linking agent according to claim 1 wherein the agent comprises two or more photoreactive groups and one or more charged groups sufficient to allow the agent to be used as a cross-linking agent in a solvent system having water as a major component.
3. A linking agent according to claim 2 wherein the charged group is selected from the group consisting of salts of organic acids, onium compounds, and protonated amines, and combinations thereof.
4. A linking agent according to claim 3 wherein the salts of organic acids are selected from the group consisting of sulfonate, phosphonate, and carboxylate groups, and the onium compounds are selected from the group consisting of quaternary ammonium, sulfonium, and phosphonium groups, and combinations thereof.
5. A linking agent according to claim 2 wherein the photoreactive groups are provided by two or more radicals each containing an aryl ketone.
6. A linking agent according to claim 5 wherein each aryl ketone is selected from the group consisting of acetophenone, benzophenone, anthraquinone, anthrone, and an throne-like heterocycles, and their substituted derivatives.
7. A photoactivatable cross-linking agent comprising a compound of the formula:
X - Y - X wherein each X, independently, is a radical containing a photoreactive group and Y is a radical containing one or more charged groups, wherein the number and/or type of charged group(s) is sufficient to provide the molecule with sufficient aqueous solubility to allow the agent to be used in a solvent system having water as the major component.
8. A linking agent according to claim 7 wherein Y comprises one or more charged groups selected from the group consisting of salts of organic acids, onium compounds, and protonated amines, and combinations thereof.
9. A linking agent according to claim 8 wherein the salts of organic acids are selected from the group consisting of sulfonate, phosphonate, and carboxylate groups, and the onium compounds are selected from the group consisting of quaternary ammonium, sulfonium, and phosphonium groups, and combinations thereof.
10. A linking agent according to claim 7 wherein each X comprises a photoreactive groups in the form of an aryl ketone.
11. A linking agent according to claim 10 wherein each aryl ketone is selected from the group consisting of acetophenone, benzophenone, anthraquinone, anthrone, and anthrone-like heterocycles, and their substituted derivatives.
12. A linking agent according to claim 8 wherein Y comprises an onium compound comprising one or more quaternary ammonium groups.
13. A linking agent according to claim 12 wherein the onium compound comprises a linear or heterocyclic radical selected from the group consisting of:
Figure imgf000042_0001
,
Figure imgf000043_0003
,
Figure imgf000043_0004
,
Figure imgf000043_0005
, ,
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000044_0001
wherein each R1 independently is a radical containing an alkylene, oxyalkylene, cycloalkylene, arylene, or aralkylene group, each R2 independently is a radical containing an alkyl, oxyalkyl, cycloalkyl, aryl, or aralkyl group, and each R3 independently is either a non-bonding pair of electrons, a hydrogen atom, or a radical of the same definition as R2, in which the R1, R2 and R3 groups can contain noninterfering heteroatoms or substituents.
14. A photoactivatable cross-linking agent selected from the group consisting of:
Figure imgf000044_0002
,
Figure imgf000044_0003
,
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000048_0002
15. A method of coating a surface with a target molecule, the method comprising the steps of providing a photoactivatable chemical linking agent comprising a charged, nonpolymeric di- or higher functional photoactivatable compound, forming a solvent system having water as the major component and comprising the linking agent and a target molecule, providing the solvent system in bonding proximity to the surface, and activating the photoreactive groups of the linking agent in order to cross-link the target molecule to the surface.
16. A method according to claim 15 wherein the linking agent comprises two or more photoreactive groups and one or more charged groups.
17. A method according to claim 16 wherein the charged group is selected from the group consisting of salts of organic acids, onium compounds, and protonated amines, and combinations thereof.
18. A method according to claim 17 wherein the salts of organic acids are selected from the group consisting of sulfonate, phosphonate, and carboxylate groups, and the onium compounds are selected from the group consisting of quaternary ammonium, sulfonium, and phosphonium groups, and combinations thereof.
19. A method according to claim 16 wherein the photoreactive groups are provided by two or more radicals each containing an aryl ketone.
20. A method according to claim 19 wherein each aryl ketone is selected from the group consisting of acetophenone, benzophenone, anthraquinone, anthrone, and anthrone-like heterocycles, and their substituted derivatives.
21. A surface bearing a coating comprising a target molecule cross-linked to the surface by the activation of a photoactivatable chemical linking agent, the agent comprising a charged, nonpolymeric di- or higher functional photoactivatable compound.
22. A surface according to claim 21 wherein the linking agent provides two or more photoactivatable groups and one or more charged groups sufficient to allow the agent to be used as a cross-linking agent in a solvent system having water as a major component.
23. A surface according to claim 22 wherein the charged group is selected from the group consisting of salts of organic acids, onium compounds, and protonated amines, and combinations thereof.
24. A surface according to claim 21 wherein the salts of organic acids are selected from the group consisting of sulfonate, phosphonate, and carboxylate groups, and the onium compounds are selected from the group consisting of quaternary ammonium, sulfonium, and phosphonium groups, and combinations thereof.
25. A surface according to claim 24 wherein the photoreactive groups are provided by two or more radicals each containing an aryl ketone.
26. A surface according to claim 25 wherein each aryl ketone is selected from the group consisting of acetophenone, benzophenone, anthraquinone, anthrone, and anthrone-like heterocycles, and their substituted derivatives.
PCT/US1996/017645 1995-11-03 1996-10-31 Water soluble cross-linking agents WO1997016544A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP96937893A EP0862624B1 (en) 1995-11-03 1996-10-31 Water soluble cross-linking agents
CA002236588A CA2236588C (en) 1995-11-03 1996-10-31 Water soluble cross-linking agents
JP51760797A JP4602480B2 (en) 1995-11-03 1996-10-31 Water-soluble crosslinking agent
DE69632541T DE69632541T2 (en) 1995-11-03 1996-10-31 WATER-SOLUBLE NETWORKING AGENT
AU75531/96A AU731249B2 (en) 1995-11-03 1996-10-31 Photoactivatable water soluble cross-linking agents containing an onium group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/552,758 1995-11-03
US08/552,758 US5714360A (en) 1995-11-03 1995-11-03 Photoactivatable water soluble cross-linking agents containing an onium group

Publications (1)

Publication Number Publication Date
WO1997016544A1 true WO1997016544A1 (en) 1997-05-09

Family

ID=24206679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/017645 WO1997016544A1 (en) 1995-11-03 1996-10-31 Water soluble cross-linking agents

Country Status (7)

Country Link
US (2) US5714360A (en)
EP (1) EP0862624B1 (en)
JP (2) JP4602480B2 (en)
AU (1) AU731249B2 (en)
CA (1) CA2236588C (en)
DE (1) DE69632541T2 (en)
WO (1) WO1997016544A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016907A2 (en) * 1997-09-30 1999-04-08 Surmodics, Inc. Reagent and method for attaching target molecules to a surface
WO1999043688A1 (en) * 1998-02-24 1999-09-02 Surmodics, Inc. Photoactivatable nucleic acid derivatives
WO2001021326A1 (en) * 1999-09-22 2001-03-29 Surmodics, Inc. Water-soluble coating agents bearing initiator groups and coating process
WO2001044174A1 (en) * 1999-12-14 2001-06-21 Surmodics, Inc. Surface coating agents
US6465178B2 (en) 1997-09-30 2002-10-15 Surmodics, Inc. Target molecule attachment to surfaces
WO2003008646A2 (en) * 2001-07-17 2003-01-30 Surmodics, Inc. Method for making a self-assembling monolayer and composition
US6689473B2 (en) 2001-07-17 2004-02-10 Surmodics, Inc. Self assembling monolayer compositions
US6762019B2 (en) 1997-09-30 2004-07-13 Surmodics, Inc. Epoxide polymer surfaces
EP1465740A1 (en) * 2001-12-21 2004-10-13 SurModics, Inc. Reagent and method for providing coatings on surfaces
EP1612556A1 (en) * 2003-04-09 2006-01-04 Riken Method of fixing low-molecular compound to solid-phase support
DE10064096B4 (en) * 2000-12-21 2006-08-24 Wöhlk Contact-Linsen GmbH A method for permanent hydrophilization of a contact lens surface and coated silicone contact lens
US7309593B2 (en) 2003-10-01 2007-12-18 Surmodics, Inc. Attachment of molecules to surfaces
JP2011025247A (en) * 2010-10-08 2011-02-10 Surmodics Inc Water-soluble coating agent having initiator group and coating method
CN102325825A (en) * 2009-02-18 2012-01-18 乔治亚大学研究基金公司 Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, and methods of using photochemical cross-linkable polymers
WO2011072199A3 (en) * 2009-12-10 2012-02-02 Surmodics, Inc. Water-soluble degradable photo-crosslinker
US9879117B2 (en) 2010-04-28 2018-01-30 University Of Georgia Research Foundation, Inc. Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
WO2018002322A3 (en) * 2016-06-30 2018-06-07 Freie Universität Berlin Amphiphilic block copolymer and coating arrangement
US10010074B2 (en) 2011-10-14 2018-07-03 University Of Georgia Research Foundation, Inc. Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
US10315987B2 (en) 2010-12-13 2019-06-11 Surmodics, Inc. Photo-crosslinker

Families Citing this family (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540154B1 (en) * 1991-04-24 2003-04-01 Aerogen, Inc. Systems and methods for controlling fluid feed to an aerosol generator
US6782886B2 (en) 1995-04-05 2004-08-31 Aerogen, Inc. Metering pumps for an aerosolizer
US6205999B1 (en) 1995-04-05 2001-03-27 Aerogen, Inc. Methods and apparatus for storing chemical compounds in a portable inhaler
US5758637A (en) 1995-08-31 1998-06-02 Aerogen, Inc. Liquid dispensing apparatus and methods
US5714360A (en) * 1995-11-03 1998-02-03 Bsi Corporation Photoactivatable water soluble cross-linking agents containing an onium group
US20040266706A1 (en) * 2002-11-05 2004-12-30 Muthiah Manoharan Cross-linked oligomeric compounds and their use in gene modulation
US6121027A (en) 1997-08-15 2000-09-19 Surmodics, Inc. Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
US6066446A (en) * 1997-12-19 2000-05-23 Nen Life Science Products, Inc. Assay member and method for its manufacture
US7547445B2 (en) * 1998-03-19 2009-06-16 Surmodics, Inc. Crosslinkable macromers
ATE219693T1 (en) * 1998-04-27 2002-07-15 Surmodics Inc BIOACTIVE ACTIVE COATINGS
US6514768B1 (en) 1999-01-29 2003-02-04 Surmodics, Inc. Replicable probe array
US20030148360A1 (en) * 1999-01-29 2003-08-07 Surmodics, Inc. Replicable probe array
US6235177B1 (en) 1999-09-09 2001-05-22 Aerogen, Inc. Method for the construction of an aperture plate for dispensing liquid droplets
MXPA02005863A (en) * 1999-12-17 2003-10-14 Cartificial As A prosthetic device.
US7220276B1 (en) 2000-03-06 2007-05-22 Surmodics, Inc. Endovascular graft coatings
US6410643B1 (en) 2000-03-09 2002-06-25 Surmodics, Inc. Solid phase synthesis method and reagent
US7600511B2 (en) * 2001-11-01 2009-10-13 Novartis Pharma Ag Apparatus and methods for delivery of medicament to a respiratory system
US7100600B2 (en) * 2001-03-20 2006-09-05 Aerogen, Inc. Fluid filled ampoules and methods for their use in aerosolizers
US6948491B2 (en) * 2001-03-20 2005-09-27 Aerogen, Inc. Convertible fluid feed system with comformable reservoir and methods
MXPA02010884A (en) * 2000-05-05 2003-03-27 Aerogen Ireland Ltd Apparatus and methods for the delivery of medicaments to the respiratory system.
US8336545B2 (en) * 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US7971588B2 (en) * 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US6543443B1 (en) 2000-07-12 2003-04-08 Aerogen, Inc. Methods and devices for nebulizing fluids
US6562136B1 (en) 2000-09-08 2003-05-13 Surmodics, Inc. Coating apparatus and method
DE10048417A1 (en) * 2000-09-29 2002-04-11 Roche Diagnostics Gmbh Branched linker connections
GB2371304A (en) * 2001-01-16 2002-07-24 Suisse Electronique Microtech Surface passivation of organic polymers and elastomers
US6546927B2 (en) 2001-03-13 2003-04-15 Aerogen, Inc. Methods and apparatus for controlling piezoelectric vibration
US6550472B2 (en) 2001-03-16 2003-04-22 Aerogen, Inc. Devices and methods for nebulizing fluids using flow directors
US6732944B2 (en) * 2001-05-02 2004-05-11 Aerogen, Inc. Base isolated nebulizing device and methods
US6554201B2 (en) 2001-05-02 2003-04-29 Aerogen, Inc. Insert molded aerosol generator and methods
US7195913B2 (en) 2001-10-05 2007-03-27 Surmodics, Inc. Randomly ordered arrays and methods of making and using
CA2466432A1 (en) * 2001-11-08 2003-05-15 Atrium Medical Corporation Intraluminal device with a coating containing a therapeutic agent
US7677467B2 (en) * 2002-01-07 2010-03-16 Novartis Pharma Ag Methods and devices for aerosolizing medicament
US20050205089A1 (en) * 2002-01-07 2005-09-22 Aerogen, Inc. Methods and devices for aerosolizing medicament
EP1471960B1 (en) 2002-01-07 2019-03-13 Novartis AG Devices for nebulizing fluids for inhalation
AU2003203043A1 (en) 2002-01-15 2003-07-30 Aerogen, Inc. Methods and systems for operating an aerosol generator
US7008979B2 (en) * 2002-04-30 2006-03-07 Hydromer, Inc. Coating composition for multiple hydrophilic applications
US6706408B2 (en) 2002-05-16 2004-03-16 Surmodics, Inc. Silane coating composition
US20070044792A1 (en) * 2005-08-30 2007-03-01 Aerogen, Inc. Aerosol generators with enhanced corrosion resistance
AU2003256253A1 (en) * 2002-05-20 2003-12-02 Aerogen, Inc. Aerosol for medical treatment and methods
US20060009116A1 (en) * 2002-06-13 2006-01-12 Vap Rudolph D Self-propelled figure
US20030232087A1 (en) * 2002-06-18 2003-12-18 Lawin Laurie R. Bioactive agent release coating with aromatic poly(meth)acrylates
US7097850B2 (en) * 2002-06-18 2006-08-29 Surmodics, Inc. Bioactive agent release coating and controlled humidity method
WO2004022201A1 (en) * 2002-09-03 2004-03-18 Whatman Plc Porous composite membrane and method for making the same
NZ539713A (en) * 2002-10-11 2008-07-31 Novocell Inc Implantation of encapsulated biological materials for treating diseases
US7285363B2 (en) * 2002-11-08 2007-10-23 The University Of Connecticut Photoactivators, methods of use, and the articles derived therefrom
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
US7041174B2 (en) 2003-02-19 2006-05-09 Sunmodics,Inc. Grafting apparatus and method of using
US7077910B2 (en) 2003-04-07 2006-07-18 Surmodics, Inc. Linear rail coating apparatus and method
IES20030294A2 (en) * 2003-04-17 2004-10-20 Medtronic Vascular Connaught Coating for biomedical devices
US20040209360A1 (en) * 2003-04-18 2004-10-21 Keith Steven C. PVA-based polymer coating for cell culture
US8616195B2 (en) * 2003-07-18 2013-12-31 Novartis Ag Nebuliser for the production of aerosolized medication
GB0319929D0 (en) * 2003-08-26 2003-09-24 Suisse Electronique Microtech Yarn and textile products
DE102004010430A1 (en) * 2004-03-01 2005-09-22 Rühe, Jürgen, Prof. Dr. Process for the covalent immobilization of biomolecules on organic surfaces
WO2005092324A1 (en) * 2004-03-19 2005-10-06 The Trustees Of Columbia University In The City Of New York Ginkgolide compounds, compositions, extracts, and uses thereof
WO2005097223A1 (en) * 2004-03-26 2005-10-20 Surmodics, Inc. Composition and method for preparing biocompatible surfaces
JP2007530173A (en) * 2004-03-26 2007-11-01 サーモディクス,インコーポレイティド Methods and systems for biocompatible surfaces
WO2005099786A1 (en) * 2004-04-06 2005-10-27 Surmodics, Inc. Coating compositions for bioactive agents
US20060083772A1 (en) * 2004-04-06 2006-04-20 Dewitt David M Coating compositions for bioactive agents
CA2601598A1 (en) * 2004-04-09 2005-10-20 Valorisation-Recherche, Societe En Commandite Phosphonium salts derivatives and their use as solubility controlling auxiliaries
US7290541B2 (en) * 2004-04-20 2007-11-06 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
US7946291B2 (en) 2004-04-20 2011-05-24 Novartis Ag Ventilation systems and methods employing aerosol generators
JP5175090B2 (en) * 2004-04-20 2013-04-03 ノバルティス アーゲー Submersible breathing system
US7267121B2 (en) * 2004-04-20 2007-09-11 Aerogen, Inc. Aerosol delivery apparatus and method for pressure-assisted breathing systems
WO2005111618A1 (en) * 2004-05-18 2005-11-24 Riken Substance-fixing agents, method of fixing substance with the same, and substrate having substance fixed with the same
US7604830B2 (en) * 2004-06-24 2009-10-20 Cook Incorporated Method and apparatus for coating interior surfaces of medical devices
US9000040B2 (en) 2004-09-28 2015-04-07 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US8367099B2 (en) 2004-09-28 2013-02-05 Atrium Medical Corporation Perforated fatty acid films
US9801913B2 (en) 2004-09-28 2017-10-31 Atrium Medical Corporation Barrier layer
US8124127B2 (en) 2005-10-15 2012-02-28 Atrium Medical Corporation Hydrophobic cross-linked gels for bioabsorbable drug carrier coatings
US9012506B2 (en) 2004-09-28 2015-04-21 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US20060067977A1 (en) * 2004-09-28 2006-03-30 Atrium Medical Corporation Pre-dried drug delivery coating for use with a stent
US9801982B2 (en) 2004-09-28 2017-10-31 Atrium Medical Corporation Implantable barrier device
WO2006036970A2 (en) * 2004-09-28 2006-04-06 Atrium Medical Corporation Method of thickening a coating using a drug
US8312836B2 (en) 2004-09-28 2012-11-20 Atrium Medical Corporation Method and apparatus for application of a fresh coating on a medical device
CA2585215A1 (en) * 2004-10-28 2006-05-11 Surmodics, Inc. Pro-fibrotic coatings comprising collagen for medical implants
US20060093647A1 (en) * 2004-10-29 2006-05-04 Villafana Manuel A Multiple layer coating composition
WO2006063181A1 (en) * 2004-12-06 2006-06-15 Surmodics, Inc. Multifunctional medical articles
WO2006099470A2 (en) * 2005-03-15 2006-09-21 Surmodics, Inc. Compliant polymeric coatings for insertable medical articles
US8002730B2 (en) 2005-04-29 2011-08-23 Medtronic, Inc. Anti-thrombogenic venous shunt system and method
JP4505581B2 (en) * 2005-05-17 2010-07-21 独立行政法人理化学研究所 Substance immobilization method
CA2607747C (en) * 2005-05-25 2015-12-01 Aerogen, Inc. Vibration systems and methods
CA2609198A1 (en) * 2005-06-02 2006-12-07 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles
US7772393B2 (en) * 2005-06-13 2010-08-10 Innovative Surface Technologies, Inc. Photochemical crosslinkers for polymer coatings and substrate tie-layer
US7989619B2 (en) * 2005-07-14 2011-08-02 Innovative Surface Technoloiges, Inc. Nanotextured surfaces
EP1904118B1 (en) * 2005-07-20 2018-01-17 Surmodics, Inc. Polymeric coatings and methods for cell attachment
WO2007012050A2 (en) * 2005-07-20 2007-01-25 Surmodics, Inc. Polymer coated nanofibrillar structures and methods for cell maintenance and differentiation
WO2007025059A1 (en) * 2005-08-26 2007-03-01 Surmodics, Inc. Silane coating compositions, coating systems, and methods
US20070141365A1 (en) * 2005-08-26 2007-06-21 Jelle Bruce M Silane Coating Compositions, Coating Systems, and Methods
ATE540705T1 (en) * 2005-09-21 2012-01-15 Surmodics Inc COVERS AND ARTICLES WITH NATURAL BIODEGRADABLE POLYSACCHARIDES
US9427423B2 (en) 2009-03-10 2016-08-30 Atrium Medical Corporation Fatty-acid based particles
US9278161B2 (en) 2005-09-28 2016-03-08 Atrium Medical Corporation Tissue-separating fatty acid adhesion barrier
US8277928B2 (en) * 2005-11-08 2012-10-02 Surmodics, Inc. Ultra-thin photo-polymer coatings and uses thereof
US20070160743A1 (en) * 2006-01-09 2007-07-12 Babitt John L Method for coating biocompatible material on a substrate
US20080082036A1 (en) 2006-04-25 2008-04-03 Medtronic, Inc. Cerebrospinal fluid shunt having long term anti-occlusion agent delivery
US20080171087A1 (en) * 2006-08-16 2008-07-17 Chappa Ralph A Methods and materials for increasing the adhesion of elution control matrices to substrates
US20080057298A1 (en) * 2006-08-29 2008-03-06 Surmodics, Inc. Low friction particulate coatings
WO2008039749A2 (en) * 2006-09-25 2008-04-03 Surmodics, Inc. Multi-layered coatings and methods for controlling elution of active agents
US9492596B2 (en) 2006-11-06 2016-11-15 Atrium Medical Corporation Barrier layer with underlying medical device and one or more reinforcing support structures
EP2083875B1 (en) 2006-11-06 2013-03-27 Atrium Medical Corporation Coated surgical mesh
JP2010530955A (en) 2006-12-29 2010-09-16 ユニヴァーシティ オブ ワシントン Dual functional non-polluting surfaces and materials
EP2160484A2 (en) * 2007-06-22 2010-03-10 Innovative Surface Technologies, Inc. Nanofibers containing latent reactive groups
WO2009002858A2 (en) 2007-06-22 2008-12-31 Innovative Surface Technologies, Inc. Stimuli responsive nanofibers
US20090022805A1 (en) * 2007-06-28 2009-01-22 Joram Slager Polypeptide microparticles having sustained release characteristics, methods and uses
JP5474808B2 (en) 2007-11-19 2014-04-16 ユニヴァーシティ オブ ワシントン Cationic betaine precursors to zwitterionic betaines with controlled biological properties
US8658192B2 (en) * 2007-11-19 2014-02-25 University Of Washington Integrated antimicrobial and low fouling materials
EP2225331B1 (en) * 2007-11-19 2016-01-06 University of Washington Marine coatings
US9533006B2 (en) 2007-11-19 2017-01-03 University Of Washington Marine coatings
WO2009091812A2 (en) * 2008-01-14 2009-07-23 Surmodics, Inc. Devices and methods for elution of nucleic acid delivery complexes
US20090263449A1 (en) * 2008-04-09 2009-10-22 Surmodics, Inc. Delivery of nucleic acid complexes from materials including negatively charged groups
DE102008019928A1 (en) * 2008-04-21 2009-12-31 Siemens Healthcare Diagnostics Gmbh Procedures for applying spots with capture molecules on substrate surface for chip, particularly optical sensor, involve washing substrate surface of chip by dipping in aqueous solution of cationic polyelectrolyte
CA2723192A1 (en) * 2008-05-07 2009-11-12 Surmodics, Inc. Delivery of nucleic acid complexes from particles
CA2734410A1 (en) * 2008-09-05 2010-03-11 Innovative Surface Technologies, Inc. Photoactivatable crosslinker compositions for surface modification
US20100069821A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo modifiable medicament release-sites final dosage form
US20100068254A1 (en) * 2008-09-16 2010-03-18 Mahalaxmi Gita Bangera Modifying a medicament availability state of a final dosage form
US20100068275A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Personalizable dosage form
US20100068233A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Modifiable dosage form
US20100068152A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo modifiable particle or polymeric based final dosage form
US20100068235A1 (en) * 2008-09-16 2010-03-18 Searete LLC, a limited liability corporation of Deleware Individualizable dosage form
US20100068153A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo activatable final dosage form
US20100068266A1 (en) * 2008-09-16 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Ex vivo-modifiable multiple-release state final dosage form
US8691983B2 (en) * 2009-03-03 2014-04-08 Innovative Surface Technologies, Inc. Brush polymer coating by in situ polymerization from photoreactive surface
US8217081B2 (en) * 2009-04-07 2012-07-10 The United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology Polymerizable biomedical composition
SG175373A1 (en) * 2009-04-28 2011-11-28 Surmodics Inc Devices and methods for delivery of bioactive agents
US20110038910A1 (en) 2009-08-11 2011-02-17 Atrium Medical Corporation Anti-infective antimicrobial-containing biomaterials
WO2011057224A2 (en) 2009-11-06 2011-05-12 University Of Washington Through Its Center For Commercialization Zwitterionic polymer bioconjugates and related methods
CN102906127A (en) 2009-11-06 2013-01-30 华盛顿大学商业中心 Self-assembled particles from zwitterionic polymers and related methods
US8287890B2 (en) * 2009-12-15 2012-10-16 C.R. Bard, Inc. Hydrophilic coating
AU2010339654B2 (en) 2009-12-21 2014-07-17 Innovative Surface Technologies, Inc. Coating agents and coated articles
US20110159098A1 (en) * 2009-12-30 2011-06-30 Surmodics, Inc. Stabilization and delivery of nucleic acid complexes
BR112012024919B1 (en) 2010-03-30 2019-01-02 Surmodics Inc degradable binder, method of coating a support surface with a binder to provide the surface with one or more latent reactive groups, support surface and coated medical device
WO2011131222A1 (en) 2010-04-19 2011-10-27 Invatec S.P.A. Photoactivated polymeric material and its use for the preparation of medical devices
CA2802229C (en) 2010-06-29 2019-01-29 Surmodics, Inc. Fluorinated polymers and lubricious coatings
WO2012009707A2 (en) 2010-07-16 2012-01-19 Atrium Medical Corporation Composition and methods for altering the rate of hydrolysis of cured oil-based materials
US8722076B2 (en) 2010-09-30 2014-05-13 Surmodics, Inc. Photochrome- or near IR dye-coupled polymeric matrices for medical articles
US8901092B2 (en) 2010-12-29 2014-12-02 Surmodics, Inc. Functionalized polysaccharides for active agent delivery
WO2012096787A1 (en) 2010-12-30 2012-07-19 Surmodics, Inc. Double wall catheter for delivering therapeutic agent
US20120171769A1 (en) 2010-12-30 2012-07-05 Mcgonigle Joseph S Cell attachment coatings and methods
US8721936B2 (en) 2011-04-21 2014-05-13 University Of Georgia Research Foundation, Inc. Devices and methods for forming non-spherical particles
US9861727B2 (en) 2011-05-20 2018-01-09 Surmodics, Inc. Delivery of hydrophobic active agent particles
US10213529B2 (en) 2011-05-20 2019-02-26 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
US9757497B2 (en) 2011-05-20 2017-09-12 Surmodics, Inc. Delivery of coated hydrophobic active agent particles
WO2012170706A2 (en) 2011-06-08 2012-12-13 Surmodics, Inc. Photo-vinyl linking agents
CA2841000C (en) 2011-07-15 2020-02-25 University Of Georgia Research Foundation, Inc. Permanent attachment of agents to surfaces containing c-h functionality
EP2731429A4 (en) * 2011-07-15 2015-03-04 Univ Georgia Compounds, methods of making, and methods of use
WO2013013220A2 (en) 2011-07-20 2013-01-24 University Of Washington Through Its Center For Commercialization Photonic blood typing
US20140141230A1 (en) * 2011-08-04 2014-05-22 Jason J. Locklin Permanent attachment of ammonium and guanidine-based antimicrobials to surfaces containing c-h functionality
US9439421B2 (en) 2011-08-04 2016-09-13 University Of Georgia Research Foundation, Inc. Permanent attachment of ammonium and guanidine-based antimicrobials to surfaces containing -OH functionality
EP2760492B1 (en) 2011-09-27 2018-10-31 Invatec S.p.A. Balloon catheter with polymeric balloon having a surface modified by a photoactivation reaction and method for making
WO2013056004A1 (en) * 2011-10-14 2013-04-18 University Of Georgia Research Foundation, Inc. Synthesis and application reactive antimicrobial copolymers for textile fibers
CA2861314C (en) 2012-01-18 2021-03-16 Surmodics, Inc. Lubricious medical device coating with low particulates
US10031138B2 (en) 2012-01-20 2018-07-24 University Of Washington Through Its Center For Commercialization Hierarchical films having ultra low fouling and high recognition element loading properties
WO2013151991A1 (en) 2012-04-02 2013-10-10 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles with visualization moiety
WO2013170857A1 (en) 2012-05-16 2013-11-21 Coloplast A/S Novel polymeric photoinitiators and photoinitiator monomers
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
EP2855030B1 (en) 2012-06-01 2019-08-21 SurModics, Inc. Apparatus and method for coating balloon catheters
US9867880B2 (en) 2012-06-13 2018-01-16 Atrium Medical Corporation Cured oil-hydrogel biomaterial compositions for controlled drug delivery
US9631190B2 (en) 2012-06-29 2017-04-25 Surmodics, Inc. Cell attachment coatings and methods using phosphorous-containing photoreagent
CA2888241C (en) 2012-10-16 2020-12-29 Surmodics, Inc. Wound packing device and methods
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US11246963B2 (en) 2012-11-05 2022-02-15 Surmodics, Inc. Compositions and methods for delivery of hydrophobic active agents
JP6438406B2 (en) 2012-11-05 2018-12-12 サーモディクス,インコーポレイテッド Compositions and methods for delivering hydrophobic bioactive agents
AP2015008512A0 (en) 2012-12-11 2015-06-30 Nano Safe Coatings Inc A Florida Corp 3 P14000024914 UV cured benzophenone terminated quaternary ammonium antimicrobials for surfaces
US9629945B2 (en) 2012-12-12 2017-04-25 Surmodics, Inc. Stilbene-based reactive compounds, polymeric matrices formed therefrom, and articles visualizable by fluorescence
CA2896107C (en) 2013-01-04 2021-11-23 Surmodics, Inc. Low particulate lubricious coating with vinyl pyrrolidone and acidic polymer-containing layers
CA2909069C (en) 2013-04-25 2018-10-16 Innovative Surface Technologies, Inc. Coatings for controlled release of highly water soluble drugs
CA2912690C (en) 2013-05-16 2022-05-03 Surmodics, Inc. Compositions and methods for delivery of hydrophobic active agents
AU2014311454A1 (en) 2013-08-25 2016-03-24 Biotectix, LLC Conductive polymeric coatings, medical devices, coating solutions and methods
CA2956635A1 (en) 2014-08-01 2016-02-04 Surmodics, Inc. Wound packing device with nanotextured surface
US10201457B2 (en) 2014-08-01 2019-02-12 Surmodics, Inc. Wound packing device with nanotextured surface
CN106794283B (en) 2014-08-08 2021-03-02 舒尔默迪克斯公司 Article coating comprising oligomeric polyphenol layer and methods of biological use thereof
US10124088B2 (en) 2014-09-29 2018-11-13 Surmodics, Inc. Lubricious medical device elements
CA2974962C (en) 2015-01-29 2024-01-09 Surmodics, Inc. Delivery of hydrophobic active agent particles
CA3034286C (en) 2015-08-27 2021-08-31 Nano Safe Coatings Incorporated (A Florida Corporation 3 P 14000024914) Preparation of sulfonamide-containing antimicrobials and substrate treating compositions of sulfonamide-containing antimicrobials
US10478546B2 (en) 2015-09-15 2019-11-19 Surmodics, Inc. Hemodialysis catheter sleeve
US10342898B2 (en) 2015-12-29 2019-07-09 Surmodics, Inc. Lubricious coatings with surface salt groups
US11174447B2 (en) 2015-12-29 2021-11-16 Surmodics, Inc. Lubricious coatings with surface salt groups
US10918835B2 (en) 2016-03-31 2021-02-16 Surmodics, Inc. Delivery system for active agent coated balloon
US10806904B2 (en) 2016-03-31 2020-10-20 Surmodics, Inc. Two-part insertion tool and methods
US20170281914A1 (en) 2016-03-31 2017-10-05 Surmodics, Inc. Localized treatment of tissues through transcatheter delivery of active agents
US11278647B2 (en) 2016-03-31 2022-03-22 Surmodics, Inc. Lubricious coating for medical device
US10391292B2 (en) 2016-06-15 2019-08-27 Surmodics, Inc. Hemostasis sealing device with constriction ring
EP3512591A1 (en) 2016-09-16 2019-07-24 Surmodics, Inc. Lubricious insertion tools for medical devices and methods for using
US10758719B2 (en) 2016-12-15 2020-09-01 Surmodics, Inc. Low-friction sealing devices
US11123459B2 (en) 2016-12-16 2021-09-21 Surmodics, Inc. Hydrophobic active agent particle coatings and methods for treatment
US10898446B2 (en) 2016-12-20 2021-01-26 Surmodics, Inc. Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces
EP3723839A4 (en) 2017-12-11 2021-09-08 Innovative Surface Technologies, Inc. Polyurea copolymer coating compositions and methods
EP3723820A4 (en) 2017-12-11 2021-09-01 Innovative Surface Technologies, Inc. Silicone polyurea block copolymer coating compositions and methods
WO2019222335A1 (en) 2018-05-16 2019-11-21 Surmodics, Inc. High-pressure balloon catheters and methods
WO2019222536A1 (en) 2018-05-16 2019-11-21 Surmodics, Inc. Catheters with structurally supported expandable elements and methods for same
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices
US20230285641A1 (en) 2022-03-09 2023-09-14 Surmodics Coatings, LLC Thromboresistant coatings, coated devices, and methods
US20230338623A1 (en) 2022-04-25 2023-10-26 Surmodics, Inc. Medical device coatings with microcrystalline active agents
US20240240098A1 (en) 2022-11-10 2024-07-18 Surmodics, Inc. Polyacrylic acid containing lubricious coatings for medical devices with enhanced properties
US20240277906A1 (en) 2023-01-05 2024-08-22 Surmodics, Inc. Lubricious coatings for medical devices with enhanced durability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309453A (en) * 1979-01-26 1982-01-05 Battelle-Institut E.V. Process and compounds for surface modification of macromolecular substances
US4722906A (en) * 1982-09-29 1988-02-02 Bio-Metric Systems, Inc. Binding reagents and methods
US4979959A (en) * 1986-10-17 1990-12-25 Bio-Metric Systems, Inc. Biocompatible coating for solid surfaces
US5414075A (en) * 1992-11-06 1995-05-09 Bsi Corporation Restrained multifunctional reagent for surface modification

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973493A (en) * 1982-09-29 1990-11-27 Bio-Metric Systems, Inc. Method of improving the biocompatibility of solid surfaces
US5002582A (en) * 1982-09-29 1991-03-26 Bio-Metric Systems, Inc. Preparation of polymeric surfaces via covalently attaching polymers
GB8529448D0 (en) * 1985-11-29 1986-01-08 Ward Blenkinsop & Co Ltd Thioxanthone derivatives
GB8806527D0 (en) * 1988-03-18 1988-04-20 Ward Blenkinsop & Co Ltd Benzophenone derivatives
JPH04117461A (en) * 1990-09-07 1992-04-17 Asahi Denka Kogyo Kk Polymer material composition having improved light resistance
EP0625998B1 (en) * 1992-02-10 1996-06-05 Minnesota Mining And Manufacturing Company Radiation crosslinked elastomers
ES2145044T3 (en) * 1992-02-13 2000-07-01 Surmodics Inc IMMOBILIZATION OF CHEMICAL SPECIES IN RETICULATED MATRICES.
SE9401327D0 (en) * 1994-04-20 1994-04-20 Pharmacia Lkb Biotech Hydrophilization of hydrophobic polymer
US5714360A (en) * 1995-11-03 1998-02-03 Bsi Corporation Photoactivatable water soluble cross-linking agents containing an onium group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309453A (en) * 1979-01-26 1982-01-05 Battelle-Institut E.V. Process and compounds for surface modification of macromolecular substances
US4722906A (en) * 1982-09-29 1988-02-02 Bio-Metric Systems, Inc. Binding reagents and methods
US4979959A (en) * 1986-10-17 1990-12-25 Bio-Metric Systems, Inc. Biocompatible coating for solid surfaces
US5414075A (en) * 1992-11-06 1995-05-09 Bsi Corporation Restrained multifunctional reagent for surface modification

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KROSCHWITZ, JACQUELINE I., ed., "Concise Encyclopedia of Polymer Science and Engineering", NEW YORK: JOHN WILEY & SONS, 1990, pages 761-763. *
See also references of EP0862624A4 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016907A2 (en) * 1997-09-30 1999-04-08 Surmodics, Inc. Reagent and method for attaching target molecules to a surface
US7691787B2 (en) 1997-09-30 2010-04-06 Surmodics, Inc. Target molecule attachment to surfaces
US7300756B2 (en) 1997-09-30 2007-11-27 Surmodics, Inc. Epoxide polymer surfaces
WO1999016907A3 (en) * 1997-09-30 1999-08-19 Surmodics Inc Reagent and method for attaching target molecules to a surface
US6762019B2 (en) 1997-09-30 2004-07-13 Surmodics, Inc. Epoxide polymer surfaces
AU737391B2 (en) * 1997-09-30 2001-08-16 Surmodics, Inc. Reagent and method for attaching target molecules to a surface
US6465178B2 (en) 1997-09-30 2002-10-15 Surmodics, Inc. Target molecule attachment to surfaces
WO1999043688A1 (en) * 1998-02-24 1999-09-02 Surmodics, Inc. Photoactivatable nucleic acid derivatives
JP2003509211A (en) * 1999-09-22 2003-03-11 サーモディックス,インコーポレイティド Water-soluble coating agent having initiator group and coating method
JP4782338B2 (en) * 1999-09-22 2011-09-28 サーモディクス,インコーポレイティド Water-soluble coating agent having initiator group and coating method
US7087658B2 (en) 1999-09-22 2006-08-08 Surmodics, Inc. Water-soluble coating agents bearing initiator groups
WO2001021326A1 (en) * 1999-09-22 2001-03-29 Surmodics, Inc. Water-soluble coating agents bearing initiator groups and coating process
US6669994B2 (en) 1999-09-22 2003-12-30 Surmodics, Inc. Water-soluble coating agents bearing initiator groups
AU770404B2 (en) * 1999-09-22 2004-02-19 Surmodics, Inc. Water-soluble coating agents bearing initiator groups and coating process
US6924390B2 (en) 1999-12-14 2005-08-02 Surmodics, Inc. Surface coating agents
WO2001044174A1 (en) * 1999-12-14 2001-06-21 Surmodics, Inc. Surface coating agents
US7138541B2 (en) 1999-12-14 2006-11-21 Surmodics, Inc. Surface coating agents
US6603040B1 (en) 1999-12-14 2003-08-05 Surmodics, Inc. Surface coating agents
DE10064096B4 (en) * 2000-12-21 2006-08-24 Wöhlk Contact-Linsen GmbH A method for permanent hydrophilization of a contact lens surface and coated silicone contact lens
WO2003008646A3 (en) * 2001-07-17 2003-07-17 Surmodics Inc Method for making a self-assembling monolayer and composition
US7361724B2 (en) 2001-07-17 2008-04-22 Surmodics, Inc. Self assembling monolayer compositions
US6689473B2 (en) 2001-07-17 2004-02-10 Surmodics, Inc. Self assembling monolayer compositions
WO2003008646A2 (en) * 2001-07-17 2003-01-30 Surmodics, Inc. Method for making a self-assembling monolayer and composition
US8039524B2 (en) 2001-12-21 2011-10-18 Surmodics, Inc. Reagent and method for providing coatings on surfaces
US7348055B2 (en) 2001-12-21 2008-03-25 Surmodics, Inc. Reagent and method for providing coatings on surfaces
EP1465740A4 (en) * 2001-12-21 2006-06-07 Surmodics Inc Reagent and method for providing coatings on surfaces
US7736689B2 (en) 2001-12-21 2010-06-15 Surmodics, Inc. Reagent and method for providing coatings on surfaces
EP1465740A1 (en) * 2001-12-21 2004-10-13 SurModics, Inc. Reagent and method for providing coatings on surfaces
EP1612556A4 (en) * 2003-04-09 2007-03-21 Riken Method of fixing low-molecular compound to solid-phase support
US7713706B2 (en) 2003-04-09 2010-05-11 Riken Method of fixing low-molecular compound to solid-phase support
EP1612556A1 (en) * 2003-04-09 2006-01-04 Riken Method of fixing low-molecular compound to solid-phase support
US7309593B2 (en) 2003-10-01 2007-12-18 Surmodics, Inc. Attachment of molecules to surfaces
US7829317B2 (en) 2003-10-01 2010-11-09 Surmodics, Inc. Attachment of molecules to surfaces
US8129159B2 (en) 2003-10-01 2012-03-06 Surmodics, Inc. Attachment of molecules to surfaces
CN102325825A (en) * 2009-02-18 2012-01-18 乔治亚大学研究基金公司 Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, and methods of using photochemical cross-linkable polymers
CN102325825B (en) * 2009-02-18 2014-07-16 乔治亚大学研究基金公司 Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, and methods of using photochemical cross-linkable polymers
WO2011072199A3 (en) * 2009-12-10 2012-02-02 Surmodics, Inc. Water-soluble degradable photo-crosslinker
US9879117B2 (en) 2010-04-28 2018-01-30 University Of Georgia Research Foundation, Inc. Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
JP2011025247A (en) * 2010-10-08 2011-02-10 Surmodics Inc Water-soluble coating agent having initiator group and coating method
US10315987B2 (en) 2010-12-13 2019-06-11 Surmodics, Inc. Photo-crosslinker
US10941112B2 (en) 2010-12-13 2021-03-09 Surmodics, Inc. Photo-crosslinker
US10010074B2 (en) 2011-10-14 2018-07-03 University Of Georgia Research Foundation, Inc. Photochemical cross-linkable polymers, methods of making photochemical cross-linkable polymers, methods of using photochemical cross-linkable polymers, and methods of making articles containing photochemical cross-linkable polymers
WO2018002322A3 (en) * 2016-06-30 2018-06-07 Freie Universität Berlin Amphiphilic block copolymer and coating arrangement
US11041090B2 (en) 2016-06-30 2021-06-22 Freie Universität Berlin Amphiphilic block copolymer and coating arrangement

Also Published As

Publication number Publication date
EP0862624A4 (en) 2001-02-07
EP0862624B1 (en) 2004-05-19
JP2000500440A (en) 2000-01-18
EP0862624A1 (en) 1998-09-09
CA2236588C (en) 2005-09-20
AU7553196A (en) 1997-05-22
DE69632541D1 (en) 2004-06-24
US6077698A (en) 2000-06-20
CA2236588A1 (en) 1997-05-09
US5714360A (en) 1998-02-03
DE69632541T2 (en) 2005-05-12
JP2009019045A (en) 2009-01-29
AU731249B2 (en) 2001-03-29
JP4602480B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
EP0862624B1 (en) Water soluble cross-linking agents
US9120900B2 (en) Polymer-bound bisacylphosphine oxides
EP0888389B1 (en) Photoactivatable chain transfer agents
JP2017164734A (en) Degradable photo-crosslinking agent
JPH0631278B2 (en) Titanocenes and irradiation polymerization initiators containing these titanocenes
JP2001516373A (en) Silicone / polyfunctional acrylate barrier coating
EP1124791B1 (en) Surface functionalisation
AU3484501A (en) Solid phase synthesis method and reagent
JP6078150B2 (en) Agents for epilamation of article surfaces
JP2005503315A (en) Application of excellent polymer-supported photosensitizer under singlet oxygen generation
MXPA98003444A (en) Water soluble cross-linking agents
IL95732A (en) Crosslinked pvc products and their production
JP3085478B2 (en) Antibacterial resin material and method for producing the same
JP2573963B2 (en) Photosensitizers that are polymers
CA2012086A1 (en) Preparation of uniform thin films
JPH07188581A (en) Oxygen-barrier coating composition containing trimethoxysilyl-functional pentadienoate
JP2004083691A (en) Wettability enhancer
WO1994024609A2 (en) Photocurable compositions
JP2006070006A (en) Antibacterial compound and antibacterial surface preparation agent using the same
CA1073142A (en) Cathodic electrocoating composition and process
JPH11315274A (en) Coating-type antistatic composition and molded article with surface subjected to antistatic treatment
JPS63280086A (en) Dinuclear complex of salt thereof and langmuir-blodgett membrane
JPH03111479A (en) Langmuir-blodgett film and its manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/003444

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2236588

Country of ref document: CA

Ref country code: CA

Ref document number: 2236588

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 517607

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996937893

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996937893

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996937893

Country of ref document: EP