WO1996039387A1 - Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors - Google Patents

Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors Download PDF

Info

Publication number
WO1996039387A1
WO1996039387A1 PCT/US1996/008376 US9608376W WO9639387A1 WO 1996039387 A1 WO1996039387 A1 WO 1996039387A1 US 9608376 W US9608376 W US 9608376W WO 9639387 A1 WO9639387 A1 WO 9639387A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyridin
compound
pharmaceutically acceptable
acceptable salt
acrylonitrile
Prior art date
Application number
PCT/US1996/008376
Other languages
French (fr)
Inventor
Hassan Mahmoud Elokdah
Chai Sie-Yearl
Theodore Sylvester Sulkowski
Original Assignee
American Home Products Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Home Products Corporation filed Critical American Home Products Corporation
Priority to MX9709462A priority Critical patent/MX9709462A/en
Priority to EP96917921A priority patent/EP0835244B1/en
Priority to SI9630338T priority patent/SI0835244T1/en
Priority to DE69617686T priority patent/DE69617686T2/en
Priority to AT96917921T priority patent/ATE210120T1/en
Priority to AU60304/96A priority patent/AU711619B2/en
Priority to JP9500995A priority patent/JPH11506754A/en
Priority to NZ309995A priority patent/NZ309995A/en
Priority to HU9900660A priority patent/HUP9900660A3/en
Priority to BR9608976A priority patent/BR9608976A/en
Publication of WO1996039387A1 publication Critical patent/WO1996039387A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/57Nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • This invention relates to diheterocyclic styryl nitriles which are useful as smooth muscle cell proliferation inhibitors and to the use of these compounds and pharmaceutical compositions containing these compounds in the treatment of diseases and conditions associated with excessive smooth muscle cell proliferation, such as restenosis, and to a process for the preparation of such compounds.
  • Proliferation and directed migration of vascular smooth muscle cells are important vascular occlusive components in such processes as hypertension-induced vascular remodeling, vascular restenosis, and atherosclerosis (Gibbons, G.H.; Dzau,
  • the overall disease process is referred to as hyperproliferative vascular disease based on the etiology of the disease process.
  • Vascular occlusion is preceded by stenosis resulting from intimal smooth muscle cell hyperplasia (Clowes, A.W.; Reidy, M.A.; J. Vase. Surg., 1991 , 13: 885).
  • the underlying cause of intimal smooth muscle cell hyperplasia is vascular smooth muscle cell injury leading to disruption of the endothelium and extracellular matrix (Schwartz,
  • the cells of the arterial wall are under close negative control and in a low basal proliferating state or in a quiescent non-proliferating state.
  • the release of growth factors and cytokines result in smooth muscle cell proliferation and migration (Fagin, J.A.; Forrester, J.S., Trends in Cardiovascular
  • Vascular injury leading to intimal hyperplasia can be induced immunologically or by invasive cardiovascular procedures.
  • Atherosclerosis is a common form of biologically mediated vascular injury progressing to stenosis.
  • Abnormal proliferation of vascular smooth muscle cells is a feature of atherosclerotic plaques responsible for obstructive neo-intimal lesions at the site of intimal damage (Ross, R., Nature, 1993: 362; 801; Cascells, W., Circulation, 1992; 86: 723).
  • Percutaneous transluminal coronary angioplasty has achieved wide acceptance for the treatment of coronary artery stenosis.
  • the endothelium is damaged and exposed to a variety of chemoattractants and mitogens which are either blood-borne or are released at the site of injury.
  • platelet-derived growth factor is thought to play a significant role in the process of smooth muscle cell proliferation and chemotaxis (Reidy, M.A.; Fingerle, J.; Lindner, V.; Circulation, 1993: 86 (suppl III): 111-43.; Ferns, G.A.A.; Raines, E.W.; Sprugel, K.H.; Montani, A.S.; Reidy, M.A.; Ross, R.; Science, 1991; 253: 1129.; Jawien, A., et al, J. Clin. Invest., 1992; 89: 507; Nabel, E.G., et al., J. Clin.
  • WO 9218481 discloses 3-heteroaryl-2-phenyl-2-propenenitriles as EGF receptor tyrosine kinase inhibitors useful for inhibition of cell proliferation.
  • WO 91 16305 discloses some mono and some 2,3-diheterocyclic propene nitriles as cellular antiproliferative agents.
  • This invention relates to the use of diheterocyclic styryl nitrile derivatives as smooth muscle cell proliferation inhibitors and as therapeutic compositions for treating diseases and conditions which are characterized by excessive smooth muscle cell proliferation such as restenosis.
  • Ari and Ar2 are, independently, pyridinyl, quinolinyl, dihydro-1,4- benzodioxinyl, pyrrolyl, azaindolyl or carbazolyl optionally substituted with C]- alkyl, or a pharmaceutically acceptable salt thereof.
  • Particularly preferred compounds are those where Ari is pyridin-2-yl, pyridin- 3-yl, pyridin-4-yl, quinolinyl, dihydro-l ,4-benzodioxinyl, pyrrolyl, pyrrolo-[2,3- b]pyridin-3-yl) or carbazolyl and those where Ar2 is pyridin-3-yl.
  • carbazolyl group When the carbazolyl group is substituted with C 1 -C 4 alkyl it is preferably substitited with methyl or ethyl and is preferably substituted in the 9-position, particularly 9-ethyl.
  • the compounds of the invention can exist as stereoisomers.
  • a particularly preferred isomeric form is the Z-form.
  • Particularly preferred compounds are: Z-2-(pyridin-3yl)-3-(pyridin-4-yl)-acrylonitrile or a pharmaceutically acceptable salt thereof.
  • the diheterocyclic styryl nitriles were prepared by the condensation of an appropriate heterocyclic aldehyde (Ari) with an appropriate heterocyclic acetonitrile (Ar2).
  • the condensation is carried out in ethanol using piperidine or sodium methoxide as a base.
  • 7-azaindole acetonitrile (3) is prepared by reacting 7-aza- indole with dimethylamine and formaldehyde in refluxing butanol to obtain 7-(3-di- methylaminomethyl) azaindole (2). Quatemization of (2) with dimethylsulfate in tetra- hydrofuran, followed by reaction with potassium cyanide in water affords the acetonitrile (3).
  • AT2CH2CN where Ari ar >d Ar2 are as previously defined to form the compound of formula I; and optionally forming the pharmaceutical salt thereof.
  • the pharmaceutically acceptable salts are those derived from such organic and inorganic acids as: acetic, lactic, citric, fumaric, tartaric, succinic, maleic, malonic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, methyl- benzene sulfonic, and similarly known acceptable acids.
  • compositions comprised of the diheterocyclic styryl nitriles of the invention either alone or in combination with excipients (i.e. pharmaceutically acceptable materials with no pharmacological effect).
  • excipients i.e. pharmaceutically acceptable materials with no pharmacological effect.
  • Such compositions are useful in treating diseases which are characterized by excessive smooth muscle cell proliferation most frequently arising from vascular reconstructive surgery and transplantation, for example, balloon angioplasty, vascular graft surgery, coronary artery bypass surgery, and heart transplantation.
  • Other disease states in which there is unwanted vascular proliferation include hypertension, asthma, and congestive heart failure.
  • the compounds of this invention are thus useful for treating these diseases and states.
  • the compounds of this invention may be administered systemically, for example by intravenous injection, typically ranging from 0.1 to 10 mg/kg/h over 5-30 days, by subcutaneous injection at lower dose or by oral administration at higher dose than intravenous injection. Localized delivery of the compounds of this invention may also be achieved by transmembrane, transdermal or other topical administrative routes using appropriate continuous release devices such as a supporting matrix, where applicable.
  • the compositions of the invention may be formulated with conventional excipients, such as a filler, a disintegrating agent, a binder, a lubricant, a flavoring agent and the like. These are formulated in a conventional manner.
  • the compounds may be administered neat or with a solid or liquid pharmaceutical carrier to a patient in need of such treatment.
  • Applicable solid carriers can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet- disintergrating agents or an encapsulating material.
  • the carrier is a finely divided solid which is in admixture with the finely divided active ingredient.
  • the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired.
  • the powders and tablets preferably contain up to 99% of the active ingredient.
  • Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxy- methyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
  • Liquid carriers may be used in preparing solutions, suspensions, emulsions, syrups and elixirs.
  • the active ingredient of this invention can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fat.
  • the liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators.
  • suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above e.g.
  • cellulose derivatives preferably sodium carboxy- methyl cellulose solution
  • alcohols including monohydric alcohols and polyhydric alcohols e.g. glycols
  • oils e.g. fractionated coconut oil and arachis oil
  • the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate.
  • Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.
  • Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Oral administration may be either liquid or solid composition form.
  • the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids.
  • the unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.
  • a pharmaceutical composition comprising a compound of formula I as defined herein, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the dosage to be used in the treatment of a specific patient suffering from a disease involving smooth muscle cell proliferation must be subjectively determined by the attending physician.
  • the variables involved include the specific disease state and the size, age and response pattern of the patient.
  • porcine aortic smooth muscle cells in a modification of the procedure of Castellot et al. J. Biol. Chem 257(19) 11256 (1982), as follows: Fresh porcine aortas, scrupulously cleansed of fatty tissue, are rinsed in sterile phosphate-buffered saline with 2% antibiotic-antimycotic (lOOx) liquid ( 10,000 units of penicillin (base), 10,000 ⁇ g of streptomycin (base), and 25 ⁇ g of amphotericin B/mL utilizing penicillin G (sodium salt), streptomycin sulfate, and amphotericin B as Fungizone® in 0.85% saline, available from Gibco Laboratories, Grand Island Biological Co., Grand Island, NY).
  • antibiotic-antimycotic (lOOx) liquid 10,000 units of penicillin (base), 10,000 ⁇ g of streptomycin (base), and 25 ⁇ g of amphotericin B/mL utilizing penicillin G (sodium
  • the tissue is then digested in 10-15 mL of an enzyme solution containing collagenase type I, 165 U/mL; elastase type III, 15 U/mL; BSA, 2 mg/mL; and soybean trypsin inhibitor, 0.375 mg/mL, followed by incubation at 37°C under 5% CO2 atmosphere for 10 to 15 minutes.
  • the outer surface adventitia is removed by peeling with a forceps.
  • the aorta is then longitudinally cut and laid open and the endothelial layer is removed by scraping.
  • the medial layer of cells is rinsed in the enzyme solution, and placed in a new 100 mm dish with 10 mL of enzyme solution.
  • the medial layer of cells is minced using a fine pair of scissors and digested for 2-3 hours at 37°C in 30 mL of fresh enzyme solution.
  • the medial tissue is homogenized using a sterile Pasteur pipette with a fire polished tip or an Eppendorf pipetter with a 200-1000 ⁇ L sterile pipette tip.
  • the suspension is then centrifuged for 10 minutes at 8000 rpm and the pellet is suspended in 4-6 mL of fresh enzyme solution and plated onto 4-6 100 mm flasks with vented caps.
  • the cells are then allowed to grow to confluence and split using 0.25% trypsin.
  • the cells are evaluated for purity and overall quality using antibody to SMC actin.
  • the cells are assayed in early passage (generally passage 3-7) at sub-confluent conditions. Cultures are grown in 16 mm (24 well) multi-well culture dishes in media
  • test compound ⁇ H thymidine and serum or a specific growth factor to the serum deprived synchronized cells. Growth factor and serum stimulations are optimized for each cell type.
  • the test compounds are added to each well at 50 fold dilution (20 ⁇ L/well) and the plates are incubated for 24-36 hours at 37°C in 5% CO2 atmosphere. Test compounds are dissolved in 50% ethanol and assayed at 1 , 10, and 100 ⁇ M.
  • RG 50872 Boilder, G.A.; et al., Am. J. Cell Physiol., 1991 ; 260: C721
  • RG 50872 is routinely assayed under the conditions of each cell preparation at a concentration of 5 ⁇ M.
  • the plates are placed on ice, washed three times with ice cold PBS and incubated in ice cold 10% trichloroacetic acid (TCA) for 30 minutes to remove acid soluble proteins.
  • TCA trichloroacetic acid
  • Each solution is transferred to a scintillation vial containing 0.4N HC1 (500 ⁇ L/vial to neutralize NaOH) and each well is rinsed two times with water (500 ⁇ L) for a total volume of 2 mL/vial.
  • Control (100%) data is obtained from maximally stimulated cells, as the result of growth factor or serum stimulation.
  • Experimental data is obtained from cells maximally stimulated with growth factor or serum and treated with a test compound.
  • the platelet-derived growth factor used in the assay was human recombinant PDGF-AB purchased from Upstate Biotechnology Inc., Lake Placid, NY). Data is expressed as a percent of control from which IC50S are determined.
  • test compounds were examined using a commercial modification of the MTT assay. Briefly, cells were grown in 24 well plates to 70-80% confluency. The cells were serum deprived for 24-48 hours prior to initiation of the experimental protocol. To insure that the MTT assay monitored toxicity rather than proliferation, the cells were incubated with 50 mM test compound in fresh medium without serum for 24 hours at 37°C in a humidified CO2 incubator. Upon completion of the compound treatment, MTT indicator dye was added for 4 hours at 37°C. Cells were then solubilized and aliquots from each well were transferred to a 96-well plate for analysis. Absorbance at 570 nm wavelength with a reference wavelength of 630 nm was recorded using an ELISA plate reader. Results are reported as percent viable using no drug (100% viable) and pre-solubilization (0% viable) standards.
  • the compounds of the present invention are effective inhibitors of smooth muscle cell proliferation as shown by the data presented in Table I.
  • Table I is an effective inhibitors of smooth muscle cell proliferation as shown by the data presented in Table I.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Disclosed herein are compounds of formula (I) where Ar1 and Ar2 are, independently, pyridinyl, quinolinyl, dihydro-1,4-benzodioxinyl, pyrrolyl, azaindolyl or carbazolyl, or a pharmaceutically acceptable salt thereof, which are useful as inhibitors of smooth muscle cell proliferation.

Description

Diheterocycl ic acryl onitri les as smooth muscle cel l prol iferation inhibitors
This invention relates to diheterocyclic styryl nitriles which are useful as smooth muscle cell proliferation inhibitors and to the use of these compounds and pharmaceutical compositions containing these compounds in the treatment of diseases and conditions associated with excessive smooth muscle cell proliferation, such as restenosis, and to a process for the preparation of such compounds.
Proliferation and directed migration of vascular smooth muscle cells are important vascular occlusive components in such processes as hypertension-induced vascular remodeling, vascular restenosis, and atherosclerosis (Gibbons, G.H.; Dzau,
V.J.; NEJM, 1994; 330: 1431 ). The overall disease process is referred to as hyperproliferative vascular disease based on the etiology of the disease process.
Vascular occlusion is preceded by stenosis resulting from intimal smooth muscle cell hyperplasia (Clowes, A.W.; Reidy, M.A.; J. Vase. Surg., 1991 , 13: 885). The underlying cause of intimal smooth muscle cell hyperplasia is vascular smooth muscle cell injury leading to disruption of the endothelium and extracellular matrix (Schwartz,
S.M., Human Pathology, 1987; 18: 240; Fingerle, J., Arteriosclerosis, 1990; 10:
1082). Normally, the cells of the arterial wall are under close negative control and in a low basal proliferating state or in a quiescent non-proliferating state. Following vascular injury, the release of growth factors and cytokines result in smooth muscle cell proliferation and migration (Fagin, J.A.; Forrester, J.S., Trends in Cardiovascular
Med., 1992; 2; 90.; Shiratani, M.; Yui, Y.; Kawai, C, Endothelium, 1993; 1: 5).
Vascular injury leading to intimal hyperplasia can be induced immunologically or by invasive cardiovascular procedures. Atherosclerosis is a common form of biologically mediated vascular injury progressing to stenosis. Abnormal proliferation of vascular smooth muscle cells is a feature of atherosclerotic plaques responsible for obstructive neo-intimal lesions at the site of intimal damage (Ross, R., Nature, 1993: 362; 801; Cascells, W., Circulation, 1992; 86: 723). Mechanical injury leading to intimal hyperplasia can occur following angioplasty procedures, organ transplant surgery and other vascular invasive procedures that disrupt vascular integrity (Clowes, A.W.; Reidy, M.A., J. Vase. Surg., 1991 ; 13: 885; Isik, F.F.; McDonald, T.O.; Ferguson, M.; Yanaka, E., Am. J. Pathol, 1992; 141: 1139).
Percutaneous transluminal coronary angioplasty has achieved wide acceptance for the treatment of coronary artery stenosis. In this procedure the endothelium is damaged and exposed to a variety of chemoattractants and mitogens which are either blood-borne or are released at the site of injury. Among these agents, platelet-derived growth factor (PDGF) is thought to play a significant role in the process of smooth muscle cell proliferation and chemotaxis (Reidy, M.A.; Fingerle, J.; Lindner, V.; Circulation, 1993: 86 (suppl III): 111-43.; Ferns, G.A.A.; Raines, E.W.; Sprugel, K.H.; Montani, A.S.; Reidy, M.A.; Ross, R.; Science, 1991; 253: 1129.; Jawien, A., et al, J. Clin. Invest., 1992; 89: 507; Nabel, E.G., et al., J. Clin. Invest., 1993; 91: 1822). Within 3 to 6 months after angioplasty, a significant reduction in blood flow occurs in approximately 30-40% of patients as a result of restenosis caused by response to vascular injury during this procedure. These patients then require a second interventional procedure (Pepine, C, Circulation, 1990; 81: 1753.; Hardoff, R.J., J. Am. Coll. Cardiol., 1990; 15: 1486). Accordingly, agents that limit the restenosis process would be of significant benefit. Agents that inhibit vascular smooth muscle cell proliferation, particularly PDGF-stimulated proliferation, would be useful in the treatment of vascular hyperproliferative disorders (Molloy, C.J., Drug Dev. Res., 1993; 29: 148.; Newby, A.C.; George, S.J., Cardiovasc. Res., 1993; 27: 1173).
WO 9218481 discloses 3-heteroaryl-2-phenyl-2-propenenitriles as EGF receptor tyrosine kinase inhibitors useful for inhibition of cell proliferation. WO 91 16305 discloses some mono and some 2,3-diheterocyclic propene nitriles as cellular antiproliferative agents.
This invention relates to the use of diheterocyclic styryl nitrile derivatives as smooth muscle cell proliferation inhibitors and as therapeutic compositions for treating diseases and conditions which are characterized by excessive smooth muscle cell proliferation such as restenosis.
In accordance with this invention there is provided a compound of formula I:
Figure imgf000004_0001
where Ari and Ar2 are, independently, pyridinyl, quinolinyl, dihydro-1,4- benzodioxinyl, pyrrolyl, azaindolyl or carbazolyl optionally substituted with C]- alkyl, or a pharmaceutically acceptable salt thereof. Particularly preferred compounds are those where Ari is pyridin-2-yl, pyridin- 3-yl, pyridin-4-yl, quinolinyl, dihydro-l ,4-benzodioxinyl, pyrrolyl, pyrrolo-[2,3- b]pyridin-3-yl) or carbazolyl and those where Ar2 is pyridin-3-yl.
When the carbazolyl group is substituted with C1-C4 alkyl it is preferably substitited with methyl or ethyl and is preferably substituted in the 9-position, particularly 9-ethyl.
The compounds of the invention can exist as stereoisomers. A particularly preferred isomeric form is the Z-form.
Particularly preferred compounds are: Z-2-(pyridin-3yl)-3-(pyridin-4-yl)-acrylonitrile or a pharmaceutically acceptable salt thereof.
2-pyridin-3-yl-3-quinolin-4-yl-acrylonitrile or a pharmaceutically acceptable salt thereof.
3-(2,3-dihydro-benzo[ 1 ,4]dioxin-6-yl)-2-pyridin-3-yl-acrylonitrile or a pharmaceutically acceptable salt thereof.
2-pyridin-3-yl-3-pyridin-2-yl-acrylonitrile or a pharmaceutically acceptable salt thereof.
2,3-di-pyridin-3-yl-acrylonitrile or a pharmaceutically acceptable salt thereof. 2-(pyridin-3-yl)-3-(lH-pyrrolo[2,3-b]pyridin-3-yl)-acrylonitrile or a pharmaceutically acceptable salt thereof.
(Z)-3-(2,3-dihydro-benzo[l ,4]dioxin-6-yl)-2-(lH-pyrrolo[2,3-b]pyridin-3-yl)- acrylonitrile or a pharmaceutically acceptable salt thereof.
(Z)-3-(9-ethyl-9H-carbazol-3-yl)-2-(pyridin-3-yl) acrylonitrile or a pharmaceutically acceptable salt thereof.
2-(pyridin-3-yl)-3-(lH-pyrrol-2-yl)-acrylonitrile or a pharmaceutically acceptable salt thereof.
The diheterocyclic styryl nitriles were prepared by the condensation of an appropriate heterocyclic aldehyde (Ari) with an appropriate heterocyclic acetonitrile (Ar2). The condensation is carried out in ethanol using piperidine or sodium methoxide as a base. ROH
Arj CHO + Ar2CH2CN
BASE Arι^ Ar2
CN
Figure imgf000006_0001
When Ar2 is 7-azaindole, 7-azaindole acetonitrile (3) is prepared by reacting 7-aza- indole with dimethylamine and formaldehyde in refluxing butanol to obtain 7-(3-di- methylaminomethyl) azaindole (2). Quatemization of (2) with dimethylsulfate in tetra- hydrofuran, followed by reaction with potassium cyanide in water affords the acetonitrile (3).
Thus, according to a further aspect of the present invention there is provided a process for the preparation of a compound of formula I as defined herein which comprises condensing an aldehyde of formula Ar CHO with an acetonitrile of formula
AT2CH2CN where Ari ar>d Ar2 are as previously defined to form the compound of formula I; and optionally forming the pharmaceutical salt thereof.
According to a yet further aspect of the present invention there is provided a process for the preparation of Ar2CH2CN where Ar2 is 7-azaindole which comprises reacting 7-azaindole with dimethylamine to give the compound of formula 2 as defined herein then quaternizing the compound of formula 2 forllowed by reaction with a cyanide to form A^CI-^CN.
The pharmaceutically acceptable salts are those derived from such organic and inorganic acids as: acetic, lactic, citric, fumaric, tartaric, succinic, maleic, malonic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, methyl- benzene sulfonic, and similarly known acceptable acids.
This invention includes pharmaceutical compositions comprised of the diheterocyclic styryl nitriles of the invention either alone or in combination with excipients (i.e. pharmaceutically acceptable materials with no pharmacological effect). Such compositions are useful in treating diseases which are characterized by excessive smooth muscle cell proliferation most frequently arising from vascular reconstructive surgery and transplantation, for example, balloon angioplasty, vascular graft surgery, coronary artery bypass surgery, and heart transplantation. Other disease states in which there is unwanted vascular proliferation include hypertension, asthma, and congestive heart failure. The compounds of this invention are thus useful for treating these diseases and states.
The compounds of this invention may be administered systemically, for example by intravenous injection, typically ranging from 0.1 to 10 mg/kg/h over 5-30 days, by subcutaneous injection at lower dose or by oral administration at higher dose than intravenous injection. Localized delivery of the compounds of this invention may also be achieved by transmembrane, transdermal or other topical administrative routes using appropriate continuous release devices such as a supporting matrix, where applicable. The compositions of the invention may be formulated with conventional excipients, such as a filler, a disintegrating agent, a binder, a lubricant, a flavoring agent and the like. These are formulated in a conventional manner.
The compounds may be administered neat or with a solid or liquid pharmaceutical carrier to a patient in need of such treatment. Applicable solid carriers can include one or more substances which may also act as flavoring agents, lubricants, solubilizers, suspending agents, fillers, glidants, compression aids, binders or tablet- disintergrating agents or an encapsulating material. In powders, the carrier is a finely divided solid which is in admixture with the finely divided active ingredient. In tablets, the active ingredient is mixed with a carrier having the necessary compression properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain up to 99% of the active ingredient. Suitable solid carriers include, for example, calcium phosphate, magnesium stearate, talc, sugars, lactose, dextrin, starch, gelatin, cellulose, methyl cellulose, sodium carboxy- methyl cellulose, polyvinylpyrrolidine, low melting waxes and ion exchange resins.
Liquid carriers may be used in preparing solutions, suspensions, emulsions, syrups and elixirs. The active ingredient of this invention can be dissolved or suspended in a pharmaceutically acceptable liquid carrier such as water, an organic solvent, a mixture of both or pharmaceutically acceptable oils or fat. The liquid carrier can contain other suitable pharmaceutical additives such as solubilizers, emulsifiers, buffers, preservatives, sweeteners, flavoring agents, suspending agents, thickening agents, colors, viscosity regulators, stabilizers or osmo-regulators. Suitable examples of liquid carriers for oral and parenteral administration include water (particularly containing additives as above e.g. cellulose derivatives, preferably sodium carboxy- methyl cellulose solution), alcohols (including monohydric alcohols and polyhydric alcohols e.g. glycols) and their derivatives, and oils (e.g. fractionated coconut oil and arachis oil). For parenteral administration the carrier can also be an oily ester such as ethyl oleate and isopropyl myristate. Sterile liquid carriers are used in sterile liquid form compositions for parenteral administration.
Liquid pharmaceutical compositions which are sterile solutions or suspensions can be utilized by, for example, intramuscular, intraperitoneal or subcutaneous injection. Sterile solutions can also be administered intravenously. Oral administration may be either liquid or solid composition form. Preferably the pharmaceutical composition is in unit dosage form, e.g. as tablets or capsules. In such form, the composition is sub-divided in unit dose containing appropriate quantities of the active ingredient; the unit dosage forms can be packaged compositions, for example packeted powders, vials, ampoules, prefilled syringes or sachets containing liquids. The unit dosage form can be, for example, a capsule or tablet itself, or it can be the appropriate number of any such compositions in package form.
Thus, according to a further aspect of the present invention there is provided a pharmaceutical composition comprising a compound of formula I as defined herein, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
The dosage to be used in the treatment of a specific patient suffering from a disease involving smooth muscle cell proliferation must be subjectively determined by the attending physician. The variables involved include the specific disease state and the size, age and response pattern of the patient.
A compound of formula I as defined herein for use in the treatment of mammals, in particular for use in the treatment of diseases or conditions related to smooth muscle cell proliferation..
The ability of the compounds of the present invention to inhibit smooth muscle cell proliferation was established using isolated porcine aortic smooth muscle cells in a modification of the procedure of Castellot et al. J. Biol. Chem 257(19) 11256 (1982), as follows: Fresh porcine aortas, scrupulously cleansed of fatty tissue, are rinsed in sterile phosphate-buffered saline with 2% antibiotic-antimycotic (lOOx) liquid ( 10,000 units of penicillin (base), 10,000 μg of streptomycin (base), and 25 μg of amphotericin B/mL utilizing penicillin G (sodium salt), streptomycin sulfate, and amphotericin B as Fungizone® in 0.85% saline, available from Gibco Laboratories, Grand Island Biological Co., Grand Island, NY). The tissue is then digested in 10-15 mL of an enzyme solution containing collagenase type I, 165 U/mL; elastase type III, 15 U/mL; BSA, 2 mg/mL; and soybean trypsin inhibitor, 0.375 mg/mL, followed by incubation at 37°C under 5% CO2 atmosphere for 10 to 15 minutes. After this treatment, the outer surface adventitia is removed by peeling with a forceps. The aorta is then longitudinally cut and laid open and the endothelial layer is removed by scraping.
The medial layer of cells is rinsed in the enzyme solution, and placed in a new 100 mm dish with 10 mL of enzyme solution. The medial layer of cells is minced using a fine pair of scissors and digested for 2-3 hours at 37°C in 30 mL of fresh enzyme solution. After digestion, the medial tissue is homogenized using a sterile Pasteur pipette with a fire polished tip or an Eppendorf pipetter with a 200-1000 μL sterile pipette tip. The suspension is then centrifuged for 10 minutes at 8000 rpm and the pellet is suspended in 4-6 mL of fresh enzyme solution and plated onto 4-6 100 mm flasks with vented caps. The cells are then allowed to grow to confluence and split using 0.25% trypsin. The cells are evaluated for purity and overall quality using antibody to SMC actin.
The cells are assayed in early passage (generally passage 3-7) at sub-confluent conditions. Cultures are grown in 16 mm (24 well) multi-well culture dishes in media
199 supplemented with 10% fetal bovine serum and 2% antibiotic/antimycotic. At subconfluence, the cells are placed in a defined serum free, lymphocyte medium (AIM-
V; Gibco) for 24-48 hours prior to initiating the experimental protocol.
The standard test procedure is initiated by addition of the test compound, ^H thymidine and serum or a specific growth factor to the serum deprived synchronized cells. Growth factor and serum stimulations are optimized for each cell type. The test compounds are added to each well at 50 fold dilution (20 μL/well) and the plates are incubated for 24-36 hours at 37°C in 5% CO2 atmosphere. Test compounds are dissolved in 50% ethanol and assayed at 1 , 10, and 100 μM. As a control, RG 50872 (Bilder, G.A.; et al., Am. J. Cell Physiol., 1991 ; 260: C721) is routinely assayed under the conditions of each cell preparation at a concentration of 5 μM. At the completion of the experiment, the plates are placed on ice, washed three times with ice cold PBS and incubated in ice cold 10% trichloroacetic acid (TCA) for 30 minutes to remove acid soluble proteins. Each solution is transferred to a scintillation vial containing 0.4N HC1 (500 μL/vial to neutralize NaOH) and each well is rinsed two times with water (500 μL) for a total volume of 2 mL/vial.
Data is quantitated by subjecting the vials to a scintillation counter, in triplicate, for both control and experimental samples. Control (100%) data is obtained from maximally stimulated cells, as the result of growth factor or serum stimulation. Experimental data is obtained from cells maximally stimulated with growth factor or serum and treated with a test compound. (The platelet-derived growth factor used in the assay was human recombinant PDGF-AB purchased from Upstate Biotechnology Inc., Lake Placid, NY). Data is expressed as a percent of control from which IC50S are determined.
To distinguish cytotoxicity from the ability of a compound to prevent proliferation, the test compounds were examined using a commercial modification of the MTT assay. Briefly, cells were grown in 24 well plates to 70-80% confluency. The cells were serum deprived for 24-48 hours prior to initiation of the experimental protocol. To insure that the MTT assay monitored toxicity rather than proliferation, the cells were incubated with 50 mM test compound in fresh medium without serum for 24 hours at 37°C in a humidified CO2 incubator. Upon completion of the compound treatment, MTT indicator dye was added for 4 hours at 37°C. Cells were then solubilized and aliquots from each well were transferred to a 96-well plate for analysis. Absorbance at 570 nm wavelength with a reference wavelength of 630 nm was recorded using an ELISA plate reader. Results are reported as percent viable using no drug (100% viable) and pre-solubilization (0% viable) standards.
The compounds of the present invention are effective inhibitors of smooth muscle cell proliferation as shown by the data presented in Table I. Table I
Compound Porcine Smooth Muscle Cell Antiproliferation Cytotoxicity of Example IC50 or % Inhibition at x Concentration % Viable
Number Serum PDGF Cells
1 1.159 μM 0.346 μM 100
2 81 μM - -
3 3.8-11.5 μM 10.5 μM 86
4 48.3 μM - 92
5 96.6 μM - -
6 1.18 μM 0.9 μM 100
7 1.23 μM 14.8 μM 100
8 0.355 μM 0.336 μM 100
9 92 μM - 84
The following examples are presented by way of illustration rather than limitation for the production of representative compounds of the invention.
EXAMPLE 1
Z-2-(Pyridin-3yl)-3-(pyridin-4-yl)-acrylonitriIe
3-Pyridylacetonitrile (1.18g; 0.01 mol) and 4-pyridyl carboxyaldehyde (1.07g;
0.01 mol) were dissolved in ethanol (75 mL). Sodium methoxide (2.16g of 25% methanol solution, 0.01 mol) was then added. The mixture was allowed to stand at ambient temperature for a period of lhour. The crystalline solid that formed was collected by filtration, washed with fresh ethanol and dried to give the title compound (l.Og, 48% yield) as an off-white solid, m.p. 150-152°C. Anal. Calcd. for C13H9N3: C, 75.35; H, 4.38; N, 20.28. Found: C, 75.01 ; H, 4.58; N, 20.19. Mass spectrum (El; M+) m/z 207. *H-NMR (DMSO-d6; 400 MHz) 5 9.0 (s, 1H), 8.78 (d, 2H), 8.68 (d, 1H), 8.21 (s, 1H), 8.17 (m, 1 H), 7.8 (d, 2H), and 7.58 ppm (m, 1H). EXAMPLE 2
2-Pyridin-3-yl-3-quinolin-4-yl-acrylonitrile
Quinolin-4-carboxaldehyde (4.7 lg; 0.03 mol) and 3-pyridylacetonitrile (3.54g; 0.03 mol) were dissolved in ethanol (100 mL). Sodium methoxide (2 mL of 25% methanol solution) was added. The reaction mixture was heated at reflux for a period of 2.5 hours. The mixture was cooled to ambient temperature. After 18 hours, the precipitated solid was collected, suspended in ethanol and saturated with hydrogen chloride gas. The mixture was cooled and the solid was collected by filtration. The solid was crystallized from methanol to give the title compound (5.8 g; 57% yield) as a dihydrochloride, three quarter hydrate, yellow solid, m.p. 250°C (dec). Anal. Calcd for C17H11N3 • HC1 • 3/4 H2O; C, 59.40; H, 4.25; N, 12.23. Found: C, 59.75; H. 4.10; N, 11.93. Mass spectrum (El; M+) m/z 257. *H-NMR (DMSO-d6; 400 MHz) δ 9.40 (s, 1H), 9.38 (d, 1H), 9.15 (s, 1H), 8.93 (d, 1H), 8.74 (d, 1H), 8.56 (d, 1H), 8.46 (d, 1H), 8.32 (d, 1H), 8.13 (t, 1H), 8.00 (q, 1H), 7.95 (t, 1H), and 7.70 ppm (br s, 4H).
EXAMPLE 3
3-(2,3-Dihydro-benzo[l,4]dioxin-6-yl)-2-pyridin-3-yl-acrylonitriIe
To the solution of 2,3-dihydro-benzo[l ,4]dioxin-6-carboxaldehyde (4.92g; 0.03 mol) and 3-pyridylacetonitrile (3.54g; 0.03 mol) in ethanol (100 mL) was added sodium methoxide (6.48g, of 25% methanol solution, 0.03 mol). The mixture was allowed to stand at ambient temperature for 18 hours. The mixture was concentrated to half volume. The solid was collected by filtration and dried to give 7.0 g (88.4% yield) of the title compound as an off-white solid, m.p. 158-159°C. Anal. Calcd. for C16H12N2O2: C, 72.72; H, 4.58; N, 10.60. Found: C, 72.53; H, 4.48; N, 10.97. Mass spectrum (DEI; M+) m/z 264. Η-NMR (DMSO-d6; 400 MHz) δ 8.91 (d, 1H), 8.59 (d, 1H), 8.08 (d, 1H), 8.00 (s, 1H), 7.57 (d, 1H), 7.47-7.53 (m, 2H), 7.02 (d, 2H), and 4.31 ppm (m, 4H).
EXAMPLE 4
2-Pyridin-3-yI-3-pyridin-2-yl-acrylonitrile
The title compound was prepared by the procedure described in Example 1 using 2.14g (0.02 mol) of 2-pyridylcarboxyaldehyde and equivalent amounts of all other reactants. After standing at ambient temperature for a period of 18 hours, the crystalline solid was collected by filtration and dried to afford the title compound (3.0g; 72.5% yield) as a yellow solid, m.p. 1 15-1 17°C. Anal. Calcd. for C13H9N3: C, 75.34; H, 4.38; N, 20.28. Found: C, 75.31; H, 4.32; N, 20.28. Mass spectrum (El; M+) m/z 207. iH-NMR (DMSO-d6; 400 MHz) δ 9.01 (d, 1H), 8.76 (d, 1H), 8.66 (dd, 1H), 8.19 (m, 1H), 8.15 (s, 1H), 7.97 (td, 1H), 7.76 (d, 1H), 7.56 (q, 1H), and 7.49 ppm (m, 1H).
EXAMPLE 5
2,3-Di-p ridin-3-yl-acryIonitrile
The title compound was prepared by the procedure described in Example 1 using 2.14g (0.02 mol) of 3-pyridylcarboxyaldehyde and equivalent amounts of all other reactants. After standing at ambient temperature for 4 hours, the crystalline solid was collected by filtration, washed with ethanol and dried to give 1.6g (37% yield) of the title compound as an off-white solid, m.p. 136-137°C. Anal. Calcd. for C13H9N3: C, 75.34; H, 4.38; N, 20.28. Found: C, 75.31; H, 4.30; N, 20.49. Mass spectrum (El; M+) m/z 207. ] H-NMR (DMSO-d6; 400 MHz) δ 8.99 (dd, 2H), 8.67 (qd, 2H), 8.38 (m, 1H), 8.23 (s, 1H), 8.16 (m, 1H), and 7.58 ppm ( , 2H).
EXAMPLE 6
2-(Pyridin-3-yl)-3-(l H-pyrrolo[2,3-b]pyridin-3-yl)-acrylonitrile
4H-Pyrrolo[2,3-b]pyridin-3-yl carboxyaldehyde (1.46g; 0.01 mol), 3-pyridyl- acetonitrile (1.18g; 0.01 mol) and sodium methoxide (2.16g of 25% methanol solution, 0.01 mol) were heated to reflux in ethanol (50 mL) for 4 hours. The solvent was evaporated to the precipitation point. The mixture was then filtered and the solid was collected and dried. The solid was suspended in water and stirred for 1 hour. The solid was then collected by filtration and dried under vacuum for 18 hours to give 1.4g (57% yield) of the title compound as a yellow solid, m.p. 295-297°C (dec). Anal. Calcd. for C15H10N4: C, 73.16; H, 4.09; N, 22.75. Found: C, 72.99; H, 3.86; N, 22.68. Mass spectrum (+DCI, [M+HJ+ m/z 247. ]H-NMR (DMSO-d6, 400 MHz) δ 12.63 (br s, 1H), 8.99 (d, 1H), 8.56 (m, 2H), 8.45 (s, 1H), 8.39 (s, 1H), 8.36 (dd, 1H), 8.18 (m, 1H), 7.52 (q, 1H), and 7.27 ppm (q, 1H). EXAMPLE 7
Step 1 Dimethyl-(lH-pyrrolo[2,3-b]pyridin-3-ylmethyl)-amine
A mixture of lH-pyrrolo[2,3-b]pyridine (59g; 0.5 mol), dimethylamine hydrochloride (44.83g; 0.55 mol) and paraformaldehyde (16.5g; 0.55 mol) in n- butanol (700 mL) was heated at reflux for 20 minutes. The mixture was cooled to ambient temperature. The precipitated solid was collected by filtration and dried. The solid was then dissolved in water (800 mL), a few drops of HC1 was added for complete solution. The aqueous solution was washed with diethyl ether. Solid potassium carbonate was then added to the aqueous phase until basic. The precipitated solid was collected, washed with water and dried to give 43.5g (50% yield) of the title compound as an off-white solid, m.p. 161 -162°C. Anal. Calcd. for C10H13N3: C, 68.54; H, 7.48; N, 23.95. Found: C, 68.28; H, 7.75; N, 23.99. Mass spectrum (DEI; M+) m/z 175. iH-NMR (DMSO-d6; 400 MHz) δ 12.45 (br s, 1H), 8.14 (dd, 1H), 7.97 (dd, 1H), 7.32 (s, 1H), 7.01 (q, 1H), 3.51 (s, 2H), and 2.12 ppm (s, 6H).
Step 2 lH-Pyrrolo[2,3-b]pyridin-3-yl-acetonitrile
A solution of dimethylsulfate (32.7g; 0.25 mol) in THF (50 mL) was added dropwise while stirring to the solution of dimethyl-(lH-pyrrolo[2,3-b]-pyridinyl- methyl)-amine (42g; 0.24 mol) in THF (800 mL). After the addition was complete, the mixture was heated at 80°C for 10 minutes then cooled to ambient temperature. The solvent was decanted and the residual gum was triturated with acetone/mefhanol (1:1 mixture) while warming. The solid formed was collected by filtration. The solid was then dissolved in water (500 mL). Potassium cyanide (22g; 0.32 mol) was added. The mixture was stirred at ambient temperature for 15 minutes, heated to reflux for 30 minutes, then cooled to ambient temperature. After 2 hours, the solid was collected by filtration and washed with water then dried to give 21g (56% yield) of the title compound as an off-white solid, m.p. 141-142°C which was used for the reaction described in step 3. Step 3
(Z)-3-(2,3-Dihydro-benzo[l,4]dioxin-6-yl)-2-(lH-pyrrolo-
[2,3-b]pyridin-3-yl)-acrylonitrile
A mixture of l-H-pyrrolo[2,3-b]pyridinyl-acetonitrile (3.14g; 0.02 mol), 2,3- dihydro-benzo[l,4]dioxin-6-carboxyaldehyde (3.3g; 0.02 mol) and sodium methoxide (4.32g, of 25% methanol solution, 0.02 mol) was heated to reflux in ethanol (50 mL) for a period of 1 hour. The mixture was concentrated to half its volume. The formed solid was collected by filtration. The solid was washed with water and dried. It was then suspended in ethyl acetate/methanol (1 : 1 , 100 mL) and the resulting mixture was saturated with hydrogen chloride. The mixture was cooled to ambient temperature while stirring. The solid was collected by filtration and dried to give 2.3g (40% yield) of the title compound as a mono-hydrochloride, yellow solid, m.p. 280-283°C (dec). Anal. Calcd. for C18H13N3O2ΗCI : C, 63.63; H, 4.16; N, 12.37. Found: C, 68.83; H, 3.95; N, 12.31. Mass spectrum (+DCI, [M+H]+) m/z 304. Η-NMR (DMSO-d6, 400 MHz) δ 12.55 (br s, IH), 9.35 (br s, IH), 8.6 (dd, IH), 8.39 (dd, IH), 7.91 (s, IH), 7.71 (s, IH), 7.53 (d, IH), 7.45 (dd, IH), 7.31 (q, IH), 7.0 (d, IH), and 4.30 ppm (m, 4H).
EXAMPLE 8
(Z)-3-(9-Ethyl-9H-carbazol-3-yl)-2-(pyridin-3-yl) acrylonitrile
9-Ethyl-9H-carbazol-3-yl-carboxaldehyde (4.46g; 0.02 mol) and 3-pyridyl- acetonitrile (2.36g; 0.02 mol) were dissolved in ethanol (25 mL). Sodium methoxide (1 mL of 25% methanol solution) was added. The mixture was then left standing at ambient temperature for 24 hours. The formed precipitate was collected by filtration and dried to give 2.4 g (37% yield) of the title compound as a yellow solid, m.p. 131- 133°C. Anal. Calcd. for C22H17N3 : C, 81.71; H, 5.30; N, 12.99. Found: C, 81.38; H. 5.49; N, 12.84. Mass spectrum (El; M+) m/z 323. iH-NMR (DMSO-d6; 400 MHz) δ 8.98 (d, IH), 8.75 (d, IH), 8.60 (dd, IH), 8.28 (s, 1H)1, 8.18 (dd, IH), 8.12-8.16 (m, 2H), 7.8 (d, IH), 7.68 (d, IH), 7.51-7.56 (m, 2H), 7.29 (t, IH), 4.49 (q, 2H), and 1.34 ppm (t, 3H). EXAMPLE 9
2-(Pyridin-3-yl)-3-(lH-pyrrol-2-yl)-acrylonitrile
A mixture of pyrrole-2-carboxaldehyde (2.85g; 30 mmol), 3-pyridylacetonitrile (3.54g; 30 mmol), and piperidine (2 mL) in methanol (50 mL) was refluxed for 18 hours. The dark precipitate formed was separated by filtration. Dark solid was treated with charcoal in hot methanol to obtain 2.8g (48%) of the title compound as a yellow solid, m.p. 139-142°C. Anal. Calcd. for C12H9N3: C, 73.83; H, 4.65; N, 21.52. Found: C, 73.71; H, 4.57; N, 21.76. Mass spectrum: (El; M+) m/z 195. *H-NMR (DMSO-d6; 200 MHz) δ 1 1.5 (s, IH), 8.8 (d, IH), 8.5 (d, IH), 7.92-7.96 (m, IH), 7.8 (s, IH), 7.43-7.52 (m, IH), 7.2 (d, 2H), 6.38-6.4 ppm (q, IH).

Claims

CLAEvlS:
( 1 ) A compound of the formula:
Figure imgf000017_0001
I where Ari and Ar2 are, independently, pyridinyl, quinolinyl, dihydro-1,4- benzodioxinyl, pyrrolyl, azaindolyl or carbazolyl optionally substituted with Ci- alkyl, or a pharmaceutically acceptable salt thereof.
(2) The compound of claim 1 where Ari is pyridin-2-yl, pyridin-3-yl, pyridin-4- yl, quinolinyl, dihydro-l ,4-benzodioxinyl, pyrrolyl, pyιτolo-[2,3-b]pyridin-3-yl) or carbazolyl.
(3) The compound of claim 1 or claim 2 where Ar2 is pyridin-3-yl.
(4) The compound of Claim 1 which is Z-2-(pyridin-3yl)-3-(pyridin-4-yl)- acrylonitrile or a pharmaceutically acceptable salt thereof, 2-pyridin-3-yl-3-pyridin-2-yl- acrylonitrile or a pharmaceutically acceptable salt thereof, 2,3-di-pyridin-3-yl- acrylonitrile or a pharmaceutically acceptable salt thereof.
(5) The compound of Claim 1 which is 2-pyridin-3-yl-3-quinolin-4-yl-acrylonitrile or a pharmaceutically acceptable salt thereof.
(6) The compound of Claim 1 which is 3-(2,3-dihydro-benzo[l ,4]dioxin-6-yl)-2- pyridin-3-yl-acrylonitrile or a pharmaceutically acceptable salt thereof.
(7) The compound of Claim 1 which is 2-(pyridin-3-yl)-3-(lH-pyrrolo[2,3-b]- pyridin-3-yl)-acrylonitrile or a pharmaceutically acceptable salt thereof.
(8) The compound of Claim 1 which is (Z)-3-(2,3-dihydro-benzo[l,4]dioxin-6-yl)- 2-(lH-pyrrolof2,3-b]pyridin-3-yl)-acrylonitrile or a pharmaceutically acceptable salt thereof.
(9) The compound of Claim 1 which is (Z)-3-(9-ethyl-9H-carbazol-3-yl)-2- (pyridin-3-yl) acrylonitrile or a pharmaceutically acceptable salt thereof.
(10) The compound of Claim 1 which is 2-(pyridin-3-yl)-3-(lH-pyrrol-2-yl)- acrylonitrile or a pharmaceutically acceptable salt thereof.
(11) A pharmaceutical composition comprising a compound of formula I as defined in any of claims 1 to 10, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
(12) A compound of formula I as defined in any of claims 1 to 10 for use in the treatment of mammals.
(13) A compound of formula I according to claim 12 for use in the treatment of diseases or conditions related to smooth muscle cell proliferation.
(14) A method for preventing smooth muscle cell proliferation in a mammal which comprises administering to that mammal, orally or parenterally, a compound of formula:
Figure imgf000018_0001
I where Ari and Ar2 are as defined in any of claims 1 to 10.
(15) A method according to Claim 14 wherein said smooth muscle cell proliferation manifests itself as restenosis following angioplasty.
(16) A process for the preparation of a compound of formula I as defined in any of claims 1 to 10, which comprises (a) condensing an aldehyde of formula Ari CHO with an acetonitrile of formula Ar2CH2CN where Ari and Ar2 are as previously defined to form the compound of formula I; and optionally forming the pharmaceutical salt thereof.
PCT/US1996/008376 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors WO1996039387A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX9709462A MX9709462A (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors.
EP96917921A EP0835244B1 (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors
SI9630338T SI0835244T1 (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors
DE69617686T DE69617686T2 (en) 1995-06-06 1996-06-03 DIHETROCYCLIC ACRYLONITRILE AS INHIBITORS OF SMOOTH MUSCLE PROLIFERATION
AT96917921T ATE210120T1 (en) 1995-06-06 1996-06-03 DIHETROCYCLIC ACRYLONITRILES AS INHIBITORS OF SMOOTH MUSCLE CELL PROLIFERATION
AU60304/96A AU711619B2 (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors
JP9500995A JPH11506754A (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitrile as a smooth muscle cell growth inhibitor
NZ309995A NZ309995A (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors
HU9900660A HUP9900660A3 (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors
BR9608976A BR9608976A (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as inhibitors of smooth muscle cell proliferation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/470,603 US5710164A (en) 1995-06-06 1995-06-06 Diheterocyclic styryl nitriles
US08/470,603 1995-06-06

Publications (1)

Publication Number Publication Date
WO1996039387A1 true WO1996039387A1 (en) 1996-12-12

Family

ID=23868264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/008376 WO1996039387A1 (en) 1995-06-06 1996-06-03 Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors

Country Status (19)

Country Link
US (1) US5710164A (en)
EP (1) EP0835244B1 (en)
JP (1) JPH11506754A (en)
KR (1) KR19990022523A (en)
CN (1) CN1192202A (en)
AR (1) AR002750A1 (en)
AT (1) ATE210120T1 (en)
AU (1) AU711619B2 (en)
BR (1) BR9608976A (en)
CA (1) CA2223388A1 (en)
DE (1) DE69617686T2 (en)
ES (1) ES2166447T3 (en)
HU (1) HUP9900660A3 (en)
IL (1) IL118386A0 (en)
MX (1) MX9709462A (en)
NZ (1) NZ309995A (en)
PT (1) PT835244E (en)
WO (1) WO1996039387A1 (en)
ZA (1) ZA964620B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ301252B6 (en) * 2000-01-24 2009-12-23 Nissan Chemical Industries, Ltd. Process for preparing quinolyl acrylonitrile derivatives
EP2332905A1 (en) * 2005-03-30 2011-06-15 Kabushiki Kaisha Yakult Honsha BCRP/ABCG3 Inhibitor
US8053445B2 (en) 2001-09-14 2011-11-08 Shionogi & Co., Ltd. Utilities of olefin derivatives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016051A1 (en) * 1990-04-16 1991-10-31 Rhône-Poulenc Rorer International (Holdings) Inc. Styryl-substituted monocyclic and bicyclic heteroaryl compounds which inhibit egf receptor tyrosine kinase
WO1991016305A1 (en) * 1990-04-16 1991-10-31 Rhone-Poulenc Rorer International (Holdings), Inc. Heterocyclicethenediyl compounds which inhibit egf receptor tyrosine kinase

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302606A (en) * 1990-04-16 1994-04-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Styryl-substituted pyridyl compounds which inhibit EGF receptor tyrosine kinase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016051A1 (en) * 1990-04-16 1991-10-31 Rhône-Poulenc Rorer International (Holdings) Inc. Styryl-substituted monocyclic and bicyclic heteroaryl compounds which inhibit egf receptor tyrosine kinase
WO1991016305A1 (en) * 1990-04-16 1991-10-31 Rhone-Poulenc Rorer International (Holdings), Inc. Heterocyclicethenediyl compounds which inhibit egf receptor tyrosine kinase

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BULL. ACAD. POL. SCI., SER. SCI. CHIM., vol. 18, no. 6, 1970, WARSAW; ISSN 0001-4095, pages 343 - 345 *
CHEMICAL ABSTRACTS, vol. 53, no. 8, 1959, Columbus, Ohio, US; abstract no. 7176b, W. BAKER ET AL.: "Attemps to prepare new aromatic systems. VII. 15,16-dihydro-15,16-diazapyrene. Synthesis of bi(pyridine-2,6-dimethylene)." XP002011794 *
CHEMICAL ABSTRACTS, vol. 74, no. 1, 4 January 1971, Columbus, Ohio, US; abstract no. 3478a, J. MICHALSKI ET AL.: "Alkyl- and alkenylpyridines. XVIII. Convenient route to 2-cyclopropylpyridines. Synthesis of 1-(2-pyridyl)-acrylonitriles and their reaction with dimethylsulfoxonium methylide." page 283; XP002011795 *
JOURNAL OF THE CHEMICAL SOCIETY, 1958, LETCHWORTH GB, pages 3594 - 3603 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ301252B6 (en) * 2000-01-24 2009-12-23 Nissan Chemical Industries, Ltd. Process for preparing quinolyl acrylonitrile derivatives
US8053445B2 (en) 2001-09-14 2011-11-08 Shionogi & Co., Ltd. Utilities of olefin derivatives
US8124625B2 (en) 2001-09-14 2012-02-28 Shionogi & Co., Ltd. Method of enhancing the expression of apolipoprotein AI using olefin derivatives
EP2332905A1 (en) * 2005-03-30 2011-06-15 Kabushiki Kaisha Yakult Honsha BCRP/ABCG3 Inhibitor
US8697742B2 (en) 2005-03-30 2014-04-15 Kabushiki Kaisha Yakult Honsha BCRP/ABCG2 inhibitor
NO343883B1 (en) * 2005-03-30 2019-07-01 Yakult Honsha Kk BCRP / ABCG2 inhibitor

Also Published As

Publication number Publication date
ZA964620B (en) 1997-12-04
ES2166447T3 (en) 2002-04-16
EP0835244B1 (en) 2001-12-05
AR002750A1 (en) 1998-04-29
HUP9900660A3 (en) 2001-09-28
KR19990022523A (en) 1999-03-25
JPH11506754A (en) 1999-06-15
AU6030496A (en) 1996-12-24
HUP9900660A2 (en) 2000-03-28
ATE210120T1 (en) 2001-12-15
CN1192202A (en) 1998-09-02
AU711619B2 (en) 1999-10-21
NZ309995A (en) 2000-07-28
MX9709462A (en) 1998-02-28
DE69617686T2 (en) 2002-08-08
EP0835244A1 (en) 1998-04-15
US5710164A (en) 1998-01-20
CA2223388A1 (en) 1996-12-12
IL118386A0 (en) 1996-09-12
DE69617686D1 (en) 2002-01-17
BR9608976A (en) 1999-06-29
PT835244E (en) 2002-04-29

Similar Documents

Publication Publication Date Title
EP1720863A2 (en) Heteroarylaminopyrazole derivatives useful for the treatment of diabetes
NO303541B1 (en) Substituted biphenyl pyridones and their use in the manufacture of drugs
US6444694B1 (en) Styryl benzimidazole derivatives
EP0835244B1 (en) Diheterocyclic acrylonitriles as smooth muscle cell proliferation inhibitors
AU699503B2 (en) 2-substituted benzimidazole derivatives as inhibitors of smooth muscle cell proliferation
US20040039019A1 (en) Selected anthranilaminde pyridinamides and their use as pharmaceutical agents
US5763473A (en) Use of 2-substituted benzimidazole as smooth muscle cell proliferation inhibitors
EP0830344B1 (en) 2-substituted benzimidazole derivatives as smooth muscle cell proliferation inhibitors
MXPA97009462A (en) Heterociclic acrylonitriles as inhibitors of the proliferation of muscle cells
MXPA97009465A (en) Derivatives of benzymidazole 2-substituted as inhibitors of the proliferation of musculol cells
EP1118615A1 (en) Novel salts of pyridopyrazine compound and crystals thereof
AU697295C (en) 2-substituted benzimidazole derivatives as smooth muscle cell proliferation hibitors
US6288100B1 (en) Benzimidazole derivatives
MXPA97009647A (en) Derivatives of estirilbencimidazol as inhibitors of proliferation of muscle cells l
MXPA97009650A (en) Derivatives of benzymidazole 2-substituted as inhibitors of proliferation of muscle cells
MXPA97009646A (en) Benzymidazole derivatives as proliferation inhibitors of muscle cells l

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195887.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS JP KG KP KR LK LR LT LV MD MG MK MN MX NO NZ PL PT RO SG SI SK TR TT UA UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 309995

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1996917921

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2223388

Country of ref document: CA

Ref document number: 2223388

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/009462

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1997 500995

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970709004

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996917921

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970709004

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996917921

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970709004

Country of ref document: KR