WO1996020364A1 - System for adjusting the tension of the contact part of a belt drive mechanism - Google Patents

System for adjusting the tension of the contact part of a belt drive mechanism Download PDF

Info

Publication number
WO1996020364A1
WO1996020364A1 PCT/DE1995/001856 DE9501856W WO9620364A1 WO 1996020364 A1 WO1996020364 A1 WO 1996020364A1 DE 9501856 W DE9501856 W DE 9501856W WO 9620364 A1 WO9620364 A1 WO 9620364A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
signal
mot
engine torque
vehicle engine
Prior art date
Application number
PCT/DE1995/001856
Other languages
German (de)
French (fr)
Inventor
Lutz Reuschenbach
Karl-Heinz Senger
Joachim Luh
Johan Luyckx
Riné PELDERS
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP95942645A priority Critical patent/EP0797742B1/en
Priority to DE59505797T priority patent/DE59505797D1/en
Priority to US08/860,650 priority patent/US6050913A/en
Priority to JP8520125A priority patent/JPH10512654A/en
Publication of WO1996020364A1 publication Critical patent/WO1996020364A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0619Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member

Definitions

  • the invention relates to a system for adjusting the tension of the belt part according to the preamble of claim 1.
  • FIG. 1 Such a system, which is known, for example, from EP, A1, 0 451 887, is described in FIG. 1.
  • This document also relates to the setting of the tension of a belt (1), generally a belt, in a continuously variable belt transmission (2), consisting of the belt (1), a drive pulley (3) and a driven pulley (4), which is driven by a motor (11).
  • the drive pulley (3) and driven pulley (4) each consist of an axially fixed (7) or (8) and an axially movable conical pulley (9) or . (10).
  • the drive pulley (3) is also referred to as the primary pulley and the driven pulley (4) as the secondary pulley.
  • the axially movable conical disks (9) or (10) are pressed against the belt means (1) by building up a hydraulic pressure in the oil chambers (5) or (6).
  • the desired ratio of the continuously variable belt transmission and the required tension of the belt means (1) can be set.
  • a torque converter (12) and a planetary gear set (13) with clutches for forward and reverse travel can be present, for example, for the power transmission from the motor (11) to the drive pulley (3).
  • the motor (11) can also drive the pump (14) of the continuously variable belt transmission.
  • a transmission control (18) contains the electrical and hydraulic components for controlling the continuously variable belt transmission.
  • the transmission control (18) contains means for adjusting the pressure in the oil chamber (6) or in the oil chambers (5) and (6).
  • the transmission controller (18) adjusts the tension of the belt (1) to the pressure p i n sec ⁇ he driven-side oil chamber (6).
  • the tension of the belt means (1) must be set so that the efficiency of the continuously variable belt transmission is at a maximum. On the one hand, it is to be prevented that the looping means (1) slips through too little tension, and on the other hand the tension of the looping means (1) should not be too high in order to avoid high losses in the continuously variable looping transmission.
  • the torque transmitted from the drive pulley (3) to the driven pulley (4) must be known as precisely as possible.
  • the torque to be transmitted to the drive pulley (3) is mainly determined by the torque of the motor (11) and the torque amplification factor of the torque converter (12).
  • EP, A1,0 451 887 describes a method for setting the pressure p sec ⁇ n ⁇ er output-side oil chamber (6).
  • the angle of rotation (o -, ⁇ ) of the throttle valve (15) of the engine (11) is detected using a sensor (16).
  • the angular position ( ⁇ Dk) of the throttle valve measured with the sensor (16), the engine speed (N mot ), the primary speed (p r i m ) and the secondary speed (N se j ⁇ ) are in the transmission control (18) used to adjust the tension of the looping means (1) by adjusting the pressure in the oil chamber (6).
  • the engine torque to be expected is estimated using a map from the throttle valve angle and the engine speed.
  • the engine torque to be expected is converted into an expected primary torque using the quotient formed from the primary speed and the engine speed in a map.
  • the required pressure P se k i- n ⁇ er output-side oil chamber for setting the tension of the belt element (1) is then calculated.
  • the disadvantage of using the throttle valve angle (OC Q ⁇ ) to estimate the engine torque is that the throttle valve potentiometer must be adjusted very precisely. Even a small deviation of the measured throttle valve angle from the actual throttle valve angle can lead to a considerable deviation between the expected engine torque and the actual engine torque in the above method. Since it is difficult to guarantee that the throttle valve angle is always measured correctly, the belt tension must be kept above the required level with a higher safety reserve by setting a pressure which is higher by the reserve pressure in the oil chamber on the output side. That leads to higher ones Losses in the gearbox and in the pump. In addition, problems can arise when estimating the engine torque during dynamic driving conditions with major changes in the engine speed over time.
  • the object of the present invention is to optimize the adaptation of the belt tension to the actual motor torque.
  • the invention is based on a system for adjusting the tension of the belt part of a belt transmission, which is preferably infinitely variable in its translation.
  • the voltage is set depending on the operating parameters of the vehicle engine.
  • the essence of the invention is that a signal representing the engine torque is used as the operating parameter of the vehicle engine. This has the advantage that the belt tension can be better adapted to the actual engine torque than when using the throttle valve signal.
  • a signal representing the stationary engine torque is used as the operating parameter of the vehicle engine.
  • This is to be understood as the engine torque to be expected at an engine speed which is essentially constant over time.
  • This configuration has the advantage that this variable is relatively easy to determine and is generally present in an engine control unit.
  • the operating parameter of the vehicle engine is one that represents the dynamic engine torque Signal is used.
  • the belt tension is optimally adjusted even during very dynamic driving conditions in which the engine speed changes relatively strongly over time.
  • a signal representing the speed of the vehicle engine is detected and the signal representing the dynamic engine torque is determined taking into account the change over time of the signal representing the speed of the vehicle engine.
  • a variable representing the inertia of the vehicle engine can be taken into account to determine the signal representing the dynamic engine torque.
  • first means for controlling or regulating the vehicle engine and second means (transmission control device) for controlling or regulating the belt transmission are provided. It is then particularly advantageous that the signal, which represents the engine torque, is formed in the first means and is fed to the second means for adjusting the voltage. Since a variable representing the engine torque is generally present in the engine control unit, this variant has the advantage that this variable can be supplied to the transmission control unit, for example via a torque interface (for example via a known bus system).
  • a first signal is transmitted from the first means (engine control) to the second means (transmission control), which represents the air mass or air quantity supplied to the vehicle engine.
  • the signal representing the engine torque is then derived from this first signal.
  • a second signal is carried, which represents the ignition angle or the ignition timing of the vehicle engine.
  • the signal representing the motor torque for setting the voltage is then derived from the first and second signals.
  • a first signal is sent from the engine control unit to the transmission control unit, which represents the amount of fuel supplied to the vehicle engine.
  • the signal representing the motor torque for setting the voltage is then derived from this first signal.
  • a second signal is sent from the engine control unit to the transmission control unit, which represents the point in time at which the fuel is injected.
  • the signal representing the motor torque for setting the voltage is then derived from the first and second signals.
  • the belt part is tensioned by pressurizing at least one pressure chamber.
  • the invention includes a method for adjusting the tension of the belt means, in which a higher accuracy of the estimation of the expected engine torque and thus a better dosage of the tension is achieved.
  • signals are made available by the engine control unit, which controls the internal combustion engine, which enable an exact estimation of the engine torque.
  • this signal can be, for example, an estimated value for the expected engine torque, which is formed in the engine control.
  • these signals can be the amount of the air mass drawn in by the internal combustion engine (or the amount of fuel supplied to the engine), or a signal derived therefrom, and the ignition angle of the internal combustion engine (or the time of injection).
  • FIGS. 2, 4a, 4b, 5a, 5b and 6 disclose block diagrams of the invention.
  • FIG. 2 shows an overview block diagram, the blocks already described with reference to FIG. 1 being given the same reference numerals.
  • FIG. 2 shows a continuously variable belt transmission with the transmission control (18) which is connected via the coupling (23) to the engine control (22) which controls the internal combustion engine (11).
  • the transmission control (18) which is connected via the coupling (23) to the engine control (22) which controls the internal combustion engine (11).
  • FIG. 1 there is a coupling (23) of engine control (22) and transmission control (18) with which one or more signals can be transmitted from engine control (22) to transmission control (18).
  • the motor control (22) receives various signals via the connections 116, 119 and 124 about the operating state of the motor. Via connections 125 and 130 actuators of the motor are controlled. This will be discussed in more detail with reference to FIG. 3.
  • Figure 3 shows a possible embodiment of the detection of signals (119), (124) and (116) and the control of the internal combustion engine (11) with the signals (125) and (130).
  • a cylinder of the internal combustion engine (11) is shown.
  • the signal (119), the speed N mot of the engine, is measured with the speed sensor (19).
  • the mass QL of the air (26) sucked into the intake manifold (29) is measured by a sensor (24) (air mass meter) and passed on as a signal (124) to the engine control (22).
  • the motor control (22) actuates a device (25) for metering the fuel (27) with the signal (125). This can, for example, be injected into the suction pipe (29).
  • the device (25) can be, for example, a fuel injection valve.
  • the signal (130) is used to control ⁇ z of the spark plugs (30) to ignite the fuel-air mixture in the interior of the combustion chamber (31) of the internal combustion engine (11).
  • the engine control (22) provides, among other things, signals (125) and (130) for controlling the internal combustion engine (11), which is dependent, among other things, on the signal (124) which indicates the mass of the air drawn in by the internal combustion engine (11). With a signal (119) the speed N morj; of the internal combustion engine and with the signal (116) the angular position ⁇ ⁇ of the throttle valve to the engine control (22).
  • the engine control (22) determines the expected stationary engine torque M mot, stat and transmits the result as a signal (123a) via the coupling (23) to the transmission control (18).
  • Methods for calculating the expected torque from the signals (119, N mot ), (124, intake air Q ⁇ ), (116, ⁇ ⁇ ), (125, injection quantity) and (130, ignition timing ⁇ z ) correspond to this State of the art like him DE-OS 42 39 711 can be seen.
  • the engine speed N mot can be fed to the transmission control (18).
  • the engine controller transmits a load signal (123b, Q__) formed from the signal (124, intake air QL) and the engine speed signal N mot (119) by dividing (124, Q L ) by (119, N mot ) / N mot) an d: Le transmission control (18). Furthermore, the ignition timing ⁇ z is also transmitted as a signal (123c) from the engine control (22) via the coupling (23) to the transmission control (18).
  • the engine speed (119, N mot ) and the angular position (116, ⁇ ⁇ k) of the throttle valve (15) can also be transmitted from the engine control (22) to the transmission control (18) via the coupling (23).
  • FIG. 4a shows the part of the transmission control (18) which is relevant for the second embodiment of the invention.
  • the transmission control (18) is supplied with the expected motor torque M mot s tat -l s Sign l (123a) and the engine speed N mot as signal 119 by the motor control (22) via the coupling (23).
  • the stationary engine torque M mot s at w: Lr d is either supplied to block 151 'or directly (bypassing block 151' shown in FIG. 4a) to block (150).
  • the block (151 ') corresponds to the instantaneous stationary engine torque, that is to say the engine torque at an essentially constant engine speed.
  • the engine speed N mot is first differentiated in time in block (1516 ') from the change in time N mo t of the engine speed, the engine speed gradient.
  • the inertia of the Motors (11) considered. This can, for example Schehen ge by the engine speed gradient N mo t w ith a typical for the respective motor (11) inertia value I mo t is multipli ⁇ sheet.
  • the size thus obtained (N mot * I m OT) is superimposed to mot the engine torque M which statio ⁇ ary engine torque M stat mo t i m block (1515 ').
  • the engine torque M mot (or, depending on the variant, the stationary engine torque mot (S at) is fed to block (150).
  • block (150) depending on the (stationary) engine torque M m ⁇ ( M mot, stat>' the primary speed N pr i m (speed sensor 20) and the secondary speed N se ] ⁇ (speed sensor 21) the setpoint pressure ° k for the secondary side (oil chamber 6) .
  • the setting of the desired output-side oil pressure with electrical and hydraulic means can, for example, after mentioned EP, A1.0 451 887 take place.
  • FIG. 4b shows the part of the transmission control (18) that is relevant for the second embodiment of the invention.
  • the transmission control (18) via the coupling (23) from the engine control (22) receives the load signal (123b, Q L / N mo ), the ignition timing ⁇ z as a signal (123c) and the current engine speed (signal 119, N mot ).
  • the stationary engine torque M mot stat ° of the dynamic engine torque M mot is formed as a signal 123a and supplied to the block (150).
  • FIG. 5 first shows the block torque calculation (1512) for calculating the expected stationary engine torque (M mot stat 'signal 123a).
  • the signal (1513) is calculated from the load signal (Q] _ / N mot 'signal 123b) and the engine speed (N mot , signal 119) using block (1512), which contains a map calculation.
  • the expected stationary engine torque ( M mot, stat 'signal 123a) is calculated from the signal (1513) and the ignition point ( ⁇ z , signal 123c).
  • a variant of the block (151) is shown in FIG. 5b.
  • This variant takes into account that the engine torque M mo t stat formed in blocks (1512) and (1514) corresponds to the instantaneous stationary engine torque, that is to say the engine torque when the instantaneous engine speed is kept constant.
  • the engine speed N mot is first differentiated in time in block (1516) from the time change N mot of the engine speed, the engine speed gradient.
  • the inertia of the motor (11) is taken into account. This can for example be done by the gradient of the engine speed N m ot is connected to a respective for the motor (11) typi ⁇ 's inertia value I mo t multiplied.
  • the variable ( mo * I mo t) thus obtained is superimposed on the stationary engine torque M mot stat i TM block (1515) to the engine torque M mot .
  • FIG. 6 shows a block diagram for calculating the required pressure p S6fJK. in the
  • Oil chamber (6) for adjusting the tension of the belt means (1) in the first and second embodiment of the invention With the block (15006), the signal Np r i m / N mot is formed as a quotient of the primary speed N pr i m and the engine speed N mot .
  • the signal p i r m / N mot and the estimated engine torque M mot is converted in the block (15005) by a map calculation in the expected primary torque Mp r i m.
  • a minimum target pressure P m i n is calculated.
  • a reserve pressure P r is added in the block (15009).
  • the resulting signal P res is filtered in block (15010) with a special low pass. However, the filter only works if the signal P res becomes smaller. If the signal P res becomes larger, then the output signal P ⁇ 1 of the low-pass filter (15010) immediately follows the signal P re s-
  • a centrifugal pressure P z is calculated from the secondary speed Ng g ⁇ with a map. This centrifugal contact pressure P z is subtracted from the signal p tllt in block (15011). The difference ⁇ P is limited in block (15013) to minimum and maximum values. As a result, the required pressure in the oil chamber (6) is obtained with the signal P ° k .

Abstract

The invention comprises a method for adjusting the tension of the contact part which yields greater precision in estimating the likely engine torque and thus a better apportionment of tension. For this purpose the engine control unit, which controls the internal combustion engine, gives signals that make it possible to estimate the engine torque precisely. In a first embodiment this signal can for example be an engine control-generated estimated value for the likely engine torque. In a second embodiment these signals can be the amount of the air mass drawn by the internal combustion engine, or a signal derived therefrom, and the angular ignition spacing of the internal combustion engine. With a more precise estimation of the engine torque the tension on the contact part can be reduced, resulting in improved efficiency of the drive mechanism.

Description

System zur Einstellung der Spannung des Umschlingungsteils eines UmschlingungetriebesSystem for adjusting the tension of the belt part of a belt transmission
Stand der TechnikState of the art
Die Erfindung betrifft ein System zur Einstellung der Spannung des Umschlingungsteils nach dem Oberbegriff des Anspruchs 1.The invention relates to a system for adjusting the tension of the belt part according to the preamble of claim 1.
Solch ein System, das beispielsweise aus der EP,A__,0 451 887 be¬ kannt ist, wird in der Figur 1 beschrieben. Auch diese Schrift betrifft die Einstellung der Spannung eines Umschlingungsmittels (1) , im allgemeinen ein Band, in einem stufenlosen Umschlin- gungsgetriebe (2) , bestehend aus dem Umschlingungsmittel (1) , einer Antriebsscheibe (3) und einer Abtriebsscheibe (4), welches von einem Motor (11) angetrieben wird.Such a system, which is known, for example, from EP, A1, 0 451 887, is described in FIG. 1. This document also relates to the setting of the tension of a belt (1), generally a belt, in a continuously variable belt transmission (2), consisting of the belt (1), a drive pulley (3) and a driven pulley (4), which is driven by a motor (11).
Zur Einstellung der Übersetzung des stufenlosen Umschlingungsge- triebes und der Spannung des Umschlingungsmittels (1) bestehen die Antriebsscheibe (3) und Abtriebsscheibe (4) aus je einer axial feststehenden (7) bzw. (8) und einer axial beweglichen Kegelscheibe (9) bzw. (10). Die Antriebsscheibe (3) wird auch als Primärscheibe und die Abtriebsscheibe (4) auch als Sekundär¬ scheibe bezeichnet. Die Anpressung der axial beweglichen Kegel¬ scheiben (9) bzw. (10) gegen das Umschlingungsmittel (1) erfolgt durch Aufbau eines hydraulischen Drucks in den Ölkammern (5) bzw. (6) . Durch eine geeignete Wahl der Anpreßdrücke Ppri und Pse]ζ in den Ölkammern (5) und (6) kann die gewünschte Übersetzung des stufenlosen Umschlingungsgetriebes und die erforderliche Spannung des Umschlingungsmittels (1) eingestellt werden. Für die Kraftübertragung vom Motor (11) zur Antriebsscheibe (3) kann z.B. ein Drehmomentenwandler (12) und ein Planetensatz (13) mit Kupplungen für Vorwärts- und Rückwärtsfahrt vorhanden sein. Der Motor (11) kann auch die Pumpe (14) des stufenlosen Um¬ schlingungsgetriebes antreiben. Eine GetriebeSteuerung (18) be¬ inhaltet die elektrischen und hydraulischen Komponenten zur An- steuerung des stufenlosen Umschlingungsgetriebes. Die Getriebe¬ steuerung (18) enthält Mittel zur Einstellung des Drucks in der Olkammer (6) oder aber in den Ölkammern (5) und (6) .To adjust the ratio of the continuously variable belt drive and the tension of the belt (1), the drive pulley (3) and driven pulley (4) each consist of an axially fixed (7) or (8) and an axially movable conical pulley (9) or . (10). The drive pulley (3) is also referred to as the primary pulley and the driven pulley (4) as the secondary pulley. The axially movable conical disks (9) or (10) are pressed against the belt means (1) by building up a hydraulic pressure in the oil chambers (5) or (6). By a suitable choice of the contact pressures Pp r i and P se ] ζ in the oil chambers (5) and (6), the desired ratio of the continuously variable belt transmission and the required tension of the belt means (1) can be set. A torque converter (12) and a planetary gear set (13) with clutches for forward and reverse travel can be present, for example, for the power transmission from the motor (11) to the drive pulley (3). The motor (11) can also drive the pump (14) of the continuously variable belt transmission. A transmission control (18) contains the electrical and hydraulic components for controlling the continuously variable belt transmission. The transmission control (18) contains means for adjusting the pressure in the oil chamber (6) or in the oil chambers (5) and (6).
In einer Ausführung der Getriebesteuerung (18) wird mit dem Druck psek in ^er abtriebsseitigen Olkammer (6) die Spannung des Umschlingungsmittels (1) eingestellt.In one embodiment, the transmission controller (18) adjusts the tension of the belt (1) to the pressure p i n sec ^ he driven-side oil chamber (6).
Die Spannung des Umschlingungsmittels (1) ist so einzustellen, daß der Wirkungsgrad des stufenlosen Umschlingungsgetriebes maximal ist. Es ist dabei einerseits zu verhindern, daß das Um¬ schlingungsmittel (1) durch eine zu kleine Spannung durchrutscht und andererseits soll die Spannung des Umschlingungsmittels (1) nicht zu hoch sein, um hohe Verluste im stufenlosen Umschlin- gungsgetriebe zu vermeiden. Um beide Anforderungen in Einklang bringen zu können, muß das von der Antriebsscheibe (3) auf die Abtriebsscheibe (4) übertragene Drehmoment möglichst genau be¬ kannt sein. Das zu übertragende Drehmoment an der Antriebsscheibe (3) wird dabei hauptsächlich von dem Drehmoment des Motors (11 ) und dem Drehmomentenverstärkungsfaktor des Drehmomentenwandlers (12) bestimmt.The tension of the belt means (1) must be set so that the efficiency of the continuously variable belt transmission is at a maximum. On the one hand, it is to be prevented that the looping means (1) slips through too little tension, and on the other hand the tension of the looping means (1) should not be too high in order to avoid high losses in the continuously variable looping transmission. In order to be able to reconcile both requirements, the torque transmitted from the drive pulley (3) to the driven pulley (4) must be known as precisely as possible. The torque to be transmitted to the drive pulley (3) is mainly determined by the torque of the motor (11) and the torque amplification factor of the torque converter (12).
In EP,A1,0 451 887 wird ein Verfahren zur Einstellung des Drucks psek ^n ^er abtriebsseitigen Olkammer (6) beschrieben. Bei diesem Verfahren wird der Drehwinkel (o-,^) der Drosselklappe (15) des Motors (11) mit einem Sensor (16) erfaßt. Weiterhin wird die Drehzahl (Nmot) des Motors (11) , die Drehzahl (Nprim) der Primärscheibe (3) und die Drehzahl (Nsejζ) der Sekundärscheibe (4) mit Drehzahlsensoren (19) , (20) und (21) gemessen und als entsprechende Signale an die Getriebesteuerung (18) weitergeleitet. Die mit dem Sensor (16) gemessene Winkellage (α Dk) der Drosselklappe, die Motordrehzahl (Nmot) , die Primärdreh¬ zahl ( prim) und die Sekundärdrehzahl (Nsejς) werden in der Ge¬ triebesteuerung (18) zur Einstellung der Spannung des Um¬ schlingungsmittels (1) durch Einstellen des Drucks in der Ol¬ kammer (6) verwendet.EP, A1,0 451 887 describes a method for setting the pressure p sec ^ n ^ er output-side oil chamber (6). With this The angle of rotation (o -, ^) of the throttle valve (15) of the engine (11) is detected using a sensor (16). Furthermore, the speed (N mot ) of the motor (11), the speed (Np r i m ) of the primary disc (3) and the speed (N se j ζ ) of the secondary disc (4) with speed sensors (19), (20) and (21) measured and forwarded to the transmission control (18) as corresponding signals. The angular position (α Dk) of the throttle valve measured with the sensor (16), the engine speed (N mot ), the primary speed (p r i m ) and the secondary speed (N se jς) are in the transmission control (18) used to adjust the tension of the looping means (1) by adjusting the pressure in the oil chamber (6).
Zur Einstellung der Spannung des Umschlingungsmittels (1) wird mit einem Kennfeld aus dem Drosselklappenwinkel und der Motor¬ drehzahl das zu erwartende Motordrehmoment abgeschätzt. Das zu erwartende Motordrehmoment wird mit dem gebildeten Quotienten aus der Primärdrehzahl und der Motordrehzahl in einem Kennfeld in ein erwartetes Primärdrehmoment umgerechnet. Anschließend erfolgt die Berechnung des erforderlichen Drucks Psek i-n ^er abtriebsseitigen Olkammer zur Einstellung der Spannung des Umschlingungselements (l) .To set the tension of the belt means (1), the engine torque to be expected is estimated using a map from the throttle valve angle and the engine speed. The engine torque to be expected is converted into an expected primary torque using the quotient formed from the primary speed and the engine speed in a map. The required pressure P se k i- n ^ er output-side oil chamber for setting the tension of the belt element (1) is then calculated.
Die Verwendung des Drosselklappenwinkels (OCQ^) zur Abschätzung des Motormoments hat den Nachteil, daß der Abgleich des Drossel- klappenpotentiometers sehr genau erfolgen muß. Bereits eine kleine Abweichung des gemessenen Drosselklappenwinkels von dem tatsächlichen Drosselklappenwinkel kann bei obigem Verfahren zu einer erheblichen Abweichung zwischen dem erwarteten Motor¬ drehmoment und dem tatsächlichen Motordrehmoment führen. Da es schwierig ist, zu garantieren, daß der Drosselklappenwinkel immer richtig gemessen wird, muß die Bandspannung mit einer höheren Sicherheitsreserve über dem erforderlichen Niveau gehalten werden, indem ein um den Reservedruck höherer Druck in der abtriebsseitigen Olkammer eingestellt wird. Das führt zu höheren Verlusten im Getriebe und in der Pumpe. Darüber hinaus kann es zu Problemen bei der Abschätzung des Motormoments während dyna¬ mischer Fahrzuständen mit größeren zeitlichen Änderungen der Motordrehzahl kommen.The disadvantage of using the throttle valve angle (OC Q ^) to estimate the engine torque is that the throttle valve potentiometer must be adjusted very precisely. Even a small deviation of the measured throttle valve angle from the actual throttle valve angle can lead to a considerable deviation between the expected engine torque and the actual engine torque in the above method. Since it is difficult to guarantee that the throttle valve angle is always measured correctly, the belt tension must be kept above the required level with a higher safety reserve by setting a pressure which is higher by the reserve pressure in the oil chamber on the output side. That leads to higher ones Losses in the gearbox and in the pump. In addition, problems can arise when estimating the engine torque during dynamic driving conditions with major changes in the engine speed over time.
Die Aufgabe der vorliegenden Erfindung besteht in der Optimierung der Anpassung der Bandspannung an das tatsächliche Motor¬ drehmoment.The object of the present invention is to optimize the adaptation of the belt tension to the actual motor torque.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is solved by the features of claim 1.
Vorteile der ErfindungAdvantages of the invention
Wie schon erwähnt geht die Erfindung aus von einem System zur Einstellung der Spannung des Umschlingungsteils eines, vorzugs¬ weise in seiner Übersetzung stufenlos verstellbaren, Umschlin¬ gungsgetriebes. Die Spannung wird dabei abhängig von Betriebs- Parametern des Fahrzeugmotors eingestellt. Der Kern der Erfindung besteht darin, daß als Betriebsparameter des Fahrzeugmotors ein das Motormoment repräsentierendes Signal herangezogen wird. Dies hat den Vorteil, daß die Bandspannung besser an das tatsächlich vorliegende Motormoment angepaßt werden kann als bei der Verwendung des Drosselklappensignals.As already mentioned, the invention is based on a system for adjusting the tension of the belt part of a belt transmission, which is preferably infinitely variable in its translation. The voltage is set depending on the operating parameters of the vehicle engine. The essence of the invention is that a signal representing the engine torque is used as the operating parameter of the vehicle engine. This has the advantage that the belt tension can be better adapted to the actual engine torque than when using the throttle valve signal.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorge¬ sehen, daß als Betriebsparameter des Fahrzeugmotors ein das stationäre Motormoment repräsentierendes Signal herangezogen wird. Hierunter soll das zu erwartende Motormoment bei einer im wesentlichen zeitlich konstanten Motordrehzahl verstanden werden. Diese Ausgestaltung hat den Vorteil, daß diese Größe relativ einfach zu ermitteln ist und im allgemeinen in einem Motorsteuerungsgerät vorliegt.In an advantageous embodiment of the invention, it is provided that a signal representing the stationary engine torque is used as the operating parameter of the vehicle engine. This is to be understood as the engine torque to be expected at an engine speed which is essentially constant over time. This configuration has the advantage that this variable is relatively easy to determine and is generally present in an engine control unit.
Besonders vorteilhaft ist es, daß als Betriebsparameter des Fahrzeugmotors ein das dynamische Motormoment repräsentierendes Signal herangezogen wird. Hierdurch gelangt man auch während sehr dynamischer Fahrzustände, in denen sich die Motordrehzahl zeitlich relativ stark ändert, zu einer optimalen Anpassung der Bandspannung.It is particularly advantageous that the operating parameter of the vehicle engine is one that represents the dynamic engine torque Signal is used. As a result, the belt tension is optimally adjusted even during very dynamic driving conditions in which the engine speed changes relatively strongly over time.
Zur Erlangung des dynamischen Motormoments kann vorgesehen sein, daß ein die Drehzahl des Fahrzeugmotors repräsentierendes Signal erfaßt wird und das das dynamische Motormoment repräsentierende Signal unter Berücksichtigung der zeitlichen Änderung des die Drehzahl des Fahrzeugmotors repräsentierenden Signals ermittelt wird. Darüber hinaus kann zur Ermittlung des das dynamische Motormoment repräsentierenden Signals eine die Trägheit des Fahrzeugmotors repräsentierende Größe berücksichtigt werden.To obtain the dynamic engine torque, it can be provided that a signal representing the speed of the vehicle engine is detected and the signal representing the dynamic engine torque is determined taking into account the change over time of the signal representing the speed of the vehicle engine. In addition, a variable representing the inertia of the vehicle engine can be taken into account to determine the signal representing the dynamic engine torque.
Im allgemeinen sind erste Mittel (Motorsteuerungsgerät) zur Steuerung bzw. Regelung des Fahrzeugmotors und zweite Mittel (Getriebesteuerungsgerät) zur Steuerung bzw. Regelung des Um¬ schlingungsgetriebes vorgesehen. Besonders vorteilhaft ist es dann, daß das Signal, das das Motormoment repräsentiert, in den ersten Mitteln gebildet wird und den zweiten Mitteln zur Ein¬ stellung der Spannung zugeführt wird. Da eine das Motormoment repräsentierende Größe im allgemeinen im Motorsteuergerät vor¬ liegt, hat diese Variante den Vorteil, daß diese Größe, bei¬ spielsweise über eine Momentenschnittstelle (beispielsweise über ein bekanntes Bussystem) , dem Getriebesteuergerät zugeführt werden kann.In general, first means (engine control device) for controlling or regulating the vehicle engine and second means (transmission control device) for controlling or regulating the belt transmission are provided. It is then particularly advantageous that the signal, which represents the engine torque, is formed in the first means and is fed to the second means for adjusting the voltage. Since a variable representing the engine torque is generally present in the engine control unit, this variant has the advantage that this variable can be supplied to the transmission control unit, for example via a torque interface (for example via a known bus system).
Alternativ hierzu kann vorgesehen sein, daß von den ersten Mitteln (Motorsteuerung) zu den zweiten Mitteln (Getriebesteuerung) ein erstes Signal geführt wird, das die dem Fahrzeugmotor zugeführte Luftmasse bzw. Luftmenge repräsentiert. Aus diesem ersten Signal wird dann das das Motormoment repräsen¬ tierende Signal abgeleitet. Darüber hinaus kann vorgesehen sein, daß von den ersten Mitteln (Motorsteuerung) zu den zweiten Mitteln (Getriebesteuerung) neben dem ersten Signal (Luftmasse bzw. Luftmenge) ein zweites Signal geführt wird, das den Zünd¬ winkel bzw. den Zündzeitpunkt des Fahrzeugmotor repräsentiert. Aus dem ersten und zweiten Signal wird dann das das Motormoment repräsentierende Signal zur Einstellung der Spannung abgeleitet.As an alternative to this, it can be provided that a first signal is transmitted from the first means (engine control) to the second means (transmission control), which represents the air mass or air quantity supplied to the vehicle engine. The signal representing the engine torque is then derived from this first signal. In addition, it can be provided that from the first means (engine control) to the second means (transmission control) in addition to the first signal (air mass or air volume), a second signal is carried, which represents the ignition angle or the ignition timing of the vehicle engine. The signal representing the motor torque for setting the voltage is then derived from the first and second signals.
Während die zuletzt aufgeführten Varianten die Ermittlung des tatsächlich zu erwartenden Motormoments bei Ottomotoren be¬ trifft, kann beispielsweise bei Dieselmotoren vorgesehen sein, daß von dem Motorsteuergerät zu dem Getriebesteuergerät ein erstes Signal geführt wird, das die dem Fahrzeugmotor zugeführte Kraftstoffmenge repräsentiert. Aus diesem ersten Signal wird dann das das Motormoment repräsentierende Signal zur Einstellung der Spannung abgeleitet. Darüber hinaus kann vorgesehen sein, daß von dem Motorsteuergerät zu dem Getriebesteuergerät ein zweites Signal geführt wird, das den Zeitpunkt repräsentiert, zu dem der Kraftstoff eingespritzt wird. Aus dem ersten und zweiten Signal wird dann das das Motormoment repräsentierende Signal zur Einstellung der Spannung abgeleitet.While the last-mentioned variants relate to the determination of the actually expected engine torque in gasoline engines, it can be provided, for example in diesel engines, that a first signal is sent from the engine control unit to the transmission control unit, which represents the amount of fuel supplied to the vehicle engine. The signal representing the motor torque for setting the voltage is then derived from this first signal. In addition, it can be provided that a second signal is sent from the engine control unit to the transmission control unit, which represents the point in time at which the fuel is injected. The signal representing the motor torque for setting the voltage is then derived from the first and second signals.
Die Spannung des Umschlingungsteils geschieht mittels einer Druckbeaufschlagung wenigstens einer Druckkammer.The belt part is tensioned by pressurizing at least one pressure chamber.
Zusammenfassend kann gesagt werden, daß die Erfindung ein Ver¬ fahren zur Einstellung der Spannung des Umschlingungsmittels, bei dem eine höhere Genauigkeit der Abschätzung des zu erwartenden Motordrehmoments und somit eine bessere Dosierung der Spannung erreicht wird, beinhaltet. Zu diesem Zweck werden von der MotorSteuerung, die den Verbrennungsmotor steuert, Signale zur Verfügung gestellt, die eine genaue Abschätzung des Motor¬ drehmoments ermöglichen. In einer ersten Ausführungsform kann dieses Signal z.B. ein in der Motorsteuerung gebildeter Schätz¬ wert für das zu erwartende Motordrehmoment sein. In einer zweiten Ausführungsform können diese Signale die Menge der vom Verbrennungsmotor angesaugten Luftmasse (oder die dem Motor zu- geführte Kraftstoffmenge) , bzw. ein daraus abgeleitetes Signal, und der Zündwinkel des Verbrennungsmotors (oder der Einspritz¬ zeitpunkt) sein. Durch die genauere Abschätzung des Motordreh¬ moments kann die Spannung des Umschlingungsmittels verringert werden, so daß sich ein verbesserter Getriebewirkungsgrad ergibt.In summary, it can be said that the invention includes a method for adjusting the tension of the belt means, in which a higher accuracy of the estimation of the expected engine torque and thus a better dosage of the tension is achieved. For this purpose, signals are made available by the engine control unit, which controls the internal combustion engine, which enable an exact estimation of the engine torque. In a first embodiment, this signal can be, for example, an estimated value for the expected engine torque, which is formed in the engine control. In a second embodiment, these signals can be the amount of the air mass drawn in by the internal combustion engine (or the amount of fuel supplied to the engine), or a signal derived therefrom, and the ignition angle of the internal combustion engine (or the time of injection). By more precisely estimating the engine torque, the tension of the belt means can be reduced, so that there is an improved transmission efficiency.
Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.Further advantageous refinements can be found in the subclaims.
Zeichnungdrawing
Die Figuren 1 und 3 zeigen als Blockschaltbild den Stand der Technik, während die Figuren 2, 4a, 4b, 5a, 5b und 6 Block¬ schaltbilder der Erfindung offenbaren.1 and 3 show the prior art as a block diagram, while FIGS. 2, 4a, 4b, 5a, 5b and 6 disclose block diagrams of the invention.
AusführungsbeispielEmbodiment
Die Erfindung soll im folgenden anhand verschiedener Aus- führungsbeispiele dargestellt werden.The invention is to be illustrated below with the aid of various exemplary embodiments.
Hierzu zeigt zunächst die Figur 2 ein Übersichtsblockschaltbild, wobei die schon anhand der Figur 1 beschriebenen Blöcke mit den selben Bezugszeichen versehen sind.2 shows an overview block diagram, the blocks already described with reference to FIG. 1 being given the same reference numerals.
Die Figur 2 zeigt ein stufenloses Umschlingungsgetriebe mit der GetriebeSteuerung (18), die über die Kopplung (23) mit der Motorsteuerung (22) , welche den Verbrennungsmotor (11) steuert, verbunden ist. Gegenüber der Figur (1) erfolgt eine Kopplung (23) von Motorsteuerung (22) und Getriebesteuerung (18) mit der ein oder mehrere Signale von der Motorsteuerung (22) zur Getrie¬ besteuerung (18) übertragen werden können.FIG. 2 shows a continuously variable belt transmission with the transmission control (18) which is connected via the coupling (23) to the engine control (22) which controls the internal combustion engine (11). Compared to FIG. 1, there is a coupling (23) of engine control (22) and transmission control (18) with which one or more signals can be transmitted from engine control (22) to transmission control (18).
Zur Steuerung des Motors (11) erhält die Motorsteuerung (22) über die Verbindungen 116, 119 und 124 verschiedene Signale über den Betriebszustand des Motors. Über die Verbindungen 125 und 130 wird Stellglieder des Motors angesteuert. Hierauf soll anhand der Figur 3 näher eingegangen werden.To control the motor (11), the motor control (22) receives various signals via the connections 116, 119 and 124 about the operating state of the motor. Via connections 125 and 130 actuators of the motor are controlled. This will be discussed in more detail with reference to FIG. 3.
Die Figur 3 zeigt ein mögliches Ausführungsbeispiel der Erfassung der Signale (119) , (124) und (116) und der Ansteuerung des Verbrennungsmotors (11) mit den Signalen (125) und (130) . Abgebildet ist ein Zylinder des Verbrennungsmotors (11) . Mit dem Drehzahlsensor (19) wird das Signal (119) , die Drehzahl Nmot des Motors, gemessen. Durch einen Sensor (24) (Luftmassenmesser) wird die Masse QL der in das Saugrohr (29) angesaugten Luft (26) gemessen und als Signal (124) an die Motorsteuerung (22) weiter¬ geleitet. Die Motorsteuerung (22) betätigt mit dem Signal (125) eine Einrichtung (25) zur Zumessung des Kraftstoffs (27) . Dieser kann dabei z.B. in das Saugrohr (29) gespritzt werden. Die Ein¬ richtung (25) kann z.B. ein Kraftstoffeinspritzventil sein. Weiterhin erfolgt von der Motorsteuerung (22) aus mit dem Signal (130) die Ansteuerung αz der Zündkerzen (30) zur Zündung des Kraftstoff-Luft-Gemischs im Inneren des Brennraumes (31) des Verbrennungsmotors (11) .Figure 3 shows a possible embodiment of the detection of signals (119), (124) and (116) and the control of the internal combustion engine (11) with the signals (125) and (130). A cylinder of the internal combustion engine (11) is shown. The signal (119), the speed N mot of the engine, is measured with the speed sensor (19). The mass QL of the air (26) sucked into the intake manifold (29) is measured by a sensor (24) (air mass meter) and passed on as a signal (124) to the engine control (22). The motor control (22) actuates a device (25) for metering the fuel (27) with the signal (125). This can, for example, be injected into the suction pipe (29). The device (25) can be, for example, a fuel injection valve. Furthermore, from the engine control unit (22), the signal (130) is used to control α z of the spark plugs (30) to ignite the fuel-air mixture in the interior of the combustion chamber (31) of the internal combustion engine (11).
Die Motorsteuerung (22) liefert u.a. Signale (125) und (130) zur Ansteuerung des Verbrennungsmotors (11), die u.a. abhängig von dem Signal (124) , das die Masse der vom Verbrennungsmotors (11) angesaugten Luft angibt, ist. Mit einem Signal (119) wird die Drehzahl Nmorj; des Verbrennungsmotors und mit dem Signal (116) die Winkellage α^ der Drosselklappe der Motorsteuerung (22) zu¬ geleitet.The engine control (22) provides, among other things, signals (125) and (130) for controlling the internal combustion engine (11), which is dependent, among other things, on the signal (124) which indicates the mass of the air drawn in by the internal combustion engine (11). With a signal (119) the speed N morj; of the internal combustion engine and with the signal (116) the angular position α ^ of the throttle valve to the engine control (22).
In einer ersten Ausführungsform der Erfindung ermittelt die Motorsteuerung (22) das zu erwartende stationäre Motordrehmoment Mmot,stat und überträgt das Ergebnis als Signal (123a) über die Kopplung (23) zur Getriebesteuerung (18) . Verfahren zur Berech¬ nung des zu erwartenden Drehmoments aus den Signalen (119, Nmot) , (124, angesaugte Luft Q^) , (116, α^) , (125, Einspritzmenge) und (130, Zündzeitpunkt αz) entsprechen dem Stand der Technik wie er der DE-OS 42 39 711 zu entnehmen ist. Weiterhin kann die Motordrehzahl Nmot der Getriebesteuerung (18) zugeführt werden.In a first embodiment of the invention, the engine control (22) determines the expected stationary engine torque M mot, stat and transmits the result as a signal (123a) via the coupling (23) to the transmission control (18). Methods for calculating the expected torque from the signals (119, N mot ), (124, intake air Q ^), (116, α ^), (125, injection quantity) and (130, ignition timing α z ) correspond to this State of the art like him DE-OS 42 39 711 can be seen. Furthermore, the engine speed N mot can be fed to the transmission control (18).
In einer zweiten Ausführungsform der Erfindung überträgt die Motorsteuerung ein aus dem Signal (124, angesaugte Luft QL) und dem Motordrehzahlsignal Nmot (119) durch Division von (124, QL) durch (119, Nmot) gebildetes Lastsignal (123b, Q__/Nmot) an d:Le Getriebesteuerung (18) . Weiterhin wird auch der Zündzeitpunkt αz als Signal (123c) von der Motorsteuerung (22) über die Kopplung (23) an die Getriebesteuerung (18) übertragen.In a second embodiment of the invention, the engine controller transmits a load signal (123b, Q__) formed from the signal (124, intake air QL) and the engine speed signal N mot (119) by dividing (124, Q L ) by (119, N mot ) / N mot) an d: Le transmission control (18). Furthermore, the ignition timing α z is also transmitted as a signal (123c) from the engine control (22) via the coupling (23) to the transmission control (18).
Bei beiden Ausführungsformen können auch die Motordrehzahl (119, Nmot) und die Winkellage (116, α^k) der Drosselklappe (15) über die Kopplung (23) von der Motorsteuerung (22) zur Getriebe¬ steuerung (18) übertragen werden.In both embodiments, the engine speed (119, N mot ) and the angular position (116, α ^ k) of the throttle valve (15) can also be transmitted from the engine control (22) to the transmission control (18) via the coupling (23).
Die Figur 4a zeigt den Teil der Getriebesteuerung (18) , der für die zweite Ausführungsform der Erfindung relevant ist. Wie schon erwähnt wird der Getriebesteuerung (18) über die Kopplung (23) von der Motorsteuerung (22) das zu erwartende stationäre Motor¬ drehmoment Mmot stat -ls Sign l (123a) und die Motordrehzahl Nmot als Signal 119 zugeführt. Das stationäre Motordrehmoment Mmot s at w:Lrd entweder dem Block 151 ' oder direkt (unter Um¬ gehung des in der Figur 4a gezeigten Blocks 151') dem Block (150) zugeleitet.FIG. 4a shows the part of the transmission control (18) which is relevant for the second embodiment of the invention. As already mentioned, the transmission control (18) is supplied with the expected motor torque M mot s tat -l s Sign l (123a) and the engine speed N mot as signal 119 by the motor control (22) via the coupling (23). The stationary engine torque M mot s at w: Lr d is either supplied to block 151 'or directly (bypassing block 151' shown in FIG. 4a) to block (150).
Im weiteren wird die Variante beschrieben, bei der der Block (151') vorgesehen ist. Bei dieser Variante wird berücksichtigt, daß das in der Motorsteuerung (22) gebildete Motormoment Mmot stat dem momentanen stationären Motormoment entspricht, also dem Motormoment bei im wesentlichen zeitlich konstanter Motordrehzahl. Um das "dynamische" Motormoment zu erhalten wird zunächst die Motordrehzahl Nmot im Block (1516') zeitlich diffe¬ renziert zu der zeitlichen Änderung Nmot der Motordrehzahl, dem Motordrehzahlgradienten. Im Block (1517 ') wird die Trägheit des Motors (11) berücksichtigt. Dies kann beispielsweise dadurch ge¬ schehen, indem der Motordrehzahlgradienten Nmot mit einem für den jeweiligen Motor (11) typischen Trägheitswert Imot multipli¬ ziert wird. Die so erhaltene Größe (Nmot*Imot) wird dem statio¬ nären Motormoment Mmot stat im Block (1515') überlagert zu dem Motormoment Mmot.The variant in which the block (151 ') is provided is described below. In this variant, it is taken into account that the engine torque M mot stat formed in the engine control (22) corresponds to the instantaneous stationary engine torque, that is to say the engine torque at an essentially constant engine speed. In order to obtain the "dynamic" engine torque, the engine speed N mot is first differentiated in time in block (1516 ') from the change in time N mo t of the engine speed, the engine speed gradient. In block (1517 ') the inertia of the Motors (11) considered. This can, for example Schehen ge by the engine speed gradient N mo t w ith a typical for the respective motor (11) inertia value I mo t is multipli¬ sheet. The size thus obtained (N mot * I m OT) is superimposed to mot the engine torque M which statio¬ ary engine torque M stat mo t i m block (1515 ').
Das Motormoment Mmot (oder, je nach Variante, das stationäre Motormoment mot(S at) wird dem Block (150) zugeführt. Im Block (150) wird dann abhängig von dem (stationären) Motormoment M (Mmot,stat>' der Primärdrehzahl Nprim (Drehzahlsensor 20) und der Sekundärdrehzahl Nse]ζ (Drehzahlsensor 21) der Solldruck °k für die Sekundärseite (Olkammer 6) gebildet. Die Einstellung des gewünschten abtriebsseitigen Öldrucks mit elektrischen und hydraulischen Mitteln kann z.B. nach der eingangs erwähnten EP,A1,0 451 887 erfolgen.The engine torque M mot (or, depending on the variant, the stationary engine torque mot (S at) is fed to block (150). In block (150), depending on the (stationary) engine torque M ( M mot, stat>' the primary speed N pr i m (speed sensor 20) and the secondary speed N se ] ζ (speed sensor 21) the setpoint pressure ° k for the secondary side (oil chamber 6) .. The setting of the desired output-side oil pressure with electrical and hydraulic means can, for example, after mentioned EP, A1.0 451 887 take place.
Die Figur 4b zeigt den Teil der Getriebesteuerung (18) , der für die zweite Ausführungsform der Erfindung relevant ist. Wie schon erwähnt wird der Getriebesteuerung (18) über die Kopplung (23) von der Motorsteuerung (22) das Lastsignal (123b, QL/Nmo ) , der Zündzeitpunkt αz als Signal (123c) und die momentane Motordreh¬ zahl (Signal 119, Nmot) zugeführt. Abhängig von diesen Signalen wird im Block (151) je nach Ausführungsvariante das stationäre Motormoment Mmot stat °der das dynamische Motormoment Mmot als Signal 123a gebildet und dem Block (150) zugeführt. Im Block (150) wird dann abhängig von dem stationären Motormoment Mmot,stat' der Primardrehzahl Nprj_m (Drehzahlsensor 20) und der Sekundärdrehzahl Nse]ζ (Drehzahlsensor 21) der Solldruck f°ι7 für die Sekundärseite (Olkammer 6) gebildet. Die Einstellung des ge¬ wünschten abtriebsseitigen Öldrucks mit elektrischen und hydrau¬ lischen Mitteln kann z.B. nach der eingangs erwähnten EP,A1,0 451 887 erfolgen. Die nähere Ausgestaltung des Blocks (151) wird anhand der Figur 5a beschrieben. Hierzu zeigt die Figur 5 zunächst den Block Momentenberechnung (1512) zur Berechnung des zu erwartenden stationären Motordrehmoments (Mmot stat' Signal 123a) . Aus dem Lastsignal (Q]_/Nmot' Signal 123b) und der Motordrehzahl (Nmot, Signal 119) wird mit dem Block (1512) , der eine Kennfeldberech¬ nung enthält, das Signal (1513) berechnet. In einem zweiten Block (1514) wird aus dem Signal (1513) und dem Zündzeitpunkt (αz, Signal 123c) das zu erwartende stationäre Motordrehmoment (Mmot,stat' Signal 123a) berechnet.FIG. 4b shows the part of the transmission control (18) that is relevant for the second embodiment of the invention. As already mentioned, the transmission control (18) via the coupling (23) from the engine control (22) receives the load signal (123b, Q L / N mo ), the ignition timing α z as a signal (123c) and the current engine speed (signal 119, N mot ). Depending on these signals in the block (151), depending on the embodiment, the stationary engine torque M mot stat ° of the dynamic engine torque M mot is formed as a signal 123a and supplied to the block (150). At block (150) is then mot dependent on the steady-state engine torque M, the primary revolution speed Np r j_ m (rotational speed sensor 20) and the secondary rotational speed N s] ζ (rotational speed sensor 21), the target pressure f ° ι stat '7 (for the secondary side oil chamber 6 ) educated. The desired output-side oil pressure can be set by electrical and hydraulic means, for example according to EP, A1.0 451 887 mentioned at the beginning. The more detailed configuration of the block (151) is described with reference to FIG. 5a. For this purpose, FIG. 5 first shows the block torque calculation (1512) for calculating the expected stationary engine torque (M mot stat 'signal 123a). The signal (1513) is calculated from the load signal (Q] _ / N mot 'signal 123b) and the engine speed (N mot , signal 119) using block (1512), which contains a map calculation. In a second block (1514) the expected stationary engine torque ( M mot, stat 'signal 123a) is calculated from the signal (1513) and the ignition point (α z , signal 123c).
Eine Ausführungsvariante des Blocks (151) zeigt die Figur 5b. Bei dieser Variante wird berücksichtigt, daß das in den Blöcken (1512) und (1514) gebildete Motormoment Mmot stat dem momentanen stationären Motormoment entspricht, also dem Motormoment bei Konstanthalten der momentanen Motordrehzahl. Um das "dynamische" Motormoment zu erhalten wird zunächst die Motordrehzahl Nmot im Block (1516) zeitlich differenziert zu der zeitlichen Änderung Nmot der Motordrehzahl, dem Motordrehzahlgradienten. Im Block (1517) wird die Trägheit des Motors (11) berücksichtigt. Dies kann beispielsweise dadurch geschehen, indem der Motordrehzahl- gradienten Nmot mit einem für den jeweiligen Motor (11) typi¬ schen Trägheitswert Imot multipliziert wird. Die so erhaltene Größe ( mo *Imot) wird dem stationären Motormoment Mmot stat i™ Block (1515) überlagert zu dem Motormoment Mmot.A variant of the block (151) is shown in FIG. 5b. This variant takes into account that the engine torque M mo t stat formed in blocks (1512) and (1514) corresponds to the instantaneous stationary engine torque, that is to say the engine torque when the instantaneous engine speed is kept constant. In order to obtain the "dynamic" engine torque, the engine speed N mot is first differentiated in time in block (1516) from the time change N mot of the engine speed, the engine speed gradient. In block (1517) the inertia of the motor (11) is taken into account. This can for example be done by the gradient of the engine speed N m ot is connected to a respective for the motor (11) typi¬'s inertia value I mo t multiplied. The variable ( mo * I mo t) thus obtained is superimposed on the stationary engine torque M mot stat i ™ block (1515) to the engine torque M mot .
Die nähere Ausgestaltung des Blocks (150, Bandspannungsregler) wird anhand der Figur 6 beschrieben. Hierzu zeigt die Figur 6 ein Blockschaltbild zur Berechnung des benötigten Drucks p S6fJK. in derThe detailed design of the block (150, belt tension regulator) is described with reference to FIG. 6. 6 shows a block diagram for calculating the required pressure p S6fJK. in the
Olkammer (6) zur Einstellung der Spannung des Umschlingungs¬ mittels (1) in der ersten und zweiten Ausführungsform der Erfin¬ dung. Mit dem Block (15006) wird das Signal Nprim/Nmot als Quotient aus der Primärdrehzahl Nprim und der Motordrehzahl Nmot gebildet. Das Signal prim/Nmot und das erwartete Motormoment Mmot wird in dem Block (15005) mittels einer Kennfeldberechnung in das erwartete Primärdrehmoment Mprim umgerechnet. In dem Block (15007) wird die Drehzahlübersetzung iu des stufenlosen Umschlingungsgetriebes als Quotient der Primärdrehzahl Nprim und der Sekundärdrehzahl Ngg^ zu iü=Nprim/Nsek berechnet. In dem Block (15008) wird mit einem Kennfeld aus dem zu erwartenden Primärdrehmoment prim und der Drehzahlübersetzung iu ein minimaler Solldruck Pmin berechnet. Zu dem minimalen Solldruck Pmin wird in dem Block (15009) ein Reservedruck Pr addiert. Das resultierende Signal Pres wird in dem Block (15010) mit einem speziellen Tiefpaß gefiltert. Der Filter wirkt jedoch nur, wenn das Signal Pres kleiner wird. Wird das Signal Pres größer, dann folgt das Ausgangssignal P^1 des Tiefpaßfilters (15010) unmittelbar dem Signal Pres-Oil chamber (6) for adjusting the tension of the belt means (1) in the first and second embodiment of the invention. With the block (15006), the signal Np r i m / N mot is formed as a quotient of the primary speed N pr i m and the engine speed N mot . The signal p i r m / N mot and the estimated engine torque M mot is converted in the block (15005) by a map calculation in the expected primary torque Mp r i m. In block (15007), the speed ratio i u of the continuously variable belt transmission is calculated as the quotient of the primary speed Np r i m and the secondary speed N gg ^ zu iü = N prim / N sek. In the block (15008) is a map of the expected primary torque p r i m and the speed ratio i u, a minimum target pressure P m i n is calculated. To the minimum target pressure P m i n a reserve pressure P r is added in the block (15009). The resulting signal P res is filtered in block (15010) with a special low pass. However, the filter only works if the signal P res becomes smaller. If the signal P res becomes larger, then the output signal P ^ 1 of the low-pass filter (15010) immediately follows the signal P re s-
In der Block (15012) wird aus der Sekundärdrehzahl Ngg^ mit einem Kennfeld ein Zentrifugalanpreßdruck Pz berechnet. Dieser Zentrifugalanpreßdruck Pz wird in dem Block (15011) von dem Signal ptllt subtrahiert. Die Differenz ΔP wird in dem Block (15013) auf minimale und maximale Werte begrenzt. Als Resultat erhält man mit dem Signal P °k den erforderlichen Druck in der Olkammer (6) . In block (15012), a centrifugal pressure P z is calculated from the secondary speed Ng g ^ with a map. This centrifugal contact pressure P z is subtracted from the signal p tllt in block (15011). The difference ΔP is limited in block (15013) to minimum and maximum values. As a result, the required pressure in the oil chamber (6) is obtained with the signal P ° k .

Claims

Ansprüche Expectations
1. System zur Einstellung der Spannung des Umschlingungsteils (1) eines, vorzugsweise in seiner Übersetzung stufenlos ver¬ stellbaren, einem Fahrzeugmotor (11) nachgelagerten Um¬ schlingungsgetriebes, wobei die Spannung abhängig von Betriebs¬ parametern des Fahrzeugmotors (11) eingestellt wird, dadurch ge¬ kennzeichnet, daß als Betriebsparameter des Fahrzeugmotors (ll) ein das Motormoment repräsentierendes Signal (Mmot stat' Mmot' herangezogen wird.1. System for adjusting the tension of the belt part (1) of a belt transmission, which is preferably infinitely variable in its translation, downstream of a vehicle engine (11), the tension being set as a function of operating parameters of the vehicle engine (11), thereby ge indicates that a signal representing the engine torque (M mot stat ' M mot') is used as the operating parameter of the vehicle engine (II).
2. System nach Anspruch 1, dadurch gekennzeichnet, daß als Be¬ triebsparameter des Fahrzeugmotors (11) ein das stationäre Motormoment repräsentierendes Signal (Mmot stat) herangezogen wird.2. System according to claim 1, characterized in that a signal representing the stationary engine torque (M mot stat) is used as the operating parameter of the vehicle engine (11).
3. System nach Anspruch 1, dadurch gekennzeichnet, daß als Be¬ triebsparameter des Fahrzeugmotors (11) ein das dynamische Motormoment repräsentierendes Signal (Mmot) herangezogen wird.3. System according to claim 1, characterized in that a signal representing the dynamic engine torque (M mot ) is used as the operating parameter of the vehicle engine (11).
4. System nach Anspruch 3, dadurch gekennzeichnet, daß ein die Drehzahl des Fahrzeugmotors (11) repräsentierendes Signal (Nmo ) erfaßt wird und das das dynamische Motormoment repräsentierende Signal (Mmot) unter Berücksichtigung der zeitlichen Änderung (Nmot) des die Drehzahl des Fahrzeugmotors repräsentierenden Signals ermittelt wird. 4. System according to claim 3, characterized in that a signal representing the speed of the vehicle engine (11) (N mo ) is detected and the signal representing the dynamic engine torque (M mot ) taking into account the temporal change (N mot ) of the speed of the vehicle engine representative signal is determined.
5. System nach Anspruch 4, dadurch gekennzeichnet, daß zur Er¬ mittlung des das dynamische Motormoment repräsentierenden Signals5. System according to claim 4, characterized in that for determining the signal representing the dynamic engine torque
(Mmot) eine die Trägheit des Fahrzeugmotors (11) repräsentierende Größe (Imot) berücksichtigt wird.(M mot ) a variable (I m ot) representing the inertia of the vehicle engine (11) is taken into account.
6. System nach Anspruch 1, dadurch gekennzeichnet, daß -erste Mittel (22) zur Steuerung bzw. Regelung des Fahrzeug¬ motors (11) und zweite Mittel (18) zur Steuerung bzw. Regelung des Umschlingungsgetriebes vorgesehen sind und6. System according to claim 1, characterized in that first means (22) for controlling or regulating the vehicle engine (11) and second means (18) for controlling or regulating the belt transmission are provided and
-das das Motormoment repräsentierende Signal (Mmo stat' Mmot^ in den ersten Mitteln (22) zur Abschätzung des erwarteten Motormoments gebildet wird und den zweiten Mitteln (18) zur Einstellung der Spannung zugeführt wird.- The signal representing the engine torque (M mo stat ' M mot ^ is formed in the first means (22) for estimating the expected engine torque and is fed to the second means (18) for adjusting the voltage.
7. System nach Anspruch 1, dadurch gekennzeichnet, daß -erste Mittel (22) zur Steuerung bzw. Regelung des Fahrzeug¬ motors (11) und zweite Mittel (18) zur Steuerung bzw. Regelung des Umschlingungsgetriebes vorgesehen sind und7. System according to claim 1, characterized in that first means (22) for controlling or regulating the vehicle engine (11) and second means (18) for controlling or regulating the belt transmission are provided and
-von den ersten Mitteln (22) zu den zweiten Mitteln (18) ein erstes Signal (Qj_,) zugeführt wird, das die dem Fahrzeugmotor (11) zugeführte Luftmasse bzw. Luftmenge repräsentiert und aus dem ersten Signal (QL) das das Motormoment repräsentierende Signal (Mmot,stat' Mmot^ 2ur Einstellung der Spannung abge¬ leitet wird.from the first means (22) to the second means (18) a first signal (Q j _,) is supplied, which represents the air mass or air quantity supplied to the vehicle engine (11) and from the first signal (QL) that Signal representing engine torque (Mmot, stat ' M mot ^ 2ur der Setting the voltage is derived.
8. System nach Anspruch 7, dadurch gekennzeichnet, daß8. System according to claim 7, characterized in that
-von den ersten Mitteln (22) zu den zweiten Mitteln (18) neben dem ersten Signal (QL) ein zweites Signal (αz) zugeführt wird, das den Zündwinkel bzw. den Zündzeitpunkt des Fahrzeugmotor (11) repräsentiert undfrom the first means (22) to the second means (18) in addition to the first signal (Q L ) a second signal (α z ) is supplied, which represents the ignition angle or the ignition timing of the vehicle engine (11) and
-aus dem ersten und zweiten Signal das das Motormoment repräsen¬ tierende Signal zur Einstellung der Spannung abgeleitet wird. the signal representing the motor torque for setting the voltage is derived from the first and second signals.
9. System nach Anspruch 1, dadurch gekennzeichnet, daß -erste Mittel (22) zur Steuerung bzw. Regelung des Fahrzeug¬ motors (11) und zweite Mittel (18) zur Steuerung bzw. Regelung des Umschlingungsgetriebes vorgesehen sind und9. System according to claim 1, characterized in that first means (22) for controlling or regulating the vehicle engine (11) and second means (18) for controlling or regulating the belt transmission are provided and
-von den ersten Mitteln (22) zu den zweiten Mitteln (18) ein erstes Signal zugeführt wird, das die dem Fahrzeugmotor zuge¬ führte KraftStoffmenge repräsentiert, unda first signal is supplied from the first means (22) to the second means (18), which represents the amount of fuel supplied to the vehicle engine, and
-aus dem ersten Signal das das Motormoment repräsentierende Signal zur Einstellung der Spannung abgeleitet wird.the signal representing the engine torque for setting the voltage is derived from the first signal.
10. System nach Anspruch 9, dadurch gekennzeichnet, daß -von den ersten Mitteln (22) zu den zweiten Mitteln (18) ein zweites Signal zugeführt wird, das den Zeitpunkt repräsentiert, zu dem der Kraftstoff eingespritzt wird, und -aus dem ersten und zweiten Signal das das Motormoment repräsen¬ tierende Signal zur Einstellung der Spannung abgeleitet wird.10. System according to claim 9, characterized in that a second signal is supplied from the first means (22) to the second means (18) representing the point in time at which the fuel is injected, and -from the first and second signal, the signal representing the engine torque for setting the voltage is derived.
11. System nach Anspruch 1, dadurch gekennzeichnet, daß die Spannung des Umschlingungsteils (1) mittels einer Druckbeauf¬ schlagung wenigstens einer Druckkammer (5.6) geschieht. 11. System according to claim 1, characterized in that the tension of the belt part (1) by means of a Druckbeauf¬ impacting at least one pressure chamber (5.6).
PCT/DE1995/001856 1994-12-28 1995-12-23 System for adjusting the tension of the contact part of a belt drive mechanism WO1996020364A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP95942645A EP0797742B1 (en) 1994-12-28 1995-12-23 System for adjusting the tension of the contact part of a belt drive mechanism
DE59505797T DE59505797D1 (en) 1994-12-28 1995-12-23 SYSTEM FOR ADJUSTING THE TENSION OF THE BELT PART OF A BELT TRANSMISSION
US08/860,650 US6050913A (en) 1994-12-28 1995-12-23 System for adjusting the tension of the belt drive of a belt transmission
JP8520125A JPH10512654A (en) 1994-12-28 1995-12-23 Device for adjusting the tension of the winding member of the winding transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4447034.7 1994-12-28
DE4447034 1994-12-28

Publications (1)

Publication Number Publication Date
WO1996020364A1 true WO1996020364A1 (en) 1996-07-04

Family

ID=6537378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/001856 WO1996020364A1 (en) 1994-12-28 1995-12-23 System for adjusting the tension of the contact part of a belt drive mechanism

Country Status (6)

Country Link
US (1) US6050913A (en)
EP (1) EP0797742B1 (en)
JP (1) JPH10512654A (en)
KR (1) KR100362955B1 (en)
DE (2) DE59505797D1 (en)
WO (1) WO1996020364A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890763A3 (en) * 1997-07-11 2000-11-15 Nissan Motor Company, Limited Control system for continuously variable transmission

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667994B1 (en) * 1999-06-12 2007-01-15 로베르트 보쉬 게엠베하 Apparatus for adjusting the tension of the wound part of a belt drive transmission
JP2003504576A (en) 1999-07-10 2003-02-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング System for hydraulically adjusting CVT gear ratio
DE10046720A1 (en) * 2000-09-21 2002-05-29 Ina Schaeffler Kg Internal combustion engine has variable, preferably electro-rheological damper for tension drive element or chain controlled by controller depending on number of active cylinders
DE10163842B4 (en) 2001-12-22 2020-06-18 Robert Bosch Gmbh Device and method for determining the transmission ratio of a continuously variable belt transmission and control circuit
DE10164490A1 (en) 2001-12-29 2003-07-10 Bosch Gmbh Robert Control circuit for continuously variable drive transmission for automobile, provides control signal for transmission ratio dependent on required velocity calculated from monitored operating parameters
DE10246422B4 (en) * 2002-03-16 2021-02-04 Robert Bosch Gmbh Method for setting a torque output of a drive train of a motor vehicle
DE102008001128A1 (en) * 2008-04-11 2009-10-15 Robert Bosch Gmbh Adaptation of a stationary maximum torque of an internal combustion engine
US10514095B2 (en) * 2015-09-09 2019-12-24 Jatco Ltd Control device and control method for continuously variable transmission mechanism for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736301A (en) * 1984-06-01 1988-04-05 Toyota Jidosha Kabushiki Kaisha Control device and method in continuously variable transmission system for vehicle
DE3812673A1 (en) * 1987-04-20 1988-11-10 Mitsubishi Motors Corp ENGINE TORQUE DETECTION METHOD AND CONTROL AND / OR CONTROL METHOD USING THIS FOR AN AUTOMATIC TRANSMISSION
JPH01136837A (en) * 1987-11-19 1989-05-30 Daihatsu Motor Co Ltd Control device for v-belt type continuously variable transmission
EP0510590A1 (en) * 1991-04-19 1992-10-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for an internal combustion engine and a continuously variable transmission
US5243881A (en) * 1991-02-04 1993-09-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for continuously variable transmission connected to lean-burn engine
DE4239711A1 (en) * 1992-11-26 1994-06-01 Bosch Gmbh Robert Vehicle control by exchange of data between subsystems via bus - requires control of driving unit by parameter evaluation w.r.t. quantity representing output power or capacity of engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69108754T2 (en) * 1990-02-01 1995-08-17 Toyota Motor Co Ltd Hydraulic control system of a continuously variable belt transmission with belt pressure optimization.
NL9000860A (en) * 1990-04-12 1991-11-01 Doornes Transmissie Bv ELECTRONICALLY CONTROLLED CONTINUOUSLY VARIABLE TRANSMISSION.
JP2626256B2 (en) * 1990-12-28 1997-07-02 トヨタ自動車株式会社 Hydraulic control device for belt-type continuously variable transmission for vehicles
DE19519162A1 (en) * 1995-05-24 1996-11-28 Bosch Gmbh Robert Hydraulic emergency control for a transmission-dependent change of the hydraulic oil pressures in the hydraulic conical pulley axial adjustments of a continuously variable belt transmission
JP3259826B2 (en) * 1997-01-24 2002-02-25 愛知機械工業株式会社 Pulley oil passage structure of belt type continuously variable transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736301A (en) * 1984-06-01 1988-04-05 Toyota Jidosha Kabushiki Kaisha Control device and method in continuously variable transmission system for vehicle
DE3812673A1 (en) * 1987-04-20 1988-11-10 Mitsubishi Motors Corp ENGINE TORQUE DETECTION METHOD AND CONTROL AND / OR CONTROL METHOD USING THIS FOR AN AUTOMATIC TRANSMISSION
JPH01136837A (en) * 1987-11-19 1989-05-30 Daihatsu Motor Co Ltd Control device for v-belt type continuously variable transmission
US5243881A (en) * 1991-02-04 1993-09-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for continuously variable transmission connected to lean-burn engine
EP0510590A1 (en) * 1991-04-19 1992-10-28 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device for an internal combustion engine and a continuously variable transmission
DE4239711A1 (en) * 1992-11-26 1994-06-01 Bosch Gmbh Robert Vehicle control by exchange of data between subsystems via bus - requires control of driving unit by parameter evaluation w.r.t. quantity representing output power or capacity of engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 385 (M - 864) 25 August 1989 (1989-08-25) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890763A3 (en) * 1997-07-11 2000-11-15 Nissan Motor Company, Limited Control system for continuously variable transmission

Also Published As

Publication number Publication date
EP0797742B1 (en) 1999-04-28
EP0797742A1 (en) 1997-10-01
KR987001071A (en) 1998-04-30
DE59505797D1 (en) 1999-06-02
US6050913A (en) 2000-04-18
KR100362955B1 (en) 2003-03-10
DE19548722A1 (en) 1996-07-04
JPH10512654A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
DE4327654C2 (en) Vehicle speed control device
EP0853723B1 (en) Process and device for controlling an internal combustion engine
DE10224580B4 (en) Method and powertrain system for a hybrid vehicle with an automatic transmission
DE2413227C3 (en) Control device for the air-fuel mixture ratio of an internal combustion engine
EP0771943B1 (en) Method and apparatus for controlling a diesel engine for vehicles
DE19912506A1 (en) Control system for automatic drive for controlling at least one clutch using oil pressure of automatic gear box connected with engine output shaft which engages or disengages to carry out gear change
DE102006034576A1 (en) Improve driveline shift quality on powertrains equipped with a variable valve train engine
DE10236291A1 (en) Method for controlling clutch slip in motor vehicle drive, involves using clutch differential speed as regulating variable
DE10120293B4 (en) Line pressure control device for a continuously variable transmission
DE19501299B4 (en) Method and device for controlling an internal combustion engine of a vehicle
DE4235827A1 (en) Output power control for motor vehicle drive - requires at least one element influencing gear ratio between engine and wheel drive and having at least one controllable converter unit
EP0906199B1 (en) Adaptive control method of a clutch system
DE19644881A1 (en) Process for controlling vehicle drive train output torque
EP0797742B1 (en) System for adjusting the tension of the contact part of a belt drive mechanism
DE10206155A1 (en) Adaptation of a driver's request to atmospheric conditions
DE60038462T2 (en) ENGINE IDLE CONTROL
DE10328786A1 (en) Method for operating a motor vehicle
DE4405340B4 (en) Method and device for adjusting the speed of a drive unit of a vehicle in idle
DE4335726B4 (en) Method and device for controlling the drive power of a vehicle
DE19751100A1 (en) Torque fluctuations suppression arrangement for combustion engine
EP1432899A1 (en) Method and device for operating the drive motor of a vehicle
DE4235881B4 (en) Method and device for controlling the output power of a drive unit of a vehicle
EP1474598B1 (en) Device for controlling the torque of the drive unit of a vehicle
EP3803086A1 (en) Method for operating an internal combustion engine, and corresponding internal combustion engine
DE102005045924A1 (en) Stopping or not allowing signals to increase a throttle valve opening

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995942645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019970704364

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 520125

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08860650

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995942645

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970704364

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995942645

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970704364

Country of ref document: KR