WO1996020105A1 - Means and method for dynamic trim of a fast, planing or semi-planing boathull - Google Patents

Means and method for dynamic trim of a fast, planing or semi-planing boathull Download PDF

Info

Publication number
WO1996020105A1
WO1996020105A1 PCT/SE1995/001582 SE9501582W WO9620105A1 WO 1996020105 A1 WO1996020105 A1 WO 1996020105A1 SE 9501582 W SE9501582 W SE 9501582W WO 9620105 A1 WO9620105 A1 WO 9620105A1
Authority
WO
WIPO (PCT)
Prior art keywords
hull
plate
planing
trimming
mechanism according
Prior art date
Application number
PCT/SE1995/001582
Other languages
French (fr)
Inventor
Stanislav D. Pavlov
Serguej A. Porodnikov
Clas Norrstrand
Hans Eriksson
Original Assignee
Marine Technology Development Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Technology Development Ltd. filed Critical Marine Technology Development Ltd.
Priority to AU43617/96A priority Critical patent/AU4361796A/en
Publication of WO1996020105A1 publication Critical patent/WO1996020105A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B39/061Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water by using trimflaps, i.e. flaps mounted on the rear of a boat, e.g. speed boat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B2001/325Interceptors, i.e. elongate blade-like members projecting from a surface into the fluid flow substantially perpendicular to the flow direction, and by a small amount compared to its own length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a mechanism for continous control and trimming of the floating position of a fast, planing or semi-planing ship hull during the operation thereof.
  • the invention more specifically provides a mainly vertically adjustable foil, disposed at the stern of the ship hull.
  • the foil is provided for a continous control of the pressure conditions in the water underneath the aft bottom portion of a single-hull or multiple-hull vessel.
  • the invention therewith relates also to a new method for the dynamic trimming of a shiphull of said type.
  • High speed, sea-going vessels require a dynamic trimming of the vessel's floating position under operation, to achieve an optimum performance under variying conditions.
  • dynamic trimming is herein to be understood as a continuos, active counter acting to the pitching and rolling movements of the vessel in operation.
  • the point of gravity is regularly displaced towards the aft of the hull, requiring a continous trimming of the floating position to counter act the increased liability for pitching movements.
  • a continous trimming is also required to counter act the rise of the stem, caused under acceleration by the upwardly directed component of force of the water. For reasons of operation economy it is therefore of interest to force the hull into an optimum floating position as soon as possible.
  • Other parameters which also affect the performance of the vessel, besides the placement of the point of gravity are e.g. the operational speed, weather conditions, the course angle relative to wave and wind directions etc.
  • trim planes are commonly arranged behind the stern, or alternatively embedded under the stern as an extension of the bottom of the hull, or forming a part thereof. Trimming of the floating position is achieved by pivoting the trimplane upwards or downwards with the object to impart to the relative waterflow a vertically directed component of force, creating an increased or decreased pressure acting on the bottom side of the trim plane.
  • a drawback related to this known method is that the major part of the load that is added and used for changing the floating position, is transferred to the trim plane.
  • This drawback is of significant disadvantage in connection with modern design implementations, wherein the trim planes are designed to swing continously in order to counter act pitching and rolling movements under operation. Serious problems of exhaustion have arised in these implementations, and the raised energy consump ⁇ tion reduces the efficiency of the method.
  • trim planes Another drawback related to the known trim planes is that the arrangement of the trim planes behind the stern or underneath the aft bottom of the hull will obstruct the reversed water jet of the power unit during retardation. Upon retardation the trim planes will also, due to their placement, take up excessive load from the water jet, the later being the most effective and common power system used for the type of vessels which is referred to. In order to withstand this excessive load, the trim plane and its associated actuating and supporting means can be over-sized. As an alternative, the working area of the trim plane can be under ⁇ sized, thereby permitting the trim plane to go free of the water jet. Naturally, this will reduce the efficiency of the trim plane, and will disadvantageously affect the operation economy.
  • the object of the present invention is therefore to provide a mechanism for the dynamic trimming of the floating position of a fast, planing or semi-planing ship hull, whereby the mentioned drawbacks connected with the known trimming devices are elimina ⁇ ted.
  • Another object of the present invention is to provide a new method for the dynamic trimming of the floating position for said ship hull.
  • Fig. 1 is an elevational view from behind showing a first em ⁇ bodiment of a trimming foil according to the invention, mounted on the stern of a planing or semi-planing ship hull,
  • Fig. 2 is a sectional view along the line II-II of fig. 1 , showing the trimming foil in a raised, resting mode,
  • Fig. 3 is a sectional view, showing the trimming foil of fig. 2 in a submerged, operational mode
  • Fig.s 4a and 4b are side views of an alternative embodiment of a trimming foil in raised and submerged positions, respectively.
  • Fig. 5 is a side view of another alternative embodiment of the trimming foil.
  • Fig. 1 shows the mechanism of the present invention that is generally referred to with reference numeral 1.
  • the mechanism is mounted at the lower end of the stern of the ship hull 2.
  • the illustrated embodiment includes the mechanism 1, that is from here on referred to as trimming foil 1, a substantially plane disc or plate 3, that is vertically adjustable and supported on a stern plate 104.
  • the plate 3 includes, in the illustrated position, a downwardly extending edge 5.
  • the adjustability of the plate 3 may be performed by guide pins 6 that slide within grooves 7, running in parallel and disposed in the trimming foil.
  • the movements of the trimming foil are activated by hydraulic, electro-hydraulic or mechanical driving mechanisms that are not shown.
  • the movements are transferred to the trimming foil 1 by bar members 8, 9. In the alternative, the movements may be activated directly by pistons 8, 9 of hydraulic piston/cylinder units.
  • the trimming foil has a length of 1 that substantially corresponds to the width of the lower edge of the stern plate.
  • the foil is preferably split into two halves so that each half is adjustably attached so that the foils may be independantly submerged to a desired depth in the relative water flow below the bottom of the ship hull.
  • the foils may be moved by drivable transferring members and/or directly by the driving members. The movements of each half of the trimming foil 1 may therefore be controlled together or independently to counter or reduce the pitching or rolling movements of the ship hull.
  • Fins 10, 11 are attached to each side of the trimming foil 1.
  • the fins extend mainly vertically in the longitudinal direction of the ship hull, at least from the trimming foil and forward.
  • the fins have a height that at least corresponds to the height of the portion of the trimming foil that is submerged when the trimming foil is submerged to a maximum in the water flow.
  • the length of the fins 10, 11 may be adapted to the shape of the ship hull. However, the length should not be shorter than the height of the portion of the trimming foil, that is submerged to a maximum, and is preferably longer than the height of this submerged portion.
  • the fins 10, 11 may be attached to the ends of the trimming foil 1 or to the ship hull and preferably in the area of the bottom of the ship hull as shown in Fig. 1.
  • Fig. 2 shows the trimming foil 1 in a raised rest position so that the edge 5 is disposed at the same level as the bottom 12 of the ship hull or at least so that it does not extend below the bottom.
  • the function of the fin 10, which may have a suitable shape with regard to the above mentioned dimensioning considerations, is described below in connection with Fig. 3.
  • a load is applied against the bottom of the ship hull when the water is transected by the ship hull.
  • this load is gradually reduced toward to the stern of the ship hull.
  • This is illustrated as a schematic in Fig. 2 by the arrows P that extend vertically against the ship hull.
  • Fig. 3 shows the trimming foil 1 in an operational position when the trimming foil has been lowered to a maximum so that the edge 5 protrudes below the bottom 2 of the ship hull at a depth A.
  • the depth A may vary depending on the specific application.
  • the trimming foil presents a surface 5 ' that extends perpendicular to the direction of the relative water flow so that the water flow is slowed down against the surface.
  • the fins 10, 11 therefore serve to prevent the water volume that has been slowed down from escaping the outer end areas of the trimming foil. In this way, the water volume that is caught is exposed to a compression or pressure increase. It may be realized that the submerged trimming foil 1 provides an increased drag during the operation of the ship hull.
  • Fig. 3 illustrates a schematic of an embodiment of the trimming foil 1 that is arranged to slope at an angle a (alpha) in the vertical direction relative to the length of the ship hull so that the angle a is below determined relative to a line N that is the normal to the bottom of the ship hull.
  • the angle a includes a shifting of the angle from the line N which, according to the tests and trials mentioned above, preferably should be within the interval of about 3 (three) to plus/minus 5 (five) degrees. That is, according to Fig. 3, this interval is within - 2 to +8 degrees as measured from the line N and toward the stem of the ship hull.
  • a main vortex V is generated that has a velocity component that is directed upwardly and forwardly relative to the bottom of the ship hull.
  • a plurality of minor whirls are also generated but are not shown.
  • the main vortex V has the same length 1 as the length of the trimming foil 1 and extends between the fins 10, 11.
  • the vortex rotates to create a water flow that is directed upwardly/forwardly below the bottom of the ship hull and in front of the trimming foil.
  • a zone of increased pressure is created which is directed to the bottom surface as illustrated with P' in the schematic shown in Fig. 3.
  • the magnitude of the pressure in the area of increased pressure depends on the velocity of the ship and the height of the submerged portion of the trimming foil 1.
  • a schematic of an alternative embodiment of the trimming foil of the present invention is shown.
  • a trimming foil 1' having a bow shaped cross section, and a surface 5'', that is turned in the direction of the movement of the ship hull, are secured to a peripheral end of a rotatable rod member 13 to transfer a peripheral movement to the trimming foil 1 ' .
  • the rod member 13 may be mounted into a recess 14 disposed in the stern plate of the ship. It should be understood that a certain number of rod members 13 are required to provide stable rotatable attachment and movement of the trimming foil 1 ' although only one rod member is shown in the figure.
  • the trimming foil 1' is formed so that it may rotate about a pivot point 15 so that its radius is a distance R.
  • the pivot point 15 may be attached to the sides or to a bottom 16 disposed in the recess 14.
  • the rod member 13 may be controlled to raise or lower the trimming foil 1' to the position, as shown in Fig. 4b. This movement may be performed by hydraulic, electro-hydraulic or mechanical driving mechanisms not shown.
  • a piston/cylinder unit may, for example, be attached within the recess 14 or extend to the outside of the stern plate as is known to the person of ordinary skill in the art.
  • the alternative embodiment of the trimming foil 1 ' must be designed so that the portion of the trimming foil 1 ' that is submerged in the water flow satisfy the geometrical requirements regarding length, sloping angle, and depth in the water as was determined above for the trimming foil 1. Similar to the trimming foil 1, the trimming foil 1 ' cooperates with fins attached to each side of the foil 1' . Also, the foil 1' preferably is divided into two halves which are individually movable by separate driving members.
  • the gap 17 that may be created between the stern plate and the trimming foil in all applications should be kept to a minimum to prevent water from escaping through an opening which would lower the efficiency of the increased pressure that is generated in front of the trimming foil.
  • the trimming foil l' 1 includes a bow shaped surface 5' ' ' that is turned in the direction of the movement.
  • a rod 24 is adapted to transfer peripheral movements to the surface 5' ' ' by being rotatably attached to a pivot point 18.
  • the trimming foil 1 ? ' is shown as having two separate halves that are each rotatably attached to holding devices 19, 20, respectively.
  • the holding devices 19 are shown with dotted lines in the figure. To create enough space for the discharge portion of the driving device, both of the inner holding devices 19 extend away from the stern plate 4 at a certain angle.
  • Both of the halves of the trimming foils are maneuvered individually by rotatably attached piston/cylinder units 22, 23 respectively. These units shift the trimming foil 1'' in a bow shaped path about the peripheral end portion of the rod 24. It should be understood that the two separate and individually maneuvered halves of the trimming foil provide continuous counter force to rolling movements or lateral movements of the ship. By coordina ⁇ ting the activation of both of the halves, the pitching movements or movements in the longitudinal direction of the ship may be reduced.
  • the activation of the trimming foils may, in all embodiments, be controlled automatically to counter act the movements of the ship which are detected by for example a gyro. This detection is then converted into control signals for the driving mechanism of the trimming foil.
  • the pivot point 18 should be positioned so that the operational position of the bow shaped surface 5' 1 ' of the trimming foil 1' ' is adapted to achieve the expected effect of desirable length, sloping angle and depth so that the parameters outlined above also apply to the trimming foil 1 ' ' .
  • a detailed description of the dimensions are not going to be provided here because it is up to the person of ordinary skill in the art to adjust, for each specific application, the dimensions of the trimming foil including its suspension and rotation members to achieve the desired results based on the above description of the invention.
  • the trimming foil of the present invention provides a mechanically simple and reliable, effective and easily maintained mechanism at a moderate investment cost.
  • the invention enables continuous, dynamic trimming of a fast moving ship hull while counter acting rolling and pitching movements during the operation of the ship.
  • a fixed trim plane can likewise be substituted by a fixed trimming foil.
  • the disclosed trimming foil can also be used in cooperation with other types of known devices, e.g. hydrofoils, for dynamic trimming of the floating position under acceleration and operation of a fast vessel.

Abstract

Mechanism for dynamic trimming of the floating position of a planing or semi-planing ship hull during operation thereof, including a plate (3) that is submerged transversely to the relative water flow directly behind the bottom of the hull for generating a vortex (V) having an upwardly and forwardly directed velocity component in front of the plate, thereby creating a water volume having an increased pressure that is acting upon the portion of the bottom which is positioned in front of the submerged plate. The plate (3) is continously adjustable to a desired depth through actuating members (8) and is vertically displaceable and supported in the lowermost portion of the stern plate of the hull.

Description

MEANS AND METHOD FOR DYNAMIC TRIM OF A FAST, PLANING OR SEMI-PLANING BOATHULL
The present invention relates to a mechanism for continous control and trimming of the floating position of a fast, planing or semi-planing ship hull during the operation thereof. The invention more specifically provides a mainly vertically adjustable foil, disposed at the stern of the ship hull. The foil is provided for a continous control of the pressure conditions in the water underneath the aft bottom portion of a single-hull or multiple-hull vessel. The invention therewith relates also to a new method for the dynamic trimming of a shiphull of said type.
High speed, sea-going vessels (planing or semi-planing) require a dynamic trimming of the vessel's floating position under operation, to achieve an optimum performance under variying conditions. The expression "dynamic trimming" is herein to be understood as a continuos, active counter acting to the pitching and rolling movements of the vessel in operation. In these kinds of hulls, the point of gravity is regularly displaced towards the aft of the hull, requiring a continous trimming of the floating position to counter act the increased liability for pitching movements. A continous trimming is also required to counter act the rise of the stem, caused under acceleration by the upwardly directed component of force of the water. For reasons of operation economy it is therefore of interest to force the hull into an optimum floating position as soon as possible. Other parameters which also affect the performance of the vessel, besides the placement of the point of gravity, are e.g. the operational speed, weather conditions, the course angle relative to wave and wind directions etc.
Known methods of dynamic trimming are e.g. the use of trim planes. Trim planes are commonly arranged behind the stern, or alternatively embedded under the stern as an extension of the bottom of the hull, or forming a part thereof. Trimming of the floating position is achieved by pivoting the trimplane upwards or downwards with the object to impart to the relative waterflow a vertically directed component of force, creating an increased or decreased pressure acting on the bottom side of the trim plane.
A drawback related to this known method is that the major part of the load that is added and used for changing the floating position, is transferred to the trim plane. This drawback is of significant disadvantage in connection with modern design implementations, wherein the trim planes are designed to swing continously in order to counter act pitching and rolling movements under operation. Serious problems of exhaustion have arised in these implementations, and the raised energy consump¬ tion reduces the efficiency of the method.
Another drawback related to the known trim planes is that the arrangement of the trim planes behind the stern or underneath the aft bottom of the hull will obstruct the reversed water jet of the power unit during retardation. Upon retardation the trim planes will also, due to their placement, take up excessive load from the water jet, the later being the most effective and common power system used for the type of vessels which is referred to. In order to withstand this excessive load, the trim plane and its associated actuating and supporting means can be over-sized. As an alternative, the working area of the trim plane can be under¬ sized, thereby permitting the trim plane to go free of the water jet. Naturally, this will reduce the efficiency of the trim plane, and will disadvantageously affect the operation economy.
The object of the present invention is therefore to provide a mechanism for the dynamic trimming of the floating position of a fast, planing or semi-planing ship hull, whereby the mentioned drawbacks connected with the known trimming devices are elimina¬ ted.
Another object of the present invention is to provide a new method for the dynamic trimming of the floating position for said ship hull. These and other objects are met with a mechanism and a method having the features listed in the attached claims.
The invention is disclosed more in detail by the following description, with reference made to the attached drawings, of which
Fig. 1 is an elevational view from behind showing a first em¬ bodiment of a trimming foil according to the invention, mounted on the stern of a planing or semi-planing ship hull,
Fig. 2 is a sectional view along the line II-II of fig. 1 , showing the trimming foil in a raised, resting mode,
Fig. 3 is a sectional view, showing the trimming foil of fig. 2 in a submerged, operational mode,
Fig.s 4a and 4b are side views of an alternative embodiment of a trimming foil in raised and submerged positions, respectively, and
Fig. 5 is a side view of another alternative embodiment of the trimming foil.
Fig. 1 shows the mechanism of the present invention that is generally referred to with reference numeral 1. The mechanism is mounted at the lower end of the stern of the ship hull 2. The illustrated embodiment includes the mechanism 1, that is from here on referred to as trimming foil 1, a substantially plane disc or plate 3, that is vertically adjustable and supported on a stern plate 104. The plate 3 includes, in the illustrated position, a downwardly extending edge 5. The adjustability of the plate 3 may be performed by guide pins 6 that slide within grooves 7, running in parallel and disposed in the trimming foil. The movements of the trimming foil are activated by hydraulic, electro-hydraulic or mechanical driving mechanisms that are not shown. The movements are transferred to the trimming foil 1 by bar members 8, 9. In the alternative, the movements may be activated directly by pistons 8, 9 of hydraulic piston/cylinder units.
The trimming foil has a length of 1 that substantially corresponds to the width of the lower edge of the stern plate. The foil is preferably split into two halves so that each half is adjustably attached so that the foils may be independantly submerged to a desired depth in the relative water flow below the bottom of the ship hull. The foils may be moved by drivable transferring members and/or directly by the driving members. The movements of each half of the trimming foil 1 may therefore be controlled together or independently to counter or reduce the pitching or rolling movements of the ship hull. Fins 10, 11 are attached to each side of the trimming foil 1. The fins extend mainly vertically in the longitudinal direction of the ship hull, at least from the trimming foil and forward. The fins have a height that at least corresponds to the height of the portion of the trimming foil that is submerged when the trimming foil is submerged to a maximum in the water flow. The length of the fins 10, 11 may be adapted to the shape of the ship hull. However, the length should not be shorter than the height of the portion of the trimming foil, that is submerged to a maximum, and is preferably longer than the height of this submerged portion. In the alternative, the fins 10, 11 may be attached to the ends of the trimming foil 1 or to the ship hull and preferably in the area of the bottom of the ship hull as shown in Fig. 1.
Fig. 2 shows the trimming foil 1 in a raised rest position so that the edge 5 is disposed at the same level as the bottom 12 of the ship hull or at least so that it does not extend below the bottom. The function of the fin 10, which may have a suitable shape with regard to the above mentioned dimensioning considerations, is described below in connection with Fig. 3. During movements in the direction of the arrow F in Fig. 2, a load is applied against the bottom of the ship hull when the water is transected by the ship hull. Thus, this load is gradually reduced toward to the stern of the ship hull. This is illustrated as a schematic in Fig. 2 by the arrows P that extend vertically against the ship hull.
Fig. 3 shows the trimming foil 1 in an operational position when the trimming foil has been lowered to a maximum so that the edge 5 protrudes below the bottom 2 of the ship hull at a depth A. The depth A may vary depending on the specific application. In the lowered position, the trimming foil presents a surface 5 ' that extends perpendicular to the direction of the relative water flow so that the water flow is slowed down against the surface. The fins 10, 11 therefore serve to prevent the water volume that has been slowed down from escaping the outer end areas of the trimming foil. In this way, the water volume that is caught is exposed to a compression or pressure increase. It may be realized that the submerged trimming foil 1 provides an increased drag during the operation of the ship hull. However, it has been shown in models and full scale tests that this increased drag is negligible and is outweighed by the overall improved energy efficiency of the ship hull due to the advantageous effects of the trimming foil. These tests have, however, indicated that it is advantageous that the depth A, that is the lowest depth of the edges 5 and surface 5' of the trimming foil, account for about 3% of the total length of the trimming foil 1 and preferably should, at a maximum, be about 2.7% of the length.
Fig. 3 illustrates a schematic of an embodiment of the trimming foil 1 that is arranged to slope at an angle a (alpha) in the vertical direction relative to the length of the ship hull so that the angle a is below determined relative to a line N that is the normal to the bottom of the ship hull. The angle a includes a shifting of the angle from the line N which, according to the tests and trials mentioned above, preferably should be within the interval of about 3 (three) to plus/minus 5 (five) degrees. That is, according to Fig. 3, this interval is within - 2 to +8 degrees as measured from the line N and toward the stem of the ship hull. By introducing a surface immediately behind the bottom of the ship hull that is perpendicular to the water flow L, a main vortex V is generated that has a velocity component that is directed upwardly and forwardly relative to the bottom of the ship hull. A plurality of minor whirls are also generated but are not shown. The main vortex V has the same length 1 as the length of the trimming foil 1 and extends between the fins 10, 11. The vortex rotates to create a water flow that is directed upwardly/forwardly below the bottom of the ship hull and in front of the trimming foil. In this way, a zone of increased pressure is created which is directed to the bottom surface as illustrated with P' in the schematic shown in Fig. 3. The magnitude of the pressure in the area of increased pressure depends on the velocity of the ship and the height of the submerged portion of the trimming foil 1.
It is to be understood with reference to the above descrip¬ tion that changes of the depth of the submerged trimming foil directly affect the trimming position of the ship at velocities above a certain critical limit.
Extensive tests have thus shown the above characteristics relating to the operational depth of the trimming foil and the slope of the foil relative to the bottom of the ship hull. The same tests have shown that the drag that is generated by a trimming foil that is formed according to the present invention, is negligible. The test results show an increased effectiveness that may be calculated for all ship sizes that are operated at a FNL value that is higher than 0.6. The FNL value refers to the dimension free Froude value which takes the constant of gravity into account and depends on the length of the ship and the velocity thereof.
With reference to Figs. 4a and 4b, a schematic of an alternative embodiment of the trimming foil of the present invention is shown. In this embodiment, a trimming foil 1', having a bow shaped cross section, and a surface 5'', that is turned in the direction of the movement of the ship hull, are secured to a peripheral end of a rotatable rod member 13 to transfer a peripheral movement to the trimming foil 1 ' . In this way, the rod member 13 may be mounted into a recess 14 disposed in the stern plate of the ship. It should be understood that a certain number of rod members 13 are required to provide stable rotatable attachment and movement of the trimming foil 1 ' although only one rod member is shown in the figure. The trimming foil 1' is formed so that it may rotate about a pivot point 15 so that its radius is a distance R. The pivot point 15 may be attached to the sides or to a bottom 16 disposed in the recess 14. The rod member 13 may be controlled to raise or lower the trimming foil 1' to the position, as shown in Fig. 4b. This movement may be performed by hydraulic, electro-hydraulic or mechanical driving mechanisms not shown. In this way, a piston/cylinder unit may, for example, be attached within the recess 14 or extend to the outside of the stern plate as is known to the person of ordinary skill in the art. Naturally, the alternative embodiment of the trimming foil 1 ' must be designed so that the portion of the trimming foil 1 ' that is submerged in the water flow satisfy the geometrical requirements regarding length, sloping angle, and depth in the water as was determined above for the trimming foil 1. Similar to the trimming foil 1, the trimming foil 1 ' cooperates with fins attached to each side of the foil 1' . Also, the foil 1' preferably is divided into two halves which are individually movable by separate driving members.
It should here be pointed out that the gap 17 that may be created between the stern plate and the trimming foil in all applications should be kept to a minimum to prevent water from escaping through an opening which would lower the efficiency of the increased pressure that is generated in front of the trimming foil.
With reference to Fig. 5, yet another embodiment of the trimming foil of the present invention is shown. In this embodiment, the trimming foil l' 1 includes a bow shaped surface 5' ' ' that is turned in the direction of the movement. A rod 24 is adapted to transfer peripheral movements to the surface 5' ' ' by being rotatably attached to a pivot point 18. The trimming foil 1? ' is shown as having two separate halves that are each rotatably attached to holding devices 19, 20, respectively. The holding devices 19 are shown with dotted lines in the figure. To create enough space for the discharge portion of the driving device, both of the inner holding devices 19 extend away from the stern plate 4 at a certain angle. Both of the halves of the trimming foils are maneuvered individually by rotatably attached piston/cylinder units 22, 23 respectively. These units shift the trimming foil 1'' in a bow shaped path about the peripheral end portion of the rod 24. It should be understood that the two separate and individually maneuvered halves of the trimming foil provide continuous counter force to rolling movements or lateral movements of the ship. By coordina¬ ting the activation of both of the halves, the pitching movements or movements in the longitudinal direction of the ship may be reduced.
Obviously, the activation of the trimming foils may, in all embodiments, be controlled automatically to counter act the movements of the ship which are detected by for example a gyro. This detection is then converted into control signals for the driving mechanism of the trimming foil.
In the latter embodiment, the pivot point 18 should be positioned so that the operational position of the bow shaped surface 5'1 ' of the trimming foil 1' ' is adapted to achieve the expected effect of desirable length, sloping angle and depth so that the parameters outlined above also apply to the trimming foil 1 ' ' . A detailed description of the dimensions are not going to be provided here because it is up to the person of ordinary skill in the art to adjust, for each specific application, the dimensions of the trimming foil including its suspension and rotation members to achieve the desired results based on the above description of the invention.
The trimming foil of the present invention provides a mechanically simple and reliable, effective and easily maintained mechanism at a moderate investment cost. The invention enables continuous, dynamic trimming of a fast moving ship hull while counter acting rolling and pitching movements during the operation of the ship. Some of the desirable results can be summarized as follows:
- Quick response and low energy requirements.
- High efficiency of the trimming energy provided.
- Low mechanical load of the moving parts.
- No disturbance of a reversed water jet stream.
Furthermore, by way of a rotatable trim plane being substituted by a vertically adjustable trimming foil, a fixed trim plane can likewise be substituted by a fixed trimming foil. The disclosed trimming foil can also be used in cooperation with other types of known devices, e.g. hydrofoils, for dynamic trimming of the floating position under acceleration and operation of a fast vessel.

Claims

1. Mechanism for dynamic trimming of the floating position of a planing or semi-planing ship hull during operation thereof, c h a r a c t e r i z e d by a surface (S'-S'^S'''), submerged transversely to the relative water flow directly behind the bottom of the hull and facing the operational direction of the hull, generating at least one main vortex (V), said vortex having an upwardly and forwardly directed velocity component in front of said surface to create a water volume having an increased pressure that is acting upon the portion of the bottom which is positioned in front of the surface.
2. Mechanism according to claim 1, c h a r a c t e r i z e d by the surface (S'-S'^S''') being submerged to a continously adjustable depth (A) that corresponds to about 0-3 % of the length of the surface, preferably up to a maximum of 2,7 % of the length.
3. Mechanism according to claim 1, c h a r a c t e r i z e d by the surface (5' ,5'' ,5''') extending along a substantial part of the width of the hull, preferably along the total width of the hull bottom or bottom halves.
4. Mechanism according to claims 1 and 3, c h a r a c t e ¬ r i z e by two fins (10,11), enclosing the surface (5',5'' 5' ' ' ) and positioned in association with the resp. outer ends of the surface, preferably attached to the bottom of the hull.
5. Mechanism according to claim 1, c h a r a c t e r i z e d by the submerged surface (5' ,5' ',5''') sloping in a vertical plane along the longitudinal section of the hull, the slope (a) advantageously being in the range of -2 to +8 degrees and preferably +2 to +4 degrees relative to a normal (N) to the bottom of the hull, when measured from stern to stem.
6. Mechanism according to claims 1 and 2, c h a r a c t e - r i z e d by a plane disc or plate ( 1), linearly displaceable and supported in the lower part of the stern plate (4), the side of the plate that is facing the operational direction (F) forming said surface (5' ), the plate ( 1) being continously submergeable to a desired depth (A) through associated hydraulically, electro- hydraulically or mechanically powered actuating members (8,9).
7. Mechanism according to claims 1 and 2, c h a r a c t e ¬ r i z e d by an arcuate disc or plate (1 ' , 1 ' ' ), rotatebly supported in the lower part of the stern plate (4) , the side of the plate (l',l'' ) that is facing the operational direction (F) forming said surface (5' ' , 5' ' ' ), the plate (1' , 1 * ' ) being continously submergeable to a desired depth (A) through associa¬ ted hydraulically, electro-hydraulically or mechanically powered actuating members (13,24).
8. Mechanism according to claims 1,2 and 7, c h a r a c t e ¬ r i z e d by the plate (1' ) being attached to the outer, aft end of a pivotable bar (13) that is mounted in a recess (14) in the stern plate (4).
9. Mechanism according to claims 1,2 and 7, c h a r a c t e ¬ r i z e d by the plate (l1 ' ) being attached to the outer, forward end of a pivotable bar (24 ) that is mounted behind the stern plate (4).
10. Mechanism according to claim 1, c h a r a c t e r i z e d by the surface (5', 5' * ,5''') being split in halves, the resp. half being individually submergeable to a desired depth (A) through separately associated hydraulicaly, electro-hydraulically or mechanically powered actuating members (8,9,13,24).
11. Method for dynamic trimming of a fast, planing or semi- planing ship hull, c h a r a c t e r i z e d by - generating a water volume having an increased pressure that is acting on the aft bottom portion of the hull by submerging, directly behind the bottom of the hull, a surface (5', 5' ', 5' ' ' ) transversely to the relative water flow and facing the operatio¬ nal direction of the hull, and
- continously adjusting the submerging depth (A) in response to the movements of the ship.
12. Method according to claim 11, c h a r a c t e r i z e d by the surface (S^S''^''') being submerged to a depth (A) that corresponds to about 0-3 % of the length of the surface, preferably to a maximum of 2,7 % of the length, and sloping (a) within a range of -2 to +8 degrees, preferably +2 to +4 degrees relative to a normal (N) to the bottom of the hull, when measured from stern to stem.
PCT/SE1995/001582 1994-12-23 1995-12-22 Means and method for dynamic trim of a fast, planing or semi-planing boathull WO1996020105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43617/96A AU4361796A (en) 1994-12-23 1995-12-22 Means and method for dynamic trim of a fast, planing or semi-planing boathull

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9404502-8 1994-12-23
SE9404502A SE9404502L (en) 1994-12-23 1994-12-23 Device and method for dynamic trimming of a fast-moving, planing or semi-planing hull

Publications (1)

Publication Number Publication Date
WO1996020105A1 true WO1996020105A1 (en) 1996-07-04

Family

ID=20396464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1995/001582 WO1996020105A1 (en) 1994-12-23 1995-12-22 Means and method for dynamic trim of a fast, planing or semi-planing boathull

Country Status (3)

Country Link
AU (1) AU4361796A (en)
SE (1) SE9404502L (en)
WO (1) WO1996020105A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044885A1 (en) * 1998-03-02 1999-09-10 La.Me S.R.L. Arrangement and method for dynamic control of the movements and course of a high-speed ship hull
WO1999055577A1 (en) * 1998-04-28 1999-11-04 Profjord Ab Arrangement for dynamic control of running trim and list of a boat
WO1999057007A1 (en) 1998-05-06 1999-11-11 Elms Australia Pty. Ltd. Improved hydrofoil device
WO2000053486A3 (en) * 1999-03-09 2001-01-25 Ian James Duncan Hulls for planing and semi-planing craft
EP1104739A1 (en) * 1998-07-15 2001-06-06 Zakrytoe Aktsionernoe Obschestvo" Otdelenie Morskikh sistem okb im. p.o. Sukhogo" Hydroplane
EP1092624A3 (en) * 1999-10-15 2001-12-05 La.Me S.R.L. Device to control the trim and/or course of a boat
EP1435325A1 (en) * 2002-11-29 2004-07-07 Giorgio Brighi Retractable hull appendages for the trim control of planing craft
WO2006058232A1 (en) * 2004-11-24 2006-06-01 Morvillo Robert A System and method for controlling a waterjet driven vessel
WO2008106807A1 (en) * 2007-03-05 2008-09-12 Mueller Peter A Double trim hatch
WO2009113923A1 (en) * 2008-03-12 2009-09-17 Humphree Ab Arrangement for dynamic control of running trim and list of a boat
US7601040B2 (en) 2005-12-05 2009-10-13 Morvillo Robert A Method and apparatus for controlling a marine vessel
US8631753B2 (en) 2010-02-18 2014-01-21 Robert A. Morvillo Variable trim deflector system and method for controlling a marine vessel
EP2703279A1 (en) * 2012-08-27 2014-03-05 Humphree AB Arrangement for dynamic control of running trim and list of a boat
US9174703B2 (en) 2013-10-11 2015-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9233740B2 (en) 2013-02-08 2016-01-12 Robert A. Morvillo Variable trim deflector system with protruding foil and method for controlling a marine vessel
US9260161B2 (en) 2011-11-12 2016-02-16 Malibu Boats, Llc Surf wake system for a watercraft
US9580147B2 (en) 2011-09-16 2017-02-28 Malibu Boats, Llc Surf wake system for a watercraft
US9669903B2 (en) 2014-02-04 2017-06-06 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US9802684B2 (en) 2013-10-11 2017-10-31 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9891620B2 (en) 2015-07-15 2018-02-13 Malibu Boats, Llc Control systems for water-sports watercraft
WO2018083175A1 (en) * 2016-11-02 2018-05-11 Rolls-Royce Ab A device for reducing the resistance of water surface vessels
US10358189B2 (en) 2013-10-11 2019-07-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
CN112124548A (en) * 2020-10-09 2020-12-25 中国船舶工业集团公司第七0八研究所 Water jet propulsion boat cut-off plate turnover mechanism
US11370508B1 (en) 2019-04-05 2022-06-28 Malibu Boats, Llc Control system for water sports boat with foil displacement system
US11932356B1 (en) 2020-08-24 2024-03-19 Malibu Boats, Llc Powered swim platform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577580A (en) * 1983-08-31 1986-03-25 Diffely Sr Robert J Trolling attachment for boats
US5193478A (en) * 1990-09-14 1993-03-16 Mardikian 1991 Irrevocable Trust Adjustable brake and control flaps for watercraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577580A (en) * 1983-08-31 1986-03-25 Diffely Sr Robert J Trolling attachment for boats
US5193478A (en) * 1990-09-14 1993-03-16 Mardikian 1991 Irrevocable Trust Adjustable brake and control flaps for watercraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DERWENT'S ABSTRACT, No. 83-812609/45, Week 8345; & SU,A,975 490, (SOLOVEI S B), 28 November 1982. *

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044885A1 (en) * 1998-03-02 1999-09-10 La.Me S.R.L. Arrangement and method for dynamic control of the movements and course of a high-speed ship hull
AU741668B2 (en) * 1998-03-02 2001-12-06 La.Me S.R.L. Arrangement and method for dynamic control of the movements and course of a high-speed ship hull
US6520104B1 (en) 1998-03-02 2003-02-18 La.Me Srl Arrangement and method for dynamic control of the movements and course of a high-speed ship hull
AU741668C (en) * 1998-03-02 2002-10-03 La.Me S.R.L. Arrangement and method for dynamic control of the movements and course of a high-speed ship hull
WO1999055577A1 (en) * 1998-04-28 1999-11-04 Profjord Ab Arrangement for dynamic control of running trim and list of a boat
WO1999057007A1 (en) 1998-05-06 1999-11-11 Elms Australia Pty. Ltd. Improved hydrofoil device
US6467422B1 (en) 1998-05-06 2002-10-22 Elms Austrialia Pty Ltd. Hydrofoil device
EP1104739A1 (en) * 1998-07-15 2001-06-06 Zakrytoe Aktsionernoe Obschestvo" Otdelenie Morskikh sistem okb im. p.o. Sukhogo" Hydroplane
EP1104739A4 (en) * 1998-07-15 2002-11-27 Zakrytoe Aktsionernoe Obschest Hydroplane
WO2000053486A3 (en) * 1999-03-09 2001-01-25 Ian James Duncan Hulls for planing and semi-planing craft
US6684806B1 (en) 1999-03-09 2004-02-03 Futuretech Technologies Hulls for planing and semi-planing craft
EP1092624A3 (en) * 1999-10-15 2001-12-05 La.Me S.R.L. Device to control the trim and/or course of a boat
EP1435325A1 (en) * 2002-11-29 2004-07-07 Giorgio Brighi Retractable hull appendages for the trim control of planing craft
WO2006058232A1 (en) * 2004-11-24 2006-06-01 Morvillo Robert A System and method for controlling a waterjet driven vessel
US7641525B2 (en) 2004-11-24 2010-01-05 Morvillo Robert A System and method for controlling a waterjet driven vessel
US8480445B2 (en) 2004-11-24 2013-07-09 Robert A. Morvillo System and method for controlling a marine vessel
US7601040B2 (en) 2005-12-05 2009-10-13 Morvillo Robert A Method and apparatus for controlling a marine vessel
US9937994B2 (en) 2005-12-05 2018-04-10 Robert A. Morvillo Method and apparatus for controlling a marine vessel
US9096300B2 (en) 2005-12-05 2015-08-04 Robert A. Morvillo Method and apparatus for controlling a marine vessel
US8069802B2 (en) 2005-12-05 2011-12-06 Morvillo Robert A Method and apparatus for controlling a marine vessel
US8613634B2 (en) 2005-12-05 2013-12-24 Robert A. Morvillo Method and apparatus for controlling a marine vessel
WO2008106807A1 (en) * 2007-03-05 2008-09-12 Mueller Peter A Double trim hatch
US8387551B2 (en) 2007-03-05 2013-03-05 Peter Müller Double trim tab
EP2250077A1 (en) * 2008-03-12 2010-11-17 Humphree AB Arrangement for dynamic control of running trim and list of a boat
CN102015437B (en) * 2008-03-12 2013-10-09 汉弗莱有限责任公司 Arrangement for dynamic control of running trim and list of a boat
EP2250077A4 (en) * 2008-03-12 2013-02-27 Humphree Ab Arrangement for dynamic control of running trim and list of a boat
US8622012B2 (en) 2008-03-12 2014-01-07 Humphree Ab Arrangement for dynamic control of running trim and list of a boat
CN102015437A (en) * 2008-03-12 2011-04-13 汉弗莱有限责任公司 Arrangement for dynamic control of running trim and list of a boat
WO2009113923A1 (en) * 2008-03-12 2009-09-17 Humphree Ab Arrangement for dynamic control of running trim and list of a boat
US8631753B2 (en) 2010-02-18 2014-01-21 Robert A. Morvillo Variable trim deflector system and method for controlling a marine vessel
US9481441B2 (en) 2010-02-18 2016-11-01 Robert A. Morvillo Variable trim deflector system and method for controlling a marine vessel
US11572136B2 (en) 2011-09-16 2023-02-07 Malibu Boats, Llc Surf wake system for a watercraft
US10683061B2 (en) 2011-09-16 2020-06-16 Malibu Boats, Llc Surf wake system for a watercraft
US9580147B2 (en) 2011-09-16 2017-02-28 Malibu Boats, Llc Surf wake system for a watercraft
US9914504B2 (en) 2011-09-16 2018-03-13 Malibu Boats, Llc Surf wake system for a watercraft
US9694873B2 (en) 2011-09-16 2017-07-04 Malibu Boats, Llc Surf wake system for a watercraft
US9334022B2 (en) 2011-11-12 2016-05-10 Malibu Boats, Llc Surf wake system for a watercraft
US9260161B2 (en) 2011-11-12 2016-02-16 Malibu Boats, Llc Surf wake system for a watercraft
EP2703279A1 (en) * 2012-08-27 2014-03-05 Humphree AB Arrangement for dynamic control of running trim and list of a boat
US9233740B2 (en) 2013-02-08 2016-01-12 Robert A. Morvillo Variable trim deflector system with protruding foil and method for controlling a marine vessel
US11214335B2 (en) 2013-10-11 2022-01-04 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10822055B2 (en) 2013-10-11 2020-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9802684B2 (en) 2013-10-11 2017-10-31 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9446823B2 (en) 2013-10-11 2016-09-20 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11708136B2 (en) 2013-10-11 2023-07-25 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9643697B2 (en) 2013-10-11 2017-05-09 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10259534B2 (en) 2013-10-11 2019-04-16 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10266241B2 (en) 2013-10-11 2019-04-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10358189B2 (en) 2013-10-11 2019-07-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10377453B2 (en) 2013-10-11 2019-08-13 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11046393B2 (en) 2013-10-11 2021-06-29 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10501156B1 (en) 2013-10-11 2019-12-10 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9174703B2 (en) 2013-10-11 2015-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10899416B1 (en) 2013-10-11 2021-01-26 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10179628B2 (en) 2014-02-04 2019-01-15 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US9669903B2 (en) 2014-02-04 2017-06-06 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US9891620B2 (en) 2015-07-15 2018-02-13 Malibu Boats, Llc Control systems for water-sports watercraft
US10386834B2 (en) 2015-07-15 2019-08-20 Malibu Boats, Llc Control systems for water-sports watercraft
US11067979B2 (en) 2015-07-15 2021-07-20 Malibu Boats, Llc Control systems for water-sports watercraft
WO2018083175A1 (en) * 2016-11-02 2018-05-11 Rolls-Royce Ab A device for reducing the resistance of water surface vessels
US11370508B1 (en) 2019-04-05 2022-06-28 Malibu Boats, Llc Control system for water sports boat with foil displacement system
US11518482B1 (en) 2019-04-05 2022-12-06 Malibu Boats, Llc Water sports boat with foil displacement system
US11851136B2 (en) 2019-04-05 2023-12-26 Malibu Boats, Llc Water sports boat with foil displacement system
US11932356B1 (en) 2020-08-24 2024-03-19 Malibu Boats, Llc Powered swim platform
CN112124548A (en) * 2020-10-09 2020-12-25 中国船舶工业集团公司第七0八研究所 Water jet propulsion boat cut-off plate turnover mechanism

Also Published As

Publication number Publication date
SE502671C2 (en) 1995-12-04
AU4361796A (en) 1996-07-19
SE9404502L (en) 1995-12-04
SE9404502D0 (en) 1994-12-23

Similar Documents

Publication Publication Date Title
WO1996020105A1 (en) Means and method for dynamic trim of a fast, planing or semi-planing boathull
KR100479792B1 (en) High speed hybrid marine vessel
US5511504A (en) Computer controlled fins for improving seakeeping in marine vessels
AU693985B2 (en) Method and means for dynamic trim of a fast, planing or semi-planing boathull
AU737257B2 (en) Hydrofoil supported water craft
US20100000462A1 (en) Ship with stern equipped with a device for deflecting a flow of water
RU2150401C1 (en) Planing boat
CN210011844U (en) High-speed ship with additional tail wave pressing plate
KR20040083543A (en) Air cushion vessel
US5448963A (en) Hydrofoil supported planing watercraft
GB2167026A (en) Air cushion vehicle
CA2022368C (en) Wave making resistance suppressing means in ship and ship provided therewith
CA1136496A (en) Hulls for sea vessels
US5988097A (en) Watercraft stabilized by controlled hydrofoil elevation
JP2000302082A (en) Boat shell
GB2262718A (en) Boat hulls
US7299763B2 (en) Hull with propulsion tunnel and leading edge interceptor
WO2006072906A2 (en) Watercraft with wave deflecting hull
WO1998008732A1 (en) Hydroskiing marine vessel
EP0719225B1 (en) A ship's hull
US5046975A (en) Device with cavitational effect for propellers of watercraft with a planing or semiplaning keel
JPS5852878B2 (en) semi-submersible multihull
EP0459076B1 (en) Stable racing catermaran with hydrofoil qualities
JPH06508804A (en) Multi-hull air ride boat
NO880799L (en) DEVICE AT VESSOEYSBAUG.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase