WO1996036749A1 - Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre - Google Patents

Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre Download PDF

Info

Publication number
WO1996036749A1
WO1996036749A1 PCT/ES1996/000105 ES9600105W WO9636749A1 WO 1996036749 A1 WO1996036749 A1 WO 1996036749A1 ES 9600105 W ES9600105 W ES 9600105W WO 9636749 A1 WO9636749 A1 WO 9636749A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
core
coating
pure
alloys
Prior art date
Application number
PCT/ES1996/000105
Other languages
English (en)
French (fr)
Inventor
José Manuel ARAGUES BERNAD
Original Assignee
Valeo Térmico, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Térmico, S.A. filed Critical Valeo Térmico, S.A.
Priority to EP96915036A priority Critical patent/EP0771888A1/en
Publication of WO1996036749A1 publication Critical patent/WO1996036749A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Definitions

  • the invention relates to a method for protecting copper-based heat exchangers from external corrosion comprising the coating and thermal diffusion of a tin-based alloy on a copper-based core, whereby a composite material is formed that exhibits excellent corrosion behavior.
  • the invention also relates to said composite material, fins for heat exchangers constituted by said material and heat exchangers incorporating such fins, as well as to its manufacturing process.
  • Heat exchangers in particular, radiators intended for cooling engines in automobiles and agricultural and industrial machinery (thermal engines) consist of a central core, called a honeycomb, formed by a set of tubes for the circulation of the coolant, and of fins, in contact with the tubes to effect thermal exchange.
  • the radiator is completed by tanks and collector plates that close the coolant circuit. Additionally, steel side supports are included in order to increase its rigidity.
  • the honeycomb tubes are brass, the fins are copper (Cu) and the tube-fin joint is made by tin-based welds (Sn).
  • Sn tin-based welds
  • the contribution of the Sn-based weld is made from the brass tube, which has been previously coated by welding, mainly by immersion in a molten solder bath.
  • Welding of the honeycomb can be carried out in continuous or static furnaces with an oxidizing environment. Normally, the welding of the honeycomb is carried out in two stages, a first in oven, in which the tubes are welded to the fins, and a second in which the ends of the tubes are welded to the collector plates by means of systems such as capillarity (immersion in molten Sn baths), Sn projection, etc.
  • a welding "flux” (or stripper of the metals to be joined and protector of the weld itself during operation) must be applied, either by immersion of the honeycomb or by projection of the flux on the honeycomb.
  • the flux that are commonly used are those of a mineral nature that contain inorganic halides, such as zinc and ammonium chlorides, hydrochloric acid, etc. , although other fluxes of mixed nature are also used, with organic and inorganic components, such as hydrochlorides and amines hydrates, hydrobromic acid, etc.
  • Another additional problem posed by current radiator manufacturing procedures refers to the application of anti-corrosion protection, since, at present, this operation is carried out, once the manufacture of the radiator is finished, by applying an anti-corrosion paint. projection corrosion, so that only the external areas of the radiator are covered with paint but the honeycomb core is not covered. Normally, the paint penetrates so only, about 2 mm on each face of the honeycomb.
  • copper radiators have excellent performance in terms of thermal transfer, mechanical resistance and internal corrosion.
  • external corrosion resistance is problematic.
  • the main mechanisms that produce corrosion in tubes and fins have been identified, which has allowed the creation of a new material, in particular, a composite material, suitable for manufacturing fins or interleavers, which presents an excellent behavior against corrosion, preserving its thermal and mechanical properties, which also allows reducing the traditional thicknesses of these pieces.
  • the composite material provides very effective protection against perforating corrosion that occurs in the radiator honeycomb tubes as a result of the corrosion mechanisms that occur in copper radiators manufactured with current technology. All this guarantees the preservation of the functional characteristics of a radiator, manufactured in accordance with the teachings of the present invention, during long-term service, as has been demonstrated through an extensive program of accelerated corrosion tests.
  • the new material provided by this invention consists of a Cu-based core, an intermediate layer consisting of Cu-Sn alloys of variable composition and an external surface formed, essentially, by an alloy based on Sn.
  • This material can be obtained by thermal diffusion, under controlled conditions, of a coating with Sn-based alloys deposited on the Cu-based core.
  • this new material involves a series of changes in the manufacturing process of the radiators, one of which lies in the possibility of welding the honeycomb in controlled atmosphere furnaces. Operating under these conditions and due to the favorable weldability characteristics provided by the new material, welding can be performed without the use of any type of flux, which is impossible to achieve with current technologies. This way of welding the honeycomb provides great environmental improvements since no gaseous effluents or aqueous contaminants are produced and, at the same time, significant reductions in energy consumption are obtained.
  • honeycombs built with this new The material can also be welded in an oxidizing atmosphere furnace, although in this case a non-corrosive organic flux can be used, which does not need washing, thus achieving significant advantages over current radiator manufacturing technology.
  • Figure 1 is a photograph showing perforating corrosion in a honeycomb brass arsenical tube [Cu-Zn 70/30, As 0.03%], after 92 hours of salt spray test, at a scale of 20 / one. In the photograph, the leak zone has been indicated by an arrow.
  • Figure 2 is a photograph showing perforating corrosion in a honeycomb brass arsenical tube [Cu-Zn 64/36, As 0.03%], after 120 hours of salt spray test, at a scale of 20 / one. In the photograph, the leak zone has been indicated by an arrow.
  • Figure 3 is a photograph showing intercrystalline corrosion and disinfication in a honeycomb brass arsenical tube [Cu-Zn 67/33, As 0.03%], as well as corrosion in Sn-Pb welding, after 144 hours of salt spray test, at a scale of 390/1 ( Figure 3A) and at a scale of 325/1 ( Figure 3B).
  • Figure 4 is a photograph showing corrosion by disinfication in a honeycomb tube, from brass to phosphorus [Cu-Zn 66/34 P], after 244 hours of salt spray test, at a scale of 260/1 ( Figure 4A), as well as perforating corrosion (intercrystalline and decay) in said honeycomb tube after 244 hours of salt spray test, at a scale of 260/1 ( Figure 4B).
  • Figure 5 is a photograph showing corrosion on a fin after 144 hours of salt spray test, at a scale of 260/1 ( Figure 5A), as well as at a scale of 360/1 ( Figure 5B).
  • the photograph shows the union of the honeycomb tube to the fin.
  • the honeycomb tube is formed by arsenical brass [Cu-Zn 67/33 As 0.03%] and the fin by Cu-Sn (0.1% Sn).
  • Figure 6 is a photograph showing the appearance of the honeycomb of a radiator incorporating fins made of a composite material provided by this invention, after 1,170 hours of salt spray test (0.5x [0.5X]).
  • Figure 7 is a photograph showing an enlarged detail of Figure 6 (2X).
  • Figure 8 is a photograph showing the appearance of the tube after 1,008 hours of salt spray test (5X). As can be seen, no corrosion attacks on the brass are noticed and the Sn-Pb film is preserved on the base metal.
  • Figure 9 is a photograph showing the appearance of a section of the tube after 1,008 hours of salt spray test (1,000X).
  • the Cu-Sn alloy film can be seen on the surface of the brass, but no corrosion points are observed.
  • Figure 10 is a photograph showing the appearance of a section of a fin, made of a material provided by this invention, after 1,008 hours of salt spray test (1,000X). By examination with the optical microscope, the Cu core and the Cu-Sn alloy film of approximately 1 to 2 ⁇ m can be seen over the entire surface of the fin.
  • Figure 11 is a photograph showing the appearance of the tube-fin junction after 1,008 hours of salt spray test (100X). It can be seen that there is a slight attack of Sn-Pb welding, but an appreciable meniscus is preserved.
  • Figure 12 is a photograph showing an enlarged detail of Figure 16 (200X).
  • Figure 13 is a photograph showing the appearance of a honeycomb containing fins made of a material provided by this invention and welded in a static oven, under vacuum, under pressure of N 2 and without using any type of flux.
  • the method for protection against external corrosion in copper-based heat exchangers, especially in radiators intended to cool thermal engines, more particularly, automobile radiators comprises the coating and thermal diffusion of a base alloy. of tin on a copper-based core, thereby forming a composite material that has excellent corrosion performance.
  • the perforation point corrosion mechanism produced in the honeycomb tubes (brass) manufactured according to prior art procedures is eliminated and the corrosion in the welds and fins is significantly reduced. All these corrosion processes entail a great decrease in the functional characteristics of heat exchangers and particularly in automobile radiators, since, although perforating corrosion in the honeycomb tubes renders the radiator useless, the fin and corrosion of the fins Welds cause significant losses in the thermal and mechanical characteristics of the radiator.
  • the invention provides a method for the protection of heat exchangers comprising the formation of a new composite material, suitable for the manufacture of fins for heat exchangers, consisting of a core based on Cu, an external surface consisting of an alloy based on Sn and an intermediate layer consisting of Cu-Sn alloys of variable compositions, obtained by coating and thermal diffusion, under controlled conditions, of an alloy based on Sn deposited on the core based on Cu.
  • this invention provides a method for protection against external corrosion in copper-based heat exchangers characterized in that a) a coating with an Sn-based alloy is applied on a Cu-based core; and b) the Cu-based core coated with the Sn-based alloy is subjected to a suitable heat treatment, under controlled conditions, aimed at causing the thermal diffusion of said alloy in said Cu-based core, in case said thermal diffusion has not taken place simultaneously with the application of the coating, thus forming a composite material that is constituted by a core based on Cu, an external surface consisting of an alloy based on Sn and a layer intermediate consisting of Cu-Sn alloys, of variable compositions, which guarantee total adhesion and continuity of the different layers of the composite material.
  • core based on Cu refers to a material constituted mainly and mainly by Cu which, optionally, may be weakly alloyed with one or more metals, selected from the group formed by, for example, Te, Mg, Zn , Sn, Cd, Cr, Ag, Pb, In, Be, Zr, Fe, P, Al and Ni, which, as a whole, may be present in a concentration of less than 0.2% by weight.
  • metals selected from the group formed by, for example, Te, Mg, Zn , Sn, Cd, Cr, Ag, Pb, In, Be, Zr, Fe, P, Al and Ni, which, as a whole, may be present in a concentration of less than 0.2% by weight.
  • These elements added to the Cu are intended to increase the thermal resistance of the Cu so that its mechanical properties are maintained after the thermal welding cycles of the honeycomb. At the same time, these elements allow to guarantee the values with the highest possible thermal conductivity in order to achieve the most adequate radiator performance.
  • Sn-based alloys includes pure Sn and any alloy of Sn with other metals.
  • preferred Sn-based alloys, used to prepare the composite material of this invention comprise: a) Binary Sn-Pb alloys, in any proportion, preferably, in a proportion comprised between 1% and 99% in Sn and 99% and 1% in Pb; b) Sn-Pb alloys with the addition of other elements, such as Sb, Ag, Cu, Zn, Bi, Cd, In, Ni, Pb, in the following proportions:
  • Sn 0.5 to 99%
  • Sb 0.01 to 7% Ag: 0.01 to 5%
  • Cu 0.01 to 2%
  • Zn 0.01 to 1%
  • Bi 0.01 to 2%
  • Cd 0.01 to 5%
  • Ni 0.01 to 1%
  • Pb 0.5 to 99%
  • Sn-Sb alloys in a proportion between 93% and 99.5% in Sn and 7% and 0.5% in Sb
  • Sn-Ag alloys in a proportion between 95% and 99% in Sn and 5% and 1% in Ag
  • Sn-Zn alloys in a proportion between 97% and 99% in Sn and 3% and 1% in Zn
  • Pure Sn with a minimum percentage of Sn of 99%.
  • Sn-based alloys have an anodic electrochemical potential against the Cu-based nucleus, which allows effective protection of the Cu against aggression caused in natural or artificial media containing, among other compounds, inorganic chlorides, nitrogen compounds and sulfur oxides, which significantly increases the life of the radiator fin and reduces the thickness and weight of the radiator, by achieving adequate conservation of the mechanical and thermal properties of the fins.
  • the composite material formed must have a minimum thickness of 1 miera ( ⁇ m).
  • said thickness is determined by the sum of the thickness of the intermediate layer, constituted by the alloys of Cu-Sn of variable composition, and the thickness of the external surface, constituted by the alloy based on Sn. Because the corrosion protection increases with the coating thickness, the most convenient thickness can be modulated to obtain a certain level of protection.
  • the thickness of the intermediate layer and the outermost surface should be between 1 ⁇ m and 1/5 of the total thickness of the composite material, including the thickness of the core based on Cu. In practice, it has been observed that a total thickness between 2 and 4 ⁇ m provides good results.
  • the manufacture of the composite material comprises the coating of the core based on Cu with an alloy based on Sn and the thermal diffusion of said alloy deposited on the core based on Cu.
  • the deposit or application of said Sn-based alloy on the Cu-based core can be carried out by various procedures.
  • the coating of the core can be carried out by immersion of said Cu-based core, in continuous, in a bath of a molten Sn-based alloy, the coating layer being regulated by means of an air jet, an inert gas, water or lamination. In this case, the thermal diffusion of the alloy occurs simultaneously to the core coating.
  • said coating can be made by projection of the molten Sn alloy, by wave or by cascade, on the Cu-based core.
  • the thermal diffusion of the alloy also occurs simultaneously to the coating of the core with said alloy.
  • the coating can be carried out by depositing a metal powder comprising pure Sn or the Sn-based alloy, or pastes containing a metal powder comprising pure Sn or the Sn-based alloy, onto the Cu-based core, followed by a heat treatment at a temperature equal to or greater than 300se so that the thermal diffusion of the alloy over the Cu-based core takes place.
  • the coating of the Cu-based core with the Sn-based alloy can be performed by electro-deposition of pure Sn or Sn-based alloys on the Cu-based core, followed by thermal diffusion at an equal temperature or greater than 300P-C.
  • the coating with the Sn-based alloy can be applied on a Cu-based core in the form of a band and with the appropriate thickness for the manufacture of fins for heat exchangers, or alternatively, it may have a thickness greater than that necessary for the manufacture of such fins, in which case, a lamination stage of the composite material once formed can be carried out until obtaining the thickness suitable for the manufacture of fins.
  • the Sn-based alloy can be applied on the fins constructed from uncoated Cu bands and also on a conventional honeycomb constructed with brass tubes and Cu fins.
  • the coating of the Cu-based core with the Sn-based alloy may be total or partial.
  • the partial coating can be carried out, preferably, by electrolytic deposition of pure Sn or of the Sn-based alloy, or by projection of the molten Sn-based alloy, or by depositing either a metallic powder containing Pure Sn or the Sn-based alloy, or of pastes containing a metallic powder comprising pure Sn or the Sn-based alloy, over the area of the Cu-based core to be coated, followed by thermal diffusion at a temperature equal to or greater than 300se
  • the coating can be applied either over the entire honeycomb or on its external surfaces.
  • the coating can be applied so that it only affects the outer areas of the honeycomb and not the core of the honeycomb.
  • the composite material may not be present over the entire width of the fins but may cover only the anterior and posterior surfaces of the honeycomb, at a depth of up to 1/3 of the width of the honeycomb.
  • the partial coating can be carried out on the surfaces to be covered, preferably, by electrolytic deposition of pure Sn or of the Sn-based alloy, by projection of either the molten Sn or the molten Sn-based alloy, or by depositing either a metallic powder containing pure Sn or the alloy based on Sn, or pastes containing a metallic powder comprising pure Sn or the alloy based on Sn, on the surface of the honeycomb to be covered, followed of thermal diffusion at a temperature equal to or greater than 3002C.
  • the solderability conditions of the honeycomb, provided by the composite material of the fins are much more favorable, since said composite material, thanks to its intermediate layer based on alloys Cu- Sn and its external surface based on Sn, has a very improved weldability with respect to the usual material used based on Cu.
  • This allows the use of welding flux consisting of organic acids, amines and resins, without inorganic components. Therefore, the conditions of the welding process are much smoother and the washing and drying operations of the honeycombs are also suppressed.
  • the welding of the honeycomb can be carried out in non-oxidized controlled atmosphere furnaces, whereby the welding operation is carried out without any flux, which greatly simplifies the manufacturing process of the heat exchanger since the facilities are eliminated of fluxing, washing and drying.
  • this technology also contemplates the possibility of welding the ends of the tubes to the collector plates in the same operation of welding the tubes to the fins. For this, it is enough to apply a Sn-based solder locally, without flux or including a very weak, non-corrosive organic flux, which does not cause any environmental problems.
  • alcoholic rosin solutions can be mentioned, not activated or activated with organic acids or amines, for example, rosin: isopropanol (10:90), rosin: glutaic acid: isopropanol (10: 2: 88 ) or rosin: dibutylamine hydrochloride: dimethylamine hydrochloride: isopropanol (10: 2: 4: 84).
  • a further object of this invention is a process for the manufacture of copper-based heat exchangers, especially radiators for cooling thermal motors, and more particularly automobile radiators, in which the fins are composed or totally coated. or partially, by the composite material provided by this invention, which includes a welding stage of the tubes to said fins, which can be carried out: a) in a continuous or static oven with an oxidizing atmosphere, using a non-corrosive organic welding flux that does not need washing, consisting of organic acids, amines and resins, without inorganic components; or alternatively, b) in a non-oxidizing controlled atmosphere furnace, without the incorporation of any type of flux.
  • furnaces can be either vacuum, continuous or static furnaces or inert, continuous or static furnaces, with the presence of inert gases, such as N 2 , C0 2 , and other inert gases, and absence of 0 2 and H 2 0.
  • inert gases such as N 2 , C0 2 , and other inert gases
  • Another additional object of this invention is fins for heat exchangers, especially suitable for use in the manufacture of radiators for the cooling of thermal motors, such as automobile radiators, essentially constituted by the composite material provided by this invention.
  • Said fins can be manufactured by coating and thermal diffusion of an alloy based on Sn on a Cu-based core in the form of a band and with the thickness suitable for the manufacture of the fins, or alternatively, it can have a thickness greater than that necessary for the manufacture of such fins, in which case, a lamination stage of the composite material once formed can be carried out until the thickness suitable for the manufacture of fins is obtained.
  • such fins are manufactured from a Cu-based core, in the form of a fin and of the appropriate thickness, on which a coating with an alloy based on Sn is applied over the entire surface of the fin or outer strips of said fin, by the application of preformed sheets, wires or cords of Sn alloys, or by electro-deposition of pure Sn or of the Sn-based alloy, or by projection of the alloy to molten Sn base, or by depositing well of a metallic powder containing pure Sn or an alloy based on Sn, or pastes containing a metallic powder comprising either pure Sn or an alloy based on Sn, followed by thermal diffusion at a temperature equal to or greater than 300 ° -C.
  • coating said fin consisting of a core based on Cu
  • coating said fin can be done by 'immersion in a molten bath of an alloy based on Sn, by spraying the pure Sn molten or laea Terms Sn - based, by wave or by waterfall, of the Cu-based core or of the surface strip to be coated, with thermal diffusion simultaneous to the coating.
  • Another additional object of this invention is a copper-based heat exchanger, such as a radiator intended to cool a thermal engine, more particularly a car radiator, which contains fins manufactured entirely or partially with the composite material obtained by the procedure of this invention.
  • the invention also provides a method for depositing Sn-based alloys on the honeycomb of a copper-based heat exchanger, manufactured with the technology pertaining to the state of the art, that is, formed by brass tubes and fins of copper, characterized in that said alloy is applied on the honeycomb so that it mainly covers the outer fringes of the fins, by electro-deposition, applied on the two faces of the honeycomb, either pure Sn or alloys based on Sn , or by spraying either a metallic powder containing pure Sn or an alloy based on Sn, or pastes containing a metallic powder comprising pure Sn or an alloy based on Sn, followed by thermal diffusion at an equal temperature or higher than 300SC.
  • Cu-Sn bands (0.1% Sn) 0.042 mm thick are They were continuously coated with an alloy of Sn-Pb (15% Sn + 85% Pb), in a molten bath and with a coating thickness of 2 ⁇ m / face. With the material obtained, fins for automobile radiators were manufactured and radiators including such fins were mounted. The honeycomb welding was carried out in a continuous oven, with an oxidizing atmosphere, using an organic flux ' . Thermal diffusion was achieved by coating the band with the molten Sn alloy.
  • Cu-Cd bands (0.2% Cd) 0.04 mm thick were continuously coated with a molten Sn-Pb alloy (25% Sn + 75% Pb), by immersion in a molten bath, and with a coating thickness of 4 ⁇ m / face.
  • a molten Sn-Pb alloy (25% Sn + 75% Pb)
  • fins for automobile radiators were manufactured and radiators including such fins were mounted.
  • the honeycomb welding was carried out in a continuous oven, with an oxidizing atmosphere, using an organic flux. Thermal diffusion was achieved by coating the band in the molten Sn alloy.
  • Figures 8 to 12 by comparison with Figures 1 to 5 corresponding to radiators constructed with the technology belonging to the prior art, subjected to a salt spray test in short duration tests (less than 244 hours) and in those that have produced very intense corrosion, show the greater resistance to external corrosion of the copper radiators treated with the protective process of the present invention.
  • EXAMPLE 3 Fins were made from a Cu band coated by an Sn-Pb alloy (60/40), by aqueous phase electrolysis. After performing the electrodeposition, a thermal diffusion treatment was carried out at 300SC for 30 seconds. Subsequently, radiators were built that included the fins described above. The honeycomb welding was performed in a static vacuum oven. The radiators were subjected to a continuous test of acetic salt mist, containing CuCl 2 - CASS TEST - according to ASTM B 368. When the radiator was examined, no major corrosion was observed in the tubes, in the fins or in the meniscus of welding. EXAMPLE 4
  • a radiator honeycomb was constructed containing fins manufactured using a composite material provided by this invention provided with a film of Sn-Cu and Sn alloys of 3 ⁇ m total thickness. The welding was carried out in a static oven, under vacuum and under a nitrogen pressure of 40 mbar. No type of flux was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

El procedimiento comprende el recubrimiento y difusión térmica de una aleación a base de Sn sobre un núcleo a base de Cu, con lo que se forma un material composite constituído por un núcleo a base de Cu, una superficie externa constituída por una aleación a base de Sn y una capa intermedia constituída por aleaciones Cu-Sn de composiciones variables. Dicho material composite formado es adecuado para la fabricación de aletas para intercambiadores de calor, particularmente radiadores para automóviles, cuyos panales pueden soldarse en un horno con atmósfera oxidante o no oxidante.

Description

PROCEDIMIENTO PARA LA PROTECCIÓN FRENTE A LA CORROSIÓN EXTERNA EN INTERCAMBIADORES DE CALOR A BASE DE COBRE
CAMPO DE LA INVENCIÓN La invención se refiere a un procedimiento para proteger intercambiadores de calor a base de cobre frente a la corrosión externa que comprende el recubrimiento y difusión térmica de una aleación a base de estaño sobre un núcleo a base de cobre, con lo que se forma un material composite que presenta un comportamiento excelente frente a la corrosión. La invención también se refiere a dicho material composite, a aletas para intercambiadores de calor constituidas por dicho material y a intercambiadores de calor que incorporan tales aletas, así como a su procedimiento de fabricación.
ANTECEDENTES DE LA INVENCIÓN
Los intercambiadores de calor, en particular, los radiadores destinados a la refrigeración de motores en automóviles y maquinaria agrícola e industrial (motores térmicos) constan de un núcleo central, denominado panal, formado por un conjunto de tubos para la circulación del líquido refrigerante, y de unas aletas, en contacto con los tubos para efectuar el intercambio térmico. El radiador se completa mediante depósitos y placas colectoras que cierran el circuito del líquido refrigerante. Adicionalmente se incluyen unos soportes laterales de acero al objeto de aumentar su rigidez.
En el caso de los radiadores de cobre, los tubos del panal son de latón, las aletas son de cobre (Cu) y la unión tubo-aleta se realiza mediante soldaduras a base de estaño (Sn) . La aportación de la soldadura a base de Sn se realiza a partir del tubo de latón, que ha sido recubierto previamente de soldadura, principalmente por inmersión en un baño de soldadura fundida. La soldadura del panal se puede realizar en hornos continuos o estáticos con ambiente oxidante. Normalmente, la soldadura del panal se realiza en dos etapas, una primera en horno, en la que se sueldan los tubos a las aletas, y una segunda en la que se sueldan los extremos de los tubos a las placas colectoras mediante sistemas tales como capilaridad (inmersión en baños de Sn fundido) , proyección de Sn, etc. Al objeto de conseguir una correcta soldadura entre los tubos y las aletas se debe aplicar un "flux" de soldadura (o decapante de los metales a unir y protector de la propia soldadura durante la operación) , bien por inmersión del panal o bien por proyección del flux sobre el panal. Los flux que se utilizan habitualmente son los de naturaleza mineral que contienen haluros inorgánicos, tales como cloruros de zinc y amonio, ácido clorhídrico, etc. , aunque también se utilizan otros flux de naturaleza mixta, con componentes orgánicos e inorgánicos, tales como clorhidratos y bro hidratos de aminas, ácido bromhídrico, etc.
En general, estos productos son agresivos para los materiales del radiador y sus residuos provocan corrosiones notables, por lo que es necesario realizar operaciones de lavado y secado de los radiadores, lo que conlleva unos consumos de energía importantes y la producción de aguas residuales acidas y con importantes concentraciones de iones metálicos, por lo que resulta necesario efectuar un tratamiento adecuado de las mismas antes de su vertido o re¬ utilización. Adicionalmente, se desprenden vapores que contienen, entre otros compuestos, ácido clorhídrico, bromhídrico, compuestos amoniacales y aminados, que también son agresivos para el medio ambiente, por lo que se deben realizar operaciones adicionales de lavado de los vapores generados, lo que encarece y complica el proceso. Otro problema adicional que plantean los procedimientos actuales de fabricación de radiadores se refiere a la aplicación de una protección anti-corrosión, ya que, actualmente, esta operación se efectúa, una vez terminada la fabricación del radiador, mediante la aplicación de una pintura anti-corrosión por proyección, con lo que tan sólo se cubren con pintura las zonas externas del radiador pero no se cubre el núcleo del panal. Normalmente, la pintura penetra tan sólo, alrededor de 2 mm en cada cara del panal.
En general, los radiadores de cobre presentan unas prestaciones excelentes en lo relativo a transferencia térmica, resistencia mecánica y corrosión interna. Sin embargo, la resistencia a la corrosión externa es problemática.
En los últimos años, las exigencias de protección frente a la corrosión han aumentado sensiblemente, no sólo en el sector del automóvil debido, entre otras causas, al creciente uso de sales halogenadas, tales como NaCl y MgCl2, para el deshielo de las carreteras, sino además en otros sectores donde se necesita garantizar una protección eficaz frente a otros ambientes agresivos, marinos e industriales, fundamentalmente. Estos medios ocasionan corrosiones importantes en tubos, aletas y en soldaduras, con la consiguiente pérdida en la resistencia mecánica y en las características térmicas de los radiadores.
Por tanto, sigue existiendo una serie de problemas asociados no sólo con los procedimientos actuales de fabricación de radiadores de cobre, tales como la necesidad de emplear un flux de soldadura que obliga a realizar operaciones de lavado y secado de los radiadores que, a su vez, generan un problema medioambiental debido a los efluentes y vapores producidos, así como un consumo energético importante, lo que complica y encarece los procedimientos actuales de fabricación de radiadores, sino además con los propios radiadores de cobre fabricados con la tecnología existente ya que éstos siguen siendo poco resistentes a la corrosión externa. La presente invención proporciona una solución a los problemas planteados.
COMPENDIO DE LA INVENCIÓN
Mediante pruebas realizadas en laboratorio analizando los problemas de corrosión externa en radiadores de cobre, se han identificado los mecanismos principales que producen las corrosiones en tubos y aletas, lo que ha permitido crear un nuevo material, en concreto, un material composite, adecuado para fabricar aletas o intercaladores, que presenta un comportamiento excelente frente a la corrosión, conservando sus propiedades térmicas y mecánicas, lo que permite, además, reducir los espesores tradicionales de estas piezas. Al mismo tiempo, el material composite proporciona una protección muy eficaz frente a las corrosiones perforantes que se producen en los tubos del panal del radiador como consecuencia de los mecanismos de corrosión que se dan en los radiadores de cobre fabricados con la tecnología actual. Todo esto garantiza la conservación de las características funcionales de un radiador, fabricado de acuerdo con las enseñanzas de la presente invención, durante el servicio, a largo plazo, tal como se ha podido demostrar a través de un extenso programa de ensayos de corrosión acelerada.
El nuevo material proporcionado por esta invención consta de un núcleo a base de Cu, de una capa intermedia constituida por aleaciones Cu-Sn de composición variable y de una superficie externa formada, fundamentalmente, por una aleación a base de Sn. Este material se puede obtener mediante difusión térmica, en condiciones controladas, de un recubrimiento con aleaciones a base de Sn depositadas sobre el núcleo a base de Cu.
El empleo de este nuevo material conlleva una serie de cambios en el procedimiento de fabricación de los radiadores, uno de los cuales radica en la posibilidad de realizar la soldadura del panal en hornos de atmósfera controlada. Operando bajo esas condiciones y debido a las favorables características de soldabilidad aportadas por el nuevo material, la soldadura se puede realizar sin el empleo de ningún tipo de flux, lo que resulta imposible de conseguir con las tecnologías actuales. Esta forma de realizar la soldadura del panal proporciona grandes mejoras medioambientales ya que no se producen efluentes gaseosos o acuosos contaminantes y, al mismo tiempo, se obtienen importantes reducciones en el consumo energético.
Alternativamente, los panales construidos con este nuevo material también se pueden soldar en un horno de atmósfera oxidante, aunque en este caso se puede utilizar un flux orgánico no corrosivo, que no necesita lavado, con lo que se consiguen notables ventajas frente a la tecnología actual de fabricación de radiadores.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 es una fotografía que muestra la corrosión perforante en un tubo del panal, de latón arsenical [Cu-Zn 70/30, As 0,03%], tras 92 horas de ensayo de niebla salina, a una escala de 20/1. En la fotografía se ha señalado, mediante una flecha, la zona de fuga.
La Figura 2 es una fotografía que muestra la corrosión perforante en un tubo del panal, de latón arsenical [Cu-Zn 64/36, As 0,03%], tras 120 horas de ensayo de niebla salina, a una escala de 20/1. En la fotografía se ha señalado, mediante una flecha, la zona de fuga.
La Figura 3 es una fotografía que muestra la corrosión intercristalina y descinficación en un tubo del panal, de latón arsenical [Cu-Zn 67/33, As 0,03%], así como la corrosión en la soldadura Sn-Pb, tras 144 horas de ensayo de niebla salina, a una escala de 390/1 (Figura 3A) y a una escala de 325/1 (Figura 3B) .
La Figura 4 es una fotografía que muestra la corrosión por descinficación en un tubo del panal, de latón al fósforo [Cu-Zn 66/34 P] , tras 244 horas de ensayo de niebla salina, a una escala de 260/1 (Figura 4A) , así como la corrosión perforante (intercristalina y descinficación) en dicho tubo del panal tras 244 horas de ensayo de niebla salina, a una escala de 260/1 (Figura 4B) .
La Figura 5 es una fotografía que muestra la corrosión en una aleta tras 144 horas de ensayo de niebla salina, a una escala de 260/1 (Figura 5A) , así como a una escala de 360/1 (Figura 5B) . En la fotografía se aprecia la unión del tubo del panal a la aleta. El tubo del panal está formado por latón arsenical [Cu-Zn 67/33 As 0,03%] y la aleta por Cu-Sn (0,1% de Sn) . La Figura 6 es una fotografía que muestra el aspecto del panal de un radiador que incorpora aletas fabricadas con un material composite proporcionado por esta invención, después de 1.170 horas de ensayo de niebla salina (0,5 aumentos [0,5X]).
La Figura 7 es una fotografía que muestra un detalle ampliado de la Figura 6 (2X) .
La Figura 8 es una fotografía que muestra el aspecto del tubo después de 1.008 horas de ensayo de niebla salina (5X) . Como puede apreciarse, no se advierten ataques por corrosión en el latón y se conserva la película de Sn-Pb sobre el metal base.
La Figura 9 es una fotografía que muestra el aspecto de una sección del tubo después de 1.008 horas de ensayo de niebla salina (1.000X). Puede apreciarse la película de aleación Cu-Sn en la superficie del latón, pero no se observan puntos de corrosión.
La Figura 10 es una fotografía que muestra el aspecto de una sección de una aleta, fabricada con un material proporcionado por esta invención, después de 1.008 horas de ensayo de niebla salina (1.000X). Mediante examen al microscopio óptico puede apreciarse el núcleo de Cu y la película de aleaciones Cu-Sn de 1 a 2 μm aproximadamente sobre toda la superficie de la aleta. La Figura 11 es una fotografía que muestra el aspecto de la unión tubo-aleta después de 1.008 horas de ensayo de niebla salina (100X) . Puede apreciarse que hay un ligero ataque de la soldadura Sn-Pb, pero se conserva un menisco apreciable.
La Figura 12 es una fotografía que muestra un detalle ampliado de la Figura 16 (200X) .
La Figura 13 es una fotografía que muestra el aspecto de un panal que contiene aletas fabricadas con un material proporcionado por esta invención y soldado en un horno estático, en vacío, bajo presión de N2 y sin utilizar ningún tipo de flux. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Identificación de los mecanismos de corrosión externa
Al objeto de identificar los posibles mecanismos de corrosión externa que afectan a los radiadores de cobre se ha estudiado la corrosión perforante en los tubos del panal, la corrosión de las soldaduras y la corrosión de las aletas, así como los aspectos electroquímicos implicados.
Para estudiar la corrosión perforante en los tubos del panal se realizaron ensayos en radiadores de cobre que habían experimentado fugas por los tubos del panal tras la realización de ensayos de corrosión acelerada, lo que ha permitido establecer los mecanismos del desarrollo de este tipo de corrosiones.
En la unión tubo-soldadura-aleta la acción agresiva de los productos químicos utilizados en los ensayos de corrosión acelerada (fundamentalmente cloruro sódico en el ensayo de niebla salina continua según la norma NFX 41002) desarrolla un proceso de corrosión galvánica sustentado en los distintos potenciales electroquímicos de los metales que se unen mediante soldaduras de Sn, que produce picaduras de corrosión en los tubos de latón y termina por afectar a todo el espesor del tubo (Figuras 1, 2, 3A, 3B, 4A y 4B) . Estas corrosiones perforantes se producen a partir de 100 horas de ensayo de niebla salina, lo cual es claramente insuficiente para satisfacer las exigencias, en cuanto a protección exterior, impuestas por los fabricantes de automóviles y obliga a realizar planes de desarrollo técnico para solventar este importante problema que presentan los radiadores de cobre.
Las soldaduras también experimentan corrosiones galvánicas tras los ensayos acelerados de corrosión externa
(Figura 3A) . En la unión tubo-soldadura-aleta, resultan atacados, preferentemente, la soldadura de Sn y el tubo de latón, por su carácter anódico frente a las aletas de cobre.
Finalmente, fuera de la zona de unión tubo-aleta se producen también corrosiones en las aletas de cobre, por la acción del cloruro sódico depositado en un ensayo de niebla salina (Figuras 5A y 5B) . La situación, en cuanto a los potenciales redox de los componentes del panal, puede resumirse de la siguiente manera: Extremo anódico:
Sn-Pb (capa residual de la soldadura) Cu-Zn (tubos del panal)
Cu-Sn (capa de difusión en el tubo) Extremo catódico:
Cu (aletas) Las diferencias del potencial entre las soldaduras Sn-Pb y Cu (aletas) llegan a alcanzar valores de 300 mV por lo que se forman pilas galvánicas de fuerte intensidad que justifican las corrosiones detectadas en los ensayos.
Descripción de la invención El procedimiento para la protección frente a la corrosión externa en intercambiadores de calor a base de cobre, especialmente en radiadores destinados a refrigerar motores térmicos, más particularmente, radiadores de automóviles, comprende el recubrimiento y difusión térmica de una aleación a base de estaño sobre un núcleo a base de cobre, con lo que se forma un material composite que tiene un comportamiento excelente frente a la corrosión.
Con el procedimiento de esta invención se elimina el mecanismo de corrosión por puntos perforantes que se producen en los tubos del panal (latón) fabricados según procedimientos del estado de la técnica y se disminuyen de forma notable las corrosiones en las soldaduras y en las aletas. Todos estos procesos de corrosión conllevan una gran disminución en las características funcionales de los intercambiadores de calor y particularmente en los radiadores de automóviles, ya que, aunque la corrosión perforante en los tubos del panal inutiliza el radiador, las corrosiones en las aletas y en las soldaduras provocan pérdidas notables en las características térmicas y mecánicas del radiador. Para resolver el problema planteado, la invención proporciona un procedimiento para la protección de intercambiadores de calor que comprende la formación de un nuevo material composite, adecuado para la fabricación de aletas para intercambiadores de calor, constituido por un núcleo a base de Cu, una superficie externa constituida por una aleación a base de Sn y por una capa intermedia constituida por aleaciones Cu-Sn de composiciones variables, obtenidas por recubrimiento y difusión térmica, en condiciones controladas, de una aleación a base de Sn depositada sobre el núcleo a base de Cu.
Por consiguiente, esta invención proporciona un procedimiento para la protección frente a la corrosión externa en intercambiadores de calor a base de cobre caracterizado porque a) se aplica un recubrimiento con una aleación a base de Sn sobre un núcleo a base de Cu; y b) el núcleo a base de Cu recubierto con la aleación a base de Sn se somete a un tratamiento térmico adecuado, bajo condiciones controladas, dirigido a provocar la difusión térmica de dicha aleación en dicho núcleo a base de Cu, en caso de que dicha difusión térmica no haya tenido lugar de forma simultánea a la aplicación del recubrimiento, con lo que se forma un material composite que está constituido por un núcleo a base de Cu, por una superficie externa constituida por una aleación a base de Sn y por una capa intermedia constituida por aleaciones Cu-Sn, de composiciones variables, que garantizan una adherencia total y la continuidad de las distintas capas del material composite.
El término "núcleo a base de Cu" se refiere a un material constituido mayoritaria y fundamentalmente por Cu que, opcionalmente, puede estar débilmente aleado con uno o más metales, seleccionados del grupo formado por, a modo de ejemplo, Te, Mg, Zn, Sn, Cd, Cr, Ag, Pb, In, Be, Zr, Fe, P, Al y Ni, que, en su conjunto, pueden estar presentes en una concentración inferior al 0,2% en peso. Estos elementos añadidos al Cu tienen por objeto aumentar la resistencia térmica del Cu para que sus propiedades mecánicas se mantengan después de los ciclos térmicos de soldadura del panal. Al mismo tiempo, estos elementos permiten garantizar los valores de conductividad térmica más altos posibles al objeto de conseguir el rendimiento más adecuado del radiador. El núcleo a base de Cu, susceptible de ser recubierto por la aleación a base de Sn, puede estar en forma de bandas de Cu, aletas de Cu para intercambiadores de calor y panales para intercambiadores de calor formados por tubos de latón y aletas de Cu.
El término "aleaciones a base de Sn" incluye Sn puro y cualquier aleación de Sn con otros metales. En particular, las aleaciones a base de Sn preferidas, utilizadas para preparar el material composite de esta invención, comprenden: a) Aleaciones binarias Sn-Pb, en cualquier proporción, preferentemente, en una proporción comprendida entre el 1% y el 99% en Sn y el 99% y el 1% en Pb; b) Aleaciones Sn-Pb con adición de otros elementos, tales como Sb, Ag, Cu, Zn, Bi, Cd, In, Ni, Pb, en las proporciones siguientes:
Sn: del 0,5 al 99% Sb: del 0,01 al 7% Ag: del 0,01 al 5% Cu: del 0,01 al 2% Zn: del 0,01 al 1% Bi: del 0,01 al 2% Cd: del 0,01 al 5% In: del 0,01 al 5% Ni: del 0,01 al 1% Pb: del 0,5 al 99% c) Aleaciones Sn-Sb, en una proporción comprendida entre el 93% y el 99,5% en Sn y el 7% y el 0,5% en Sb; d) Aleaciones Sn-Ag, en una proporción comprendida entre el 95% y el 99% en Sn y el 5% y el 1% en Ag; e) Aleaciones Sn-Zn, en una proporción comprendida entre el 97% y el 99% en Sn y el 3% y el 1% en Zn; y f) Sn puro, con un porcentaje mínimo de Sn del 99%. Estas aleaciones a base de Sn presentan un potencial electroquímico anódico frente al núcleo a base de Cu, lo que permite una protección eficaz del Cu frente a la agresión causada en medios naturales o artificiales que contienen, entre otros compuestos, cloruros inorgánicos, compuestos nitrogenados y óxidos de azufre, con lo que se incrementa notablemente la vida de la aleta del radiador y permite reducir espesores y pesos del radiador, al lograr una conservación adecuada de las propiedades mecánicas y térmicas de las aletas.
Para obtener una protección efectiva frente a la corrosión externa, el material composite formado debe tener un espesor mínimo de 1 miera (μm) . En esta descripción, se considera que dicho espesor viene determinado por la suma del espesor de la capa intermedia, constituida por las aleaciones de Cu-Sn de composición variable, y el espesor de la superficie externa, constituida por la aleación a base de Sn. Debido a que la protección frente a la corrosión se incrementa con el espesor de recubrimiento, para obtener un determinado nivel de protección se puede modular el espesor más conveniente. En general, el espesor de la capa intermedia y de la superficie más externa debe estar comprendido entre 1 μm y 1/5 del espesor total del material composite, incluyendo el espesor del núcleo a base de Cu. En la práctica, se ha observado que un espesor total comprendido entre 2 y 4 μm proporciona buenos resultados.
La fabricación del material composite comprende el recubrimiento del núcleo a base de Cu con una aleación a base de Sn y la difusión térmica de dicha aleación depositada sobre el núcleo a base de Cu.
El depósito o aplicación de dicha aleación a base de Sn sobre el núcleo a base de Cu puede realizarse por diversos procedimientos. En una primera alternativa, el recubrimiento del núcleo se puede realizarse por inmersión de dicho núcleo a base de Cu, en continuo, en un baño de una aleación a base de Sn fundida, regulándose la capa de recubrimiento por medio de un chorro de aire, un gas inerte, agua o laminación. En este caso, la difusión térmica de la aleación se produce simultáneamente al recubrimiento del núcleo.
En otra alternativa, dicho recubrimiento se puede realizar por proyección de la aleación a base de Sn fundida, por ola o por cascada, sobre el núcleo a base de Cu. En este caso, la difusión térmica de la aleación se produce también de forma simultánea al recubrimiento del núcleo con dicha aleación.
En otro procedimiento alternativo, el recubrimiento se puede realizar por depositación de un polvo metálico que comprende Sn puro o la aleación a base de Sn, o de pastas que contienen un polvo metálico que comprende Sn puro o la aleación a base de Sn, sobre el núcleo a base de Cu, seguido de un tratamiento térmico a una temperatura igual o superior a 300se para que tenga lugar la difusión térmica de la aleación sobre el núcleo a base de Cu. Adicionalmente, el recubrimiento del núcleo a base de Cu con la aleación a base de Sn se puede realizar por electro- depositación de Sn puro o aleaciones a base de Sn sobre el núcleo a base de Cu, seguido de difusión térmica a una temperatura igual o superior a 300P-C. El recubrimiento con la aleación a base de Sn se puede aplicar sobre un núcleo a base de Cu en forma de banda y con el espesor adecuado para la fabricación de aletas para intercambiadores de calor, o alternativamente, puede tener un espesor superior al necesario para la fabricación de tales aletas, en cuyo caso, se puede efectuar una etapa de laminación del material composite una vez formado hasta obtener el espesor adecuado para la fabricación de aletas.
Adicionalmente, la aleación a base de Sn puede aplicarse sobre las aletas construidas a partir de unas bandas de Cu sin recubrir y también sobre un panal convencional construido con tubos de latón y aletas de Cu.
El recubrimiento del núcleo a base de Cu con la aleación a base de Sn puede ser total o parcial. En este último caso, el recubrimiento parcial puede efectuarse, preferentemente, por depositación electrolítica de Sn puro o de la aleación a base de Sn, o por proyección de la aleación a base de Sn fundida, o por depositación bien de un polvo metálico que contiene Sn puro o la aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o la aleación a base de Sn, sobre la zona del núcleo a base de Cu a recubrir, seguido de difusión térmica a una temperatura igual o superior a 300se. Cuando la aleación a base de Sn se aplica sobre el panal, el recubrimiento puede aplicarse bien sobre todo el panal o bien sobre sus superficies externas. Debido a que la corrosión es más importante en las superficies externas del panal, el recubrimiento puede aplicarse de forma que sólo afecte a las zonas externas del panal y no al núcleo central del mismo. En una realización particular de esta invención, el material composite puede no estar presente en todo el ancho de las aletas sino que puede cubrir tan sólo las superficies anterior y posterior del panal, en una profundidad de hasta 1/3 del ancho del panal. En este caso, el recubrimiento parcial se puede efectuar sobre las superficies a cubrir, preferentemente, por depositación electrolítica de Sn puro o de la aleación a base de Sn, por proyección bien del Sn fundido o bien de la aleación a base de Sn fundida, o por depositación bien de un polvo metálico que contiene Sn puro o la aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o la aleación a base de Sn, sobre la superficie del panal a cubrir, seguido de difusión térmica a una temperatura igual o superior a 3002C.
Además de la protección frente a la corrosión de las propias aletas, en el conjunto del panal se consigue un gran incremento de su resistencia a la corrosión. Con el nuevo material se consigue un equilibrio en los potenciales electroquímicos de los metales que constituyen el panal, con lo que se evita el mecanismo galvánico que produce los puntos de corrosión perforantes en los tubos y un rápido deterioro de los meniscos de soldadura.
Mediante el empleo del procedimiento proporcionado por esta invención se evita el mecanismo que afecta, a corto plazo, a la funcionalidad del radiador, y, en su lugar, se produce un ataque lento de las aleaciones de Sn que presentan una naturaleza anódica frente a los materiales constituyentes de los tubos y aletas. Los resultados obtenidos al efectuar ensayos comparativos de corrosión acelerada [Niebla Salina Continua, Norma NFX 41002] entre radiadores de Cu convencionales y radiadores de Cu a los que se les ha aplicado el tratamiento de protección propuesto por esta invención o que incorporan aletas fabricadas con dicho material composite, ponen de manifiesto que las corrosiones perforantes se producen en un periodo de tiempo unas 10 veces mayor en los radiadores de Cu tratados con el procedimiento de la invención que en los radiadores de Cu convencionales, es decir, sin recubrimiento (véanse Ejemplos 1 y 2) .
Asimismo, resulta muy interesante observar cómo la resistencia mecánica y la eficacia térmica del radiador tratado con el procedimiento de protección propuesto por esta invención, se conserva después de los ensayos de corrosión acelerada, lo que indica el escaso ataque producido sobre los tubos, aletas y meniscos de soldadura. Ensayos realizados han puesto de manifiesto que, después de 1.000 horas de ensayo de niebla salina, la eficacia térmica de los radiadores tratados se reduce, tan sólo, un 10%.
Todo esto garantiza la funcionalidad del radiador tratado con este procedimiento de protección, en servicio, en condiciones ambientales agresivas, durante largo plazo. Respecto a la fabricación de intercambiadores de calor que incorporan piezas fabricadas con el material composite proporcionado por esta invención, y en concreto, en la operación de soldadura del panal, dicho material composite permite utilizar tanto un horno de atmósfera oxidante como un horno de atmósfera controlada no oxidante.
Cuando dicha soldadura se efectúa en un horno de atmósfera oxidante, las condiciones de soldabilidad del panal, aportadas por el material composite de las aletas, son mucho más favorables, ya que dicho material composite, merced a su capa intermedia a base de aleaciones Cu-Sn y a su superficie externa a base de Sn, presenta una soldabilidad muy mejorada respecto al material utilizado habitual ente a base de Cu. Esto permite la utilización de flux de soldadura constituidos por ácidos orgánicos, aminas y resinas, sin componentes inorgánicos. Por tanto, las condiciones del proceso de soldadura son mucho más suaves y se suprimen, además, las operaciones de lavado y secado de los panales. Adicionalmente, la soldadura del panal se puede efectuar en hornos de atmósfera controlada no oxidante, con lo que la operación de soldadura se realiza sin ningún tipo de flux, lo que simplifica enormemente el proceso de fabricación del intercambiador de calor ya que se eliminan las instalaciones de fluxado, lavado y secado. Con el empleo de esta tecnología se obtienen importantes ahorros energéticos y se eliminan efluentes gaseosos y acuosos, por lo que presenta un impacto ambiental muy favorable. Asimismo, esta tecnología también contempla la posibilidad de efectuar la soldadura de los extremos de los tubos a las placas colectoras en la misma operación de soldadura de los tubos a las aletas. Para ello, basta con aplicar localmente una soldadura a base de Sn, sin flux o incluyendo un flux orgánico muy débil, no corrosivo, que no produce ningún problema ambiental. Esto es posible debido a las condiciones favorables de la atmósfera controlada no oxidante del horno. Entre los flux orgánicos no corrosivos se pueden citar las disoluciones alcohólicas de colofonia, sin activar o activada con ácidos orgánicos o aminas, por ejemplo, colofonia : isopropanol (10:90) , colofonia : ácido glutá ico:isopropanol (10:2:88) o colofonia:clorhidrato de dibutilamina:clorhidrato de dimetilamina:isopropanol (10:2:4:84) . Con todo esto, frente a los procedimientos actuales de fabricación de intercambiadores de calor que requieren la realización de la soldadura del panal en dos etapas, se logra una gran simplificación en la fabricación y una reducción de costos energéticos, así como una muy importante mejora en la productividad.
Por consiguiente, un objeto adicional de esta invención, lo constituye un procedimiento para la fabricación de intercambiadores de calor a base de cobre, especialmente radiadores para refrigerar motores térmicos, y más particularmente radiadores para automóviles, en los que las aletas están compuestas o recubiertas total o parcialmente, por el material composite proporcionado por esta invención, que incluye una etapa de soldadura de los tubos a dichas aletas, que puede efectuarse: a) en un horno continuo o estático de atmósfera oxidante, mediante el empleo de un flux de soldadura orgánico no corrosivo que no necesita lavado, constituido por ácidos orgánicos, aminas y resinas, sin componentes inorgánicos; o alternativamente, b) en un horno de atmósfera controlada no oxidante, sin la incorporación de ningún tipo de flux. En este caso, tales hornos pueden ser bien hornos de vacío, continuos o estáticos o bien hornos de atmósfera inerte, continuos o estáticos, con presencia de gases inertes, tales como N2, C02, y otros gases inertes, y ausencia de 02 y H20.
Otro objeto adicional de esta invención lo constituyen aletas para intercambiadores de calor, especialmente adecuadas para su empleo en la fabricación de radiadores para la refrigeración de motores térmicos, tales como radiadores para automóviles, esencialmente constituidas por el material composite proporcionado por esta invención. Dichas aletas pueden fabricarse mediante recubrimiento y difusión térmica de una aleación a base de Sn sobre un núcleo a base de Cu en forma de banda y con el espesor adecuado para la fabricación de las aletas, o alternativamente, puede tener un espesor superior al necesario para la fabricación de tales aletas, en cuyo caso, se puede efectuar una etapa de laminación del material composite una vez formado hasta obtener el espesor adecuado para la fabricación de aletas.
En una realización particular, tales aletas se fabrican a partir de un núcleo a base de Cu, en forma de aleta y con el espesor adecuado, sobre el que se aplica un recubrimiento con una aleación a base de Sn sobre la totalidad de la superficie de la aleta o sobre franjas exteriores de dicha aleta, mediante la aplicación de láminas, hilos o cordones prefor ados de aleaciones de Sn, o mediante electro- depositación de Sn puro o de la aleación a base de Sn, o mediante proyección de la aleación a base de Sn fundida, o por depositación bien de un polvo metálico que contiene Sn puro o una aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende bien Sn puro o bien una aleación a base de Sn, seguido de difusión térmica a una temperatura igual o superior a 300°-C. Alternativamente, el recubrimiento de dicha aleta, constituida por un núcleo a base de Cu, se puede realizar mediante' inmersión en un baño fundido de una aleación a base de Sn, por proyección del Sn puro fundido o de la laeación a base de Sn, por ola o por cascada, del núcleo a base de Cu o de la franja superficial a recubrir, con difusión térmica simultánea al recubrimiento.
Otro objeto adicional de esta invención lo constituye un intercambiador de calor a base de cobre, tal como un radiador destinado a refrigerar un motor térmico, más particularmente un radiador para automóviles, que contiene unas aletas fabricadas total o parcialmente con el material composite obtenido por el procedimiento de esta invención.
Finalmente, la invención también proporciona un procedimiento para depositar aleaciones a base de Sn sobre el panal de un intercambiador de calor a base de cobre, fabricado con la tecnología perteneciente al estado de la técnica, es decir, formado por tubos de latón y aletas de cobre, que se caracteriza porque se aplica dicha aleación sobre el panal de forma que cubra principalmente las franjas externas de las aletas, por electro-depositación, aplicada sobre las dos caras del panal, bien de Sn puro o bien de aleaciones a base de Sn, o por proyección bien de un polvo metálico que contiene Sn puro o una aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o una aleación a base de Sn, seguido de difusión térmica a una temperatura igual o superior a 300SC.
Los siguientes ejemplos sirven para ilustrar la invención, y no deben ser considerados como limitativos del alcance de la misma.
EJEMPLO 1
Bandas de Cu-Sn (0,1% Sn) de 0,042 mm de espesor se recubrieron en continuo con una aleación de Sn-Pb (15% Sn + 85% Pb) , en un baño fundido y con un espesor de recubrimiento de 2 μm/cara. Con el material obtenido se fabricaron aletas para radiadores de automóviles y se montaron radiadores incluyendo tales aletas. La soldadura del panal se realizó en un horno continuo, de atmósfera oxidante, utilizando un flux orgánico'. La difusión térmica se consiguió por el recubrimiento de la banda con la aleación de Sn fundida.
Se realizó un ensayo continuo de niebla salina, según la Norma NFX 41002, con un 5% de NaCl a 35SC. Tras 1.170 horas, el radiador no presentaba ningún tipo de corrosión perforante, ni en los tubos ni en las aletas, observándos tan sólo un ligero ataque superficial en el recubrimiento de las aletas (Figuras 6 y 7) , mientras que en los radiadores de cobre fabricados con la tecnología actual, es decir, sin el tratamiento protector propuesto por esta invención, al realizar el mismo ensayo de niebla salina, se observaron corrosiones perforantes en tubos y aletas entre las 100 y 200 horas de duración del ensayo. EJEMPLO 2
Bandas de Cu-Cd (0,2% Cd) de 0,04 mm de espesor se recubrieron, en continuo, con una aleación de Sn-Pb (25% Sn + 75% Pb) fundida, por inmersión en un baño fundido, y con un espesor de recubrimiento de 4 μm/cara. Con el material obtenido se fabricaron aletas para radiadores de automóviles y se montaron radiadores incluyendo tales aletas. La soldadura del panal se realizó en un horno continuo, de atmósfera oxidante, utilizando un flux orgánico. La difusión térmica se consiguió por el recubrimiento de la banda en la aleación de Sn fundida.
Se realizó un ensayo continuo de niebla salina [Norma NFX 41002], con un 5% de NaCl a 352C, durante 1.008 horas. Transcurrido ese tiempo tan sólo se observó un ligero ataque del recubrimiento de las aletas. El radiador conservaba perfectamente su resistencia mecánica y no se produjo ningún punto de corrosión perforante ni en la aleta ni en los tubos. Sólo resultaron débilmente atacados los meniscos de la soldadura a base de Sn (Figuras 8, 9, 10, 11 y 12) .
Las Figuras 8 a 12, por comparación con las Figuras 1 a 5 que corresponden a radiadores construidos con la tecnología perteneciente al estado de la técnica anterior, sometidos a un ensayo de niebla salina en pruebas de corta duración (inferior a 244 horas) y en los que se han producido corrosiones muy intensas, ponen de manifiesto la mayor resistencia a la corrosión externa de los radiadores de cobre tratados con el procedimiento protector de la presente invención.
EJEMPLO 3 Se fabricaron aletas a partir de una banda de Cu recubierta mediante una aleación Sn-Pb (60/40) , por electrólisis en fase acuosa. Después de efectuar la electrodepositación, se realizó un tratamiento de difusión térmica a 300SC durante 30 segundos. Posteriormente, se construyeron radiadores que incluían las aletas arriba descritas. La soldadura del panal se realizó en un horno de vacío estático. Los radiadores se sometieron a un ensayo continuo de niebla salina acética, conteniendo CuCl2 - CASS TEST - según la Norma ASTM B 368. Examinado el radiador, no se observaron corrosiones importantes ni en los tubos, ni en las aletas ni en los meniscos de soldadura. EJEMPLO 4
Se fabricó un panal de radiador que contenía aletas fabricadas utilizando un material composite proporcionado por esta invención provisto de una película de aleaciones de Sn-Cu y Sn de 3 μm de espesor total. La soldadura se realizó en un horno estático, en vacío y bajo una presión de nitrógeno de 40 mbares. No se utilizó ningún tipo de flux.
Al examinar la soldadura del panal se observó que dicho panal estaba perfectamente soldado y tenía un aspecto limpio, brillante y totalmente exento de óxidos (Figura 13) .

Claims

REIVINDICACIONES
1. Un procedimiento para la protección frente a la corrosión externa en intercambiadores de calor a base de cobre que comprende el recubrimiento y difusión térmica de una aleación a base de Sn sobre un núcleo a base de Cu, con lo que se forma un material composite constituido por un núcleo a base de ' Cu, una superficie externa constituida por una aleación a base de Sn y una capa intermedia constituida por aleaciones Cu-Sn de composiciones variables, caracterizado porque dichas aleaciones a base de Sn comprenden: a) aleaciones binarias Sn-Pb, en cualquier proporción, preferentemente, en una proporción comprendida entre el 1% y el 99% en Sn y el 99% y el 1% en Pb; b) aleaciones Sn-Pb con adición de otros elementos, tales como Sb, Ag, Cu, Zn, Bi, Cd, In, Ni, Pb, en las proporciones siguientes:
Sn: del 0,5 al 99% Sb: del 0,01 al 7% Ag: del 0,01 al 5% Cu: del 0,01 al 2% Zn: del 0,01 al 1% Bi: del 0,01 al 2% Cd: del 0,01 al 5% In: del 0,01 al 5% Ni: del 0,01 al 1% Pb: del 0,5 al 99% c) aleaciones Sn-Sb, en una proporción comprendida entre el 93% y el 99,5% en Sn y el 7% y el 0,5% en Sb; d) aleaciones Sn-Ag, en una proporción comprendida entre el 95% y el 99% en Sn y el 5% y el 1% en Ag; e) aleaciones Sn-Zn, en una proporción comprendida entre el 97% y el 99% en Sn y el 3% y el 1% en Zn; y f) Sn puro, con un porcentaje mínimo de Sn del 99%.
2. Procedimiento según la reivindicación 1, caracterizado porque el material composite formado tiene un espesor mínimo, considerado como la suma del espesor de la capa intermedia y el espesor de la superficie externa, de 1 miera (μm) .
3. Procedimiento según la reivindicación 2, caracterizado porque el espesor del material composite formado está comprendido entre 1 μm y 1/5 del espesor total del material composite, incluyendo el espesor del núcleo a base de Cu.
4. Procedimiento según la reivindicación 2, caracterizado porque el espesor del material composite formado está comprendido entre 2 y 4 μm.
5. Procedimiento según la reivindicación 1, caracterizado porque el depósito o aplicación de dicha aleación a base de Sn sobre el núcleo a base de Cu se realiza por inmersión de dicho núcleo en un baño de una aleación a base de Sn fundida.
6. Procedimiento según la reivindicación 5, caracterizado porque la capa de recubrimiento con dicha aleación a base de Sn se regula por medio de un chorro de aire, un gas inerte, agua o laminación.
7. Procedimiento según la reivindicación 5, caracterizado porque la difusión térmica de la aleación a base de Sn se produce simultáneamente al recubrimiento del núcleo a base de Cu con dicha aleación.
8. Procedimiento según la reivindicación 5, caracterizado porque el recubrimiento del núcleo a base de Cu con la aleación a base de Sn se realiza por proyección de la aleación a base de Sn fundida, por ola o por cascada, sobre el núcleo a base de Cu.
9. Procedimiento según la reivindicación 8, caracterizado porque la difusión térmica de la aleación a base de Sn se produce simultáneamente al recubrimiento del núcleo a base de Cu con la aleación a base de Sn.
10. Procedimiento según la reivindicación 5, caracterizado porque el recubrimiento del núcleo a base de Cu con la aleación a base de Sn se realiza por depositación bien de un polvo metálico que contiene Sn puro o una aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o una aleación a base de Sn, sobre el núcleo a base de Cu.
11. Procedimiento según la reivindicación 10, caracterizado porque la difusión térmica de la aleación a base de Sn sobre el núcleo a base de Cu se realiza calentando a una temperatura igual o superior a 300SC.
12. Procedimiento según la reivindicación 5, caracterizado porque el recubrimiento del núcleo a base de Cu con la aleación a base de Sn se realiza por electro- depositación bien de Sn puro o aleaciones a base de Sn sobre el núcleo a base de Cu.
13. Procedimiento según la reivindicación 12 , caracterizado porque la difusión térmica de la aleación a base de Sn sobre el núcleo a base de Cu se realiza calentando a una temperatura igual o superior a 3002C.
14. Procedimiento según la reivindicación 1, caracterizado porque el núcleo a base de Cu a recubrir es una aleta de cobre para intercambiadores de calor.
15. Procedimiento según la reivindicación 14, caracterizado porque el recubrimiento con la aleación a base de Sn aplicado a dicha aleta de cobre es parcial.
16. Procedimiento según la reivindicación 15, caracterizado porque el recubrimiento parcial y la difusión térmica de la aleación a base de Sn se realiza por depositación electrolítica de Sn puro o de la aleación a base de Sn, o por proyección de la aleación a base de Sn fundida, o por depositación bien de un polvo metálico que contiene Sn puro o la aleación a base de Sn, o bien de pastas que contienen un polvo metálico que contiene Sn puro o la aleación a base de Sn, sobre la zona del núcleo a base de Cu a recubrir, seguido de difusión térmica a una temperatura igual o superior a 3002C.
17. Procedimiento según la reivindicación 1, caracterizado porque el núcleo a base de Cu a recubrir es un panal construido con tubos de latón y aletas de cobre, adecuado para intercambiadores de calor.
18. Procedimiento según la reivindicación 17, caracterizado porque el recubrimiento con la aleación a base de Sn aplicado a dicho panal es parcial, y se aplica sobre las superficies anterior y posterior del panal, en una profundidad de hasta 1/3 del ancho del panal.
19. Procedimiento según la reivindicación 18, caracterizado porque el recubrimiento parcial del panal con la aleación a base de Sn y su difusión térmica se efectúa localmente sobre las superficies del panal a cubrir, mediante depositación electrolítica bien de Sn puro o bien de la aleación de Sn, o mediante proyección bien de Sn puro o bien de la aleación a base de Sn fundida, o por depositación bien de un polvo metálico que contiene Sn puro o la aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o la aleación a base de Sn, seguido de difusión térmica a una temperatura igual o superior a 300se.
20. Un procedimiento para la fabricación de intercambiadores de calor a base de cobre, que incluye una etapa de soldadura de los tubos a las aletas, caracterizado porque las aletas están compuestas, total o parcialmente, por un material composite constituido por un núcleo a base de Cu, una superficie externa constituida por una aleación a base de Sn y una capa intermedia constituida por aleaciones Cu-Sn de composiciones variables, y dicha soldadura se efectúa en un horno de atmósfera oxidante o de atmósfera controlada no oxidante.
21. Procedimiento según la reivindicación 20, caracterizado porque la soldadura se realiza en un horno continuo o estático de atmósfera oxidante.
22. Procedimiento según la reivindicación 21, caracterizado porque la soldadura se realiza con la incorporación de un flux de soldadura orgánico no corrosivo que no necesita lavado.
23. Procedimiento según la reivindicación 22, caracterizado porque dicho flux de soldadura está constituido por ácidos orgánicos, aminas y resinas, sin componentes inorgánicos.
24. Procedimiento según la reivindicación 20, caracterizado porque la soldadura se realiza en un horno de atmósfera controlada no oxidante, sin la incorporación de ningún tipo de flux.
25. Procedimiento según la reivindicación 24, caracterizado porque la soldadura se realiza en un horno de vacío continuo o estático.
26. Procedimiento según la reivindicación 24, caracterizado porque la soldadura se realiza en un horno de atmósfera inerte, continuo o estático, con presencia de gases inertes, y ausencia de 02 y H20.
27. Procedimiento según una cualquiera de las reivindicaciones 20 a 26, caracterizado porque dicho intercambiador de calor fabricado es un radiador destinado a la refrigeración de motores térmicos, particularmente un radiador para automóviles.
28. Material composite caracterizado porque dichas aleaciones a base de Sn comprenden: a) aleaciones binarias Sn-Pb, en cualquier proporción, preferentemente, en una proporción comprendida entre el 1% y el 99% en Sn y el 99% y el 1% en Pb; b) aleaciones Sn-Pb con adición de otros elementos, tales como Sb, Ag, Cu, Zn, Bi, Cd, In, Ni, Pb, en las proporciones siguientes: Sn: del 0,5 al 99% Sb: del 0,01 al 7% Ag: del 0,01 al 5% Cu: del 0,01 al 2% Zn: del 0,01 al 1% Bi: del 0,01 al 2% Cd: del 0,01 al 5% In: del 0,01 al 5% Ni: del 0,01 al 1% Pb: del 0,5 al 99% c) aleaciones Sn-Sb, en una proporción comprendida entre el 93% y el 99,5% en Sn y el 7% y el 0,5% en Sb; d) aleaciones Sn-Ag, en una proporción comprendida entre el 95% y el 99% en Sn y el 5% y el 1% en Ag; e) aleaciones Sn-Zn, en una proporción comprendida entre el 97% y el 99% en Sn y el 3% y el 1% en Zn; y f) Sn puro, con un porcentaje mínimo de Sn del 99%.
29. Material según la reivindicación 28 caracterizado porque tiene un espesor mínimo, considerado como la suma del espesor de la capa intermedia y el espesor de la superficie externa, de 1 miera (μm) .
30. Material según la reivindicación 29 caracterizado porque tiene un espesor comprendido entre 1 μm y 1/5 del espesor total del material composite, incluyendo el espesor del núcleo a base de Cu.
31. Material según la reivindicación 29 caracterizado porque tiene un espesor comprendido entre 2 y 4 μm.
32. Material según la reivindicación 28 caracterizado porque el depósito o aplicación de dicha aleación a base de Sn sobre el núcleo a base de Cu se realiza por inmersión de dicho núcleo en un baño de una aleación a base de Sn fundida, regulándose la capa de recubrimiento por medio de un chorro de aire, un gas inerte, agua o laminación, y la difusión térmica de la aleación a base de Sn se produce simultáneamente al recubrimiento del núcleo a base de Cu con dicha aleación.
33. Material según la reivindicación 28 caracterizado porque el depósito o aplicación de dicha aleación a base de Sn sobre el núcleo a base de Cu se realiza por proyección de la aleación a base de Sn fundida, por ola o por cascada, sobre el núcleo a base de Cu, y la difusión térmica de la aleación a base de Sn se produce simultáneamente al recubrimiento del núcleo a base de Cu con dicha aleación a base de Sn.
34. Material según la reivindicación 28 caracterizado porque el depósito o aplicación de dicha aleación a base de Sn sobre el núcleo a base de Cu se realiza por depositación bien de un polvo metálico que contiene Sn puro o una aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o una aleación a base de Sn, sobre el núcleo a base de Cu y la difusión térmica de la aleación a base de Sn sobre el núcleo a base de Cu se realiza calentando a una temperatura igual o superior a 3002C.
35. Material según la reivindicación 28 caracterizado porque el depósito o aplicación de dicha aleación a base de Sn sobre el núcleo a base de Cu se realiza por electro- depositación bien de Sn puro o aleaciones a base de Sn sobre el núcleo a base de Cu, y la difusión térmica de la aleación a base de Sn sobre el núcleo a base de Cu se realiza calentando a una temperatura igual o superior a 3002C.
36. Material según la reivindicación 28 caracterizado porque el núcleo a base de Cu está en forma de banda, con un espesor igual o superior al necesario para la fabricación de aletas para intercambiadores de calor.
37. Material según la reivindicación 28 caracterizado porque el recubrimiento del núcleo a base de Cu con la aleación a base de Sn es total.
38. Material según la reivindicación 28 caracterizado porque el recubrimiento del núcleo a base de Cu con la aleación a base de Sn es parcial.
39. Material según la reivindicación 38 caracterizado porque el recubrimiento parcial del núcleo a base de Cu con la aleación a base de Sn y su difusión térmica se efectúa local ente mediante depositación electrolítica bien de Sn puro o bien de la aleación de Sn, o mediante proyección de la aleación a base de Sn fundida, o depositación bien de un polvo metálico que contiene la aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende la aleación a base de Sn, sobre la zona del núcleo a base de Cu a recubrir, seguido de difusión térmica a una temperatura igual o superior a 3002C.
40. Material según la reivindicación 28 caracterizado porque es adecuado para la fabricación de aletas para intercambiadores de calor, especialmente para radiadores destinados a refrigerar motores térmicos, particularmente, radiadores de automóviles.
41. Una aleta para un intercambiador de calor a base de cobre, caracterizada porque está constituida de un material composite según una de las reivindicaciones 28 a 40.
42. Aleta según la reivindicación 41, caracterizada porque es obtenible mediante el recubrimiento de un núcleo a base de Cu por medio de la aplicación de láminas, hilos o cordones preformados de aleaciones de Sn, o mediante electro- depositación de Sn puro o de la aleación de Sn, o mediante proyección de la aleación a base de Sn fundida, o depositación de un polvo metálico que contiene Sn puro o una aleación a base de Sn, o de pastas que contienen un polvo metálico que contiene Sn puro o una aleación a base de Sn, sobre el núcleo a base de Cu o la franja superficial a recubrir, seguido de difusión térmica a una temperatura igual o superior a 3002C.
43. Aleta según la reivindicación 41, caracterizada porque el recubrimiento del núcleo a base de Cu se realiza mediante inmersión en un baño fundido de aleación a base de Sn, ola o cascada, del núcleo a base de Cu o la franja superficial a recubrir, con difusión térmica simultánea al recubrimiento.
44. Aleta según cualquiera de las reivindicaciones 42 o 43, caracterizada porque el núcleo a base de Cu está en forma de banda de espesor igual o superior al adecuado para la fabricación de aletas.
45. Aleta según la reivindicación 41, caracterizada porque es adecuada para su empleo en la fabricación de radiadores destinados a la refrigeración de motores térmicos, particularmente, radiadores para automóviles.
46. Un procedimiento para depositar aleaciones a base de Sn sobre el panal de un intercambiador de calor a base de cobre, formado por tubos de latón y aletas de cobre, caracterizado porque se aplica dicha aleación sobre el panal de forma que cubra principalmente las franjas externas de las aletas, por electro-depositación, aplicada sobre las dos caras del panal, bien de Sn puro o bien de aleaciones a base de Sn, o por proyección bien de un polvo metálico que contiene Sn puro o una aleación a base de Sn, o bien de pastas que contienen un polvo metálico que comprende Sn puro o una aleación a base de Sn, seguido de difusión térmica a una temperatura igual o superior a 3002C.
PCT/ES1996/000105 1995-05-16 1996-05-14 Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre WO1996036749A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96915036A EP0771888A1 (en) 1995-05-16 1996-05-14 Process for the protection against external corrosion in copper-based heat exchangers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9500935 1995-05-16
ES9500935A ES2129282B1 (es) 1995-05-16 1995-05-16 Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre.

Publications (1)

Publication Number Publication Date
WO1996036749A1 true WO1996036749A1 (es) 1996-11-21

Family

ID=8290367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1996/000105 WO1996036749A1 (es) 1995-05-16 1996-05-14 Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre

Country Status (3)

Country Link
EP (1) EP0771888A1 (es)
ES (1) ES2129282B1 (es)
WO (1) WO1996036749A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008706A1 (de) * 1978-08-29 1980-03-19 Joh. Vaillant GmbH u. Co. Mit einer Bleilegierung überzogener Wärmetauscher für eine brennstoffbeheizte Wärmequelle und Verfahren zum Verbleien eines solchen Wärmetauschers
JPS5777894A (en) * 1980-10-31 1982-05-15 Tsuchiya Mfg Co Ltd Manufacturing of heat exchanger
JPS5864498A (ja) * 1981-10-13 1983-04-16 Matsushita Electric Ind Co Ltd 熱交換器用表面処理材
JPS60121264A (ja) * 1983-12-06 1985-06-28 Nippon Mining Co Ltd 耐食性に優れたフインを有するラジエ−タ−の製造方法
JPS60122896A (ja) * 1983-12-06 1985-07-01 Nippon Mining Co Ltd ラジエ−タ−用フイン
JPS61166987A (ja) * 1985-01-17 1986-07-28 Hitachi Cable Ltd ラジエ−タ用フイン材
JPS61179880A (ja) * 1985-12-10 1986-08-12 Hitachi Cable Ltd ラジエ−タ用フイン材の製造方法
JPS6465277A (en) * 1987-09-04 1989-03-10 Furukawa Electric Co Ltd Manufacture of automotive heat-exchanger fin material
JPH03274250A (ja) * 1990-03-23 1991-12-05 Mitsubishi Electric Corp 電子機器用銅合金の溶融めっき方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194296A (ja) * 1984-03-14 1985-10-02 Nippon Mining Co Ltd 耐食性に優れた熱交換器用材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008706A1 (de) * 1978-08-29 1980-03-19 Joh. Vaillant GmbH u. Co. Mit einer Bleilegierung überzogener Wärmetauscher für eine brennstoffbeheizte Wärmequelle und Verfahren zum Verbleien eines solchen Wärmetauschers
JPS5777894A (en) * 1980-10-31 1982-05-15 Tsuchiya Mfg Co Ltd Manufacturing of heat exchanger
JPS5864498A (ja) * 1981-10-13 1983-04-16 Matsushita Electric Ind Co Ltd 熱交換器用表面処理材
JPS60121264A (ja) * 1983-12-06 1985-06-28 Nippon Mining Co Ltd 耐食性に優れたフインを有するラジエ−タ−の製造方法
JPS60122896A (ja) * 1983-12-06 1985-07-01 Nippon Mining Co Ltd ラジエ−タ−用フイン
JPS61166987A (ja) * 1985-01-17 1986-07-28 Hitachi Cable Ltd ラジエ−タ用フイン材
JPS61179880A (ja) * 1985-12-10 1986-08-12 Hitachi Cable Ltd ラジエ−タ用フイン材の製造方法
JPS6465277A (en) * 1987-09-04 1989-03-10 Furukawa Electric Co Ltd Manufacture of automotive heat-exchanger fin material
JPH03274250A (ja) * 1990-03-23 1991-12-05 Mitsubishi Electric Corp 電子機器用銅合金の溶融めっき方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 89-119025 c16, XP002010706 *
PATENT ABSTRACTS OF JAPAN vol. 10, no. 373 (C - 391) 12 December 1986 (1986-12-12) *
PATENT ABSTRACTS OF JAPAN vol. 11, no. 3 (C - 395) 7 January 1987 (1987-01-07) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 86 (C - 0916) 3 March 1992 (1992-03-03) *
PATENT ABSTRACTS OF JAPAN vol. 6, no. 163 (M - 152) 26 August 1982 (1982-08-26) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 157 (M - 227) 9 July 1958 (1958-07-09) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 271 (C - 311) 29 October 1985 (1985-10-29) *
PATENT ABSTRACTS OF JAPAN vol. 9, no. 279 (M - 427) 7 November 1985 (1985-11-07) *

Also Published As

Publication number Publication date
ES2129282A1 (es) 1999-06-01
EP0771888A1 (en) 1997-05-07
ES2129282B1 (es) 2000-05-16
MX9700433A (es) 1998-07-31

Similar Documents

Publication Publication Date Title
CN106661677B (zh) 铝合金钎焊板
ES2199830T3 (es) Producto de hoja para soldadura fuerte y metodo para su fabricacion.
ES2244674T3 (es) Metodo de soldadura utilizando un material de soldadura con un bajo punto de fusion.
JP5486592B2 (ja) ろう付けされた熱交換器用チューブのアルミニウム合金製帯材
CN101108436B (zh) 用于无焊剂钎焊工艺的制品及其制备方法
ES2609108T3 (es) Hoja de acero para recipiente y método de fabricación de la misma
ES2728961T3 (es) Chapa de acero para uso en contenedores con comportamiento de película orgánica y método de producción de la misma
JP5873343B2 (ja) 高耐食性アルミニウム合金ブレージングシート、ならびに、これを用いた自動車用熱交換器の流路形成部品
CN102146540A (zh) 用于热交换器的铝合金包层材料及用于其的铝合金包层材料用芯材
CN108118218B (zh) 一种抗切口腐蚀性能优良的热浸镀层钢板及其制造方法
KR20160130289A (ko) 다겹 클래드 브레이징 금속 시트
US20120292001A1 (en) Soldered aluminum heat exchanger
BR112014016471B1 (pt) uso de uma solução aquosa de tratamento
JP2001502757A (ja) 発展した電解腐食保護
WO1996036749A1 (es) Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre
ES2268462T3 (es) Procducto para laminar de borcesoldado con una capa de recubrimiento y una capa depositada de una aleacion de hierro, y metodo para su fabricacion.
ES2286475T3 (es) Producto de cobresoldadura y metodo de fabricacion del producto utilizando un baño de revestimiento.
US3694899A (en) Process for brazing parts of aluminium and aluminium alloys
JP2003239085A (ja) 無機皮膜被覆銅又は銅合金部材、銅又は銅合金部材表面への無機皮膜形成方法、給湯器用熱交換器及びその製造方法
MXPA97000433A (es) Procedimiento para la proteccion frente a la corrosion externa en intercambiadores de calor a base de cobre
JP2003328105A (ja) 溶接部耐食性に優れた溶接めっき鋼管及びその製造方法
JP2016169418A (ja) 塗装かつ犠牲防食効果を利用した耐穴あき性に優れた自動車用部材および自動車用給油管
JP3752154B2 (ja) アルミニウム合金クラッド材
JPH059786A (ja) 内面の耐食性に優れた溶接管及びその製造方法
JP4537894B2 (ja) 良好な耐食性・溶接性を有する溶融Sn−Zn系めっき鋼板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/000433

Country of ref document: MX

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 776037

Date of ref document: 19970116

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996915036

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996915036

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996915036

Country of ref document: EP