WO1996038562A1 - HIGH THREONINE DERIVATIVES OF α-HORDOTHIONIN - Google Patents

HIGH THREONINE DERIVATIVES OF α-HORDOTHIONIN Download PDF

Info

Publication number
WO1996038562A1
WO1996038562A1 PCT/US1996/008219 US9608219W WO9638562A1 WO 1996038562 A1 WO1996038562 A1 WO 1996038562A1 US 9608219 W US9608219 W US 9608219W WO 9638562 A1 WO9638562 A1 WO 9638562A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
cells
plant
positions
threonine
Prior art date
Application number
PCT/US1996/008219
Other languages
French (fr)
Inventor
Gururaj A. Rao
Original Assignee
Pioneer Hi-Bred International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi-Bred International, Inc. filed Critical Pioneer Hi-Bred International, Inc.
Priority to BR9609200A priority Critical patent/BR9609200A/en
Priority to MX9709351A priority patent/MX9709351A/en
Priority to AU59610/96A priority patent/AU705933B2/en
Priority to EP96916883A priority patent/EP0828835A1/en
Priority to JP8536727A priority patent/JPH11511007A/en
Publication of WO1996038562A1 publication Critical patent/WO1996038562A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8251Amino acid content, e.g. synthetic storage proteins, altering amino acid biosynthesis

Definitions

  • TECHNICAL FIELD This invention relates to the improvement of feed formulations. Specifically, this invention relates to derivatives of ⁇ -hordothionin which provide higher percentages of threonine in plants. BACKGROUND OF THE INVENTION Feed formulations are required to provide animals essential nutrients critical to growth. However, crop plants are generally rendered food sources of poor nutritional quality because they contain low proportions of several amino acids which are essential for, but cannot be synthesized by, animals.
  • One alternative method is to express a heterologous protein of favorable amino acid composition at levels sufficient to obviate food or feed supplementation.
  • a number of seed proteins rich in sulfur amino acids have been identified.
  • a key to good expression of such proteins involves efficient expression cassettes with seed specific promoters. Not only must the gene- controlling regions direct the synthesis of high levels of mRNA, the mRNA must be translated into stable protein.
  • the essential amino acids needed for animal nutrition often missing from crop plants, are methionine. threonine and lysine. Attempts to increase the levels of these free amino acids by breeding, mutant selection and/or changing the composition of the storage proteins accumulated in crop plants has met with minimal success. Usually, the expression of the transgenic storage protein was too low.
  • the phaseolin-promoted Brazil nut 2S expression cassette is an example of an effective chimeric seed-specific gene.
  • Brazil nut protein increases the amount of total methionine and bound methionine, thereby improving nutritional value, there appears to be a threshold limitation as to the total amount of methionine that is accumulated in the seeds. The seeds remain insufficient as sources of methionine.
  • cc-hordothionin is a 45-amino acid protein which has been well characterized. It can be isolated from seeds of barley (Hordeum vulgare) . The molecule is stabilized by four disulfide bonds resulting from eight cysteine residues.
  • the amino acid sequence is as provided in SEQUENCE I.D. No.l. In its native form, it is especially rich in arginine and lysine residues, containing 5 residues (10%) of each. However, it contains only 3 residues (7%) of the essential amino acid threonine.
  • the protein has been synthesized and the three- dimensional structure determined by computer modeling.
  • the modeling of the protein predicts that the ten charged residues (arginine at positions 5,10,17,19 and 30, and lysine at positions 1,23,32,38 and 45) all occur on the surface of the molecule.
  • the side chains of the polar amino acids (asparagine at position 11, glutamine at position 22 and threonine at position 41) also occur on the surface of the molecule.
  • the hydrophobic amino acids (such as the side chains of leucine at positions 8,15 24 and 33 and valine at position 18) are also solvent-accessible.
  • Three-dimensional modeling of the protein indicates that the arginine residue at position 10 is critical to retention of the appropriate 3-dimensional structure and possible folding through hydrogen bond interactions with the C-terminal residue of the protein.
  • a threonine substitution at that point would disrupt the hydrogen bonding involving arginine at position 10, serine at position 2 and lysine at position 45, leading to destabilization of the structure.
  • the synthetic peptide having this substitution could not be made to fold correctly, which supported this analysis.
  • Conservation of the arginine residue at position 10 provided a protein which folded correctly.
  • threonine is a polar amino acid
  • the resulting compound has the sequence indicated in SEQUENCE I.D. No. 2.
  • the molecule can be synthesized by solid phase peptide synthesis and folds into a stable structure. It has 13 threonine residues (29%) . While SEQUENCE I.D. No. 2 is illustrative of the present invention, it is not intended to be a limitation. Threonine substitutions can also be performed at positions containing charged amino acids.
  • arginine at position 10 and lysine at position 45 are critical for maintaining the structure of the protein.
  • the resulting compound has the sequence indicated in SEQUENCE I.D. NO. 3.
  • Such empty expression cassettes providing appropriate regulatory sequences for plant or bacterial expression of the desired sequence, are also well-known, and the nucleotide sequence for the synthetic gene, either RNA or DNA, can readily be derived from the amino acid sequence for the protein using standard reference texts.
  • such synthetic genes will employ plant-preferred codons to enhance expression of the desired protein.
  • Industrial Applicability The following description further exemplifies the compositions of this invention and the methods of making and using them. However, it will be understood that other methods, known by those of ordinary skill in the art to be equivalent, can also be employed. Plants
  • an especially preferred embodiment of this method involves inserting into the genome of the plant a DNA sequence coding for a compound of this invention in proper reading frame, together with transcription initiator and promoter sequences active in the plant. Transcription and translation of the DNA sequence under control of the regulatory sequences causes expression of the protein sequence at levels which provide an elevated amount of the protein in the tissues of the plant.
  • Preferred plants that are to be transformed according to the methods of this invention are cereal crops, including maize, rye, barley, wheat, sorghum, oats, millet, rice, triticale, sunflower, alfalfa, rapeseed and soybean. Synthetic DNA sequences can then be prepared which code for the appropriate sequence of amino acids, and this synthetic DNA sequence can be inserted into an appropriate plant expression cassette.
  • expression cassette is meant a complete set of control sequences including initiation, promoter and termination sequences which function in a plant cell when they flank a structural gene in the proper reading frame.
  • Expression cassettes frequently and preferably contain an assortment of restriction sites suitable for cleavage and insertion of any desired structural gene. It is important that the cloned gene have a start codon in the correct reading frame for the structural sequence.
  • the plant expression cassette preferably includes a strong constitutive promoter sequence at one end to cause the gene to be transcribed at a high frequency, and a poly-a re-cognition sequence at the other end for proper processing and transport of the messenger RNA.
  • Highly preferred plant expression cassettes will be designed to include one or more selectable marker genes, such as kanamycin resistance or herbicide tolerance genes.
  • vector herein is meant a DNA sequence which is able to replicate and express a foreign gene in a host cell.
  • the vector has one or more endonuclease recognition sites which may be cut in a predictable fashion by use of the appropriate enzyme such vectors are preferably constructed to include additional structural gene sequences imparting antibiotic or herbicide resistance, which then serve as markers to identify and separate transformed cells.
  • Preferred markers/selection agents include kanamycin, chlorosulfuron, phosphonothricin, hygromycin and methotrexate.
  • a cell in which the foreign genetic material in a vector is functionally expressed has been "transformed" by the vector and is referred to as a "transformant.
  • a particularly preferred vector is a plasmid, by which is meant a circular double-stranded DNA molecule which is not a part of the chromosomes of the cell.
  • genomic and cDNA encoding the gene of interest may be used in this invention.
  • the vector of interest may also be constructed partially from a cDNA clone and partially from a genomic clone.
  • genetic constructs are made which contain the necessary regulatory sequences to provide for efficient expression of the gene in the host cell.
  • the genetic construct will contain (a) a first genetic sequence coding for the protein or trait of interest and (b) one or more regulatory sequences operably linked on either side of the structural gene of interest.
  • the regulatory sequences will be selected from the group comprising of promoters and terminators.
  • the regulatory sequences may be from autologous or heterologous sources.
  • Promoters that may be used in the genetic sequence include NOS, OCS and CaMV promoters.
  • An efficient plant promoter that may be used is an overproducing plant promoter.
  • Overproducing plant promoters that may be used in this invention include the promoter of the cholorophyll oc- ⁇ binding protein and the promoter of the small sub-unit (ss) of the ribulose-1, 5- biphosphate carboxylase from soybean.
  • ss small sub-unit
  • These two promoters are known to be light-induced, in eukaryotic plant cells. See e.g., An Agricultural Perspective, A. Cashmore, Pelha , New York; pp. 29-38; (1983); G.
  • the expression cassette comprising the structural gene for the protein of this invention operably linked to the desired control sequences can be ligated into a suitable cloning vector.
  • plasmid or viral (bacteriophage) vectors containing replication and control sequences derived from species compatible with the host cell are used.
  • the cloning vector will typically carry a replication origin, as well as specific genes that are capable of providing phenotypic selection markers in transformed host cells. Typically, genes conferring resistance to antibiotics or selected herbicides are used. After the genetic material is introduced into the target cells, successfully transformed cells and/or colonies of cells can be isolated by selection on the basis of these markers.
  • an intermediate host cell will be used in the practice of this invention to increase the copy number of the cloning vector.
  • the vector containing the gene of interest can be isolated in significant quantities for introduction into the desired plant cells.
  • Host cells that can be used in the practice of this invention include prokaryotes, including bacterial hosts such as E. coli, S. typhimurium, and Serratia marcescens.
  • Eukaryotic hosts such as yeast or filamentous fungi may also be used in this invention. Since these hosts are also microorganisms, it will be essential to ensure that plant promoters which do not cause expression of the protein in bacteria are used in the vector.
  • the isolated cloning vector will then be introduced into the plant cell using any convenient technique, including electroporation (in protoplasts) , retroviruses, bombardment, and microinjection into cells from monocotyledonous or dicotyledonous plants in cell or tissue culture to provide transformed plant cells containing as foreign DNA at least one copy of the DNA sequence of the plant expression cassette.
  • the monocotyledonous species will be selected from maize, sorghum, wheat or rice, and the dicotyledonous species will be selected from soybean, alfalfa, rapeseed, sunflower or tomato.
  • a highly preferred embodiment of the present invention is a transformed maize plant, the cells of which contain as foreign DNA at least one copy of the DNA sequence of an expression cassette of this invention.
  • this invention provides a method for increasing threonine levels in agrobacterium tumefaciens-susceptible dicotyledonous plants in which the expression cassette is introduced into the cells by infecting the cells with agrobacterium tumefaciens, a plasmid of which has been modified to include a plant expression cassette of this invention.
  • ADDRESSEE Pioneer Hi-Bred International, Inc.
  • B STREET: 700 Capital Square, 400 Locust Street

Abstract

Derivatives of α-hordothionin made by position-specific substitution with threonine residues provide threonine in plants.

Description

HIGH THREONINE DERIVATIVES OF α-HORDOTHIONIN
TECHNICAL FIELD This invention relates to the improvement of feed formulations. Specifically, this invention relates to derivatives of α-hordothionin which provide higher percentages of threonine in plants. BACKGROUND OF THE INVENTION Feed formulations are required to provide animals essential nutrients critical to growth. However, crop plants are generally rendered food sources of poor nutritional quality because they contain low proportions of several amino acids which are essential for, but cannot be synthesized by, animals.
For many years researchers have attempted to improve the balance of essential amino acids in the proteins of important crops through breeding programs. As more becomes known about storage proteins and the expression of the genes which encode these proteins, and as transformation systems are developed for a greater variety of plants, molecular approaches for improving the nutritional quality of seed proteins can provide alternatives to the more conventional approaches. Thus, specific amino acid levels can be enhanced in a given crop via biotechnology.
One alternative method is to express a heterologous protein of favorable amino acid composition at levels sufficient to obviate food or feed supplementation. For example, a number of seed proteins rich in sulfur amino acids have been identified. A key to good expression of such proteins involves efficient expression cassettes with seed specific promoters. Not only must the gene- controlling regions direct the synthesis of high levels of mRNA, the mRNA must be translated into stable protein. Among the essential amino acids needed for animal nutrition, often missing from crop plants, are methionine. threonine and lysine. Attempts to increase the levels of these free amino acids by breeding, mutant selection and/or changing the composition of the storage proteins accumulated in crop plants has met with minimal success. Usually, the expression of the transgenic storage protein was too low. The phaseolin-promoted Brazil nut 2S expression cassette is an example of an effective chimeric seed-specific gene. However, even though Brazil nut protein increases the amount of total methionine and bound methionine, thereby improving nutritional value, there appears to be a threshold limitation as to the total amount of methionine that is accumulated in the seeds. The seeds remain insufficient as sources of methionine.
An alternative to the enhancement of specific amino acid levels by altering the levels of proteins containing the desired amino acid is modification of amino acid biosynthesis. Recombinant DNA and gene transfer technologies have been applied to alter enzyme activity catalyzing key steps in the amino acid biosynthetic pathway. Glassman, U.S. Patent No. 5,258,300; Galili, et al., European Patent Application No. 485970; (1992); incorporated herein in its entirety by reference. However, modification of the amino acid levels in seeds is not always correlated with changes in the level of proteins that incorporate those amino acids. Burrow, et al. , Mol. Gen. Genet.; Vol. 241; pp. 431-439; (1993); incorporated herein in its entirety by reference. Although significant increases in free lysine levels in leaves have been obtained by selection for DHDPS mutants or by expressing the E^ coli DHDPS in plants, it remains to be shown that these alterations can increase bound target amino acids, which represent some 90% or more of total amino acids. Thus, there is minimal impact on the nutritional value of seeds. Based on the foregoing, there exists a need for methods of increasing the levels of the essential amino acids, threonine, methionine and lysine in seeds of plants. It is therefore an object of the present invention to provide methods for genetically modifying plants to increase the levels of the essential amino acid threonine in the plants. It is a further object of the present invention to provide seeds for food and/or feed with higher levels of the essential amino acid threonine than wild species of the same seeds.
DISCLOSURE OF THE INVENTION
It has now been determined that one class of compounds, the oc-hordothionins, can be modified to enhance their content of threonine. cc-hordothionin is a 45-amino acid protein which has been well characterized. It can be isolated from seeds of barley (Hordeum vulgare) . The molecule is stabilized by four disulfide bonds resulting from eight cysteine residues. The amino acid sequence is as provided in SEQUENCE I.D. No.l. In its native form, it is especially rich in arginine and lysine residues, containing 5 residues (10%) of each. However, it contains only 3 residues (7%) of the essential amino acid threonine. The protein has been synthesized and the three- dimensional structure determined by computer modeling. The modeling of the protein predicts that the ten charged residues (arginine at positions 5,10,17,19 and 30, and lysine at positions 1,23,32,38 and 45) all occur on the surface of the molecule. The side chains of the polar amino acids (asparagine at position 11, glutamine at position 22 and threonine at position 41) also occur on the surface of the molecule. Furthermore, the hydrophobic amino acids (such as the side chains of leucine at positions 8,15 24 and 33 and valine at position 18) are also solvent-accessible.
Three-dimensional modeling of the protein indicates that the arginine residue at position 10 is critical to retention of the appropriate 3-dimensional structure and possible folding through hydrogen bond interactions with the C-terminal residue of the protein. A threonine substitution at that point would disrupt the hydrogen bonding involving arginine at position 10, serine at position 2 and lysine at position 45, leading to destabilization of the structure. The synthetic peptide having this substitution could not be made to fold correctly, which supported this analysis. Conservation of the arginine residue at position 10 provided a protein which folded correctly.
Since threonine is a polar amino acid, the surface polar amino acid residues, asparagine at position 11 and glutamine at position 22, were substituted; and the charged amino acids, lysine at positions 1,23,32 and 38 and arginine at positions 5,17,19, and 30, were substituted with threonine. The resulting compound has the sequence indicated in SEQUENCE I.D. No. 2. The molecule can be synthesized by solid phase peptide synthesis and folds into a stable structure. It has 13 threonine residues (29%) . While SEQUENCE I.D. No. 2 is illustrative of the present invention, it is not intended to be a limitation. Threonine substitutions can also be performed at positions containing charged amino acids. Only arginine at position 10 and lysine at position 45 are critical for maintaining the structure of the protein. One can also substitute at the sites having hydrophobic amino acids. These include positions 8,15,18 and 24. The resulting compound has the sequence indicated in SEQUENCE I.D. NO. 3.
Synthesis of the compounds is performed according to methods of peptide synthesis which are well known in the art and thus constitute no part of this invention. In vitro, the compounds have been synthesized on an applied biosystems model 431a peptide synthesizer using fastmoc™ chemistry involving hbtu [2- (lh-benzotriazol-1-yl) -1, 1, 3, 3- tetramethyluroniu hexafluorophosphate, as published by
Rao, et al., Int. J. Pep. Prot. Res. ; Vol. 40; pp. 508-515;
(1992); incorporated herein in its entirety by reference. Peptides were cleaved following standard protocols and purified by reverse phase chromatography using standard methods. The amino acid sequence of each peptide was confirmed by automated edman degradation on an applied biosystems 477a protein sequencer/120a pth analyzer. More preferably, however, the compounds of this invention are synthesized in vivo by bacterial or plant cells which have been transformed by insertion of an expression cassette containing a synthetic gene which when transcribed and translated yields the desired compound. Such empty expression cassettes, providing appropriate regulatory sequences for plant or bacterial expression of the desired sequence, are also well-known, and the nucleotide sequence for the synthetic gene, either RNA or DNA, can readily be derived from the amino acid sequence for the protein using standard reference texts. Preferably, such synthetic genes will employ plant-preferred codons to enhance expression of the desired protein. Industrial Applicability The following description further exemplifies the compositions of this invention and the methods of making and using them. However, it will be understood that other methods, known by those of ordinary skill in the art to be equivalent, can also be employed. Plants
The genes which code for these compounds can be inserted into an appropriate expression cassette and introduced into cells of a plant species. Thus, an especially preferred embodiment of this method involves inserting into the genome of the plant a DNA sequence coding for a compound of this invention in proper reading frame, together with transcription initiator and promoter sequences active in the plant. Transcription and translation of the DNA sequence under control of the regulatory sequences causes expression of the protein sequence at levels which provide an elevated amount of the protein in the tissues of the plant. Preferred plants that are to be transformed according to the methods of this invention are cereal crops, including maize, rye, barley, wheat, sorghum, oats, millet, rice, triticale, sunflower, alfalfa, rapeseed and soybean. Synthetic DNA sequences can then be prepared which code for the appropriate sequence of amino acids, and this synthetic DNA sequence can be inserted into an appropriate plant expression cassette.
Likewise, numerous plant expression cassettes and vectors are well known in the art. By the term "expression cassette" is meant a complete set of control sequences including initiation, promoter and termination sequences which function in a plant cell when they flank a structural gene in the proper reading frame. Expression cassettes frequently and preferably contain an assortment of restriction sites suitable for cleavage and insertion of any desired structural gene. It is important that the cloned gene have a start codon in the correct reading frame for the structural sequence. In addition, the plant expression cassette preferably includes a strong constitutive promoter sequence at one end to cause the gene to be transcribed at a high frequency, and a poly-a re-cognition sequence at the other end for proper processing and transport of the messenger RNA. An example of such a preferred (empty) expression cassette into which the cDNA of the present invention can be inserted is the pPHI414 plasmid developed by Beach, et al., of Pioneer Hi-Bred International, Inc., Johnston, IA, as disclosed in U.S. patent application No. 07/785,648, (1991); incorporated herein in its entirety by reference.
Highly preferred plant expression cassettes will be designed to include one or more selectable marker genes, such as kanamycin resistance or herbicide tolerance genes.
By the term "vector" herein is meant a DNA sequence which is able to replicate and express a foreign gene in a host cell. Typically, the vector has one or more endonuclease recognition sites which may be cut in a predictable fashion by use of the appropriate enzyme such vectors are preferably constructed to include additional structural gene sequences imparting antibiotic or herbicide resistance, which then serve as markers to identify and separate transformed cells. Preferred markers/selection agents include kanamycin, chlorosulfuron, phosphonothricin, hygromycin and methotrexate. A cell in which the foreign genetic material in a vector is functionally expressed has been "transformed" by the vector and is referred to as a "transformant. "
A particularly preferred vector is a plasmid, by which is meant a circular double-stranded DNA molecule which is not a part of the chromosomes of the cell.
As mentioned above, both genomic and cDNA encoding the gene of interest may be used in this invention. The vector of interest may also be constructed partially from a cDNA clone and partially from a genomic clone. When the gene of interest has been isolated, genetic constructs are made which contain the necessary regulatory sequences to provide for efficient expression of the gene in the host cell. According to this invention, the genetic construct will contain (a) a first genetic sequence coding for the protein or trait of interest and (b) one or more regulatory sequences operably linked on either side of the structural gene of interest. Typically, the regulatory sequences will be selected from the group comprising of promoters and terminators. The regulatory sequences may be from autologous or heterologous sources.
Promoters that may be used in the genetic sequence include NOS, OCS and CaMV promoters.
An efficient plant promoter that may be used is an overproducing plant promoter. Overproducing plant promoters that may be used in this invention include the promoter of the cholorophyll oc-β binding protein and the promoter of the small sub-unit (ss) of the ribulose-1, 5- biphosphate carboxylase from soybean. See e.g. Berry-Lowe, et al., J. Molecular and App. Gen.; Vol. 1; pp. 483-498; (1982); incorporated herein by reference. These two promoters are known to be light-induced, in eukaryotic plant cells. See e.g., An Agricultural Perspective, A. Cashmore, Pelha , New York; pp. 29-38; (1983); G. Coruzzi, et al., J_^ Biol. Chem.; Vol. 258; p. 1399; (1983); and P. Dunsmuir, et al., J Molecular and App. Gen.; Vol. 2; p. 285; (1983) ; all incorporated herein by reference.
The expression cassette comprising the structural gene for the protein of this invention operably linked to the desired control sequences can be ligated into a suitable cloning vector. In general, plasmid or viral (bacteriophage) vectors containing replication and control sequences derived from species compatible with the host cell are used. The cloning vector will typically carry a replication origin, as well as specific genes that are capable of providing phenotypic selection markers in transformed host cells. Typically, genes conferring resistance to antibiotics or selected herbicides are used. After the genetic material is introduced into the target cells, successfully transformed cells and/or colonies of cells can be isolated by selection on the basis of these markers.
Typically, an intermediate host cell will be used in the practice of this invention to increase the copy number of the cloning vector. With an increased copy number, the vector containing the gene of interest can be isolated in significant quantities for introduction into the desired plant cells. Host cells that can be used in the practice of this invention include prokaryotes, including bacterial hosts such as E. coli, S. typhimurium, and Serratia marcescens. Eukaryotic hosts such as yeast or filamentous fungi may also be used in this invention. Since these hosts are also microorganisms, it will be essential to ensure that plant promoters which do not cause expression of the protein in bacteria are used in the vector.
The isolated cloning vector will then be introduced into the plant cell using any convenient technique, including electroporation (in protoplasts) , retroviruses, bombardment, and microinjection into cells from monocotyledonous or dicotyledonous plants in cell or tissue culture to provide transformed plant cells containing as foreign DNA at least one copy of the DNA sequence of the plant expression cassette. Preferably, the monocotyledonous species will be selected from maize, sorghum, wheat or rice, and the dicotyledonous species will be selected from soybean, alfalfa, rapeseed, sunflower or tomato. Using known techniques, protoplasts can be regenerated and cell or tissue culture can be regenerated to form whole fertile plants which carry and express the gene for a protein according to this invention. Accordingly, a highly preferred embodiment of the present invention is a transformed maize plant, the cells of which contain as foreign DNA at least one copy of the DNA sequence of an expression cassette of this invention.
It will also be appreciated by those of ordinary skill that the plant vectors provided herein can be incorporated into agrobacterium tumefaciens, which can then be used to transfer the vector into susceptible plant cells, primarily from dicotyledonous species. Thus, this invention provides a method for increasing threonine levels in agrobacterium tumefaciens-susceptible dicotyledonous plants in which the expression cassette is introduced into the cells by infecting the cells with agrobacterium tumefaciens, a plasmid of which has been modified to include a plant expression cassette of this invention.
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT: Pioneer Hi-Bred International, Inc.
(ii) TITLE OF INVENTION: High Threonine Derivatives of Alpha-Hordothionin
(iii) NUMBER OF SEQUENCES: 3
(iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Pioneer Hi-Bred International, Inc. (B) STREET: 700 Capital Square, 400 Locust Street
(C) CITY: Des Moines
(D) STATE: Iowa
(E) COUNTRY: United States of America
(F) ZIP: 50309
(v) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS (D ) SOFTWARE : Patent In Release #1 . 0 , Version#1 . 25
(vi ) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER: PCT
(B) FILING DATE: (C) CLASSIFICATION:
(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Simon, Soma G.
(B) REGISTRATION NUMBER: 37,444 (C) REFERENCE/DOCKET NUMBER: 354-PCT
(ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 515-248-4896
(B) TELEFAX: 515-248-4844
(2 ) INFORMATION FOR SEQ ID NO : l
( i ) SEQUENCE CHARACTERISTICS : (A) LENGTH : 45 amino acids
(B ) TYPE : amino acid (D) TOPOLOGY : linear
(xi ) SEQUENCE DESCRIPTION : SEQ ID NO : l :
Lys Ser Cys Cys Arg Ser Thr Leu Gly Arg Asn Cys Tyr Asn Leu Cys 1 5 10 15
Arg Val Arg Gly Ala Gin Lys Leu Cys Ala Gly Val Cys Arg Cys Lys 20 25 30
Leu Thr Ser Ser Gly Lys Cys Pro Thr Gly Phe Pro Lys 35 40 45
(2) INFORMATION FOR SEQ ID NO: 2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 45 amino acids (B) TYPE: amino acid
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
Thr Ser Cys Cys Thr Ser Thr Leu Gly Arg Thr Cys Tyr Asn Leu Cys 1 5 10 15 Thr Val Thr Gly Ala Thr Thr Leu Cys Ala Gly Val Cys Thr Cys Thr
20 25 30
Leu Thr Ser Ser Gly Thr Cys Pro Thr Gly Phe Pro Lys 35 40 45
(2) INFORMATION FOR SEQ ID NO: 3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 45 amino acids (B) TYPE: amino acid
(D) TOPOLOGY: linear
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
Thr Ser Cys Cys Thr Ser Thr Thr Gly Lys Thr Cys Tyr Asn Thr Cys 1 5 10 15 Thr Thr Thr Arg Ala Thr Thr Thr Cys Ala Gly Val Cys Thr Cys Thr
20 25 30
Leu Thr Ser Ser Gly Thr Cys Pro Thr Gly Phe Pro Lys 35 40 45

Claims

WHAT IS CLAIMED IS:
A protein having the sequence of SEQUENCE I.D. No. 3 wherein the amino acid residues at one or more of positions 1,5,7,8,11,15,17,18,19,22,23,24,30,32,34,38 and 41 are threonine, and the remainder of the residues at those positions are the residues at the corresponding positions in SEQUENCE I.D. No. 1.
2.
The protein of Claim 1 wherein one or more of the amino acid residues at 1,5,7,11,17,19,22,23,30,32,34,38 and 41 are threonine.
3. The protein of Claim 2 wherein at least 5 of the amino acid residues at positions 1,5,7,11,17,19,22,23,30,32,34,38 and 41 are threonine.
4. The protein of Claim 3 wherein at least 7 of the amino acid residues at positions 1,5,7,11,17,19,22,23,30,32,34,38 and 41 are threonine.
5. A nucleotide sequence which codes for a protein having the sequence of SEQUENCE I.D. No. 3 wherein the amino acid residues at one or more of positions 1,5,7,8,11,15,17,18,19,22,23,24,30, 32,34,38 and 41 are threonine, and the remainder of the residues at those positions are the residues at the corresponding positions in SEQUENCE I.D. No. 1.
6.
An RNA sequence which codes for a protein having the sequence of SEQUENCE I.D. No. 3 wherein the amino acid residues at one or more of positions 1,5,7,8,11,15,17,18,19,22,23,24,30, 32,34,38 and 41 are threonine, and the remainder of the residues at those positions are the residues at the corresponding positions in SEQUENCE I.D. No. 1. 7. A DNA sequence which codes for a protein having the sequence of SEQUENCE I.D. No. 3 wherein the amino acid residues at one or more of positions 1,5,
7,8,11,15,17,18,19,22,23,24,30,32,34,38 and 41 are threonine, and the remainder of the residues at those positions are the residues at the corresponding positions in SEQUENCE I.D. No. 1.
8. An expression cassette containing the DNA sequence of Claim 7 operably linked to plant regulatory sequences which cause the expression of the DNA sequence in plant cells.
9. A bacterial transformation vector comprising an expression cassette according to Claim 8, operably linked to bacterial expression regulatory sequences which cause replication of the expression cassette in bacterial cells.
10. Bacterial cells containing as a foreign plasmid at least one copy of a bacterial transformation vector according to Claim 9.
11. Transformed plant cells containing at least one copy of the expression cassette according to Claim 8.
12.
The transformed plant cells of Claim 11, wherein the cells are of a monocotyledonous species.
13. The transformed plant cells of Claim 12, wherein the cells are selected from the group consisting of maize, sorghum, wheat and rice cells.
14. The transformed cells of Claim 11, wherein the cells are of a dicotyledonous species.
15. The transformed cells of Claim 14, wherein cells are selected from the group consisting of soybean, alfalfa, rapeseed, sunflower, tobacco and tomato cells.
16.
A maize cell or tissue culture comprising cells according to Claim 13.
17. A method for enhancing the threonine content of a plant cell or seed comprising the step of expressing a protein according to Claim 1 in the cell or seed.
18. The method of Claim 17 wherein the plant is a dicotyledonous plant.
19.
The method of Claim 17 wherein the plant is a monocotyledonous plant.
20. The method of Claim 19 wherein the threonine content of -the plant seed is enhanced.
PCT/US1996/008219 1995-06-02 1996-05-31 HIGH THREONINE DERIVATIVES OF α-HORDOTHIONIN WO1996038562A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR9609200A BR9609200A (en) 1995-06-02 1996-05-31 High threonine derivatives of alpha-hordothionine
MX9709351A MX9709351A (en) 1995-06-02 1996-05-31 HIGH THREONINE DERIVATIVES OF 'alpha'-HORDOTHIONIN.
AU59610/96A AU705933B2 (en) 1995-06-02 1996-05-31 High threonine derivatives of alpha-hordothionin
EP96916883A EP0828835A1 (en) 1995-06-02 1996-05-31 HIGH THREONINE DERIVATIVES OF $g(a)-HORDOTHIONIN
JP8536727A JPH11511007A (en) 1995-06-02 1996-05-31 High threonine derivatives of α-hordothionine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45918095A 1995-06-02 1995-06-02
US08/459,180 1995-06-02

Publications (1)

Publication Number Publication Date
WO1996038562A1 true WO1996038562A1 (en) 1996-12-05

Family

ID=23823733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/008219 WO1996038562A1 (en) 1995-06-02 1996-05-31 HIGH THREONINE DERIVATIVES OF α-HORDOTHIONIN

Country Status (12)

Country Link
US (1) US5885801A (en)
EP (1) EP0828835A1 (en)
JP (1) JPH11511007A (en)
CN (1) CN1192238A (en)
AR (1) AR003683A1 (en)
AU (1) AU705933B2 (en)
BR (1) BR9609200A (en)
CA (1) CA2222615A1 (en)
HU (1) HUP9900876A2 (en)
MX (1) MX9709351A (en)
PL (1) PL323641A1 (en)
WO (1) WO1996038562A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040209A1 (en) * 1998-02-09 1999-08-12 Pioneer Hi-Bred International, Inc. Alteration of amino acid compositions in seeds
WO2010118477A1 (en) 2009-04-17 2010-10-21 Molecular Plant Breeding Nominees Ltd Plant promoter operable in endosperm and uses thereof

Families Citing this family (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322323A4 (en) 2000-09-11 2004-07-28 Therapro Technologies Inc Thionin as an antineoplastic and immunostimulant
MXPA04002817A (en) 2001-09-27 2004-07-05 Pioneer Hi Bred Int Phytate polynucleotides and methods of use.
NZ535602A (en) 2002-04-08 2006-07-28 Pioneer Hi Bred Int Enhanced silk exsertion under stress in Zea mays plants
EP2216405A1 (en) 2002-05-03 2010-08-11 Monsanto Technology LLC Speed specific USP promoters for expressing genes in plants
BR0313281A (en) 2002-08-06 2007-07-24 Verdia Inc ap1 amine oxidase variants
US7078234B2 (en) 2002-12-18 2006-07-18 Monsanto Technology Llc Maize embryo-specific promoter compositions and methods for use thereof
EP1613730A4 (en) 2003-03-28 2007-12-05 Monsanto Technology Llc Novel plant promoters for use in early seed development
BRPI0409816B8 (en) 2003-04-29 2022-12-06 Pioneer Hi Bred Int GLYPHOSATE-N-ACETYLTRANSFERASE (GAT) GENES, CONSTRUCTS COMPRISING THEM, BACTERIAL CELL, POLYPEPTIDE HAVING GAT ACTIVITY, AS WELL AS METHOD FOR PRODUCING A TRANSGENIC PLANT RESISTANT TO GLYPHOSATE AND METHODS FOR CONTROLLING WEEDS IN A FIELD CONTAINING A CROP
HUE035897T2 (en) 2003-06-23 2018-05-28 Pioneer Hi Bred Int Engineering single-gene-controlled staygreen potential into plants
PL2141239T3 (en) 2003-12-16 2014-02-28 Pioneer Hi Bred Int Dominant gene suppression transgenes and methods of using same
US20070169227A1 (en) 2003-12-16 2007-07-19 Pioneer Hi-Bred International Inc. Dominant Gene Suppression Transgenes and Methods of Using Same
EP1744804A4 (en) * 2004-05-03 2009-11-04 Fulfillium Inc Method and system for gastric volume control
CN101124323A (en) 2004-06-30 2008-02-13 先锋高级育种国际公司 Methods of protecting plants from pathogenic fungi
EP2230247B1 (en) 2004-07-02 2013-05-29 Pioneer-Hi-Bred International, Inc. Antifungal polypeptides
AU2004326206B2 (en) 2004-12-28 2011-03-17 Pioneer Hi-Bred International, Inc. Improved grain quality through altered expression of seed proteins
AU2006217847B2 (en) 2005-02-26 2011-04-07 Basf Plant Science Gmbh Expression cassettes for seed-preferential expression in plants
CA2606220A1 (en) 2005-04-19 2006-12-21 Basf Plant Science Gmbh Starchy-endosperm and/or germinating embryo-specific expression in mono-cotyledonous plants
AU2006237346B2 (en) 2005-04-20 2011-04-07 Basf Plant Science Gmbh Expression cassettes for seed-preferential expression in plants
CA2607263A1 (en) 2005-05-10 2006-11-16 Basf Plant Science Gmbh Expression cassettes for seed-preferential expression in plants
US20060272057A1 (en) 2005-05-25 2006-11-30 Pioneer Hi-Bred International, Inc. Methods for improving crop plant architecture and yield
ES2390132T3 (en) 2005-07-18 2012-11-06 Pioneer Hi-Bred International Inc. Modified FRT recombination sites and methods of use
CA2821436A1 (en) 2006-02-09 2007-08-16 Pioneer Hi-Bred International, Inc. Genes for enhancing nitrogen utilization efficiency in crop plants
CA2638739A1 (en) 2006-03-01 2007-09-13 Pioneer Hi-Bred International, Inc. Compositions related to the quantitative trait locus 6 (qtl6) in maize and methods of use
US20070214515A1 (en) 2006-03-09 2007-09-13 E.I.Du Pont De Nemours And Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
AR060523A1 (en) 2006-04-19 2008-06-25 Pioneer Hi Bred Int ISOLATED POLINUCLEOTID MOLECULES THAT CORRESPOND TO MUTANT ALELOS AND WILD TYPE OF CORN D9 GEN AND METHODS FOR USE
DE602007012343D1 (en) 2006-05-16 2011-03-17 Du Pont ANTIMYCOTIC POLYPEPTIDE
US7951995B2 (en) 2006-06-28 2011-05-31 Pioneer Hi-Bred International, Inc. Soybean event 3560.4.3.5 and compositions and methods for the identification and detection thereof
US7777102B2 (en) * 2007-02-08 2010-08-17 University Of Tennessee Research Foundation Soybean varieties
WO2008099013A1 (en) 2007-02-16 2008-08-21 Basf Plant Science Gmbh Nucleic acid sequences for regulation of embryo-specific expression in monocotyledonous plants
US8367895B2 (en) 2008-01-17 2013-02-05 Pioneer Hi-Bred International, Inc. Compositions and methods for the suppression of target polynucleotides from the family aphididae
US8847013B2 (en) 2008-01-17 2014-09-30 Pioneer Hi Bred International Inc Compositions and methods for the suppression of target polynucleotides from lepidoptera
US7947877B2 (en) * 2008-05-14 2011-05-24 Monosanto Technology LLC Plants and seeds of spring canola variety SCV328921
US7964774B2 (en) * 2008-05-14 2011-06-21 Monsanto Technology Llc Plants and seeds of spring canola variety SCV384196
US7935870B2 (en) * 2008-05-14 2011-05-03 Monsanto Technology Llc Plants and seeds of spring canola variety SCV354718
US8829282B2 (en) * 2008-05-14 2014-09-09 Monsanto Technology, Llc Plants and seeds of spring canola variety SCV425044
EP2344640A1 (en) 2008-10-30 2011-07-20 Pioneer Hi-Bred International Inc. Manipulation of glutamine synthetases (gs) to improve nitrogen use efficiency and grain yield in higher plants
CA2751724A1 (en) 2009-02-19 2010-08-26 Pioneer Hi-Bred International, Inc. Blended refuge deployment via manipulation during hybrid seed production
BRPI1014658A2 (en) 2009-04-14 2019-09-24 Pioneer Hi Bred Int "method for enhancing introgenous stress tolerance in a plant, method for enhancing nitrogen stress tolerance under low nitrogen conditions, expression cassette, construct, plant cell, plant and method of inhibiting ethylene production in a plant" . "
WO2010132214A1 (en) * 2009-05-15 2010-11-18 University Of Tennessee Research Foundation Environmental stress-inducible promoter and its application in crops
US8466342B2 (en) 2009-06-09 2013-06-18 Pioneer Hi Bred International Inc Early endosperm promoter and methods of use
US8071848B2 (en) * 2009-06-17 2011-12-06 Monsanto Technology Llc Plants and seeds of spring canola variety SCV218328
CN102471777B (en) 2009-07-10 2014-09-24 巴斯夫植物科学有限公司 Expression cassettes for endosperm-specific expression in plants
EA201200177A1 (en) 2009-07-24 2012-06-29 Пайонир Хай-Бред Интернэшнл, Инк. APPLICATION OF TIES OF DOMAIN COMPONENTS OF DIMERIZATION TO REGULATE PLANT ARCHITECTURE
US20110035843A1 (en) 2009-08-05 2011-02-10 Pioneer Hi-Bred International, Inc. Novel eto1 genes and use of same for reduced ethylene and improved stress tolerance in plants
CN102549149A (en) 2009-08-20 2012-07-04 先锋国际良种公司 Functional expression of yeast nitrate transporter (ynt1) in maize to improve nitrate uptake
MX2012002113A (en) 2009-08-20 2012-08-08 Pioneer Hi Bred Int Functional expression of shuffled yeast nitrate transporter (ynti) in maize to improve nitrate uptake under low nitrate environment.
EP3401404A1 (en) 2009-08-28 2018-11-14 E. I. du Pont de Nemours and Company Compositions and methods to control insect pests
WO2011041796A1 (en) 2009-10-02 2011-04-07 Pioneer Hi-Bred International, Inc. Down-regulation of acc synthase for improved plant performance
BR112012009044A2 (en) 2009-10-26 2015-09-01 Pioneer Hi Bred Int Isolated nucleic acid molecule, expression cassette, vector, plant cell, plant, transgenic seed, method for expressing a polynucleotide in a plant or plant cell and method for expressing a polynucleotide, preferably in somatic egg tissues of a plant
CA2782290A1 (en) 2009-12-03 2011-06-09 Basf Plant Science Company Gmbh Expression cassettes for embryo-specific expression in plants
AU2010339404B2 (en) 2009-12-30 2016-01-28 Pioneer Hi-Bred International, Inc. Methods and compositions for the introduction and regulated expression of genes in plants
US8704041B2 (en) 2009-12-30 2014-04-22 Pioneer Hi Bred International Inc Methods and compositions for targeted polynucleotide modification
MX2012007681A (en) 2009-12-31 2013-01-29 Pioneer Hi Bred Int Engineering plant resistance to diseases caused by pathogens.
WO2011085062A1 (en) 2010-01-06 2011-07-14 Pioneer Hi-Bred International, Inc. Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
US8143488B2 (en) * 2010-02-26 2012-03-27 Monsanto Technoloy LLC Plants and seeds of spring canola variety SCV470336
US8138394B2 (en) * 2010-02-26 2012-03-20 Monsanto Technology Llc Plants and seeds of spring canola variety SCV431158
US8148611B2 (en) * 2010-02-26 2012-04-03 Monsanto Technology Llc Plants and seeds of spring canola variety SCV453784
US8581048B2 (en) * 2010-03-09 2013-11-12 Monsanto Technology, Llc Plants and seeds of spring canola variety SCV119103
US8153865B2 (en) * 2010-03-11 2012-04-10 Monsanto Technology Llc Plants and seeds of spring canola variety SCV152154
US20110277182A1 (en) 2010-05-06 2011-11-10 E.I. Dupont De Nemours And Company Maize acc synthase 3 gene and protein and uses thereof
WO2011163590A1 (en) 2010-06-25 2011-12-29 E. I. Du Pont De Nemours And Company Compositions and methods for enhancing resistance to northern leaf blight in maize
EP2603591A1 (en) 2010-08-13 2013-06-19 Pioneer Hi-Bred International Inc. Compositions and methods comprising sequences having hydroxyphenylpyruvate dioxygenase (hppd) activity
BR112013003223A2 (en) 2010-08-23 2016-06-07 Pioneer Hi Bred Int "isolated polynucleotide, expression cassette, host cell, microorganism, plant or plant part, method of obtaining a transformed plant, antipathogenic composition, method of protecting a plant against a pathogen or use of an isolated polynucleotide"
AU2011328963B2 (en) 2010-11-17 2016-12-08 Pioneer Hi-Bred International, Inc. Prediction of phenotypes and traits based on the metabolome
CA2818918A1 (en) 2010-11-24 2012-05-31 Pioneer Hi-Bred International, Inc. Brassica gat event dp-061061-7 and compositions and methods for the identification and/or detection thereof
CA2810180C (en) 2010-11-24 2015-07-28 Pioneer Hi-Bred International, Inc. Brassica gat event dp-073496-4 and compositions and methods for the identification and/or detection thereof
TWI667347B (en) 2010-12-15 2019-08-01 瑞士商先正達合夥公司 Soybean event syht0h2 and compositions and methods for detection thereof
BR112013014988A2 (en) 2010-12-22 2017-06-27 Du Pont isolated nucleic acid molecule, dna construct, vector, plant cell, plant, transgenic seed from plant, method for expression of a nucleotide sequence in a plant, method for expression of a nucleotide sequence in a plant cell, method for selectively express a nucleotide sequence in green corn plant tissues
US8962916B2 (en) 2010-12-22 2015-02-24 Pioneer Hi Bred International Inc Viral promoter, truncations thereof, and methods of use
BR112013015515A2 (en) 2010-12-28 2018-04-24 Pioneer Hi Bred Int isolated nucleic acid molecule, dna construct, host cell, transgenic plant, transformed plant seed, isolated polypeptide with pesticidal activity, composition, method for controlling a lepidopteran pest population, method for killing a lepidopteran pest, method for producing a pesticidal polypeptide, a plant that has stably incorporated into its genome a DNA construct, a method of protecting a plant from a pest
BR112013019510B1 (en) 2011-02-01 2021-09-21 Colorado Wheat Research Foundation, Inc METHOD FOR OBTAINING A WHEAT PLANT, METHOD FOR GROWING A WHEAT PLANT, METHOD FOR PRODUCING A WHEAT PLANT, METHOD FOR IDENTIFYING A WHEAT PLANT THAT IS RESISTANT TO THE HERBICIDAL ACETYL-COA CARBOXYLASE, METHOD FOR GIVING RESISTANCE TO ACCASE HERBICIDES A A PLANT, ISOLATED POLYNUCLEOTIDE, NUCLEIC ACID CONSTRUCT, EXPRESSION CASSETTE, METHOD FOR OBTAINING A TRANSGENIC PLANT AND ISOLATED POLYPEPTIDE WITH ACCASE ACTIVITY
MX2013009092A (en) 2011-02-11 2013-10-17 Pioneer Hi Bred Int Synthetic insecticidal proteins active against corn rootworm.
US8878007B2 (en) 2011-03-10 2014-11-04 Pioneer Hi Bred International Inc Bacillus thuringiensis gene with lepidopteran activity
MX2013010911A (en) 2011-03-23 2015-03-03 Pioneer Hi Bred Int Methods for producing a complex transgenic trait locus.
MX339784B (en) 2011-03-30 2016-06-09 Univ Nac Autónoma De México Mutant bacillus thuringiensis cry genes and methods of use.
US8513487B2 (en) 2011-04-07 2013-08-20 Zenon LISIECZKO Plants and seeds of spring canola variety ND-662c
US8513494B2 (en) 2011-04-08 2013-08-20 Chunren Wu Plants and seeds of spring canola variety SCV695971
CA2833876A1 (en) 2011-04-29 2012-11-01 Pioneer Hi-Bred International, Inc. Down-regulation of a homeodomain-leucine zipper i-class homeobox gene for improved plant performance
US8507761B2 (en) 2011-05-05 2013-08-13 Teresa Huskowska Plants and seeds of spring canola variety SCV372145
US8513495B2 (en) 2011-05-10 2013-08-20 Dale Burns Plants and seeds of spring canola variety SCV291489
MX2013015174A (en) 2011-06-21 2014-09-22 Pioneer Hi Bred Int Methods and compositions for producing male sterile plants.
WO2013019411A1 (en) 2011-08-03 2013-02-07 E. I. Du Pont De Nemours And Company Methods and compositions for targeted integration in a plant
US20130055472A1 (en) 2011-08-31 2013-02-28 E.I. Du Pont De Nemours And Company Methods for tissue culture and transformation of sugarcane
BR112014009954A2 (en) 2011-10-28 2017-12-05 Du Pont construct, cell, plant, seed and method
US20140298544A1 (en) 2011-10-28 2014-10-02 Pioneer Hi Bred International Inc Engineered PEP carboxylase variants for improved plant productivity
BR112014010537A2 (en) 2011-10-31 2017-05-02 Pioneer Hi Bred Int method for modulating ethylene sensitivity, transgenic plant, isolated protein, isolated polynucleotide sequence, polypeptide with ethylene regulatory activity, method for increasing yield in a plant, method for improving an agronomic parameter of a plant, method assisted by selection marker of a plant
WO2013096810A1 (en) 2011-12-21 2013-06-27 The Curators Of The University Of Missouri Soybean variety s05-11482
WO2013096818A1 (en) 2011-12-21 2013-06-27 The Curators Of The University Of Missouri Soybean variety s05-11268
WO2013103371A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Ovule specific promoter and methods of use
WO2013103365A1 (en) 2012-01-06 2013-07-11 Pioneer Hi-Bred International, Inc. Pollen preferred promoters and methods of use
AR089793A1 (en) 2012-01-27 2014-09-17 Du Pont METHODS AND COMPOSITIONS TO GENERATE COMPOSITE TRANSGENIC RISK LOCUS
MX2014011038A (en) 2012-03-13 2015-06-02 Pioneer Hi Bred Int Genetic reduction of male fertility in plants.
WO2013138309A1 (en) 2012-03-13 2013-09-19 Pioneer Hi-Bred International, Inc. Genetic reduction of male fertility in plants
US8878009B2 (en) 2012-04-26 2014-11-04 Monsanto Technology, LLP Plants and seeds of spring canola variety SCV318181
US8859857B2 (en) 2012-04-26 2014-10-14 Monsanto Technology Llc Plants and seeds of spring canola variety SCV259778
US8802935B2 (en) 2012-04-26 2014-08-12 Monsanto Technology Llc Plants and seeds of spring canola variety SCV942568
US8835720B2 (en) 2012-04-26 2014-09-16 Monsanto Technology Llc Plants and seeds of spring canola variety SCV967592
US9347105B2 (en) 2012-06-15 2016-05-24 Pioneer Hi Bred International Inc Genetic loci associated with resistance of soybean to cyst nematode and methods of use
WO2013188291A2 (en) 2012-06-15 2013-12-19 E. I. Du Pont De Nemours And Company Methods and compositions involving als variants with native substrate preference
AU2012208997B1 (en) 2012-07-30 2013-09-19 Dlf Usa Inc. An alfalfa variety named magnum salt
US9816102B2 (en) 2012-09-13 2017-11-14 Indiana University Research And Technology Corporation Compositions and systems for conferring disease resistance in plants and methods of use thereof
WO2014059155A1 (en) 2012-10-11 2014-04-17 Pioneer Hi-Bred International, Inc. Guard cell promoters and uses thereof
WO2014062544A2 (en) 2012-10-15 2014-04-24 Pioneer Hi-Bred International, Inc. Methods and compositions to enhance activity of cry endotoxins
WO2014081673A2 (en) 2012-11-20 2014-05-30 Pioneer Hi-Bred International, Inc. Engineering plants for efficient uptake and utilization of urea to improve crop production
US20140173781A1 (en) 2012-12-13 2014-06-19 Pioneer Hi-Bred International, Inc. Methods and compositions for producing and selecting transgenic wheat plants
US20150351390A1 (en) 2012-12-21 2015-12-10 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
US20150361447A1 (en) 2013-01-25 2015-12-17 Pioneer Hi-Breed International, Inc. Maize event dp-032218-9 and methods for detection thereof
US20160002648A1 (en) 2013-03-11 2016-01-07 Mei Guo Genes for improving nutrient uptake and abiotic stress tolerance in plants
CA2905377A1 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions to improve the spread of chemical signals in plants
WO2014164828A2 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions employing a sulfonylurea-dependent stabilization domain
AU2014241045B2 (en) 2013-03-13 2017-08-31 Pioneer Hi-Bred International, Inc. Glyphosate application for weed control in brassica
WO2014164116A1 (en) 2013-03-13 2014-10-09 Pioneer Hi-Bred International, Inc. Functional expression of bacterial major facilitator superfamily (sfm) gene in maize to improve agronomic traits and grain yield
US20160010101A1 (en) 2013-03-13 2016-01-14 Pioneer Hi-Bred International, Inc. Enhanced nitrate uptake and nitrate translocation by over- expressing maize functional low-affinity nitrate transporters in transgenic maize
WO2014160122A1 (en) 2013-03-14 2014-10-02 Pioneer Hi-Bred International, Inc. Maize stress related transcription factor 18 and uses thereof
US20140287419A1 (en) 2013-03-14 2014-09-25 Arzeda Corp. Compositions Having Dicamba Decarboxylase Activity and Methods of Use
BR112015023286A2 (en) 2013-03-14 2018-03-06 Arzeda Corp recombinant polypeptide with dicamba decarboxylase activity, polynucleotide construct, cell, method of producing a host cell comprising a heterologous polynucleotide encoding a dicamba decarboxylase activity, method for decarboxylating dicamba, a dicamba derivative or a dicamba metabolite, method for detecting a polypeptide and method for detecting the presence of a polynucleotide encoding a polypeptide having dicamba decarboxylase activity
CN105339380A (en) 2013-03-14 2016-02-17 先锋国际良种公司 Compositions and methods to control insect pests
CA2903555A1 (en) 2013-03-15 2014-09-18 Pioneer Hi-Bred International, Inc. Compositions and methods of use of acc oxidase polynucleotides and polypeptides
WO2014152507A2 (en) 2013-03-15 2014-09-25 Pioneer Hi-Bred International, Inc. Modulation of acc deaminase expression
MX360160B (en) 2013-03-15 2018-10-24 Pioneer Hi Bred Int PHI-4 POLYPEPTIDES and METHODS FOR THEIR USE.
CN105492625B (en) 2013-04-17 2020-04-07 先锋国际良种公司 Method for characterizing DNA sequence composition in genome
BR112016002596B1 (en) 2013-08-08 2023-03-14 Pioneer Hi-Bred International, Inc ISOLATED NUCLEIC ACID MOLECULE, DNA CONSTRUCT, BACTERIAL HOST CELL, ISOLATED POLYPEPTIDE, COMPOSITION, METHOD FOR CONTROLLING A POPULATION, METHOD FOR KILLING A PEST, METHOD FOR PRODUCING A POLYPEPTIDE, METHOD FOR PRODUCING A PLANT OR PLANT CELL, METHOD FOR PROTECTING A PLANT, METHOD TO EXTERMINATE OR CONTROL A POPULATION
CA2920339C (en) 2013-08-16 2023-10-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3611268A1 (en) 2013-08-22 2020-02-19 E. I. du Pont de Nemours and Company Plant genome modification using guide rna/cas endonuclease systems and methods of use
ES2776730T3 (en) 2013-09-13 2020-07-31 Pioneer Hi Bred Int Insecticidal proteins and methods for their use
US10329578B2 (en) 2013-10-18 2019-06-25 Pioneer Hi-Bred International, Inc. Glyphosate-N-acetyltransferase (GLYAT) sequences and methods of use
RU2021113662A (en) 2014-02-07 2021-05-31 Пайонир Хай-Бред Интернэшнл, Инк. INSECTICIDE PROTEINS AND METHODS OF THEIR APPLICATION
US9686931B2 (en) 2014-07-07 2017-06-27 Alforex Seeds LLC Hybrid alfalfa variety named HybriForce-3400
CN106687594A (en) 2014-07-11 2017-05-17 纳幕尔杜邦公司 Compositions and methods for producing plants resistant to glyphosate herbicide
US20170218384A1 (en) 2014-08-08 2017-08-03 Pioneer Hi-Bred International, Inc. Ubiquitin promoters and introns and methods of use
CA2956487A1 (en) 2014-09-12 2016-03-17 E. I. Du Pont De Nemours And Company Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use
CA2961733A1 (en) 2014-09-17 2016-03-24 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
US9648826B2 (en) 2014-09-29 2017-05-16 Alforex Seeds LLC Low lignin non-transgenic alfalfa varieties and methods for producing the same
CN107074917B (en) 2014-10-16 2022-05-24 先锋国际良种公司 Insecticidal polypeptides having an improved activity profile and uses thereof
EP3207143B1 (en) 2014-10-16 2023-11-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CA2963550A1 (en) 2014-10-16 2016-04-21 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having broad spectrum activity and uses thereof
WO2016100804A1 (en) 2014-12-19 2016-06-23 AgBiome, Inc. Methods and compositions for providing resistance to glufosinate
WO2016099916A1 (en) 2014-12-19 2016-06-23 E. I. Du Pont De Nemours And Company Polylactic acid compositions with accelerated degradation rate and increased heat stability
US11041158B2 (en) 2014-12-22 2021-06-22 AgBiome, Inc. Optimization methods for making a synthetic gene
BR112017018327A2 (en) 2015-02-25 2018-04-17 Pioneer Hi-Bred International, Inc. method for regulated expression of a complex, plant or plant cell, seed, method for modifying a sequence, method for altering expression of at least one polynucleotide
CA2975279A1 (en) 2015-03-19 2016-09-22 Pioneer Hi-Bred International, Inc. Methods and compositions for accelerated trait introgression
EP3294877A1 (en) 2015-05-15 2018-03-21 Pioneer Hi-Bred International, Inc. Rapid characterization of cas endonuclease systems, pam sequences and guide rna elements
BR112017024948A2 (en) 2015-05-19 2018-07-31 Pioneer Hi Bred Int insecticide proteins and methods for their use
WO2016205445A1 (en) 2015-06-16 2016-12-22 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
US11198709B2 (en) 2015-08-06 2021-12-14 E. I. Du Pont De Nemours And Company Plant derived insecticidal proteins and methods for their use
DK3341483T3 (en) 2015-08-28 2020-03-16 Pioneer Hi Bred Int OCHROBACTRUM-MEDIATED TRANSFORMATION OF PLANTS
JP7011590B2 (en) 2015-10-12 2022-02-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Protected DNA template and method of use for increased intracellular gene recombination and homologous recombination
US20180273960A1 (en) 2015-10-20 2018-09-27 Pioneer Hi-Bred International, Inc. Methods and compositions for marker-free genome modification
US20180258438A1 (en) 2015-11-06 2018-09-13 Pioneer Hi-Bred International, Inc. Generation of complex trait loci in soybean and methods of use
AU2016350610A1 (en) 2015-11-06 2018-04-12 Pioneer Hi-Bred International, Inc. Methods and compositions of improved plant transformation
CN108575091A (en) 2015-12-18 2018-09-25 先锋国际良种公司 Insecticidal protein and its application method
CA3004056C (en) 2015-12-22 2024-01-23 Pioneer Hi-Bred International, Inc. Tissue-preferred promoters and methods of use
US9896696B2 (en) 2016-02-15 2018-02-20 Benson Hill Biosystems, Inc. Compositions and methods for modifying genomes
US20190161742A1 (en) 2016-03-11 2019-05-30 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
WO2017155715A1 (en) 2016-03-11 2017-09-14 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
WO2017155717A1 (en) 2016-03-11 2017-09-14 Pioneer Hi-Bred International, Inc. Novel cas9 systems and methods of use
MX2018012025A (en) 2016-04-14 2019-02-07 Pioneer Hi Bred Int Insecticidal polypeptides having improved activity spectrum and uses thereof.
EP3445861B1 (en) 2016-04-19 2021-12-08 Pioneer Hi-Bred International, Inc. Insecticidal combinations of polypeptides having improved activity spectrum and uses thereof
CA3018384A1 (en) 2016-05-04 2017-11-09 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
US20200332305A1 (en) 2016-06-14 2020-10-22 Pioneer Hi-Bred International, Inc. Use of cpfi endonuclease for plant genome modifications
CN109312359A (en) 2016-06-16 2019-02-05 先锋国际良种公司 To prevent and treat the composition and method of insect pest
US20190100745A1 (en) 2016-06-20 2019-04-04 Pioneer Hi-Bred International, Inc. Novel cas systems and methods of use
CA3026653A1 (en) 2016-06-24 2017-12-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
WO2018005411A1 (en) 2016-07-01 2018-01-04 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
WO2018013333A1 (en) 2016-07-12 2018-01-18 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
WO2018060881A1 (en) 2016-09-27 2018-04-05 University Of Florida Research Foundation, Inc. Insect toxin delivery mediated by a densovirus coat protein
WO2018084936A1 (en) 2016-11-01 2018-05-11 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2018140214A1 (en) 2017-01-24 2018-08-02 Pioneer Hi-Bred International, Inc. Nematicidal protein from pseudomonas
CN110832074A (en) 2017-05-03 2020-02-21 科沃施种子欧洲股份两合公司 Application of CRISPR-Cas endonuclease in plant genome engineering
WO2018217333A1 (en) 2017-05-26 2018-11-29 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides having improved activity spectrum and uses thereof
IL310452A (en) 2017-08-09 2024-03-01 Ricetec Inc Compositions and methods for modifying genomes
KR20200056434A (en) 2017-09-25 2020-05-22 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 Tissue-preferred promoters and methods of use
WO2019125651A1 (en) 2017-12-19 2019-06-27 Pioneer Hi-Bred International, Inc. Insecticidal polypeptides and uses thereof
EP3732295A1 (en) 2017-12-27 2020-11-04 Pioneer Hi-Bred International, Inc. Transformation of dicot plants
WO2019157522A1 (en) 2018-02-12 2019-08-15 Curators Of The University Of Missouri Small auxin upregulated (saur) gene for the improvement of plant root system architecture, waterlogging tolerance, drought resistance and yield
US20210002657A1 (en) 2018-03-02 2021-01-07 Pioneer Hi-Bred International, Inc. Plant health assay
CA3096516A1 (en) 2018-05-22 2019-11-28 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
CA3097915A1 (en) 2018-06-28 2020-01-02 Pioneer Hi-Bred International, Inc. Methods for selecting transformed plants
US20210395758A1 (en) 2018-10-31 2021-12-23 Pioneer Hi-Bred International, Inc. Compositions and methods for ochrobactrum-mediated plant transformation
WO2020185751A1 (en) 2019-03-11 2020-09-17 Pioneer Hi-Bred International, Inc. Methods for clonal plant production
US20220154193A1 (en) 2019-03-28 2022-05-19 Pioneer Hi-Bred International, Inc. Modified agrobacterium strains and use thereof for plant transformation
CA3138663A1 (en) 2019-06-25 2020-12-30 Inari Agriculture Technology, Inc. Improved homology dependent repair genome editing
CN114729381A (en) 2019-09-05 2022-07-08 本森希尔股份有限公司 Compositions and methods for modifying genomes
US20230235352A1 (en) 2020-07-14 2023-07-27 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
BR112023002602A2 (en) 2020-08-10 2023-04-04 Du Pont COMPOSITIONS AND METHODS TO INCREASE RESISTANCE TO HELMINTOSPORIOSIS IN CORN
WO2022109289A1 (en) 2020-11-20 2022-05-27 AgBiome, Inc. Compositions and methods for incorporation of dna into the genome of an organism
WO2022115524A2 (en) 2020-11-24 2022-06-02 AgBiome, Inc. Pesticidal genes and methods of use
WO2022226316A1 (en) 2021-04-22 2022-10-27 Precision Biosciences, Inc. Compositions and methods for generating male sterile plants
WO2022236060A1 (en) 2021-05-06 2022-11-10 AgBiome, Inc. Pesticidal genes and methods of use
WO2023107943A1 (en) 2021-12-07 2023-06-15 AgBiome, Inc. Pesticidal genes and methods of use
WO2023119135A1 (en) 2021-12-21 2023-06-29 Benson Hill, Inc. Compositions and methods for modifying genomes
WO2023141464A1 (en) 2022-01-18 2023-07-27 AgBiome, Inc. Method for designing synthetic nucleotide sequences
WO2024044596A1 (en) 2022-08-23 2024-02-29 AgBiome, Inc. Pesticidal genes and methods of use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004371A1 (en) * 1987-11-02 1989-05-18 Louisiana State University Agricultural And Mechan Plants genetically enhanced for disease resistance
EP0318341A1 (en) * 1987-10-20 1989-05-31 Plant Genetic Systems, N.V. A process for the production of transgenic plants with increased nutritional value via the expression of modified 2S storage albumins in said plants
WO1993003160A1 (en) * 1991-08-09 1993-02-18 E.I. Du Pont De Nemours And Company Synthetic storage proteins with defined structure containing programmable levels of essential amino acids for improvement of the nutritional value of plants
WO1993019190A1 (en) * 1992-03-19 1993-09-30 E.I. Du Pont De Nemours And Company Nucleic acid fragments and methods for increasing the lysine and threonine content of the seeds of plants
WO1994010315A2 (en) * 1992-10-23 1994-05-11 Pioneer Hi-Bred International, Inc. Process for enhancing the content of a selected amino acid in a seed storage protein
WO1994016078A2 (en) * 1993-01-13 1994-07-21 Pioneer Hi-Bred International, Inc. High lysine derivatives of alpha-hordothionin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9200621A (en) * 1991-02-14 1993-02-01 Du Pont GENE OF A PROTEIN WITH HIGH SULFUR CONTENT OF A SEED AND METHOD TO INCREASE THE SULFUR CONTENT IN AMINO ACIDS OF PLANTS.
CA2061862A1 (en) * 1991-03-04 1992-09-05 Jonathan Duvick Natural and synthetic proteins with inhibitory activity towards pathogenic microorganisms
EP0687303B1 (en) * 1993-03-02 2002-11-20 E.I. Du Pont De Nemours And Company Increase of the level of methionin in plant seeds by expression of 10kd zein from corn
US5703049A (en) * 1996-02-29 1997-12-30 Pioneer Hi-Bred Int'l, Inc. High methionine derivatives of α-hordothionin for pathogen-control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318341A1 (en) * 1987-10-20 1989-05-31 Plant Genetic Systems, N.V. A process for the production of transgenic plants with increased nutritional value via the expression of modified 2S storage albumins in said plants
WO1989004371A1 (en) * 1987-11-02 1989-05-18 Louisiana State University Agricultural And Mechan Plants genetically enhanced for disease resistance
WO1993003160A1 (en) * 1991-08-09 1993-02-18 E.I. Du Pont De Nemours And Company Synthetic storage proteins with defined structure containing programmable levels of essential amino acids for improvement of the nutritional value of plants
WO1993019190A1 (en) * 1992-03-19 1993-09-30 E.I. Du Pont De Nemours And Company Nucleic acid fragments and methods for increasing the lysine and threonine content of the seeds of plants
WO1994010315A2 (en) * 1992-10-23 1994-05-11 Pioneer Hi-Bred International, Inc. Process for enhancing the content of a selected amino acid in a seed storage protein
WO1994016078A2 (en) * 1993-01-13 1994-07-21 Pioneer Hi-Bred International, Inc. High lysine derivatives of alpha-hordothionin

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FLORACK, D.E.A., ET AL.: "Expression of biologically active hordothionins in tobacco. Effects of pre- and pro-sequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting", PLANT MOLECULAR BIOLOGY, vol. 24, 1994, pages 83 - 96, XP002015812 *
KARCHI, H., ET AL.: "Lysine synthesis and catabolism are coordinately regulated during tobacco seed development", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, March 1994 (1994-03-01), WASHINGTON US, pages 2577 - 2581, XP002015697 *
KARCHI, H., ET AL.: "Seed-specific expression of a bacterial desensitized aspartate kinase increases the production of seed threonine and methionine in transgenic tobacco", THE PLANT JOURNAL, vol. 3, no. 5, 1993, pages 721 - 727, XP002015695 *
RAO A G ET AL: "STRUCTURE-FUNCTION VALIDATION OF HIGH LYSINE ANALOGS OF -HORDOTHIONIN DESIGNED BY PROTEIN MODELING", PROTEIN ENGINEERING, vol. 7, no. 12, 1 December 1994 (1994-12-01), pages 1485 - 1493, XP000482988 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999040209A1 (en) * 1998-02-09 1999-08-12 Pioneer Hi-Bred International, Inc. Alteration of amino acid compositions in seeds
US7053282B1 (en) 1998-02-09 2006-05-30 Pioneer Hi-Bred International, Inc. Alteration of amino acid compositions in seeds
WO2010118477A1 (en) 2009-04-17 2010-10-21 Molecular Plant Breeding Nominees Ltd Plant promoter operable in endosperm and uses thereof

Also Published As

Publication number Publication date
AR003683A1 (en) 1998-09-09
CN1192238A (en) 1998-09-02
HUP9900876A2 (en) 1999-07-28
US5885801A (en) 1999-03-23
CA2222615A1 (en) 1996-12-05
AU705933B2 (en) 1999-06-03
MX9709351A (en) 1998-02-28
AU5961096A (en) 1996-12-18
PL323641A1 (en) 1998-04-14
BR9609200A (en) 1999-05-11
JPH11511007A (en) 1999-09-28
EP0828835A1 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
AU705933B2 (en) High threonine derivatives of alpha-hordothionin
AU707354B2 (en) High methionine derivatives of alpha-hordothionin
MXPA97009351A (en) Alpha-hordotionine derivatives with high content treon
US5703049A (en) High methionine derivatives of α-hordothionin for pathogen-control
MXPA97009352A (en) Alpha-hortodionine derivatives with high mettion content
USRE39562E1 (en) High lysine derivatives of α-hordothionin
AU704510B2 (en) Chimeric genes and methods for increasing the lysine content of the seeds of corn, soybean and rapeseed plants
CA2266316C (en) Binary methods of increasing accumulation of essential amino acids in seeds
CA2280196C (en) Chimeric genes and methods for increasing the lysine content of the seeds of plants
CA2222673A1 (en) Methods of increasing accumulation of essential amino acids in seeds
BG98042A (en) Gene encoding seed protein of high sulphur content and method for increasing the content of sulphur amino acids in plants
HU214630B (en) Method for increasing the level of free lysine in plant cells, and for producing transformed plant cells and expression cassettes
WO1987005627A1 (en) Expression of wild type and mutant glutamine synthetase in foreign hosts
US8324482B2 (en) Transgenic plants
US5098838A (en) Expression of wild type and mutant glutamine synthetase in foreign hosts
US10711278B2 (en) Genetically altered alfalfa producing clovamide and/or related hydroxycinnamoyl amides
CN116836249A (en) Three homologous genes and related proteins related to wheat yield
MXPA97009289A (en) Methods to increase the accumulation of essential amino acids in semil
MXPA00007707A (en) Alteration of amino acid compositions in seeds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195937.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2222615

Country of ref document: CA

Ref document number: 2222615

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/009351

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1996 536727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 97-02207

Country of ref document: RO

WWE Wipo information: entry into national phase

Ref document number: 1996916883

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996916883

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1996916883

Country of ref document: EP