WO1997000726A1 - Silicon-based sleeve devices for chemical reactions - Google Patents
Silicon-based sleeve devices for chemical reactions Download PDFInfo
- Publication number
- WO1997000726A1 WO1997000726A1 PCT/US1996/010453 US9610453W WO9700726A1 WO 1997000726 A1 WO1997000726 A1 WO 1997000726A1 US 9610453 W US9610453 W US 9610453W WO 9700726 A1 WO9700726 A1 WO 9700726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- reaction chamber
- improvement
- reaction
- window
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 173
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 81
- 239000010703 silicon Substances 0.000 title claims abstract description 80
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 28
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 20
- 229920005591 polysilicon Polymers 0.000 claims abstract description 18
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims description 24
- 239000011521 glass Substances 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 238000003752 polymerase chain reaction Methods 0.000 abstract description 41
- 239000000463 material Substances 0.000 abstract description 19
- 238000005382 thermal cycling Methods 0.000 abstract description 12
- 239000011541 reaction mixture Substances 0.000 abstract description 9
- 238000012545 processing Methods 0.000 abstract description 7
- 238000003786 synthesis reaction Methods 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 5
- 239000004033 plastic Substances 0.000 abstract description 5
- 229920003023 plastic Polymers 0.000 abstract description 5
- 230000004544 DNA amplification Effects 0.000 abstract description 4
- 238000005842 biochemical reaction Methods 0.000 abstract description 3
- 238000007130 inorganic reaction Methods 0.000 abstract description 2
- 238000006053 organic reaction Methods 0.000 abstract description 2
- 238000007834 ligase chain reaction Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 40
- 108020004414 DNA Proteins 0.000 description 29
- 238000000034 method Methods 0.000 description 20
- 235000012431 wafers Nutrition 0.000 description 18
- 239000003153 chemical reaction reagent Substances 0.000 description 16
- 239000000523 sample Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000010409 thin film Substances 0.000 description 12
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000001962 electrophoresis Methods 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 210000004188 enterochromaffin-like cell Anatomy 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 230000001351 cycling effect Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 201000003883 Cystic fibrosis Diseases 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000003155 DNA primer Substances 0.000 description 3
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 3
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- -1 deoxyribonucleotide triphosphates Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000013615 primer Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 2
- 108020001019 DNA Primers Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000006056 electrooxidation reaction Methods 0.000 description 2
- 238000011005 laboratory method Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000013035 low temperature curing Methods 0.000 description 2
- 238000007403 mPCR Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- 238000001075 voltammogram Methods 0.000 description 2
- CHEANNSDVJOIBS-MHZLTWQESA-N (3s)-3-cyclopropyl-3-[3-[[3-(5,5-dimethylcyclopenten-1-yl)-4-(2-fluoro-5-methoxyphenyl)phenyl]methoxy]phenyl]propanoic acid Chemical compound COC1=CC=C(F)C(C=2C(=CC(COC=3C=C(C=CC=3)[C@@H](CC(O)=O)C3CC3)=CC=2)C=2C(CCC=2)(C)C)=C1 CHEANNSDVJOIBS-MHZLTWQESA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000237074 Centris Species 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101000899111 Homo sapiens Hemoglobin subunit beta Proteins 0.000 description 1
- 102000012214 Immunoproteins Human genes 0.000 description 1
- 108010036650 Immunoproteins Proteins 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020776 SixNy Inorganic materials 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003269 fluorescent indicator Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- VOAPTKOANCCNFV-UHFFFAOYSA-N hexahydrate;hydrochloride Chemical compound O.O.O.O.O.O.Cl VOAPTKOANCCNFV-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/66—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
- G01N21/69—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence specially adapted for fluids, e.g. molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/0332—Cuvette constructions with temperature control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
- B01J2219/00828—Silicon wafers or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00853—Employing electrode arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00873—Heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00889—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00891—Feeding or evacuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00905—Separation
- B01J2219/00912—Separation by electrophoresis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00925—Irradiation
- B01J2219/00934—Electromagnetic waves
- B01J2219/00936—UV-radiations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00925—Irradiation
- B01J2219/00934—Electromagnetic waves
- B01J2219/00945—Infrared light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
- B01J2219/00952—Sensing operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C3/00—Assembling of devices or systems from individually processed components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N2021/0346—Capillary cells; Microcells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
Definitions
- the present invention relates to instruments for chemical reaction control and detection of participating reactants and resultant products, particularly to integrated microfabricated instruments for performing microscale chemical reactions involving precise control of parameters of the reactions, and more particularly to silicon-based sleeve devices as reaction chambers for chemical reactions and which can be utilized inlarge arrays of individual chambers for a high-throughput microreaction unit.
- Microfabrication technologies are now well known and include sputtering, electrodeposition, low-pressure vapor deposition, photolithography, and etching.
- Microfabricated devices are usually formed on crystalline substrates, such as silicon and gallium arsenide, but may be formed on non-crystalline materials, such as glass or certain polymers.
- the shapes of crystalline devices can be precisely controlled since etched surfaces are generally crystal planes, and crystalline materials may be bonded by processes such as fusion at elevated temperatures, anodic bonding, or field-assisted methods.
- Monolithic microfabrication technology now enables the production of electrical, mechanical, electromechanical, optical, chemical and thermal devices, including pumps, valves, heaters, mixers, and detectors for microliter to nanoliter quantities of gases, liquids, and solids.
- optical waveguide probes and ultrasonic flexural-wave sensors can now be produced on a microscale.
- integrated microinstruments may be applied to biochemical, inorganic, or organic chemical reactions to perform biomedical and environmental diagnostics, as well as biotechnological processing and detection.
- microfabricated reaction instruments provide a high level of control of the parameters of a reaction.
- Heaters may produce temperature cycling or ramping; while sonochemical and sonophysical changes in conformational structures may be produced by ultrasound transducers; and polymerizations may be generated by incident optical radiation.
- PCR polymerase chain reaction
- PCR can selectively amplify a single molecule of DNA (or RNA) of an organism by a factor of IO-*- 1 to l ⁇ 9.
- This well-established procedure requires the repetition of heating (denaturing) and cooling (annealing) cycles in the presence of an original DNA target molecule, specific DNA primers, deoxynucleotide triphosphates, and DNA polymerase enzymes and cofactors. Each cycle produces a doubling of the target DNA sequence, leading to an exponential accumulation of the target sequence.
- the PCR procedure involves: 1) processing of the sample to release target DNA molecules into a crude extract; 2) addition of an aqueous solution containing enzymes, buffers deoxyribonucleotide triphosphates (dNTPS), and aligonucleotide primers; 3) thermal cycling of the reaction mixture between two or three temperatures (e.g., 90-96, 72, and 37-55°C); and 4) detection of amplified DNA.
- Intermediate steps such as purification of the reaction products and the incorporation of surface-bending primers, for example, may be incorporated in the PCR procedure.
- a problem with standard PCR laboratory techniques is that the PCR reactions may be contaminated or inhibited by the introduction of a single contaminant molecule of extraneous DNA, such as those from previous experiments, or other contaminants, during transfers of reagents from one vessel to another.
- PCR reaction volumes used in standard laboratory techniques are typically on the order of 50 microliters.
- a thermal cycle typically consists of four stages: heating a sample to a first temperature, maintaining the sample at the first temperature, cooling the sample to a second lower temperature, and maintaining the temperature at that lower temperature.
- each of these four stages of a thermal cycle requires about one minute, and thus to complete forty cycles, for example, is about three hours.
- 07/938,106 has been developed for use in chemical reactors, and is described and claimed in copending U.S. Application Serial No. 08/ (IL- 9121), filed June 13, 1995, entitled Diode Laser Heated Micro-Reaction Chamber With Sample Detection Means", assigned to the same assignee.
- the present invention is directed to a particular geometry of silicon-based micro-reactors that have shown to be very efficient in terms of power and temperature uniformity.
- the micro-reactor of this invention which is broadly considered as a silicon-based sleeve device for chemical reactions, can be effectively utilized in either of the reactor systems of the above-referenced copending applications.
- the present invention utilizes doped polysilicon for heating and bulk silicon for convective cooling.
- the present invention allows the multi-parameter, simultaneous changing of detection window size, in situ detection, reaction volumes, thermal uniformity, and heating and cooling rates. In addition, it enables the use of large arrays of the individual reaction chambers for a high-throughput microreaction unit. SUMMARY OF THE INVENTION It is an object of the present invention to provide an improved chemical reaction chamber.
- a further object of the invention is to provide a silicon- based sleeve device for chemical reactors.
- a further object of the invention is to provide a chemical reaction chamber that combines to use of doped polysilicon and bulk silicon.
- a further object of the invention is to provide chemical reaction chambers that combines the use of doped polysilicon and bulk silicon to provide flexibility in thermal and optical properties allowing the implementation into small and large instruments.
- Another object of the invention is to provide a silicon- based reaction sleeve that combines a criticial ratio of silicon and silicon nitride to the volume of material to be heated (e.g., liquid) in order to provide uniform heating, yet low power requirement.
- Another object of the invention is to provide a silicon- based reaction sleeve that will allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture, thereby combatating any potential materials incompatiblity issues.
- Another object of the invention is to provide an array of individual reaction chambers for a high-throughput microreaction unit.
- Another object of the invention is to provide a hand-held instrument that uses silicon-based sleeve-type reaction chambers with integrated heaters.
- Another object of the invention is to provide a reaction chamber with automated detection and feedback control.
- Another object of the invention is to provide for artificial intelligence control of reactions in a reaction chamber.
- Another object of the invention is to provide pulse-width modulation as a feedback control for reaction chamber.
- the invention is a silicon-based sleeve for chemical reactions.
- the invention encompasses a chemical reaction chamber that combines the use of polysilicon for heating and bulk silicon for convective cooling.
- the reaction sleeve combines a critical ratio of silicon and silicon nitride to the volume of material to be heated in order to provide uniform heating, yet low power requirements.
- the reaction sleeve also allows for the introduction therein of a secondary tube that contains the reaction mixture thereby negating any potential materially incompatibility issues.
- the present invention is an extension of the above-referenced integrated micofabricated reactor of above- referenced copending Application Serial No.
- the silicon- based sleeve reaction chamber can be utilized in chemical reaction systems for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions (such as the ligose chain reaction), or other synthetic, thermal-cycling-based reactions.
- PCR polymerase chain reaction
- DNA reactions such as the ligose chain reaction
- Figure 1 shows a partial cut-away perspective view of a microfabricated chemical reaction instrument mounted in a power source/control apparatus.
- Figure 2 is a schematic of the reaction instrument of
- Figure 1 schematically illustrates a heating and detection arrangement for a microfabricated reaction chamber.
- Figure 4 illustrates an embodiment of a microfabricated silicon-based sleeve reaction chamber made in accordance with the present invention.
- Figure 5 is an array of the sleeve reaction chambers of Figure 4 operatively connected to a microelectrophoresis array.
- Figure 6 is an enlarged end view of another embodiment of a sleeve microreaction chamber similar to Figure 4.
- Figure 7 illustrates in cross-section embodiment of an enlarged section of Figure 6 using an isolated heater version, fixed window.
- Figure 8 illustrates in cross-section another embodiment of the same enlarged section of Figure 6 using a non-isolated heater version variable window.
- Figure 9 is a view of a hand-held instrument (PCR man) which utilizes the reaction chambers of Figure 6 as inserts to change reactions.
- Figures IOA and 10B illustrate a thermal cycling instrument utilizing several hundreds of individually-controlled silicon-based microreaction chambers.
- Figure 11 illustrates a schematic representation of high- throughput DNA amplification, sample-handling, and electrophoreseis system.
- Figure 12 is an embodiment of an insert/lining for a reaction chamber with optical window, with the top/cover open.
- Figure 13 illustrates external filling of a reaction chamber insert/ liner.
- Figure 14 illustrates immobilized reagents /probes for detection of specific products directly on windows or within reaction fluid a s "test strip” detected optically in the hand held instrument (PCR man) of Figure 9.
- FIGS 15 and 16 schematically illustrate optical detection systems for use with the microreaction chambers of Figure 6.
- Figure 17 schematically illustrates the use of integrated detection for an artificial intelligent feedback system.
- Figure 18 is a diagram showing the electrochemical oxidation and chemical reduction reactions for tris (2,2'bipyridyl) ruthenium (II) (TBR) and tripropylamine (TPA).
- Figure 19 illustrates a method for tagging and separating DNA for detection and quantification by electrochemiluminescence (ECL).
- ECL electrochemiluminescence
- Figure 20 illustrates cell voltage and ECL intensity versus time, with the voltage being increased, then decreased.
- Figure 21 illustrates an embodiment of a micromachined ECL cell with a thin film anode, and an associated photodiode detector.
- Figure 22 is an enlarged cross-sectional view of the ECL cell of Figure 21 with the electrical leads.
- FIGS 23-30 illustrate the fabrication process for producing an ECL cell, as illustrated in Figure 21.
- Figure 31 illustrates an embodiment using Al on ITO on glass which reduces resistance of the ITO electrode.
- the present invention is a micro-fabricated silicon-based sleeve chemical reaction chamber that combines heaters, such as doped polysilicon for heating and bulk silicon for conventive cooling.
- the microreaction chambers can be used in an array for a high- throughput microreaction unit, or in a hand-held unit. It combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., liquid) in order to provide uniform heating, yet low power requirements. It also will allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues.
- a secondary tube e.g., plastic
- the present invention utilizes a particular geometry of silicon-based micro-reactors that have been shown to be very efficient in terms of power and temperature uniformity.
- the particular embodiment of the microfabricated reactor described has been experimentally used as a thermal cycling instrument for use in the polymerase chain reaction (PCR) and other chemical reactions, and has shown to be superior to present commercial instruments on thermally-driven chemical reactors.
- the silicon-based sleeve reaction chamber of this invention can be utilized in place of the reaction chamber of the microfabricated system of above-referenced copending Application Serial No. 07/938,106; and can be utilized with the integrated heater and detection arrangement of above-referenced copending Application Serial No. 08/(IL-9121), and thus constitutes an extension of the microfabricated chemical reaction systems in these copending applications.
- Figure 1 illustrates an embodiment of a microfabricated chemical reaction instrument generally indicated at 10, shown above a recessed section thereof, indicated generally at 11, in a power source/control system of the microfabricated reaction instrument, generally indicated at 12.
- a hypodermic needle 13 is shown inserting a sample through a silicone rubber window 14 into the reaction instrument 10.
- the reaction is controlled and powered by: induction coupling, such as that between coil LCL in the instrument 10 and a magnetic coil 15; by capacitive coupling, such as that between the plates of capacitor C3 and plates 16 and 17; and by electromagnetic coupling between a resonant circuit, see Figure 2, in instrument 10 and a radio frequency antenna 18.
- FIG. 2 A schematic of the instrument 10 of Figure 1 is illustrated in Figure 2, and comprises three reagent chambers 19, 20 and 21, which, for example, may contain the DNA primers, the polymerase, and the nucleotides and any detection-tag molecules, such as magnetic beads.
- the target DNA molecule is placed in reagent chamber 19 by insertion of a hypodermic needle 13 ( Figure 1) or the like through a silicone rubber or other type material window 14.
- the reactants chambers 19, 20 and 21 are respectively connected by channels 22, 23, and 24, having narrow midsections, not shown, to a reaction chamber 25.
- the chambers 19-21 and 25 have a volume ranging from microliter to nanoliters.
- the channels 22-24 are equipped with Lamb-wave pumps LWi, LW2 and LW3, respectively, for pumping reactants in chambers 19-21 through channels 22-24 in the direction of the arrows into reaction chamber 25.
- the Lamb-wave pumps may be located on any wall, or on multiple walls, of the channels 22-24.
- the Lamb-wave pumps LWi, LW2, and LW3 are connected respectively to capacitors Ci, C2, and C3.
- the surface tension across the narrow midsections of the channels 22- 24 prevents the reactants in chambers 19-21 from flowing into reaction chamber 25 until pumping is initiated.
- the inner surfaces of the channels 22-24 may be treated to raise the surface tension thereby further inhibiting flow of the reagents when the Lamb-wave pumps are not activated.
- the reaction chamber 25 may be equipped with a Lamb- wave transducer LWc and a heater Ho
- the Lamb-wave transducer LWc is connected to inductor LCL (also shown in Figure 1).
- the heater He is connected to a resonant circuit consisting of an inductor LcH and a capacitor CCH-
- the Lamb-wave transducer LWc acts as an agitator, mixer, or sonochemical inducer, as indicated by the connected arrows 26 in chamber 25.
- a channel 27 connects the reaction chamber 25 to a detection chamber 28.
- the channel 27 is equipped with a Lamb-wave pump LWDP which is connected to a resonant circuit consisting of an inductor LDP and a capacitor CDP-
- the detection chamber 28 is equipped with a Lamb-wave sensor LWD/ which is connected to a capacitor CD* Lamb-wave transducers have high mechanical Q values and can therefore be powered by only a narrow range of alternating voltage frequencies.
- the Lamb-wave pumps (LWi, LW2, LW3) and Lamb-wave sensor (LWD) are powered capacitively by generating an electric field between the plates (such as plates 16 and 17 of Figure 1 for example) at the resonant frequencies of the Lamb-wave transducers (LWi, LW2, LW3, and LWD)- But, because the transducers have high Q values, only when the frequency of the imposed field is near the resonant frequency of a transducer do the transducer vibrate with any substantial magnitude.
- the Lamb-wave mixing chamber transducer LWc is provided by an alternating frequency magnetic field generated by the coil (15 in Figure 1) at the mechanical resonant frequency of the transducer LWc*
- the heater He and the Lamb-wave pump LWDP are activated by directing an electromagnetic wave from the antenna (18 in Figure 1) to the resonant circuit CQH and LcH and resonant circuit CDP and LDP respectively.
- the frequency of the incident electromagnetic radiation must correspond to the mechanical resonant frequency of the transducer LWDP, to activate the pump LWDP-
- the frequency of the incident electromagnetic radiation must correspond to the resonant frequency of the electrical elements CH, LcH and He to activate the heater He*
- a PCR reaction for example, is initiated by pumping the reagents in the chamber 19, 20 and 21 along the directions of the arrows through respective channels 22, 23 and 24 to the reaction chamber 25 by activating pump LWi, LW2, and LW3.
- a series of about twenty to forty thermal cycles, for example, are then initiated, and during each cycle the temperature of the reactants in the reaction chamber 25 goes from 55°C to 96°C, and back to 55°C, for example.
- the temperature of the reaction chamber 25 is determined by the power of the incident electromagnetic signal at the frequency corresponding to the resonant frequency of the circuit composed of the capacitor CCH, and the inductor LCH / together with the heater He*
- the Lamb-wave device LWc of the reaction chamber 25 acts as an agitator or mixer, as indicated by arrows 26, to mix the reagents and promote the reaction.
- the contents of the reaction chamber 25 are pumped by the Lamb-wave perm LWDP through channel 27 in the direction of the arrow to the detection chamber 38, which utilizes a Lamb-wave sensor LWD*
- the detection chamber 28 may be provided with an optical window and testing may be performed by fluorescence-based or absorption- based optical spectroscopy.
- FIG. 3 illustrates a heating/ detection arrangement that can be incorporated into the microfabricated reactor of Figures 1 and 2.
- a chemical reaction chamber such as a PCR chamber, of a miniaturized, microfabricated instrument, generally indicated 30, is illustrated in cross-section, with chamber 31 being formed in a housing 32, constructed of Pyrex for example, and having silicon inserts 33 and 34 therein, with an inlet 35 and an outlet 36.
- Energy from two different energy (light) sources is directed onto the housing 32, one source 37 being infrared (IR) source, and the second source 38 being an ultra-violet (UV) source.
- the IR source 17 applies heat more uniformly through the bulk of the solution in chamber 31.
- the UV source 18 induces fluorescence of the reaction products in the visible (Vis) spectrum, which can be detected by a visible (Vis) detector 39 located external of the housing 32 defining reaction chamber 31.
- Housing 32 must be constructed of a material transparent to UV and/or the visible spectrum.
- the present invention involves a microfabricated reactor generally indicated at 40 which includes a silicon-based sleeve as a chemical reaction chamber, generally indicated at 41, constructed of two bonded silicon parts, and which utilizes doped polysilicon for heating and bulk silicon for convective cooling, as described in greater detail hereinafter.
- the sleeve 41 includes a slot or opening 42 into which reaction fluid, indicated at 43, from a hypodermic needle 44 is inserted into the reaction chamber, or into which a secondary tube 45 containing a reaction mixture 46 may be inserted.
- the tube 45 is constructed of plastic, for example, or other material which is inert with respect to the reaction mixture, thereby alleviating any potential material incompatibility issues.
- the sleeve is also provided with an opening 47 in which is located an optical window 48, made, for example, of silicon nitride, silicon dioxide, or polymers.
- the silicon sleeve reaction chamber 41 includes doped polysilicon for heating and bulk silicon for convective cooling, and combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., liquid) in order to provide uniform heating, yet low power requirements.
- Figure 6 is an enlarged view of microreaction chamber, similar to the Figure 4 embodiment, but utilizing two windows.
- the reaction chamber of Figure 6, generally indicated at 50 is composed of two silicon wafers or substrates 51 and 52 bonded together as indicated at 53, and configured to define a slot or opening 54 therein.
- Each of wafers 51 and 52 include a layer of silicon nitride 51' and 52' which define a window, indicated generally at 55 and 56, respectively.
- Window 55 in wafer 51 constructed of silicon nitride, is provided with a heater 57 having electrical leads 58 and contacts 59 which extend along the edges of heater 57 to provide uniform heating.
- Window 56 in wafer 52 has a heater not shown in Figure 6 but which is secured by metal contacts 60 and 61 as illustrated in either of
- the silicon nitride layers 51' and 52' are very thin (about l ⁇ m) and vapor-deposited onto the bulk silicon wafers 51 and 52.
- the silicon nitride only becomes a window, as indicated at 55 and 56, when the bulk silicon wafers 51 and 52 are etched away to form the opening or slot 54.
- Heater 57 is transparent to energy passing through window 55, for example.
- Figure 7 is a greatly enlarged view of an embodiment of a section of silicon wafer 52 and window 56, as indicated by the circle 62 in Figure 6.
- the section of the silicon wafer 52 indicated at 63, is composed of bulk or single crystal silicon and is in contact with a low (100 to 500 MPa) stress silicon nitride membrane or window 64 (52' in Figure 6) which in turn is in contact with a doped polysilicon heater 65 and metal contact 60 and 61.
- the Figure 7 embodiment comprises an isolated heater version fixed window.
- Figure 8 is a greatly enlarged view of another embodiment of a section of silicon wafer 52 and window 56, as indicated by the circle 62.
- the sections of the silicon substate 52, indicated at 66 are composed of bulk or single crystal silicon.
- a low (100 to 500 MPa) stress silicon nitride member or window 69 (52' in Figure 6) is in contact with silicon section 66, a doped polysilicon heater 70 is in contact with window membrane 69 and metal contacts 71 are mounted to heater 70.
- the Figure 8 embodiment comprises a non- isolated heater version.
- the window size relative to the chamber can be varied to ensure thermal uniformity and optical access to the reaction chamber.
- the silicon wafers or substrates 51 and 52 may have a length of 5 to 50mm, width of 2 to 10mm, thickness of 0.1 to 1.0mm, with the slot 54 having a cross-sectional area of 5 to 500mm 2 .
- Slot 54 which shown to be of a six-sided configuration, may be a round, oblong, square, rectangular, or other configuration.
- Windows 55 and 56 may have a length of 0.1 to 1mm, width of 0.1 to 50mm, thickness of 0.1 to lO ⁇ m, and in addition to silicon nitride, may be composed of silicon dioxide, silicon, or polymers.
- the doped polysilicon heater 65 of Figure 7 may have a thickness of 0.05 to 5 ⁇ m, with the heater 70 of Figure 8 having a thickness of 0.05 to 5 ⁇ m.
- the metal contacts 60-61 and 61' of Figures 6 and 7 may be composed of gold or aluminum, with a thickness of 0.01 to 5 ⁇ m, with the metal contact 71 of Figure having a thickness of 0.01 to 5 ⁇ m and composed of gold or aluminum.
- the heater 57 in silicon wafer or substrate 51 is composed of doped polysilicon having a thickness of 0.05 to 5 ⁇ m, with the electrical leads and contacts 58 and 59 being composed of gold or aluminum.
- Figure 9 is an embodiment of a miniature thermal cycling, battery operated, hand-held low-power, feedback-controlled instrument for PCR that uses microfabricated, silicon-based reaction chambers, such as those of Figures 4 and 6, the development of which addressed thermal uniformity and temperature precision of the reaction chambers, temperature ramp rates of the chambers, and biocompatibility of the materials in contact with the reagents.
- the hand-held, battery-operated instrument coined "PCR man", generally indicated at 75, comprises a pressure-fit electrical contact controller holder, or housing 76, which for example may be 3 x 5 inches having a control-face-plate 77 with various indicators thereon, including a "status" window 78.
- the holder 76 is provided with a thermocouple-based temperature feedback control circuitry, heater electronics, computer interface, and power source connector, as described in greater detail hereinafter.
- the holder 76 is provided with batteries, indicated at 79, such as four nine-volt batteries, and at the upper end is provided with slots 80 for insertion of reaction chambers inside the holder (three slots shown), and into which silicon-based reaction chambers 81, 82, 83 and 84, with integrated heaters (as shown in Figure 6) are inserted as indicated by the arrow 85.
- the reaction chambers 81-84 may when constructed contain different reagents or chemicals, and can be selectively inserted into the hand-held instrument 75 via slots 80 in holder or controller 76.
- This instrument can be used to rapidly and repetitively provide controlled thermal cycles to the reaction mixture.
- the thermal conductivity properties of the silicon or similar semiconducting substrate help speed up the thermal rise and fall times, and allow low power operation.
- silicon is unique in its thermal properties, i.e., high thermal conductivity
- a combination of silicon, silicon nitride, silicon dioxide, polymers and other materials would provide a combination of thermal conductivity and insulation that would allow thermal uniformity and low power operation.
- the particular embodiment, such as Figure 6, of a microfabricated reactor described can be used as a thermal cycling instrumentation for use inthe PCR and other chemical reactions, biochemical processes, microbiological processes, and incubators.
- the reaction chamber of this invention i s superior to present commercial instruments used in thermally-driven chemical reactions.
- Photolithographic patterns for reaction chamber and subsequent processing steps were taken in the following order: 1) the silicon nitride was reactive ion etched (RIE) over the reaction chamber area, 2) the SCS was etched to the silicon nitride backside defining the chamber volume, 3) the wafer was patterned and the silicon nitride is chemically etched away everywhere except over the nitride membrane or left over the entire surface, depending upon the reaction chamber design, 4) the remaining silicon nitride membrane (side opposite the chamber) was LPCVD deposited with polycrystalline silicon (polysilicon) to a thickness of 3000A, 5) the polysilicon was then high temperature doped with boron to a resistivity of 50-200 ohms per square, and 6) either aluminum or gold thin-film metal contacts were deposited defining the heater geometry.
- RIE reactive ion etched
- Each wafer potentially contains many reaction chambers, depending upon geometry and volume desired.
- the etched depression in each wafer constitutes one-half of a dual-heater reaction chamber. Processed wafers are subsequently bound together forming an enclosed chamber with heaters on both sides.
- reaction chambers can be bonded together by depositing a thin film of low-temperature-curing polyimide between the two wafers directly or other bonding techniques such as eutectic metal bonding.
- a high precision computer-controlled silicon saw was used in each design to cut out each dual-heater chamber. The chambers were then rinsed repeatedly with de-ionized water and dried prior to treatment with silane.
- the reaction chambers were inserted into a pressure-fit electrical contact holder that was part of the plexiglas backboard of the electronics components making up the controller.
- the controller electronics could be either /or anologue or digital and could use processes such as pulse-width modulation as a feedback control mechanism.
- the backboard was 3 inches by 5 inches and consisted of the thermocouple-based temperature feedback control circuitry, heater electronics, computer interface, and power source connector. The circuitry was designed to work from 8 to 32 volts. Thermal calibration was accomplished by correlating the temperature of the fluid with that of the silicon-measuring Type K thermocouple. Once calibrated, the instrument was capable of automated, feedback- controlled, thermal cycling operation without direct measurement of the reaction fluid.
- the thermal cycler output is to an Apple Centris 650 computer which displays the thermal cycle real-time along with storing the accumulated profiles. Four nine-volt batteries were abel to run the entire instrument continuously for over 2.5 hours.
- Typical PCRs were set up as scaled-up master mixes, to assure uniformity between aliquotes thermocycled under different conditions. Reagent amounts were based on those ideal for 50 ul reactions.
- master mixes contained: 50 mM KCl, 10 mM Tris-HCl pH 8.3, 1.5-3.0 mM MgCl2, 200 uM each deoxynucleotide, or 800 uM dNTP total, 0.5 uM each of two oligonucleotide primers, 25 units/ml AmpliTaq® DNA polymerase, and target template at a specified copy number per 50 ul reaction.
- CF template was human genomic, double stranded, DNA derived from a cultured cell lines, HL60, GM07460, or GM08345.
- Each reaction mixture was aliquoted from the same master mix and thermocycled in the instrument of the present invention and a Perkin-Elmer GeneAmp® 9600 Thermal Cycler. Thermocycled reactions from both thermal cyclers were fractionated on 3% NuSeive, 1% Seakem agarose (FMC Corp.) using tris-borate buffer. The gels were stained with ethidium bromide and photographed under illumination with 302 nm UV light.
- the (MEMS) based thermal cycling instrument of this invention has been tested with a variety of PCR systems, including viral, bacterial, and human genomic templates. As well, various changes in both the reaction chamber design and controller instrumentationhave been implemented and evaluated.
- a controller output real-time display of a thermal cycle from microfabricated thermal cycler has been prepared and it has been shown that with 15 volts input (average 1.2 Watts) that heating rates of over 5°C/sec are attained. Cooling is slightly slower (2.5°C/sec.) mostly due to the fact that the reaction chamber is held inside a plexiglass instrument board. Precision of +/- 0.5°C is maintained at the target temperatures.
- Multiplex PCR is considered to one of the most recent and analytically-powerful DNA amplification techniques. It requires precise and uniform temperature control within the reaction chamber. We have achieved this with the instrument of this invention.
- Post-PCR-detectionof the specific mutations associated with the cystic fibrosis (CF) disease can be identified with simple nylon-based test strips, using reverse-dot-blot technology.
- the test strip has specific, immobilized DNA probes containing the mutation sequence of interest.
- the multiplex PCR amplification products are put into a simple reagent trough along with the assay. If binding occurs and the DNA is retained after a wash step, the DNA- biotin-streptavidin-enzyme complex will turn color upon treatment with the substrate.
- the commercial and the Figure 9 instrument- amplified results of PCR followed by reverse-dot-plot assay for CF prepared.
- silicon-based reaction chambers of various sizes and configurations are capable of carrying out chemical reactions, such as PCR, with low power requirements.
- Figures 10A-10B and 11 illustrate a system approach, combining the high-throughput, high efficiency thermal cycler instrument, sample handling, and electrophoresis modul.
- the electrophoresis module could also be micromachined in glass or silicon.
- the instrument could be hybrid in nature; i.e., a silicon based reaction chamber and a mini glass electrophoresis module taking advantage of both substrates or members, as in the Figure 5 embodiment.
- the advantage to having real-time detection of DNA production is that it allows the operator to know about the PCR efficiency during the reaction, rathern than waiting to see the results on a gel. This will significantly help DNA sequencing productivity by eliminating time wasted running electrophoresis gels on samples that haven't amplified.
- FIGS 10A and 10B illustrate a thermal cycling instrument, generally indicated at 90, having a housing 91 with a face plate 92 with various indicators thereon, including a "status" window 93, similar to the faceplate of the Figure 9 hand-held instrument.
- the housing includes a hinged top 94, under which is located an array 95 (see Figure 10B) of individually controlled silicon-based microreaction chambers 96, which may, for example, be of the type illustrated in Figures 4 and 6.
- the instrument 90 is designed for 384 microreaction chambers 95, although the array 95 as shown in Figure 10B only includes 100 chambers for simplicity of illustration.
- FIG 11 is a schematic representationof high- throughput DNA application, sample-handling, and electrosystem utilizing the instrument of Figures 10A-10B, and corresponding reference numeral indicate corresponding components.
- An array 95' of 384 individual-controlled PCR reaction chambers 96' (only five shown, is operatively connected to an automated sample input/ output assembly, generally indicated at 97 using two sets of microinjectors, generally indicated at 98 and 99.
- the sample input/ output function between microinjector set 98 of assembly 97 and array 95 is indicated by double arrow 100, while the function between the sets 98 and 99 of microinjectors is indicated by double arrow 101.
- the microinjector set 99 is operatively to an array 102 of individual microelectrophoresis channels 103.
- This injector input/output system will load reagent samples from the reaction chambers 96 with vacuum or electrokinetic power; automatically or robotically move to electrophoresis channels 103; and unload reagents via pressure or reversed field electrokinetic injection into those channels for electrophoretic separation.
- the electrophoresis module could be micromachined as well. Silicon is good for reaction chambers, glass for electrophoresis.
- the electrophoresis channels 103, formed in a glass substrate are each directly connected to a silicon reaction chamber of the type shown in Figure 4, so as to produce an array 95 of reaction chambers 96' connected directly to the array 102 of electrophoresis channels 103, as shown in Figure 5.
- FIG. 12 illustrates an embodiment of an insert/liner, generally indicated at 105, for a reaction chamber with an optical window 106 therein.
- the insert/liner 105 includes a six-sided housing 107 and a top/cover 108.
- the six-sided housing 107 is configured, for exmple, to be inserted into opening 54 of the reaction chamber 50 of the Figure 6 embodiment, such that window 106 aligns with one of windows 55 or 56 of Figure 6.
- the housing 107 may be constructed of plastic or other compatible material set forth above.
- Window 106 of insert/liner 105 includes a test strip 109, described hereinafter with respect to Figure 14.
- Figure 13 illustrates external filling of the reaction chamber insert/liner 105 of Figure 12 via an external interfludic connection, generally indicated at 110.
- fluidic connections includes: syringe needles, pipette tips, and fused silica capillaries or glass or polymer tubing.
- FIG 14 is an enlarged view of the test strip 109 of Figure 12.
- a test strip can be included in the windows of the Figures 4 or 6 reaction chambers.
- Immobilized reagents/probes for detectionof specific products directly on the window, such as 106 of Figure 12, or within the reaction fluid in reaction chamber insert/liner 105 of Figure 12, can be detected optically inthe PCR man hand-held instrument of Figure 9, by the use of the test strip 109.
- Figures 15 and 16 schematically illustrate two setups for optical detection.
- the Figure 15 setup is a laser/ccd version, while the Figure 16 setup will allow low-power operation for implementation into the PCR man (hand-held instrument) of Figure 9.
- this optical detection arrangement for a reaction chamber 120 with a window 121 and control electronics 122 includes an optical filter 123, such as an interference filter or band pass filter for passing the detection wavelength of interest, CCD 124, digitized image generally indicated at 125, focusing optics 126, reflector/splitter 127 and an Argon ion laser 128.
- the operation is as follows: The laser excites the fluorescent indicator dye associated with product detection. The fluorescent signal is monitored by the CCD 124. Absorption spectroscopy could similarly be used.
- Figure 16 is a miniaturized optical detector system for reaction chamber 120' having a window 121' and control electronics 122' is composed of two filters 130 and 131, a solid state detector 132 and a Blue LED 133.
- the filters 130 and 131 are either band pass or long pass for selecting emission (i.e., 600nm long pass) and band pass for selecting the excitation wavelength of interest, such as 488nm + lOnm.
- the excitation band pass can be used to select from the typically broad emission of an LED, for example.
- the operation of the Figure 16 detection system is as follows: The LED is filtered to
- the solid state detector is also filtered to receive only the wavelengths of detection (>600nm) or as an absorption detector.
- Artificial intelligence is one way to produce DNA and determine how many cycles to go, when it is complete, if it worked, adjustment of parameters to improve production, etc. Using a real ⁇ time detection systems such as illustrated schematically in Figure 17, an artificial intelligent feedback system using integrated detection can be provided.
- the system of Figure 17 comprises a reaction chamber 135 having a window 136, a detector 137 for in situ detection of DNA production, an instrument control 138 for reaction chamber 135, and a data readout system 139, which receives data from detector 137, as indicated by arrow 140, and supplies control data to controller 138, as indicated by arrow 141.
- the data readout system 139 provides information such as how much DNA is being made, starting copy number, reaction complete, etc. By quantifying the DNA production via the optical monitoring system, which is well known, the system could adjust its cycling time and cycle number to produce the minimal number of cycles required for detection, thus speeding up the process.
- a microfabricated, electrochemiluminesence cell for the detection of amplified DNA is described hereinafter with respect to Figures 18-31, and which sets forth the design, fabrication, and testing thereof.
- the microcell is designed to be the detection unit in a PCR micro-instrument, such as described above and illustrated in Figure 9.
- the cell is a vertical assembly of micromachined silicon and glass and contains thin film electrodes, as shown in the Figures.
- TBR tris (2,2' bipyridyl) ruthenium (II)
- II ruthenium
- ECL electrochemiluminescence
- TBR requires a relatively low oxidation potential (a few volts) and has a high ECL efficiency in the visible (620nm). This makes it attractive for microsensor applications, since visible emission is readily detected with silicon photodiodes, which could be integrated into a silicon micromachined cell.
- the reduction can occur electrochemically or chemically; in either case, light is emitted.
- oxidized tripropylamine TPA
- TBR oxidized tripropylamine
- Both oxidations can occur at the same electrode, relatively large concentrations of both species can be produced in close proximity, which results in higher light intensity for a given TBR concentration, than if TBR alone is present in solution.
- the electrochemical oxidation and chemical reduction reactions for TBR which occurs at the anode are schematically diagrammed in Figure 18. Electrochemical reduction of TBR also occurs at the cathode. In order to oxidize only the TBR labeled DNA and not the free TBR, a separation of the two is required.
- the ECL microcell is a multilayer assembly of micromachined silicon and glass.
- Cells with solution capacity ranging from 35 ⁇ L to 85 ⁇ L have been designed and fabricated in silicon.
- An e-beam deposited, gold, thin film forms the cell cathode.
- the anode is also a thin film.
- ITO indium tin oxide
- platinum have been carried out. ITO is transparent to visible light, so that when deposited onto glass, it can form the top layer of the assembly, through which the emitted light can be picked up by a photodetector (see Figure 21).
- the assembly also contains micromachined fluid fill ports (see Figure 22).
- the layers were assembled and bonded together (see Figures 29-30) using a low temperature curing polyimide, such as Epotek 400.
- ECL experiments have been performed in the microcell with free TBR, i.e., no DNA.
- the cells were filled with TPA + TBR solution and a photomultiplier tube (PMT) was placed in close proximity to the top glass layer of the cell to detect emission.
- PMT photomultiplier tube
- the chemiluminescence produced by the reaction of oxidized TPA and TBR depends on the concentration of both chemicals. In these experiments, the concentration of TPA was kept constant (50mM) and TBR was varied.
- the solutions were prepared as follows: lg of TBR hexahydrate chloride was dissolved in 50mM TPA to make 5mM of TBR, which was then diluted with additional 50mM TPA to produce a set of test solutions, whose TBR concentrations range from O.lnM to 5mM.
- FIG. 1 An EG&G potentiostat, model PARC 273, was used to produce voltammograms of the TBR + TPA solution, both in the microcell with ITO and gold thin film electrodes, and in a more conventional, electrochemical cell with platinum wire electrodes. From the voltammogram, the oxidation potential, which is where ECL occurs, was determined and then applied as a dc bias between the thin film cathode and anode. The emitted light was measured with a Hamamatsu MT, model R928, biased at 600 volt.
- Figure 20 shows the relationship between measured light intensity and electrode voltage for a TBR concentration of /mM, where cell voltage and ECL intensity versus time.
- the voltage as indicated by the dot-dash-dot line, is increased, then decreased. In both directions, the voltage passes through the oxidation potential of TBR, where intensity of ECL is a maximum.
- the lowest concentration of TBR that has been measured using the microcell with an ITO film as the anode material was l ⁇ M. With a platinum anode, the measured TBP concentrations were as low as InM.
- the relatively high resistance of the ITO film is believed to be limiting the oxidation current for TPA, and therefore reducing the sensitivity. It has been determined that sensitivity can be improved by depositing a thin film of material, such as aluminum on the ITO film, as described hereinafter with respect to Figure 31.
- FIG 21 illustrates an embodiment of a micromachined ECL cell with thin film anode, generally indicated at 140, and a silicon (Si) photodiode 141 positioned adjacent the ECL cell 140.
- the ECL cell 140 is shown in enlarged cross-section in Figure 22.
- the cell 140 comprises a pair of silicon members 142 and 143, between which is positioned an electrode 144, which may be constructed of gold (Au), platinum (Pt) or silver (Ag), an ITO layer 145, and a glass layer or slide 146.
- Silicon member 142 includes a reaction chamber 147, and member 143 includes a pair of filling ports 148 (see Figure 22) via which an analyte, as indicated by legend is directed into chamber 147 and withdrawn therefrom via tubes or lines 149 and 150, as indicated by arrows 151 and 152.
- a center section 153 of silicon member 143 located between fill ports 148, along with ITO layer 145 and glass slide 146 define a window by which reactions within chamber 147 can be detected, as indicated by photons 154 passing therethrough onto photodiode 141.
- Electrical leads 155 and 156 are connected from a power source to electrode 144 and ITO layer 145, respectively, while photodiode 141 is electrically connected to a power source via leads 157 and 158.
- FIGS 23-30 illustrate the fabrication of an embodiment of an ECL cell similar to that of Figures 21 and 22.
- the fabrication process is carried out as follows:
- a block 160 of silicon is coated to form a layer 161 of silicon nitride (see Figure 23).
- a layer 162 of photoresist is deposited on the layer 161 (see Figure 24).
- the layer 162 is patterned and photolithographic process to form an opening 163 therein (see Figure 25). 4.
- the section 161' of silicon nitride layer 161 beneath the opening 163 is removed by RIE etching (see Figure 26).
- a section of silicon block 160 is removed by KOH etching to form a reaction chamber 164, and the remaining photoresist 162 is removed (see Figure 27). 6.
- a layer of gold, for example, is deposited by thin film evaporation over the upper surface of block 160 and chamber 164 to form an electrode 165 (see Figure 28).
- a second block of silicon 166 is coated with a layer 167 of silicon nitride and openings 168 and 169 are formed therein by RIE etching, and a pair of filling ports 170 and 171 are formed, as by micromachining, in block, 166, and silicon nitride coated block 166 is bonded to electrode 165 (see Figure 29).
- a layer of ITO forming an electrode 172 is deposited on a layer or slide 173 of glass, and then bonded to the silicon nitride layer 167 (see Figure 29).
- the present invention provides a silicon-based microreaction chamber which can be used in a hand-held instrument or a large high-throughput instrument.
- the invention provides for insert/liners, test strips, optical detection, and automatic control for the microreaction chamber.
- the present invention substantially advances the state of the art for PCR and other chemical reactions.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Molecular Biology (AREA)
- Clinical Laboratory Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002225390A CA2225390C (en) | 1995-06-20 | 1996-06-17 | Silicon-based sleeve devices for chemical reactions |
DE69634175T DE69634175T2 (en) | 1995-06-20 | 1996-06-17 | SILICONE BASED COATING DEVICES FOR CHEMICAL REACTIONS |
EP96921649A EP0871545B1 (en) | 1995-06-20 | 1996-06-17 | Silicon-based sleeve devices for chemical reactions |
JP50388697A JP4091656B2 (en) | 1995-06-20 | 1996-06-17 | Silicon-dependent sleeve device for chemical reaction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/492,678 US5589136A (en) | 1995-06-20 | 1995-06-20 | Silicon-based sleeve devices for chemical reactions |
US08/492,678 | 1995-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997000726A1 true WO1997000726A1 (en) | 1997-01-09 |
Family
ID=23957196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/010453 WO1997000726A1 (en) | 1995-06-20 | 1996-06-17 | Silicon-based sleeve devices for chemical reactions |
Country Status (7)
Country | Link |
---|---|
US (1) | US5589136A (en) |
EP (1) | EP0871545B1 (en) |
JP (1) | JP4091656B2 (en) |
CA (1) | CA2225390C (en) |
DE (1) | DE69634175T2 (en) |
ES (1) | ES2236739T3 (en) |
WO (1) | WO1997000726A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998025701A1 (en) | 1996-12-11 | 1998-06-18 | The Regents Of The University Of California | Microfabricated sleeve devices for chemical reactions |
JPH10337173A (en) * | 1997-06-05 | 1998-12-22 | Rikagaku Kenkyusho | Microreactor for biochemical reaction |
EP1123980A2 (en) | 2000-02-11 | 2001-08-16 | Roche Diagnostics GmbH | System for simple nucleic acid analysis |
JP2002522065A (en) * | 1998-08-10 | 2002-07-23 | ジェノミック ソリューションズ インコーポレイテッド | Heat and fluid circulation device for nucleic acid hybridization |
ES2220227A1 (en) * | 2003-05-30 | 2004-12-01 | INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" | Method and apparatus for the detection of substances or analytes from the analysis of one or more samples |
EP1552011A2 (en) * | 2002-07-23 | 2005-07-13 | THE TEXAS A & M UNIVERSITY SYSTEMS | Photonic signal reporting of electrochemical events |
US7391936B2 (en) | 2005-01-21 | 2008-06-24 | Lucent Technologies, Inc. | Microfluidic sensors and methods for making the same |
US7435391B2 (en) | 2003-05-23 | 2008-10-14 | Lucent Technologies Inc. | Light-mediated micro-chemical reactors |
US7780813B2 (en) | 2005-06-09 | 2010-08-24 | Alcatel-Lucent Usa Inc. | Electric field mediated chemical reactors |
US8053215B2 (en) | 2001-09-15 | 2011-11-08 | Ahram Biosystems, Inc. | Method and apparatus for amplification of nucleic acid sequences by using thermal convection |
US9573133B2 (en) | 2010-01-12 | 2017-02-21 | Ahram Biosystems, Inc. | Two-stage thermal convection apparatus and uses thereof |
US9573134B2 (en) | 2010-01-12 | 2017-02-21 | Ahram Biosystems, Inc. | Three-stage thermal convection apparatus and uses thereof |
Families Citing this family (295)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5605798A (en) | 1993-01-07 | 1997-02-25 | Sequenom, Inc. | DNA diagnostic based on mass spectrometry |
US20030017081A1 (en) * | 1994-02-10 | 2003-01-23 | Affymetrix, Inc. | Method and apparatus for imaging a sample on a device |
US6287850B1 (en) * | 1995-06-07 | 2001-09-11 | Affymetrix, Inc. | Bioarray chip reaction apparatus and its manufacture |
US5814565A (en) * | 1995-02-23 | 1998-09-29 | University Of Utah Research Foundation | Integrated optic waveguide immunosensor |
US6207369B1 (en) * | 1995-03-10 | 2001-03-27 | Meso Scale Technologies, Llc | Multi-array, multi-specific electrochemiluminescence testing |
US6428955B1 (en) | 1995-03-17 | 2002-08-06 | Sequenom, Inc. | DNA diagnostics based on mass spectrometry |
US5830655A (en) | 1995-05-22 | 1998-11-03 | Sri International | Oligonucleotide sizing using cleavable primers |
US5849208A (en) | 1995-09-07 | 1998-12-15 | Microfab Technoologies, Inc. | Making apparatus for conducting biochemical analyses |
US6048734A (en) | 1995-09-15 | 2000-04-11 | The Regents Of The University Of Michigan | Thermal microvalves in a fluid flow method |
CA2248084A1 (en) | 1996-03-04 | 1997-09-12 | Genetrace Systems, Inc. | Methods of screening nucleic acids using mass spectrometry |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US6054277A (en) * | 1996-05-08 | 2000-04-25 | Regents Of The University Of Minnesota | Integrated microchip genetic testing system |
US5919364A (en) * | 1996-06-24 | 1999-07-06 | Regents Of The University Of California | Microfabricated filter and shell constructed with a permeable membrane |
GB9616540D0 (en) * | 1996-08-06 | 1996-09-25 | Cavendish Kinetics Ltd | Integrated circuit device manufacture |
GB9618595D0 (en) * | 1996-09-06 | 1996-10-16 | Central Research Lab Ltd | Reaction cell |
US5965363A (en) | 1996-09-19 | 1999-10-12 | Genetrace Systems Inc. | Methods of preparing nucleic acids for mass spectrometric analysis |
US6221654B1 (en) * | 1996-09-25 | 2001-04-24 | California Institute Of Technology | Method and apparatus for analysis and sorting of polynucleotides based on size |
EP0834734A3 (en) * | 1996-10-01 | 1998-09-16 | Texas Instruments Inc. | Optical sensor |
DE19782096T1 (en) | 1996-11-06 | 2000-03-23 | Sequenom Inc | Immobilization of nucleic acids in high density |
US6024925A (en) | 1997-01-23 | 2000-02-15 | Sequenom, Inc. | Systems and methods for preparing low volume analyte array elements |
US7285422B1 (en) * | 1997-01-23 | 2007-10-23 | Sequenom, Inc. | Systems and methods for preparing and analyzing low volume analyte array elements |
US6379929B1 (en) | 1996-11-20 | 2002-04-30 | The Regents Of The University Of Michigan | Chip-based isothermal amplification devices and methods |
US5804384A (en) * | 1996-12-06 | 1998-09-08 | Vysis, Inc. | Devices and methods for detecting multiple analytes in samples |
JP2001524808A (en) | 1996-12-10 | 2001-12-04 | ジーントレイス・システムズ・インコーポレイテッド | Releasable non-volatile mass labeling molecules |
US5958349A (en) * | 1997-02-28 | 1999-09-28 | Cepheid | Reaction vessel for heat-exchanging chemical processes |
DK2333520T3 (en) | 1997-02-28 | 2014-09-29 | Cepheid | Heat-exchanging, requested chemical reaction device |
US6143496A (en) * | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
WO1998050773A2 (en) * | 1997-05-08 | 1998-11-12 | University Of Minnesota | Microcantilever biosensor |
US6097025A (en) * | 1997-10-31 | 2000-08-01 | Ljl Biosystems, Inc. | Light detection device having an optical-path switching mechanism |
US6071748A (en) * | 1997-07-16 | 2000-06-06 | Ljl Biosystems, Inc. | Light detection device |
US6469311B1 (en) | 1997-07-16 | 2002-10-22 | Molecular Devices Corporation | Detection device for light transmitted from a sensed volume |
US6258326B1 (en) | 1997-09-20 | 2001-07-10 | Ljl Biosystems, Inc. | Sample holders with reference fiducials |
WO1999033559A1 (en) * | 1997-12-24 | 1999-07-08 | Cepheid | Integrated fluid manipulation cartridge |
US5965410A (en) * | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US6413783B1 (en) | 1997-09-18 | 2002-07-02 | Meso Scale Technologies, Llc | Assay sonication apparatus and methodology |
US6576476B1 (en) | 1998-09-02 | 2003-06-10 | Ljl Biosystems, Inc. | Chemiluminescence detection method and device |
WO2000006991A2 (en) | 1998-07-27 | 2000-02-10 | Ljl Biosystems, Inc. | Apparatus and methods for spectroscopic measurements |
US6297018B1 (en) | 1998-04-17 | 2001-10-02 | Ljl Biosystems, Inc. | Methods and apparatus for detecting nucleic acid polymorphisms |
US6326605B1 (en) | 1998-02-20 | 2001-12-04 | Ljl Biosystems, Inc. | Broad range light detection system |
US6825921B1 (en) | 1999-11-10 | 2004-11-30 | Molecular Devices Corporation | Multi-mode light detection system |
WO2000050877A1 (en) | 1999-02-23 | 2000-08-31 | Ljl Biosystems, Inc. | Frequency-domain light detection device |
US6540895B1 (en) | 1997-09-23 | 2003-04-01 | California Institute Of Technology | Microfabricated cell sorter for chemical and biological materials |
US7214298B2 (en) | 1997-09-23 | 2007-05-08 | California Institute Of Technology | Microfabricated cell sorter |
EP1034040A2 (en) | 1997-11-25 | 2000-09-13 | Mosaic Technologies | Devices and methods for detecting target molecules in biological samples |
US6174675B1 (en) | 1997-11-25 | 2001-01-16 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US6268131B1 (en) | 1997-12-15 | 2001-07-31 | Sequenom, Inc. | Mass spectrometric methods for sequencing nucleic acids |
US6210882B1 (en) | 1998-01-29 | 2001-04-03 | Mayo Foundation For Medical Education And Reseach | Rapid thermocycling for sample analysis |
US6660228B1 (en) | 1998-03-02 | 2003-12-09 | Cepheid | Apparatus for performing heat-exchanging, chemical reactions |
US6369893B1 (en) | 1998-05-19 | 2002-04-09 | Cepheid | Multi-channel optical detection system |
AU764319B2 (en) * | 1998-03-17 | 2003-08-14 | Cepheid | Chemical processing device |
US6979424B2 (en) | 1998-03-17 | 2005-12-27 | Cepheid | Integrated sample analysis device |
AU743740B2 (en) * | 1998-03-23 | 2002-02-07 | Cepheid | Multi-site reactor system with dynamic, independent control of individual reaction sites |
US7188001B2 (en) * | 1998-03-23 | 2007-03-06 | Cepheid | System and method for temperature control |
US6537751B1 (en) | 1998-04-21 | 2003-03-25 | Genset S.A. | Biallelic markers for use in constructing a high density disequilibrium map of the human genome |
US6723564B2 (en) | 1998-05-07 | 2004-04-20 | Sequenom, Inc. | IR MALDI mass spectrometry of nucleic acids using liquid matrices |
US6200531B1 (en) * | 1998-05-11 | 2001-03-13 | Igen International, Inc. | Apparatus for carrying out electrochemiluminescence test measurements |
AU746069B2 (en) * | 1998-05-19 | 2002-04-11 | Cepheid | Multi-channel optical detection system |
AU5667599A (en) | 1998-07-27 | 2000-02-21 | Ljl Biosystems, Inc. | Apparatus and methods for time-resolved spectroscopic measurements |
US6281006B1 (en) | 1998-08-24 | 2001-08-28 | Therasense, Inc. | Electrochemical affinity assay |
US6638716B2 (en) | 1998-08-24 | 2003-10-28 | Therasense, Inc. | Rapid amperometric verification of PCR amplification of DNA |
CA2340005C (en) * | 1998-08-26 | 2014-05-06 | Sensors For Medicine And Science, Inc. | Optical-based sensing devices |
WO2000017401A2 (en) * | 1998-09-21 | 2000-03-30 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Method and apparatus for effecting and monitoring nucleic acid amplification |
US6572830B1 (en) | 1998-10-09 | 2003-06-03 | Motorola, Inc. | Integrated multilayered microfludic devices and methods for making the same |
US6413780B1 (en) | 1998-10-14 | 2002-07-02 | Abbott Laboratories | Structure and method for performing a determination of an item of interest in a sample |
JP4398096B2 (en) | 1998-10-16 | 2010-01-13 | コミツサリア タ レネルジー アトミーク | Chemical and / or biochemical analyzer with analytical support |
US6503750B1 (en) * | 1998-11-25 | 2003-01-07 | The Regents Of The University Of California | PCR thermocycler |
US7150994B2 (en) * | 1999-03-03 | 2006-12-19 | Symyx Technologies, Inc. | Parallel flow process optimization reactor |
US20040053290A1 (en) * | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
FR2795426A1 (en) * | 1999-06-22 | 2000-12-29 | Commissariat Energie Atomique | Support for genetic analysis comprising reservoir(s) for a medium to be analyzed connected by passage(s) having temperature control device(s) to a test strip with analysis sites having biological probes |
EP1203096B1 (en) * | 1999-07-28 | 2008-12-31 | Merck Serono Biodevelopment | Continuous flow micro device in which local temperature cycles act on a flowing sample |
US6932951B1 (en) | 1999-10-29 | 2005-08-23 | Massachusetts Institute Of Technology | Microfabricated chemical reactor |
US6642046B1 (en) | 1999-12-09 | 2003-11-04 | Motorola, Inc. | Method and apparatus for performing biological reactions on a substrate surface |
AU2082701A (en) * | 1999-12-09 | 2001-06-18 | Motorola, Inc. | Multilayered microfluidic devices for analyte reactions |
EP1254249B1 (en) * | 1999-12-20 | 2007-06-20 | The Penn State Research Foundation | Deposited thin films and their use in detection, attachment, and bio-medical applications |
US6699713B2 (en) | 2000-01-04 | 2004-03-02 | The Regents Of The University Of California | Polymerase chain reaction system |
EP1738829A1 (en) * | 2000-01-04 | 2007-01-03 | The Regents of the University of California | Polymerase chain reaction system |
US6403037B1 (en) | 2000-02-04 | 2002-06-11 | Cepheid | Reaction vessel and temperature control system |
US6824669B1 (en) | 2000-02-17 | 2004-11-30 | Motorola, Inc. | Protein and peptide sensors using electrical detection methods |
WO2001067369A2 (en) * | 2000-03-03 | 2001-09-13 | California Institute Of Technology | Combinatorial array for nucleic acid analysis |
EP1265700B1 (en) | 2000-03-07 | 2005-01-19 | Symyx Technologies, Inc. | Parallel flow process optimization reactor |
US6653147B2 (en) | 2000-03-31 | 2003-11-25 | Neogen Corporation | Apparatus and method for chemiluminescent assays |
US6927851B2 (en) | 2000-03-31 | 2005-08-09 | Neogen Corporation | Methods and apparatus to improve the sensitivity and reproducibility of bioluminescent analytical methods |
US7351376B1 (en) | 2000-06-05 | 2008-04-01 | California Institute Of Technology | Integrated active flux microfluidic devices and methods |
EP1373561B1 (en) | 2000-06-13 | 2009-02-18 | The Trustees of Boston University | Use of mass-matched nucleotides in the analysis of oligonucleotide mixtures and in highly multiplexed nucleic acid sequencing |
US6829753B2 (en) | 2000-06-27 | 2004-12-07 | Fluidigm Corporation | Microfluidic design automation method and system |
US6563581B1 (en) * | 2000-07-14 | 2003-05-13 | Applera Corporation | Scanning system and method for scanning a plurality of samples |
US7255833B2 (en) * | 2000-07-25 | 2007-08-14 | Cepheid | Apparatus and reaction vessel for controlling the temperature of a sample |
US6600558B2 (en) * | 2000-08-22 | 2003-07-29 | Nippon Telegraph And Telephone Corporation | Micro-fluidic cell for optical detection of gases and method for producing same |
EP1336097A4 (en) | 2000-10-13 | 2006-02-01 | Fluidigm Corp | Microfluidic device based sample injection system for analytical devices |
EP1332000B1 (en) | 2000-10-30 | 2012-06-20 | Sequenom, Inc. | Method for delivery of submicroliter volumes onto a substrate |
AU2002249778A1 (en) | 2000-11-17 | 2002-08-12 | Thermogenic Imaging, Inc. | Apparatus and methods for infrared calorimetric measurements |
US20020132360A1 (en) | 2000-11-17 | 2002-09-19 | Flir Systems Boston, Inc. | Apparatus and methods for infrared calorimetric measurements |
WO2002059625A2 (en) * | 2000-12-26 | 2002-08-01 | Weigl Bernhard H | Microfluidic cartridge with integrated electronics |
US6692700B2 (en) | 2001-02-14 | 2004-02-17 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US6509186B1 (en) | 2001-02-16 | 2003-01-21 | Institute Of Microelectronics | Miniaturized thermal cycler |
US6432695B1 (en) | 2001-02-16 | 2002-08-13 | Institute Of Microelectronics | Miniaturized thermal cycler |
US20050196785A1 (en) * | 2001-03-05 | 2005-09-08 | California Institute Of Technology | Combinational array for nucleic acid analysis |
US7118917B2 (en) | 2001-03-07 | 2006-10-10 | Symyx Technologies, Inc. | Parallel flow reactor having improved thermal control |
US6586233B2 (en) | 2001-03-09 | 2003-07-01 | The Regents Of The University Of California | Convectively driven PCR thermal-cycling |
US7192557B2 (en) | 2001-03-28 | 2007-03-20 | Handylab, Inc. | Methods and systems for releasing intracellular material from cells within microfluidic samples of fluids |
US7829025B2 (en) | 2001-03-28 | 2010-11-09 | Venture Lending & Leasing Iv, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US7270786B2 (en) | 2001-03-28 | 2007-09-18 | Handylab, Inc. | Methods and systems for processing microfluidic samples of particle containing fluids |
US6575188B2 (en) | 2001-07-26 | 2003-06-10 | Handylab, Inc. | Methods and systems for fluid control in microfluidic devices |
US7010391B2 (en) * | 2001-03-28 | 2006-03-07 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8895311B1 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US7323140B2 (en) | 2001-03-28 | 2008-01-29 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US6852287B2 (en) | 2001-09-12 | 2005-02-08 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
EP1384022A4 (en) | 2001-04-06 | 2004-08-04 | California Inst Of Techn | Nucleic acid amplification utilizing microfluidic devices |
EP2461156B8 (en) | 2001-06-29 | 2020-10-28 | Meso Scale Technologies, LLC. | Apparatus for luminescence test measurements |
US6923939B1 (en) * | 2001-07-05 | 2005-08-02 | Uop Llc | Heat activated membrane introduction apparatus and method for screening materials |
US20030032172A1 (en) * | 2001-07-06 | 2003-02-13 | The Regents Of The University Of California | Automated nucleic acid assay system |
EP1412487B1 (en) | 2001-07-30 | 2010-06-16 | Meso Scale Technologies LLC | Assay electrodes having immobilized lipid/protein layers and methods of making and using the same |
US6939632B2 (en) * | 2001-08-06 | 2005-09-06 | Massachusetts Institute Of Technology | Thermally efficient micromachined device |
AU2002365911A1 (en) * | 2001-08-06 | 2003-09-04 | Vanderbilt University | System and methods for discriminating an agent |
WO2003019158A2 (en) * | 2001-08-21 | 2003-03-06 | Bestmann, Lukas | Thermo-optical analysis system for biochemical reactions |
AU2002333526B2 (en) | 2001-09-10 | 2008-01-17 | Meso Scale Technologies, Llc. | Methods and apparatus for conducting multiple measurements on a sample |
US8440093B1 (en) | 2001-10-26 | 2013-05-14 | Fuidigm Corporation | Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels |
WO2003038127A1 (en) | 2001-10-30 | 2003-05-08 | Ahram Biosystems Inc. | Method and apparatus for amplification of nucleic acid sequences using immobilized dna polymerase |
US7691333B2 (en) | 2001-11-30 | 2010-04-06 | Fluidigm Corporation | Microfluidic device and methods of using same |
ES2403560T3 (en) | 2001-11-30 | 2013-05-20 | Fluidigm Corporation | Microfluidic device and procedures for its use |
US7312085B2 (en) | 2002-04-01 | 2007-12-25 | Fluidigm Corporation | Microfluidic particle-analysis systems |
WO2003085379A2 (en) | 2002-04-01 | 2003-10-16 | Fluidigm Corporation | Microfluidic particle-analysis systems |
US20050221326A1 (en) * | 2002-06-12 | 2005-10-06 | Avi Orr-Urtreger | Oligonucleotides antibodies and kits including same for treating prostate cancer and determining predisposition thereto |
AU2003249350A1 (en) * | 2002-06-20 | 2004-01-06 | Igen International, Inc | Electrochemiluminescence flow cell and flow cell components |
AU2003256285A1 (en) * | 2002-06-28 | 2004-01-19 | Igen International, Inc. | Improved assay systems and components |
WO2004011145A1 (en) * | 2002-07-26 | 2004-02-05 | Arizona Board Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University | Microreactor with controllable pressure and temperature for in situ material investigations |
US20070166725A1 (en) * | 2006-01-18 | 2007-07-19 | The Regents Of The University Of California | Multiplexed diagnostic platform for point-of care pathogen detection |
US20040038385A1 (en) * | 2002-08-26 | 2004-02-26 | Langlois Richard G. | System for autonomous monitoring of bioagents |
EP2298448A3 (en) | 2002-09-25 | 2012-05-30 | California Institute of Technology | Microfluidic large scale integration |
US8871446B2 (en) | 2002-10-02 | 2014-10-28 | California Institute Of Technology | Microfluidic nucleic acid analysis |
US20090209030A1 (en) * | 2002-10-15 | 2009-08-20 | Benett William J | Thermal Cycler |
US20040072334A1 (en) * | 2002-10-15 | 2004-04-15 | The Regents Of The University Of California | Thermal cycler |
TW200409821A (en) * | 2002-12-03 | 2004-06-16 | Ind Tech Res Inst | Microarray biochip reactor |
JP5479663B2 (en) | 2002-12-20 | 2014-04-23 | セレラ コーポレーション | Genetic polymorphism associated with myocardial infarction, detection method and use thereof |
AU2003302264A1 (en) | 2002-12-20 | 2004-09-09 | Biotrove, Inc. | Assay apparatus and method using microfluidic arrays |
GB2399776A (en) * | 2003-03-24 | 2004-09-29 | Pa Knowledge Ltd | Cyclical heating and cooling device and associated methods |
US20050145496A1 (en) | 2003-04-03 | 2005-07-07 | Federico Goodsaid | Thermal reaction device and method for using the same |
US7604965B2 (en) | 2003-04-03 | 2009-10-20 | Fluidigm Corporation | Thermal reaction device and method for using the same |
US7476363B2 (en) | 2003-04-03 | 2009-01-13 | Fluidigm Corporation | Microfluidic devices and methods of using same |
CA2521171C (en) | 2003-04-03 | 2013-05-28 | Fluidigm Corp. | Microfluidic devices and methods of using same |
US8828663B2 (en) | 2005-03-18 | 2014-09-09 | Fluidigm Corporation | Thermal reaction device and method for using the same |
AU2004243070B2 (en) * | 2003-05-23 | 2010-04-15 | Bio-Rad Laboratories, Inc. | Localized temperature control for spatial arrays of reaction media |
US7170594B2 (en) * | 2003-05-28 | 2007-01-30 | Smiths Detection, Inc. | Device for polymerase chain reactions |
EP2402089A1 (en) | 2003-07-31 | 2012-01-04 | Handylab, Inc. | Processing particle-containing samples |
US7413712B2 (en) | 2003-08-11 | 2008-08-19 | California Institute Of Technology | Microfluidic rotary flow reactor matrix |
US7981362B2 (en) | 2003-11-04 | 2011-07-19 | Meso Scale Technologies, Llc | Modular assay plates, reader systems and methods for test measurements |
EP2386658B1 (en) | 2003-11-26 | 2014-01-08 | Celera Corporation | Genetic polymorphisms associated with cardiovascular disorders and drug response, methods of detection and uses thereof |
US8697433B2 (en) * | 2003-12-10 | 2014-04-15 | Samsung Electronics Co., Ltd. | Polymerase chain reaction (PCR) module and multiple PCR system using the same |
US7767439B2 (en) * | 2003-12-10 | 2010-08-03 | Samsung Electronics Co., Ltd. | Real-time PCR monitoring apparatus and method |
DE10359160A1 (en) * | 2003-12-16 | 2005-07-21 | Roche Diagnostics Gmbh | Test element for the examination of sample material |
US20050170401A1 (en) * | 2004-01-29 | 2005-08-04 | Canon Kabushiki Kaisha | Hybridization apparatus and method |
JP5344817B2 (en) | 2004-05-03 | 2013-11-20 | ハンディーラブ インコーポレイテッド | Processing of samples containing polynucleotides |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
EP2412826B1 (en) | 2004-05-07 | 2014-01-08 | Celera Corporation | Genetic polymorphism associated with liver fibrosis methods of detection and uses thereof |
DE102004035080A1 (en) * | 2004-05-27 | 2005-12-29 | Infineon Technologies Ag | Arrangement for reducing electrical crosstalk on a chip |
EP1758981A4 (en) | 2004-05-28 | 2013-01-16 | Wafergen Inc | Apparatus and methods for multiplex analyses |
DE102004033317A1 (en) * | 2004-07-09 | 2006-02-09 | Roche Diagnostics Gmbh | Analytical test element |
US8185653B2 (en) * | 2004-08-09 | 2012-05-22 | Johnny Yau | Method and apparatus for ad hoc mesh routing |
US7968287B2 (en) | 2004-10-08 | 2011-06-28 | Medical Research Council Harvard University | In vitro evolution in microfluidic systems |
EP2113572B1 (en) | 2005-03-11 | 2012-12-05 | Celera Corporation | Genetic polymorphisms associated with coronary heart disease, methods of detection and uses thereof |
JP2006255522A (en) * | 2005-03-15 | 2006-09-28 | Hitachi Ltd | Apparatus and method for producing substance |
JP5590796B2 (en) | 2005-06-03 | 2014-09-17 | ボード・オブ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・テキサス・システム | Electrochemistry and electrochemiluminescence with a single Faraday electrode |
US7630849B2 (en) | 2005-09-01 | 2009-12-08 | Applied Biosystems, Llc | Method of automated calibration and diagnosis of laboratory instruments |
JP4977138B2 (en) * | 2005-09-06 | 2012-07-18 | フィンザイムズ・オサケユキテュア | Thermal cycler with optimized sample holder shape |
US7799530B2 (en) | 2005-09-23 | 2010-09-21 | Celera Corporation | Genetic polymorphisms associated with cardiovascular disorders and drug response, methods of detection and uses thereof |
US7727473B2 (en) | 2005-10-19 | 2010-06-01 | Progentech Limited | Cassette for sample preparation |
US7754148B2 (en) | 2006-12-27 | 2010-07-13 | Progentech Limited | Instrument for cassette for sample preparation |
KR100768089B1 (en) * | 2005-11-30 | 2007-10-18 | 한국전자통신연구원 | Affirnity Chromatography microdevice, and preparing method of the same |
JP2009536313A (en) | 2006-01-11 | 2009-10-08 | レインダンス テクノロジーズ, インコーポレイテッド | Microfluidic devices and methods for use in nanoreactor formation and control |
JP5063616B2 (en) | 2006-02-03 | 2012-10-31 | インテジェニックス インコーポレイテッド | Microfluidic device |
US7998708B2 (en) | 2006-03-24 | 2011-08-16 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
ES2692380T3 (en) | 2006-03-24 | 2018-12-03 | Handylab, Inc. | Method to perform PCR with a cartridge with several tracks |
US8088616B2 (en) | 2006-03-24 | 2012-01-03 | Handylab, Inc. | Heater unit for microfluidic diagnostic system |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US8883490B2 (en) | 2006-03-24 | 2014-11-11 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US7705339B2 (en) * | 2006-04-25 | 2010-04-27 | University Of South Florida | Portable reactor for real-time nucleic acid amplification and detection comprising a reaction chamber formed from a flexible printed circuit board |
US8900828B2 (en) | 2006-05-01 | 2014-12-02 | Cepheid | Methods and apparatus for sequential amplification reactions |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
US20080014589A1 (en) | 2006-05-11 | 2008-01-17 | Link Darren R | Microfluidic devices and methods of use thereof |
US8119352B2 (en) * | 2006-06-20 | 2012-02-21 | Cepheld | Multi-stage amplification reactions by control of sequence replication times |
EP2639318B1 (en) | 2006-09-11 | 2015-04-08 | Celera Corporation | Genetic polymorphisms associated with Psoriasis, methods of detection and uses thereof |
KR100758273B1 (en) * | 2006-09-13 | 2007-09-12 | 한국전자통신연구원 | A plastic based microfabricated thermal device and a method for manufacturing the same, and a dna amplification chip and a method for manufacturing the same using the same |
US7910303B2 (en) | 2006-10-20 | 2011-03-22 | Celera Corporation | Genetic polymorphisms associated with venous thrombosis, methods of detection and uses thereof |
WO2008052168A2 (en) * | 2006-10-26 | 2008-05-02 | Symyx Technologies, Inc. | High pressure parallel fixed bed reactor and method |
WO2008061165A2 (en) | 2006-11-14 | 2008-05-22 | Handylab, Inc. | Microfluidic cartridge and method of making same |
US8580194B2 (en) * | 2006-11-23 | 2013-11-12 | Asmag-Holding Gmbh | Device for optoelectronically characterizing samples |
WO2008091626A1 (en) | 2007-01-22 | 2008-07-31 | Wafergen, Inc. | Apparatus for high throughput chemical reactions |
WO2008115626A2 (en) * | 2007-02-05 | 2008-09-25 | Microchip Biotechnologies, Inc. | Microfluidic and nanofluidic devices, systems, and applications |
US8772046B2 (en) | 2007-02-06 | 2014-07-08 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
US20080206877A1 (en) * | 2007-02-22 | 2008-08-28 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of | Reactors for selective enhancement reactions and methods of using such reactors |
US8298763B2 (en) * | 2007-03-02 | 2012-10-30 | Lawrence Livermore National Security, Llc | Automated high-throughput flow-through real-time diagnostic system |
DE102007017450A1 (en) * | 2007-04-02 | 2008-10-09 | Niro-Plan Ag | Method and apparatus for making caffe latte macchiato |
US8592221B2 (en) | 2007-04-19 | 2013-11-26 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
US20120115131A1 (en) | 2007-05-31 | 2012-05-10 | Yale University | Genetic lesion associated with cancer |
WO2008144827A1 (en) | 2007-05-31 | 2008-12-04 | The University Of Queensland | Diagnostic markers for ankylosing spondylitis and uses thereof |
USD621060S1 (en) | 2008-07-14 | 2010-08-03 | Handylab, Inc. | Microfluidic cartridge |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US20090136385A1 (en) | 2007-07-13 | 2009-05-28 | Handylab, Inc. | Reagent Tube |
US8105783B2 (en) | 2007-07-13 | 2012-01-31 | Handylab, Inc. | Microfluidic cartridge |
US9618139B2 (en) | 2007-07-13 | 2017-04-11 | Handylab, Inc. | Integrated heater and magnetic separator |
WO2009012185A1 (en) | 2007-07-13 | 2009-01-22 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US7955840B2 (en) | 2007-08-23 | 2011-06-07 | Akonni Biosystems | Thermal cycler for PCR including temperature control bladder |
US20090180931A1 (en) | 2007-09-17 | 2009-07-16 | Sequenom, Inc. | Integrated robotic sample transfer device |
US8778663B2 (en) * | 2007-09-18 | 2014-07-15 | Lawrence Livermore National Security, Llc. | Thermal cycler |
US8039212B2 (en) | 2007-11-05 | 2011-10-18 | Celera Corporation | Genetic polymorphisms associated with liver fibrosis, methods of detection and uses thereof |
DE102007062441A1 (en) | 2007-12-20 | 2009-06-25 | Aj Innuscreen Gmbh | Mobile rapid test system for nucleic acid analysis |
DE102008009920A1 (en) * | 2008-02-15 | 2009-08-20 | Aj Innuscreen Gmbh | Mobile device for nucleic acid isolation |
US20090221620A1 (en) | 2008-02-20 | 2009-09-03 | Celera Corporation | Gentic polymorphisms associated with stroke, methods of detection and uses thereof |
EP3093351B1 (en) | 2008-07-09 | 2018-04-18 | Celera Corporation | Genetic polymorphisms associated with cardiovascular diseases, methods of detection and uses thereof |
USD618820S1 (en) | 2008-07-11 | 2010-06-29 | Handylab, Inc. | Reagent holder |
USD787087S1 (en) | 2008-07-14 | 2017-05-16 | Handylab, Inc. | Housing |
WO2010009365A1 (en) | 2008-07-18 | 2010-01-21 | Raindance Technologies, Inc. | Droplet libraries |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
CA2638458A1 (en) * | 2008-07-31 | 2010-01-31 | Spartan Bioscience Inc. | Thermal recycling by positioning relative to fixed-temperature source |
US20100081577A1 (en) * | 2008-09-30 | 2010-04-01 | Symyx Technologies, Inc. | Reactor systems and methods |
WO2010055525A1 (en) | 2008-11-17 | 2010-05-20 | Technion Research & Development Foundation Ltd. | Method for predicting a patient's responsiveness to anti-folate therapy |
US20100261292A1 (en) | 2009-04-10 | 2010-10-14 | Meso Scale Technologies, Llc | Methods for Conducting Assays |
EP2419204A2 (en) | 2009-04-14 | 2012-02-22 | Biocartis SA | Hifu induced cavitation with reduced power threshold |
TR201809597T4 (en) | 2009-04-15 | 2018-07-23 | Biocartis Nv | Protection of bioanalytical sample reservoirs. |
AU2010237532B2 (en) | 2009-04-15 | 2014-11-20 | Biocartis Nv | Optical detection system for monitoring rtPCR reaction |
EP2427270B1 (en) | 2009-05-06 | 2015-04-01 | Biocartis NV | Device for cutting a sample carrier |
WO2010141921A1 (en) | 2009-06-05 | 2010-12-09 | Integenx Inc. | Universal sample preparation system and use in an integrated analysis system |
EP2264183B1 (en) | 2009-06-09 | 2016-12-07 | Gendiag.exe, S.L. | Risk markers for cardiovascular disease |
AU2010265889A1 (en) | 2009-06-25 | 2012-01-19 | Yale University | Single nucleotide polymorphisms in BRCA1 and cancer risk |
CA3083798C (en) * | 2009-07-27 | 2023-08-15 | Meso Scale Technologies, Llc | Assay apparatuses, consumables and methods |
WO2011100604A2 (en) | 2010-02-12 | 2011-08-18 | Raindance Technologies, Inc. | Digital analyte analysis |
US10351905B2 (en) | 2010-02-12 | 2019-07-16 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
US9366632B2 (en) | 2010-02-12 | 2016-06-14 | Raindance Technologies, Inc. | Digital analyte analysis |
US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
KR20160088958A (en) | 2010-02-23 | 2016-07-26 | 루미넥스 코포레이션 | Apparatus and methods for integrated sample preparation, reaction and detection |
WO2011128096A1 (en) | 2010-04-16 | 2011-10-20 | Roche Diagnostics Gmbh | Polymorphism markers for predicting response to interleukin-6 receptor-inhibiting monoclonal antibody drug treatment |
US20110269735A1 (en) | 2010-04-19 | 2011-11-03 | Celera Corporation | Genetic polymorphisms associated with statin response and cardiovascular diseases, methods of detection and uses thereof |
EP2593468B1 (en) | 2010-07-12 | 2020-06-10 | The State of Israel, Ministry of Agriculture and Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center | Isolated polynucleotides and methods and plants using same for regulating plant acidity |
EP2606154B1 (en) | 2010-08-20 | 2019-09-25 | Integenx Inc. | Integrated analysis system |
US8763642B2 (en) | 2010-08-20 | 2014-07-01 | Integenx Inc. | Microfluidic devices with mechanically-sealed diaphragm valves |
US9562897B2 (en) | 2010-09-30 | 2017-02-07 | Raindance Technologies, Inc. | Sandwich assays in droplets |
EP4300100A3 (en) | 2010-10-14 | 2024-09-04 | Meso Scale Technologies, LLC | Reagent storage in an assay device |
US20120108651A1 (en) | 2010-11-02 | 2012-05-03 | Leiden University Medical Center (LUMC) Acting on Behalf of Academic Hospital Leiden (AZL) | Genetic polymorphisms associated with venous thrombosis and statin response, methods of detection and uses thereof |
EP2661485A4 (en) | 2011-01-06 | 2018-11-21 | Meso Scale Technologies, LLC | Assay cartridges and methods of using the same |
US9364803B2 (en) | 2011-02-11 | 2016-06-14 | Raindance Technologies, Inc. | Methods for forming mixed droplets |
EP3736281A1 (en) | 2011-02-18 | 2020-11-11 | Bio-Rad Laboratories, Inc. | Compositions and methods for molecular labeling |
CN106148512B (en) | 2011-04-15 | 2020-07-10 | 贝克顿·迪金森公司 | Scanning real-time microfluidic thermocycler and method for synchronized thermocycling and scanning optical detection |
CN104023834B (en) | 2011-05-04 | 2016-09-28 | 卢米耐克斯公司 | The apparatus and method for prepared for integrated sample, react and detect |
EP2714970B1 (en) | 2011-06-02 | 2017-04-19 | Raindance Technologies, Inc. | Enzyme quantification |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
RU2622432C2 (en) | 2011-09-30 | 2017-06-15 | Бектон, Дикинсон Энд Компани | Unified strip for reagents |
USD692162S1 (en) | 2011-09-30 | 2013-10-22 | Becton, Dickinson And Company | Single piece reagent holder |
US10865440B2 (en) | 2011-10-21 | 2020-12-15 | IntegenX, Inc. | Sample preparation, processing and analysis systems |
US20150136604A1 (en) | 2011-10-21 | 2015-05-21 | Integenx Inc. | Sample preparation, processing and analysis systems |
CN104040238B (en) | 2011-11-04 | 2017-06-27 | 汉迪拉布公司 | Polynucleotides sample preparation apparatus |
WO2013070990A1 (en) | 2011-11-11 | 2013-05-16 | Glezer Eli N | Co-binder assisted assay methods |
JP6262152B2 (en) | 2012-02-03 | 2018-01-17 | ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company | External file for distribution of molecular diagnostic tests and determination of compatibility between tests |
AU2014203992B2 (en) | 2013-01-04 | 2018-03-22 | Meso Scale Technologies, Llc. | Assay apparatuses, methods and reagents |
EP2972353B1 (en) | 2013-03-11 | 2023-02-22 | Meso Scale Technologies, LLC | Improved methods for conducting multiplexed assays |
AU2014248759B2 (en) | 2013-03-13 | 2020-02-27 | Meso Scale Technologies, Llc. | Improved assay methods |
US10114015B2 (en) | 2013-03-13 | 2018-10-30 | Meso Scale Technologies, Llc. | Assay methods |
CN105209532B (en) | 2013-03-15 | 2017-11-28 | 路博润先进材料公司 | CPVC compositions without heavy metal |
US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
CN105873681B (en) | 2013-11-18 | 2019-10-11 | 尹特根埃克斯有限公司 | Cartridge and instrument for sample analysis |
US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
WO2015171971A1 (en) | 2014-05-09 | 2015-11-12 | Meso Scale Technologies, Llc. | Graphene-modified electrodes |
JP6695280B2 (en) | 2014-05-15 | 2020-05-20 | メソ スケール テクノロジーズ エルエルシー | Improved assay method |
US10208332B2 (en) | 2014-05-21 | 2019-02-19 | Integenx Inc. | Fluidic cartridge with valve mechanism |
US9506908B2 (en) | 2014-10-06 | 2016-11-29 | Alveo Technologies, Inc. | System for detection of analytes |
US9921182B2 (en) | 2014-10-06 | 2018-03-20 | ALVEO Technologies Inc. | System and method for detection of mercury |
US10627358B2 (en) | 2014-10-06 | 2020-04-21 | Alveo Technologies, Inc. | Method for detection of analytes |
US10352899B2 (en) | 2014-10-06 | 2019-07-16 | ALVEO Technologies Inc. | System and method for detection of silver |
US10196678B2 (en) | 2014-10-06 | 2019-02-05 | ALVEO Technologies Inc. | System and method for detection of nucleic acids |
EP3209410A4 (en) | 2014-10-22 | 2018-05-02 | IntegenX Inc. | Systems and methods for sample preparation, processing and analysis |
US9943819B2 (en) | 2014-11-03 | 2018-04-17 | Singh Instrument LLC | Small-scale reactor having improved mixing |
WO2016116935A1 (en) | 2015-01-21 | 2016-07-28 | Yeda Research And Development Co. Ltd. | Use of rasa2 as a prognostic and therapeutic marker for melanoma |
US10641772B2 (en) | 2015-02-20 | 2020-05-05 | Takara Bio Usa, Inc. | Method for rapid accurate dispensing, visualization and analysis of single cells |
US10647981B1 (en) | 2015-09-08 | 2020-05-12 | Bio-Rad Laboratories, Inc. | Nucleic acid library generation methods and compositions |
JP6578188B2 (en) * | 2015-11-05 | 2019-09-18 | ウシオ電機株式会社 | Optical measuring instrument |
US10391498B2 (en) | 2015-12-11 | 2019-08-27 | Spartan Bioscience Inc. | Systems and methods for nucleic acid amplification |
EP3472342A1 (en) | 2016-06-19 | 2019-04-24 | Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. | Screening for chemotherapy resistance in human haploid cells |
JP7075394B2 (en) | 2016-07-21 | 2022-05-25 | タカラ バイオ ユーエスエー, インコーポレイテッド | Multi-Z imaging and dispensing using a multi-well device |
MX2019003273A (en) | 2016-09-23 | 2019-09-13 | Alveo Tech Inc | Methods and compositions for detecting analytes. |
US11739389B2 (en) | 2017-05-17 | 2023-08-29 | Microbio Pty Ltd | Biomarkers and uses thereof |
FI3756009T3 (en) | 2018-02-23 | 2023-12-01 | Meso Scale Technologies Llc | Methods of screening antigen-binding molecules by normalizing for the concentration of antigen-binding molecule |
IL262658A (en) | 2018-10-28 | 2020-04-30 | Memorial Sloan Kettering Cancer Center | Prevention of age related clonal hematopoiesis and diseases associated therewith |
CN113366313A (en) | 2019-01-03 | 2021-09-07 | 中尺度技术有限责任公司 | Compositions and methods for performing analytical measurements |
DE102019200109A1 (en) * | 2019-01-08 | 2020-07-09 | Robert Bosch Gmbh | Microfluidic device and analyzer for a microfluidic device |
US20220099661A1 (en) | 2019-03-01 | 2022-03-31 | Meso Scale Technologies, Llc. | Electrochemiluminescent labeled probes for use in immunoassay methods, methods using such and kits comprising same |
BR112021024624A2 (en) | 2019-06-07 | 2022-01-18 | Hoffmann La Roche | Methods for selecting and providing a single-stranded oligonucleotide binding pair, for forming an antisense duplex, and for performing an assay, separate complementary ss-oligonucleotide pair, antiparallel duplex, use of a separate ss-oligonucleotide pair, kit to perform a test and liquid composition |
EP4154008A1 (en) | 2020-05-19 | 2023-03-29 | Meso Scale Technologies, LLC | Methods, compositions, and kits for nucleic acid detection |
AU2021299536A1 (en) | 2020-07-01 | 2023-02-16 | Meso Scale Technologies, Llc. | Compositions and methods for assay measurements |
WO2022136234A1 (en) | 2020-12-22 | 2022-06-30 | F. Hoffmann-La Roche Ag | Method for detecting an analyte of interest in a sample |
WO2023129884A1 (en) | 2021-12-30 | 2023-07-06 | Meso Scale Technologies, Llc. | Methods for electrochemiluminescence detection |
CN118696234A (en) | 2022-02-18 | 2024-09-24 | 豪夫迈·罗氏有限公司 | Method for detecting target analytes in a sample |
WO2023194369A1 (en) | 2022-04-08 | 2023-10-12 | Fundació Institut Mar D'investigacions Mèdiques (Imim) | Genetic markers for severe covid-19 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4315890A (en) * | 1980-05-01 | 1982-02-16 | Intersci Corporation | Device for the identification of volatile fluids |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5252294A (en) * | 1988-06-01 | 1993-10-12 | Messerschmitt-Bolkow-Blohm Gmbh | Micromechanical structure |
US4908112A (en) * | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
US5262127A (en) * | 1992-02-12 | 1993-11-16 | The Regents Of The University Of Michigan | Solid state chemical micro-reservoirs |
US5304487A (en) * | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
AU677781B2 (en) * | 1992-05-01 | 1997-05-08 | Trustees Of The University Of Pennsylvania, The | Microfabricated sperm handling devices |
US5639423A (en) * | 1992-08-31 | 1997-06-17 | The Regents Of The University Of Calfornia | Microfabricated reactor |
-
1995
- 1995-06-20 US US08/492,678 patent/US5589136A/en not_active Expired - Lifetime
-
1996
- 1996-06-17 ES ES96921649T patent/ES2236739T3/en not_active Expired - Lifetime
- 1996-06-17 JP JP50388697A patent/JP4091656B2/en not_active Expired - Lifetime
- 1996-06-17 CA CA002225390A patent/CA2225390C/en not_active Expired - Lifetime
- 1996-06-17 DE DE69634175T patent/DE69634175T2/en not_active Expired - Lifetime
- 1996-06-17 EP EP96921649A patent/EP0871545B1/en not_active Expired - Lifetime
- 1996-06-17 WO PCT/US1996/010453 patent/WO1997000726A1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4315890A (en) * | 1980-05-01 | 1982-02-16 | Intersci Corporation | Device for the identification of volatile fluids |
Non-Patent Citations (2)
Title |
---|
NORTHRUP M. A., ET AL.: "DNA AMPLIFICATION WITH A MICROFABRICATED REACTION CHAMBER.", INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS AND ACTUATORS., XX, XX, no. 07., 1 January 1993 (1993-01-01), XX, pages 924 - 926., XP000606115 * |
See also references of EP0871545A4 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998025701A1 (en) | 1996-12-11 | 1998-06-18 | The Regents Of The University Of California | Microfabricated sleeve devices for chemical reactions |
EP0948408A1 (en) * | 1996-12-11 | 1999-10-13 | The Regents Of The University Of California | Microfabricated sleeve devices for chemical reactions |
EP0948408A4 (en) * | 1996-12-11 | 2001-01-17 | Univ California | Microfabricated sleeve devices for chemical reactions |
JPH10337173A (en) * | 1997-06-05 | 1998-12-22 | Rikagaku Kenkyusho | Microreactor for biochemical reaction |
JP2002522065A (en) * | 1998-08-10 | 2002-07-23 | ジェノミック ソリューションズ インコーポレイテッド | Heat and fluid circulation device for nucleic acid hybridization |
EP1123980A2 (en) | 2000-02-11 | 2001-08-16 | Roche Diagnostics GmbH | System for simple nucleic acid analysis |
US8053215B2 (en) | 2001-09-15 | 2011-11-08 | Ahram Biosystems, Inc. | Method and apparatus for amplification of nucleic acid sequences by using thermal convection |
US9765376B2 (en) | 2001-09-15 | 2017-09-19 | Ahram Biosystems, Inc. | Method and apparatus for amplification of nucleic acid sequences by using thermal convection |
EP1552011A4 (en) * | 2002-07-23 | 2006-11-08 | Texas A & M Univ Sys | Photonic signal reporting of electrochemical events |
EP1552011A2 (en) * | 2002-07-23 | 2005-07-13 | THE TEXAS A & M UNIVERSITY SYSTEMS | Photonic signal reporting of electrochemical events |
US7435391B2 (en) | 2003-05-23 | 2008-10-14 | Lucent Technologies Inc. | Light-mediated micro-chemical reactors |
US8097209B2 (en) | 2003-05-30 | 2012-01-17 | Instituto Nacional de Technica Aerospacial “Easteban Terradas” | Method and apparatus for detecting substances or analytes from the analysis of one or more samples |
WO2004106922A1 (en) * | 2003-05-30 | 2004-12-09 | Instituto Nacional De Tecnica Aeroespacial 'esteban Terradas' | Method and apparatus for the detection of substances or analytes from the analysis of one or more samples |
ES2220227A1 (en) * | 2003-05-30 | 2004-12-01 | INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" | Method and apparatus for the detection of substances or analytes from the analysis of one or more samples |
US7391936B2 (en) | 2005-01-21 | 2008-06-24 | Lucent Technologies, Inc. | Microfluidic sensors and methods for making the same |
US7780813B2 (en) | 2005-06-09 | 2010-08-24 | Alcatel-Lucent Usa Inc. | Electric field mediated chemical reactors |
US9573133B2 (en) | 2010-01-12 | 2017-02-21 | Ahram Biosystems, Inc. | Two-stage thermal convection apparatus and uses thereof |
US9573134B2 (en) | 2010-01-12 | 2017-02-21 | Ahram Biosystems, Inc. | Three-stage thermal convection apparatus and uses thereof |
US10086375B2 (en) | 2010-01-12 | 2018-10-02 | Ahram Biosystems, Inc. | Two-stage thermal convection apparatus and uses thereof |
US10086374B2 (en) | 2010-01-12 | 2018-10-02 | Ahram Biosystems, Inc. | Three-stage thermal convection apparatus and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
DE69634175D1 (en) | 2005-02-17 |
US5589136A (en) | 1996-12-31 |
CA2225390A1 (en) | 1997-01-09 |
EP0871545B1 (en) | 2005-01-12 |
JPH11509136A (en) | 1999-08-17 |
DE69634175T2 (en) | 2006-01-05 |
EP0871545A4 (en) | 1999-09-08 |
JP4091656B2 (en) | 2008-05-28 |
EP0871545A1 (en) | 1998-10-21 |
CA2225390C (en) | 2008-09-30 |
ES2236739T3 (en) | 2005-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5589136A (en) | Silicon-based sleeve devices for chemical reactions | |
US6521181B1 (en) | Microfabricated electrochemiluminescence cell for chemical reaction detection | |
CA2274620C (en) | Microfabricated sleeve devices for chemical reactions | |
JP3002541B2 (en) | Chemical reaction control device, method of manufacturing the same, and chemical reaction control method | |
Erickson et al. | Integrated microfluidic devices | |
US7935312B2 (en) | Microfabricated reactor, process for manufacturing the reactor, and method of amplification | |
US9909171B2 (en) | Thermo-controllable high-density chips for multiplex analyses | |
Lagally et al. | Monolithic integrated PCR reactor-CE system for DNA amplification and analysis to the single molecule limit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP KR SG |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996921649 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2225390 Country of ref document: CA Ref country code: CA Ref document number: 2225390 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 503886 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1996921649 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996921649 Country of ref document: EP |