WO1996017006A1 - Preimpregne et materiau composite renforces par des fibres - Google Patents

Preimpregne et materiau composite renforces par des fibres Download PDF

Info

Publication number
WO1996017006A1
WO1996017006A1 PCT/JP1995/002474 JP9502474W WO9617006A1 WO 1996017006 A1 WO1996017006 A1 WO 1996017006A1 JP 9502474 W JP9502474 W JP 9502474W WO 9617006 A1 WO9617006 A1 WO 9617006A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
epoxy resin
prepreg
weight
general formula
Prior art date
Application number
PCT/JP1995/002474
Other languages
English (en)
French (fr)
Inventor
Hiroki Oosedo
Atsushi Ozaki
Hideo Nagata
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP51592996A priority Critical patent/JP3359037B2/ja
Priority to US08/682,761 priority patent/US5985431A/en
Priority to DE69530188T priority patent/DE69530188T2/de
Priority to KR1019960704204A priority patent/KR970700720A/ko
Priority to EP95938641A priority patent/EP0745640B1/en
Publication of WO1996017006A1 publication Critical patent/WO1996017006A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31942Of aldehyde or ketone condensation product

Definitions

  • the present invention relates to a prepreg for molding a fiber reinforced composite material and a fiber reinforced composite material formed from the prepreg. More specifically, the present invention relates to a prepreg that provides a fiber-reinforced composite material having excellent mechanical properties of a compression system and suitable as a structural material, and a fiber-reinforced composite material obtained therefrom.
  • Background Technology Polymer-based composite materials consisting of reinforced fibers and matrix resin are widely used in sports equipment, aerospace, general industrial applications, etc. because of their light weight and excellent mechanical properties.
  • thermosetting resins and thermoplastic resins are used as the matrix resin for the prepredder.
  • thermosetting resins with excellent handleability are used, and among them, epoxy resin is the most used.
  • epoxy resin is the most used.
  • maleimide resins, cyanate resins, and combinations thereof are often used.
  • the strength and elastic modulus of a polymer material decrease under high temperature and / or high humidity conditions. Therefore, the physical properties such as the strength of the fiber-reinforced composite material having a polymer as a matrix are liable to decrease under high temperature or high humidity conditions.
  • the composite material is applied as a structural material for aircraft, vehicles, ships, etc., it is necessary to maintain sufficient physical properties even at high temperatures and under noisy or humid conditions.
  • compressive strength is a particularly important property. It is.
  • the measurement of compressive strength is performed using test pieces such as non-perforated plates, perforated plates, and cylinders.In actual use, however, it is often used in the form of a plate with bolt holes.
  • the compressive strength of perforated plates, especially under high temperature and high humidity conditions is important.
  • conventional polymer-based composite materials have the advantage of light weight, the compressive strength under high temperature or high humidity conditions may not be sufficient, and applicable applications may be limited. .
  • the heat resistance is evaluated separately at the glass transition point, and the water resistance is evaluated separately based on the water absorption rate.
  • the epoxy resin having a triglycidylaminophenol skeleton has a large decrease in physical properties at high temperature and high humidity. No solution has been made.
  • a diamine curing agent which reduces moisture absorption and an epoxy resin compound thereof are disclosed in JP-A-59-2155314, This is disclosed in Japanese Unexamined Patent Publication No. Sho 59-21553 and Japanese Patent Laid-Open No. Sho 60-67526. It is disclosed that if the special diamine curing agent invented here is used, it maintains high physical properties even at high temperature and high humidity, and has high impact resistance as a pre-predator for non-interlayer reinforced evenings. .
  • the special curing agent disclosed in the present invention has a large molecular weight with respect to the number of reaction points (amine hydrogen). Then, compared to the conventional curing agent, the formulation for epoxy resin A large amount is required. As a result, the viscosity of the compound increases, and as a result, the degree of freedom in resin design is greatly restricted. For example, when a high degree of impact resistance is required, the addition of thermoplastic resin increases the viscosity of the resin when an attempt is made to improve the impact resistance by interlayer reinforcement technology. Therefore, it was difficult to improve the impact resistance beyond the disclosed level.
  • Japanese Patent Publication No. 7-78138 discloses a resin composition having excellent heat resistance and excellent flow characteristics when the resin is cured.
  • the epoxy resin contains 3, 3'-DDS and a thermoplastic resin with a Tg of 100 or more.
  • TGDDM tetraglycidyldiaminodiphenylmethane
  • the subject matter of the invention disclosed herein uses a 3,3′-DDS, which has high solubility in epoxy resin and a high reactivity, in place of 4,4′-DDS, and It has been found that the reaction with the epoxy resin can be accelerated in the process of raising the temperature and the effect of keeping the minimum viscosity high. -When the epoxy resin is cured with 3,3'-DDS in this way, it becomes a cured product with high heat resistance as disclosed, but the resin toughness is reduced and the impact resistance is also reduced. In the above invention, there is no solution to this point. As a pre-predator excellent in impact resistance, Japanese Patent Publication No. 6-94515 discloses a thermoplastic resin as a base resin made of a thermosetting resin.
  • TGD DM is 90% of the epoxy resin as the base resin of the thermosetting resin
  • 4,4'-DDS whose mole number is 0.175 times the epoxy group
  • PES is the thermoplastic resin.
  • a 10% composition is disclosed.c
  • the main subject of the invention disclosed here is the technology of selectively increasing the toughness of the interlayer between the laminated plates where the stress is most concentrated under impact by adding a thermoplastic resin. Although the impact resistance is disclosed, there is no solution for improving the compressive strength.
  • Japanese Patent Application Laid-Open Nos. 5-1159 and 4-268361 also disclose an interlayer strengthening technique.
  • a base resin an epoxy resin comprising TGDDM and triglycidylaminophenol, and as a curing agent, 3 , 3 '— DDS, thermoplastic
  • thermoplastic An example using a polysulfonamine-terminated PES oligomer as the conductive resin is described.
  • the main feature is improvement in impact resistance by interlayer reinforcement.
  • the impact resistance is improved as disclosed in the Examples, but since triglycidylaminophenol accounts for 40 to 50% of the epoxy resin, The resin elastic modulus is not so high, and the compression characteristics at high temperature and high humidity are not sufficient.
  • the present inventors have found that a pre-preda using a matrix resin containing a specific composition of an epoxy resin, a specific curing agent, and a specific thermoplastic resin has a mechanical property of a compression system, particularly high temperature and high temperature.
  • the present invention has been found to provide a fiber-reinforced composite material which is excellent in compressive strength of a perforated plate when wet and is suitable as a structural material.
  • a first invention in the present invention is a prepreg containing a reinforcing fiber and a matrix resin, wherein the matrix resin is
  • thermoplastic resin having a glass transition temperature of 180 or more
  • a prepreg comprising at least 70% by weight or more of the epoxy resin (A) and a mixture of at least one or a plurality of epoxy resins selected from the group consisting of the following (A1) or (A3): A prepreg having a water absorption of 1% or less after soaking the cured product in 71 hot water for 2 weeks.
  • R, to R 5 represents hydrogen, Nono androgenic, an alkyl group having 4 or less carbon atoms independently.
  • a second invention according to the present invention is a pre-reader containing a reinforcing fiber and a matrix resin, wherein the matrix resin power,
  • (B) A diamine compound having one to three phenyl groups in the skeleton, and at least one phenyl group having at least one phenyl group bonded to each of the two amino groups at the meta position.
  • At least 70% by weight of the epoxy resin (A) is selected from the group consisting of the following (A1) or (A3), including at least a film, a particle, a fiber or a composite thereof made of a thermoplastic resin. And a mixture of at least one type of epoxy resin, and a prepreg in which a thermoplastic resin (D) is disposed on one or both sides of a prepreg.
  • (A1) an epoxy resin having a plurality of diglycidylamino groups directly bonded to a non-condensed benzene ring
  • a third invention according to the present invention is a prepreg comprising a reinforcing fiber and a matrix resin, wherein the matrix resin comprises:
  • thermoplastic resin having a glass transition temperature of 180 or more
  • At least 70% by weight of the epoxy resin (A) is selected from the group consisting of the following (A1) or (A3), including at least a film, a particle, a fiber or a composite thereof made of a thermoplastic resin. Is a mixture of at least one epoxy resin or a mixture of two or more epoxy resins.
  • the thermoplastic resin (D) is placed on one or both sides of the pre-predator, and its water absorption after immersing the cured product in warm water of ⁇ 1 for 2 weeks. Pre-Predator less than 1%.
  • Epoxy resin (A1) having two ricidylamino groups is an epoxy resin that gives a cured product with high heat resistance and high elastic modulus because of its high cross-linking density, and has the general formula shown in the following formula (2). Are preferred in that they have high heat resistance.
  • X! Represents one CO—, one S—, —S ⁇ 2 —, — ⁇ —, or a divalent linking group represented by any of the following general formulas (3) to (5).
  • Rl5 wherein, R ", R l5 represents independently hydrogen or alkyl group having 4 or less carbon atoms c
  • R 16 to R 19 independently represent hydrogen, halogen, or an alkyl group having 4 or less carbon atoms
  • Chi 2 One CO- is chi 3 is independently one S-, -S0 2 -, a divalent linking group represented by over 0 or the following formula. Equation (5) Where R 2 . , R 21 independently represent hydrogen or an alkyl group having 4 or less carbon atoms. Preferred specific examples of R 6 to R 21 include a hydrogen atom, a chlorine atom, a bromine atom, a methyl group, an ethyl group, and an isopropyl group.
  • Preferred specific examples of the epoxy resin (A1) include those represented by the following general formula (6) or (7).
  • R 22 represents hydrogen or a methyl group c
  • R 23 represents hydrogen or an ethyl group c
  • Epoxy resin having a condensed aromatic ring in the skeleton (A2) has at least one condensed aromatic ring such as naphthalene, phenanthrene, anthracene, bilen, coronene, or fluorene in the skeleton
  • It is an epoxy compound having two or more glycidyl groups, and is preferable because it has a bulky structure in the skeleton, forms a rigid cured structure, and gives a cured product with high heat resistance and a high elastic modulus.
  • those represented by the following general formulas (8) to (10) are preferable in terms of heat resistance.
  • the epoxy resin (A3) represented by the general formula (1) is an epoxy resin having three or four epoxy groups in the molecule ⁇ ⁇ ⁇ , and has an effect of increasing the crosslink density of a cured product and improving heat resistance. .
  • R t ⁇ R 5 are independently hydrogen
  • a c epoxy resin represents a halogen or alkyl group having 4 or less carbon atoms
  • A3 is Bok squirrel (4-glycidyl O carboxymethyl off We yl) meth , 1,1,2,2-Tetrakis (4-glycidyloxyphenyl) ethane is preferred from the viewpoint of heat resistance.
  • the epoxy resin a resin having the above-mentioned specific chemical structure as a main component is used, and 70% by weight or more of the epoxy resin (A) is selected from the group consisting of the above (A1) to (A3).
  • the remaining components are not particularly limited as long as the epoxy resin has at least one or a mixture of a plurality of epoxy resins.
  • Epoxy 8 resin composition exceeds 0 wt 0/0 Te Bok lug glycidyl di ⁇ amino diphenyl We methane (TGDDM) epoxy resin (for example, as a main component, N, N, N '' N ' Tetoragu Rishijiru 4, 4 * -methylenebisbenzeneamine) allows the use of compounds with multiple epoxy groups in any molecule, resulting in a high modulus at room temperature and a high modulus at high temperature and humidity. A resin with a small decrease can be obtained.
  • TGDDM Te Bok lug glycidyl di ⁇ amino diphenyl We methane
  • the remaining components include, for example, bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, bisphenol B-type epoxy resin, novolak-type epoxy resin, and co-polymerization of phenol compound and dicyclopentadiene.
  • An epoxy resin of which coalescence is the origin a glycidyl ether type epoxy resin such as diglycidyl resorcinol, a glycidylamine type epoxy resin such as tetraglycidyl xylene diamine, or a combination thereof can be used.
  • thermoplastic resin To increase the amount of thermoplastic resin added, combine a low-viscosity epoxy resin as the remaining component, or use a high-viscosity epoxy resin to adjust the viscosity level suitable for handling properties and resin flow during curing.
  • the above components can be appropriately used depending on the purpose, such as blending a resin.
  • blends of tetraglycidyldiaminodiphenylmethane in excess of 80% by weight with bifunctional epoxy resins especially N, N, N ', N'-tetraglycidyl-4,4 'It is a compound of methylene bisbenzeneamine and bisphenol F-type epoxy resin, bisphenol A-type epoxy resin or diglycidyl resorcinol.', Good handling properties, and good physical properties by adding thermoplastic resin. I like it because of its great freedom of control.
  • the matrix resin of the pre-preda of the present invention has a skeleton as a curing agent for the epoxy resin.
  • B diamine compound
  • b, c, d independently represent 0 or 1
  • b + c + d satisfies 3
  • R 25 to R 37 independently represent hydrogen, halogen, or an alkyl group having 4 or less carbon atoms.
  • ⁇ 4 ⁇ 6 are independently one CO-, one S-, one S0 2 -, a divalent linking group represented by one ⁇ - following general formula (1 2).
  • R 38 to R 39 independently represent hydrogen, halogen, or an alkyl group having 4 or less carbon atoms.
  • the diamine compound (B) is preferably not b + c + d but 0, from the viewpoint of the working life of the prepreg.
  • the pot life mentioned here means that the pre-preda can be used without significantly lowering its handling properties such as tackiness (adhesiveness) and drape (flexibility) from its initial state. Say about time.
  • the pre-preda contains a diamine compound having reactivity with the epoxy resin in the epoxy resin, the reaction gradually progresses during storage (or during use), and the epoxy resin is accordingly added. Increases in viscosity. Since the viscosity of the epoxy resin affects the tackiness and drape of the pre-predator, the usable time (days) is limited. The tackiness and drapability of a prepredder are often evaluated by tactile sensation, and quantitative standards have not been established.However, as a simple evaluation method, the glass transition point of an uncured prepredder was measured by DSC, and It is relatively preferable that the change with time is small.
  • Preferred examples of the diamine compound (B) include 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylmethane, and 3,3'diaminodifu.
  • Examples include phenyl methane, 3,4'-diaminodiphenyl ether and its alkyl-substituted derivatives.
  • 3,4 * diamino diphenyl sulfone and 3, 3 'diamino diphenyl sulfone can be more preferably used because the pot life is particularly long.
  • 3,3 'diaminodiphenylsulfone requires a small amount of addition, and has two compressible methyl groups in the molecule in addition to the pot life, and the compressive strength at high temperature and humidity is high. This is preferable because the effect of improvement is most remarkably exhibited.
  • the compounding method of these diamine compounds includes a compounding method in which a diamine compound is uniformly dissolved in an epoxy using a solvent, and a compounding method in which the compound is kneaded without using a solvent and dispersed in an epoxy resin.
  • the compounding method is preferred. Dispersing rather than dissolving has the advantage of longer pot life.
  • diamine compounds when coating a resin film and impregnating carbon fiber, if there is a large particle size, it may be clogged between the jaws of a coating machine or not impregnated between carbon fibers.
  • These diamine compounds preferably have a weight of 90% by weight or more and a particle size of 40 / m or less.
  • the reaction between the diamine compound and the epoxy resin in the prepreg during storage is It proceeds near the interface between the amine compound particles and the epoxy resin. Therefore, the smaller the surface area of the diamine compound particles, the smaller the contact area with the epoxy resin and the longer the pot life. For a given volume of material, the smaller the particle size, the larger the surface area. Therefore, in order to suppress the surface area to a certain level and obtain a preferable pot life, it is preferable that particles having a particle size of 1 or less be 1% by weight or less.
  • the particle size distribution of the diamine compound has a median diameter of 15 m or less, and is calculated by the force and [(average particle size + standard deviation) / (average particle size)], but is 2.0 or less. It is particularly preferable because it has excellent strength, processability and pot life.
  • the composition in which the active hydrogen of the amino group of the diamine compound reacts with the epoxy group of the epoxy resin in a 1: 1 ratio is such that the number of moles of the diamine compound in the matrix resin is 0.1% of the number of moles of the epoxy group in the epoxy resin. Although it is a composition that is 25 times, the composition suitable for obtaining excellent compressive strength is different from this composition, and the number of moles of 3,3 'diaminodiph Xnyl sulfone in the matrix resin is different from that of the epoxy resin in the epoxy resin.
  • the composition is 0.15 to 0.2 times the number of moles of the group.
  • the matrix resin of the pre-preda of the present invention contains one or more thermoplastic resins (C) from the viewpoint of imparting impact resistance.
  • the thermoplastic resin used in the present invention has a Tg of at least 180, preferably at least 200, and more preferably at least 215 from the viewpoint of heat resistance.
  • the thermoplastic resin (C) is soluble in the epoxy resin.
  • that the thermoplastic resin is soluble in the epoxy resin means that there is a temperature region where the epoxy resin composition containing the thermoplastic resin forms a uniform phase. Phase separation of the resin composition at room temperature or phase separation in the curing process of the resin composition may occur.
  • thermoplastic resin polysulfone, polyimide, polyketone, aromatic polyester, and the like can be used, and among them, polysulfone or polysulfone represented by the following general formulas (13) and (14) Polyimide is preferred in that it has high heat resistance and high toughness.
  • Equation (13) ⁇ 40 X /-
  • n a number of 5 or 100
  • X 7 is - C_ ⁇ one
  • One S-, one S_ ⁇ 2 one or a 0 represents Zureka
  • R 4 0 is represented by the following formula Represents either structure.
  • n a number of 5 or 100
  • Xa is a direct bond, one CO-, One S one S0 2 -, it represents a divalent linking group represented by one 0 or the following formula (15)
  • chi 9 is a direct bond, one CO-, One S-, -S0 2 - represents a or shown by a 0-valent linking group.
  • Most preferred as such a thermoplastic resin is a thermoplastic resin having a structure represented by the following formulas (17) and (18).
  • n a numerical value of 5 or 100.
  • the preferred molecular weight of the thermoplastic resin (C) is about 200 to 2 in terms of number average molecular weight.
  • a range of 500 is preferred. If the molecular weight is lower than this, the effect of improving toughness is small, and if the molecular weight is higher than this, the viscosity of the resin increases significantly, and the handleability such as the reduction in workability involved in the production of the pre-preda and the tackiness and drape of the pre-preda Is remarkably reduced.
  • thermoplastic resin (C) The preferred content of the thermoplastic resin (C) is based on the epoxy resin! ⁇ 15 weight
  • the content is preferably 1 to 10% by weight. Since a certain amount is required for improving the toughness of the cured product, a more preferable range is 5 to 10% by weight.
  • the epoxy resin or the epoxy group which reacts with the epoxy resin or hardener, It is preferable to have a functional group such as a ropoxyl group, a hydroxyl group, or an amino group, because it has an effect of improving interphase adhesion and improving rupture elongation of a cured product. It is also preferable to include a compatibilizer having an affinity for both the epoxy resin and the thermoplastic resin to be mixed with the epoxy resin for improving the adhesion. As such a compatibilizer, a phenoxy resin represented by the formula (19) disclosed in JP-A-2-22913 is preferably used. Formula (19) In the formula, n represents a numerical value of 50 or 150.
  • a substance having a reactive functional group at the end also functions as such a compatibilizing agent, and thus is preferably blended. Is done.
  • the thermoplastic resin (C) may be dissolved in the epoxy resin in advance, or may be dispersed in the epoxy state in a powder state and dissolved at the time of molding.
  • a fiber having good heat resistance and tensile strength generally used as an advanced composite material is effective.
  • carbon fiber, graphite fiber, aramide fiber, gay carbide fiber, alumina fiber, boron fiber, tungsten carbide fiber, glass fiber and the like are used.
  • carbon fibers and lead fibers which have good specific strength and specific elastic modulus and are greatly contributed to weight reduction, are more preferable in the present invention.
  • the cross-sectional shape of carbon fiber is not particularly limited to a conventional circular cross-section yarn, but is disclosed in Japanese Patent Application Laid-Open Nos. 4-220281 and 3-185151, Carbon fibers with irregular cross-sections such as triangular, quadrangular, hollow, multi-lobal, and H-shaped as disclosed in Japanese Patent Application Laid-Open No. 3-977917 are compared to carbon fibers with circular cross-sections.
  • the fiber is preferably used to improve the compression characteristics of the obtained fiber-reinforced composite material, since the fiber is less likely to buckle.
  • the cross section of a single fiber is a multi-lobed shape having 3 to 5 leaves, and each leaf has a substantially plural shape having a swelling once from the base toward the tip.
  • a shape in which individual circles are joined is preferably used.
  • those having a degree of irregularity defined by the ratio R / r of the circumscribed circle radius R and the inscribed circle radius r of the fiber cross-sectional shape of 1.5 to 3 are more preferable because the effect of preventing buckling is large.
  • the form of the reinforcing fiber is not particularly limited, and for example, a long fiber, a tow, a woven fabric, a mat, a knit, a braid, and the like which are aligned in one direction are used.
  • a long fiber, a tow, a woven fabric, a mat, a knit, a braid, and the like which are aligned in one direction are used.
  • an array in which reinforcing fibers are arranged in a single direction is most suitable, but a cloth (fabric) that is easy to handle
  • An array of shapes is also suitable for the present invention.
  • the water absorption in the first invention and the like refers to the water absorption after the cured product of the pre-preda is immersed in 71 hot water for 2 weeks.
  • the matrix resin is plasticized, and the decrease in elastic modulus at a high temperature becomes greater than that at the time of drying. Therefore, in order to maintain high physical properties even at high temperature and high humidity, it is better to have a low water absorption rate. If it is 1% or less, the decrease in physical properties at high temperature and high humidity is small, and it should be 0.9% or less. Is preferable, and more preferably 0.
  • the preparation of the prepreg is not particularly limited, and a normal prepreg manufacturing process can be applied.
  • a high toughness material in order to increase the compressive strength after impact, it is effective to make a high toughness material exist near one or both surfaces of the pre-predator and distribute the high toughness material between layers of the composite material obtained by lamination and curing. It is known that there is.
  • a thermoplastic resin as disclosed in JP-A-6-32732 for example, an elastomer such as disclosed in JP-A-4-268631 is used.
  • an elastomeric thermosetting resin as shown in U.S. Pat. No. 3,472,730 is used. There are known methods.
  • thermoplastic resin (D) when 90% by weight or more of the thermoplastic resin (D) is localized within a range of 15% of the thickness of the prepreg from the prepreg surface, the compressive strength after impact has an effect. It is preferable to increase the quality.
  • thermoplastic resin (D) As the thermoplastic resin (D) to be present on one side or the surface of the pre-preda, polyamide, polyimide, polyetherimide, polyamideimide, polysulfone, polyethersulfone, and the like are preferable. Among these, polyamide power, which is excellent in toughness and adhesion to matrix resins, is particularly preferred. As the polyamide, it is also possible to use a polyimide modified with an epoxy resin as disclosed in Japanese Patent Application Laid-Open No. 1-104624.
  • thermoplastic resin (D) various forms such as a film, a particle, a fiber, or a composite of at least two of these can be adopted.
  • thermoplastic resin (D) having a fibrous shape is preferable because the tackiness and drape property of the pre-preda are excellent.
  • any form such as a fiber length and a fiber aggregate form may be used.
  • Japanese Patent Application Laid-Open No. 2-673333 discloses a floc shape obtained by finely cutting a fiber, Japanese Patent Application Laid-Open No. 2-6956666, a short arrowhead, Long fiber parallel arrangement as disclosed in Japanese Patent Application Laid-Open No. 292634, woven fabric as disclosed in Japanese Patent Application Laid-Open No. 2-32843, International Any form such as nonwoven fabric or knit as disclosed in Publication No. 94016003 can be used, but nonwoven fabric or knit is more excellent in tackiness and drapeability. Preferred.
  • the shape of the particles may be spherical particles as disclosed in JP-A-1110537 or non-spherical particles as disclosed in JP-A-11110536. — It may be a porous particle as disclosed in JP-A-1159.
  • the above film, fiber or particle may be used alone, or a film containing fiber or particle, or a combination of particles and fiber may be used.
  • thermoplastic resin (D) is an epoxy resin or a bismaleimide resin and a semi-IP resin.
  • thermoplastic resin particles be N-formable or semi-IPN-like because the particles have excellent solvent resistance and maintain the solvent resistance of the entire composite material.
  • IPN is an abbreviation of Internet training polymer network (Internetrating Polymer Network), and refers to an interpenetrating network structure of cross-linked polymers.
  • semi-IPN is This refers to the interpenetrating network structure between a crosslinked polymer and a linear polymer.
  • a conventional method can be used as such a semi-IPN conversion method.One example is to dissolve a thermoplastic resin and a thermosetting resin in a common solvent, mix them uniformly, and then use a method such as reprecipitation. Obtainable.
  • thermoplastic resin (D) which is a particle composed of an epoxy resin and a semi-IPNated polyamide in that a high level of heat resistance and impact resistance is imparted to the pre-preda.
  • thermoplastic resin (D) may be a particle having a median diameter of 30 or less.
  • the above-mentioned prepreg gives a composite material having excellent impact resistance and compressive strength at high temperature and high humidity, but has 16 layers laminated in a quasi-isotropic structure, and has a condition of 180 and a pressure of 0.588 MPa. And cured for 2 hours in a 0 ° direction at 305 mm and a 90 ° direction at 38 mm in a rectangular plate with a 6.35 mm diameter circular hole at the center. (Measured at 82 after immersion in warm water for 2 weeks) of 275 MPa or more is particularly superior in compressive strength at high temperature and high humidity, and satisfies the high compressive strength required for larger structures Therefore, it is preferable.
  • 24 layers were laminated in a quasi-isotropic configuration, cured at 180 and a pressure of 0.588 MPa for 2 hours, cut out into a rectangle of 305 mm in the 0 ° direction and 38 mm in the 90 ° direction. 30.
  • Those having a compressive strength of 275 MPa or more after giving a falling weight impact of 5 N-m are particularly excellent in impact resistance and are preferred.
  • the fiber-reinforced composite material obtained by curing the pre-preda gives a composite material having excellent impact resistance and compressive strength at high temperature and high humidity, and is required with a high degree of damage tolerance and a large-sized structure. In order to satisfy high compressive strength, the degree of freedom in structural design is increased, and it is preferable to provide a lightweight and high-performance composite material.
  • the evaluation of the composite material such as water absorption measurement, perforated plate compression strength measurement, and residual compression strength measurement after impact, was performed under the following conditions.
  • 16 layers were laminated [(+ 45/0 / -45 / 90) 2S ] in a quasi-isotropic configuration, and a composite material plate was obtained which was cured in an autoclave at 180 and a pressure of 0.588 MPa for 2 hours.
  • a rectangular plate of 304.8 mm in the 0-degree direction and 38.1 mm in the 90-degree direction was cut out from this composite material plate, and a circular hole with a diameter of 6.35 mm was drilled in the center to obtain a perforated plate test piece. After drying the perforated plate at 120 for 24 hours, the dry weight was measured. Subsequently, they were immersed in 71 hot water for 2 weeks to obtain the water absorption weight. From the weight before and after the water absorption, the weight increase due to the water absorption was calculated.
  • the composite material plate was laminated in a quasi-isotropic configuration with 24 layers [45/0 /-45/90) 3S and cured in an autoclave at 180 and a pressure of 0.588 MPa for 2 hours.
  • a test specimen was cut out from this composite material plate into a rectangle measuring 152.4 mm in the 0-degree direction and 101.6 mm in the 90-degree direction.
  • a drop weight impact of 30.5 N'm was applied to the center of the test piece, and the compressive strength after that was measured using an Instron 1128 tester.
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Epoxy-modified nylon particles (D 1) 35.
  • 3,3'-Diaminodiphenyl sulfone is pulverized using an impact crusher with a built-in air classifier (Hoso Kamicron Co., Ltd., ACM-10).
  • the median diameter is 11 m and 90% by weight. diameter 22 m or less, the particle diameter is substantially 0% or less of the particles 1 m, sigma beta was 1.83.
  • the number of moles of 3,3'-diaminodiphenylsulfone is 0.175 times the number of moles of the epoxy group.
  • the epoxy-modified nylon resin is an amorphous transparent nylon (Grillami KTR-55, manufactured by Mitsubishi Kasei Co., Ltd.), a bisphenol A type as shown in Example 1 of JP-A-11-104624.
  • Semi-IPN particles composed of an epoxy resin and a polyamide epoxy curing agent and having an average particle diameter of 16 m were used.
  • the primary resin prepared in (A) was applied using a reverse roll coater L on a release paper so as to have an application amount of 31.2 g / m 2 to prepare a resin film.
  • a secondary resin was applied so that the application amount was 20.5 g / ra 2 to prepare a resin film.
  • a carbon fiber (T800H, manufactured by Toray Industries, Inc.) with an elastic modulus of 294 GPa and an elongation of 1.9% aligned in one direction is sandwiched between the primary resin films from both sides and impregnated with resin by heating and pressing Then, a secondary resin film was attached on both sides of the prepreg to obtain a prepreg having a carbon fiber weight of 190 g / m 2 and a carbon fiber content of 64.8%.
  • the pre-preparers prepared in (B) were laminated in a configuration of (+ 45/0 / -45 / 90) 2S and 45/0/45/90) 3S . These were cured in an autoclave at a temperature of 180 and a pressure of 0.588 MPa for 2 hours.
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Epoxy-modified nylon particles (D 1) 35.0 parts by weight
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Epoxy-modified nylon particles (D 1) 34.5 parts by weight
  • Example 2 The same 3,3′-diaminodiphenyl sulfone as in Example 1 was used. In this composition, the number of moles of 3,3'-diaminodiphenylsulfone is 0.175 times the number of moles of epoxy group.
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Tetraglycidyl diaminodiphenylmethane (A1) (ELM434, manufactured by Sumitomo Chemical Co., Ltd.) 30.0 parts by weight
  • Epoxy-modified nylon particles (D 1) 34.3 parts by weight
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Epoxy-modified nylon particles (D 1) 33.8 parts by weight
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Example 2 The same 3,3 'diaminodiphenyl sulfone as in Example 1 was used. In this composition, the number of moles of 3,3′-diaminodiphenylsulfone is 0.175 times the number of moles of epoxy group.
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Tetraglycidyl diaminodiphenylmethane (A1) (ELM434, manufactured by Sumitomo Chemical Co., Ltd.) 90.0 parts by weight bisphenol A type epoxy resin (epoxy equivalent 175) (a 1)
  • Epoxy-modified nylon particles (D 1) 35.2 parts by weight
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Epoxy-modified Niopene particles (D 1) 35.2 parts by weight
  • the number of moles of 4.4′-diaminodiphenylsulfone is It is 0.175 times the number of moles of epoxy groups.
  • Example 1 Among the raw materials for the secondary resin, the same epoxy-modified resin used in Example 1 was used.
  • the following raw materials were kneaded to obtain a primary resin composition.
  • Epoxy-modified nylon particles (D 1) 35.2 parts by weight
  • the number of moles of 3,3 * -diaminodiphenylsulfone is 0.175 times the number of moles of epoxy groups.
  • Example 1 Among the raw materials for the secondary resin, the same epoxy-modified resin used in Example 1 was used.
  • PES 5003 P manufactured by Mitsui Toatsu Chemicals, Inc. 34.1 parts by weight
  • the number of moles of 3,3′-diaminodiphenylsulfone is 0.175 times the number of moles of epoxy group.
  • PES is 20% by weight of the total matrix.
  • a carbon fiber (T800H, manufactured by Toray Industries, Inc.) with a modulus of elasticity of 294 GPa and an elongation of 1.9%, which is aligned in one direction, is sandwiched from both sides with the above resin film, and heated and pressed to impregnate the resin.
  • Carbon fiber basis weight 190g / m ⁇ Carbon fiber content 64.8. No. 0 prepreg was obtained.
  • the water absorption and the compressive strength were measured in the same manner as in Example 1. The results are as follows: As for the compressive strength after impact, sufficient physical properties cannot be obtained because the interlayer is not strengthened. For the compressive strength of the perforated plate at high temperature and high humidity, the resin composition is out of the range of the present invention ( It is not sufficient because of the high content of trifunctional aminophenol-type epoxy resin with poor heat and moisture resistance.)
  • the water absorption and the compressive strength were measured in the same manner as in Comparative Example 3 except that the resin prepared in (A) was used.
  • the results are as follows: As for the compressive strength after gagu, sufficient physical properties were not obtained because the interlayer was not strengthened, and for the compressive strength of the perforated plate at high temperature and high humidity, the resin composition was determined according to the present invention. It was not sufficient because it deviated (contains a large amount of trifunctional aminophenol type epoxy resin with poor wet heat resistance). .
  • the pre-predder of the present invention can provide a composite material having excellent compressive properties under wet heat, and can be laminated, cured and processed into a fiber-reinforced material to form a structural material, or a mandrel. It can be suitably used, for example, by being wound around a rod and processed into a rod or a shaft.

Description

明 細 プリプレグぉよび繊維強化複合材料 技 術 分 野 本発明は、 繊維強化複合材料成形用のプリプレグおよびそのプリプレダから成 形された繊維強化複合材料に関する。 詳しくは、 圧縮系の機械特性に優れ、 構造 材料として好適な繊維強化複合材料を与えるプリプレグぉよびそれから得られる 繊維強化複合材料に関する。 背 景 技 術 強化繊維とマトリックス樹脂からなるポリマー基複合材料は、 軽量で優れた機 械特性を有するために、 スポーツ用品用途、 航空宇宙用途、 一般産業用途等に広 く用いられている。 繊推強化複合材料の製造には、 各種の方法が用いられている が、 強化繊維に未硬化のマ卜リックス樹脂力、'含浸されたシー卜状中間基材である プリプレグを用いる方法が広く用いられている。 この方法では、 通常、 プリプレ グを複数枚積層した後、 加熱することによつて複合材料の成形物が得られる。 プリプレダに用いられるマトリックス樹脂としては、 熱硬化性樹脂、 熱可塑性 樹脂がともに使用されるが、 ほとんどの場合、 取扱い性の優れる熱硬化性樹脂が 用いられ、 そのなかでもエポキシ樹脂が最も多く使用されている。 また、 マレイ ミ ド樹脂、 シァネート樹脂およびこれらを組合わせたものもよく使用されている また、 一般にポリマー系の材料は、 高温および または高湿条件下で強度や弾 性率が低下する。 したがって、 ポリマーをマトリックスとする繊維強化複合材料 の強度などの物性も、 高温あるいは高湿条件下で低下しやすい。 しかし、 複合材 料を航空機、 車両、 船舶などの構造材料として適用する場合は、 高温およびノま たは高湿条件下でも物性を十分保持することが要求される。
繊維強化複合材料を構造材料として用いる場合、 圧縮強度は、 特に重要な物性 である。 圧縮強度の測定には、 無孔板、 有孔板、 円筒などの試験片を用いて行わ れるが、 実際の使用においては、 ボルト穴を設けた板材の形にすることが多いた め、 特に有孔板の圧縮強度、 なかでも高温、 高湿条件での強度が重要になる。 し力、し、 従来のポリマー基複合材料では、 軽量という利点を有するものの、 高 温あるいは高湿条件下での圧縮強度が十分でないことがあり、適用可能な用途が 制限されることがあった。
高温、 高湿条件での圧縮強度を向上させるには、 樹脂の弾性率を向上させるこ とが有効であり、 さらには高温、 高湿条件での弾性率低下を抑制することが重要 と考えられる。 そして樹脂弾性率を向上させるにはエポキシ樹脂を高架橋密度と すること、 高温、 高湿条件での弾性率低下の抑制には吸水率の低減や耐熱骨格の 導入といつた手段が提案されてきた。
耐衝撃性、 耐熱性、 耐水性のバランスのとれたプリプレダ用の樹脂組成物とし て特開昭 6 2 - 2 9 7 3 1 6号公報、 特開昭 6 2 - 2 9 7 3 1 2号公報では卜リ グリシジルァミノフヱノール骨格を有するエポキシ樹脂を主成分とするエポキシ 樹脂、 ジァミノジフヱニルスルホン (以下 D D Sと略記する) 、 ポリェ一テルス ルホン (以下 P E Sと略記する) ないしはポリエーテルィミ ド (以下 P E Iと略 記する) を配合した樹脂組成物が開示されている。
しかし、 耐熱性についてはガラス転移点で、 耐水性については吸水率で別個に 評価されており、 トリグリシジルァミノフ ノール骨格を有するエポキシ樹脂の 高温高湿時の物性低下が大きいという点に対して何らの解決もなされて t、な 、。 また、 吸湿により低下するエポキシ樹脂硬化物の物性低下を押さえるために、 吸湿性を減少させるジァミン硬化剤とそのエポキシ樹脂配合物について特開昭 5 9 - 2 1 5 3 1 4号公報、 特開昭 5 9 - 2 1 5 3 1 5号公報、 特開昭 6 0 - 6 7 5 2 6号公報に開示されている。 ここで発明された特殊なジアミン硬化剤を用い れば、 高温高湿時にも高い物性を保持することが開示されており、 非層間強化夕 イブのプリプレダとしては高い耐衝擊性を有している。
しかし、 実際のプリプレグに適用する場合を想定すると、 ここで発明が開示さ れている特殊な硬化剤は反応点 (ァミン水素) の数に対して分子量が大きいため、 十分な物性を得ようとすると従来の硬化剤に比較してエポキシ樹脂に対する配合 量が多く必要となる。 このため配合物の粘度が高くなり、 結果として樹脂設計の 自由度が大きく制限される。 例えば、 高度な耐衝擊性が要求される場合に熱可塑 性樹脂の配合ある t、は層間強化技術による耐衝擊性改良を試みると樹脂粘度が増 加してしまうため、 かかる技術の適用は実質的に不可能と考えられ、 耐衝撃性と しては開示されているレベル以上に改善することは困難であつた。
耐熱性と樹脂の硬化時の流動特性に優れた樹脂組成物として、 特公平 7 - 78 138号公報には、 エポキシ樹脂に 3, 3' — DDSと Tgが 100 以上の熱 可塑性樹脂を配合することが記載されており、 特に耐熱性を重視する場合にはテ 卜ラグリシジルジアミノジフヱニルメタン (以下 TGDDMと略記する) を全ェ ポキシ樹脂中の 50〜 80%配合することが好ましいことが記載されている。 こ こで開示されている発明の主体は 4, 4' 一 DDSに代えて、 エポキシ樹脂への 溶解性が高く、 また反応性が高い 3, 3' 一 DDSを使用することにより、 硬化 時の昇温過程でエポキシ樹脂との反応を早く進めることができ最低粘度を高く保 つ効果が見出したことにある。 - このように 3, 3' —DDSでエポキシ樹脂を硬化すると、 開示されているよ うに耐熱性の高い硬化物となる反面、 樹脂靭性は低下しそれに伴い耐衝撃性も低 下しているが上記発明にお t、ては、 この点に対して何らの解決もなされていない 耐衝撃性の優れたプリプレダとして、特公平 6— 94515号公報では熱硬化 性樹脂からなるベース樹脂に熱可塑性樹脂微粒子を添加するいわゆる粒子層間強 化技術が開示されている。 熱硬化性樹脂のベース樹脂としては実施例中に TGD DMがエポキシ樹脂中の 90%、 エポキシ基に対してモル数が 0. 1 75倍の 4, 4' 一 DDS、 熱可塑性樹脂として PESが 10%という組成が開示されている c ここで開示されている発明の主体は積層板において、 衝撃下最も応力が集中する 層間部を熱可塑性樹脂の添加により選択的に高靭性化する技術にあり、 耐衝擊性 については開示されているが、 圧縮強度の改良に関してはなんらの解決もなされ ていない。
特開平 5— 1 159号公報、 特開平 4— 268361号公報にもまた、 層間強 ィ匕技術の開示がされており、 ベース樹脂として、 TGDDMと卜リグリシジルァ ミノフヱノールからなるエポキシ樹脂、 硬化剤として 3, 3' — DDS、 熱可塑 性樹脂としてポリスルホンゃァミン末端の P E Sオリゴマーを使用した例が記述 されている。 これらの発明も、 主体は層間強化による耐衝撃性の改良である。 こ れらの樹脂組成では実施例に開示されているように耐衝撃性は向上するが、 トリ グリシジルァミノフエノールがエポキシ樹脂中の 4 0〜5 0 %を占めていること により高温高湿時の樹脂弾性率はそれほど高くはなく、 従って高温高湿時の圧縮 特性は十分なものではない。
発 明 の 開 示 本発明者らは特定組成のエポキシ樹脂、 特定の硬化剤および特定の熱可塑性樹 脂を含んだマ卜リックス樹脂を用いたプリプレダが、 圧縮系の機械特性、 特に高 温高湿時の有孔板圧縮強度に優れ構造材料として好適な繊維強化複合材料を与え ることを見出し本発明に至った。
すなわち本発明における第 1の発明は、 強化繊維とマトリックス樹脂とを含 むプリプレグであつて、 該マトリックス樹脂が、
(A ) エポキシ樹脂
( B ) 骨格中に 1ないし 3個のフヱニル基を有し、 そのうちの少なくとも 1個の フエニル基には 2つのアミノ基へつながるそれぞれの結合基がメタ位置に結合し ているジアミン化合物
( C ) ガラス転移温度が 1 8 0 以上である熱可塑性樹脂
を少なくとも含み、 該エポキシ樹脂 (A) の 7 0重量%以上が、 下記 (A 1 ) な いし (A 3 ) よりなる群から選ばれるエポキシ樹脂の少なくとも 1種もしくは複 数種の混合物からなるプリプレグであって、 その硬化物を 7 1ての温水に 2週間 浸漬後の吸水率が 1 %以下であるプリプレグである。
(A 1 ) 縮合していないベンゼン環に直結したジグリシジルァミノ基を複数個 有するエポキシ樹脂
(A 2 ) 骨格中に縮合芳香族環を有するエポキシ樹脂
(A 3 ) 下記一般式 (1 ) で表わされるグリシジルエーテル型エポキシ樹脂 。〜。 一般式 ( 1 )
ここで、 式中 aは 1または 2を表わし、
R,〜R5は独立して水素、 ノヽロゲン、 炭素数 4以下のアルキル基を表わす。 また、 本発明における第 2の発明は、 強化繊維とマトリックス樹脂とを含むプ リプレダであって、 該マ卜リックス樹脂力、'、
(A) エポキシ樹脂
(B) 骨格中に 1ないし 3個のフヱニル基を有し、 そのうちの少なくとも 1個の フエニル基には 2つのァミノ基へつながるそれぞれの結合基がメタ位置に結合し ているジァミン化合物
(C) ガラス転移温度が 180°C以上であるエポキシ可溶の熱可塑性樹脂
(D) 熱可塑性樹脂からなるフイルム、 粒子、 繊維またはこれらの複合物 を少なくとも含み、 該エポキシ樹脂 (A) の 70重量%以上が、 下記 (A 1) な いし (A3) よりなる群から選ばれるエポキシ樹脂の少なくとも 1種もしくは複 数種の混合物であり、 熱可塑性樹脂 (D) がプリプレダの片面または両面に配置 されてなるプリプレグである。
( A 1 ) 縮合していないべンゼン環に直結したジグリシジルァミノ基を複数個 有するエポキシ樹脂
(A2) 骨格中に縮合芳香族環を有するエポキシ樹脂
(A3) 下記一般式 (1) で表わされるグリシジルエーテル型エポキシ樹脂
一般式 ( 1 )
ここで、 式中 aは 1または 2を表わし、 Ri Rsは独立して水素、 ハロゲン、 炭素数 4以下のアルキル基を表わす。 また、 本発明における第 3の発明は、 強化繊維とマトリックス樹脂とを含むプ リプレグであつて、 該マトリックス樹脂が、 ''
(A) エポキシ樹脂
(B) 骨格中に 1ないし 3個のフヱニル基を有し、 そのうちの少なくとも 1個の フエニル基には 2つのァミノ基へつながるそれぞれの結合基がメ夕位置に結合し ているジアミ ン化合物
(C) ガラス転移温度が 180 以上である熱可塑性樹脂
(D) 熱可塑性樹脂からなるフイルム、 粒子、 繊維またはこれらの複合物 を少なくとも含み、 該エポキシ樹脂 (A) の 70重量%以上が、 下記 (A 1) な いし (A3) よりなる群から選ばれるエポキシ樹脂の少なくとも 1種もしくは複 数種の混合物であり、 熱可塑性樹脂 (D) がプリプレダの片面または両面に配置 され、 その硬化物を Ί 1 の温水に 2週間浸演後の吸水率が 1 %以下であるプリ プレダである。
(A 1) 縮合していないベンゼン環に直結したジグリシジルアミノ基を複数個 有するエポキシ樹脂
(A2) 骨格中に縮合芳香族環を有するエポキシ樹脂
(A3) 下記一般式 (1) で表わされるグリシジルェ一テル型エポキシ樹脂
-般式 ( 1 )
(式中 aは 1または 2を表わす)
発明を実施するための最良の形態 本発明のプリプレダに用いられる、 縮合していないベンゼン環に直結したジグ リシジルァミノ基を 2個有するエポキシ樹脂 (A 1) は、 硬化物の架橋密度が高 いため高耐熱、 高弾性率の硬化物を与えるエポキシ樹脂であり、 次式 (2) で示 される一般式を有するものが高耐熱性を有する点で好ましい。
0 0 式 (2)
«7 Re R11 R12
O 0 ここで、 Rs〜Rl3は独立して水素、 ハロゲン、 炭素数 4以下のアルキル基を表わ し、
X!は一 CO—、 一 S—、 — S〇2—、 —〇—、 または下記一般式 (3) 〜 (5) の 、ずれかで表わされる二価の結合基を表わす。
^1
一 C一 式 (3)
I
Rl5 ここで、 R", Rl5は独立して水素または炭素数 4以下のアルキル基を表わす c
式 (4). ここで、 Rl6〜Rl9は独立して水素、 ハロゲンまたは炭素数 4以下のアルキル基 を表わし、
Χ2、 Χ3は独立しては一 CO—、 一 S—、 -S02—、 ー0—、 または下記一般式 で表わされる二価の結合基を表わす。 式 (5) ここで、 R2。, R21は独立して水素または炭素数 4以下のアルキル基を表わす。 前記の R6〜R21の好ましい具体例としては、 水素原子、 塩素原子、 臭素原子、 メチル基、 ェチル基、 イソプロピル基力、'挙げられる。
エポキシ樹脂 (A 1) の好ましい具体例としては、 下記一般式(6) または (7) で表わされるものである。
式 (6)
R22は水素またはメチル基を表わす c
式 (7)
R 23は水素またはェチル基を表わす c 骨格中に縮合芳香族環を有するエポキシ樹脂 (A2) は、 骨格中にナフタレン、 フエナントレン、 アントラセン、 ビレン、 コロネン、 フルオレン等の縮合芳香族 環を少なくとも 1つ有し、 グリシジル基を 2つ以上有するエポキシ化合物であり、 骨格中に嵩高い構造を有するために剛直な硬化構造を形成し高耐熱、 高弾性率の 硬化物を与える点で好ましい。 中でも、 下記一般式(8)〜 (10) で表わされるものが耐熱性の点で好ましい
式 (10)
前記一般式 (1)で示されるエポキシ樹脂 (A3) は、 分子內にエポキシ基を 3 個または 4個有するエポキシ樹脂であり、 硬化物の架橋密度を高くし耐熱性を向 上させる効果がある。
式 (1)
ここで式中、 aは 1または 2であり、
R t〜 R 5は独立して水素、 ハロゲンまたは炭素数 4以下のアルキル基を表わす c エポキシ樹脂(A3) としては、 卜リス (4ーグリシジルォキシフヱニル) メタ ン、 1 , 1, 2 , 2 —テ卜ラキス (4ーグリシジルォキシフヱニル) ェタンが耐 熱性の点で好ましい。 エポキシ樹脂としては、 主成分として上記の如く特定の化学構造を有するもの を使用するが、 エポキシ樹脂 (A ) の 7 0重量%以上が上記 (A 1 ) ないし (A 3 ) よりなる群から選ばれるエポキシ樹脂を少なくとも 1種もしくは複数種の混 合物を有している限り、 残りの成分については特に限定されない。 主成分として エポキシ樹脂組成中の 8 0重量0 /0を越えてテ卜ラグリシジルジァミノジフヱニル メタン (T G D D M) 型エポキシ樹脂 (例えば、 N, N , N ' ' N ' ーテトラグ リシジルー 4、 4 * ーメチレンビスベンゼンァミン) を用いると、 任意の分子内 に複数のエポキシ基を有する化合物を用いることができ、 その結果、 室温時の弾 性率が高く、 高温高湿時の弾性率低下の小さい樹脂を得ることができる。 また残 りの成分として、 例えば、 ビスフエノール A型エポキシ樹脂、 ビスフヱノール F 型エポキシ樹脂、 ビスフヱノール S型エポキシ樹脂、 ビスフヱノール B型ェポキ シ樹脂、 ノボラック型エポキシ樹脂、 フヱノール化合物とジシクロペンタジェン の共重合体を原科とするエポキシ樹脂、 ジグリシジルレゾルシノールのようなグ リシジルエーテル型エポキシ樹脂、 テトラグリシジルキシレンジァミンのような グリシジルアミン型エポキシ樹脂、 あるいはこれらを組合わせて用いることがで きる。 熱可塑性樹脂の添加量を多くするために、 残りの成分として低粘度なェポ キシ樹脂を組み合わせたり、 ハンドリング性や硬化時の樹脂流れに適した粘度レ ベルを調整するために高粘度なエポキシ樹脂を配合するなど、 その目的に応じて 上記成分を適宜用いることができる。
なかでも、 8 0重量%を越えてテトラグリシジルジァミノジフヱニルメタンと、 2官能エポキシ樹脂との配合物、 特に、 N, N , N' , N ' —テ卜ラグリシジル - 4 , 4 ' ーメチレンビスベンゼンァミンとビスフエノール F型エポキシ樹脂、 ビスフヱノール A型エポキシ樹脂あるいはジグリシジルレゾルシノールとの配合 物であること力、'、 ハンドリング性の良さや、 熱可塑性樹脂の添加による物性のコ ントロールの自由度が大きという点で好まし 、。
本発明のプリプレダのマ卜リックス樹脂は、 エポキシ樹脂の硬化剤として骨格 中に 1ないし 3個のフヱニル基を有し、 そのうちの少なくとも 1個のフヱニル基 には 2つのァミノ基へつながるそれぞれの結合基がメタ位置に結合しているジァ ミン化合物 (B) を含有する。 中でも下記一般式(11) で示される構造のジァ ミン化合物を含有すること力く、 樹脂弾性率の向上と、 低吸水率化の効果があり好 ましい。
式中、 b、 c, dは独立して 0または 1を表わし、 b + c + dく 3を満たし、 R25〜R37は独立して水素、 ハロゲンもしくは炭素数 4以下のアルキル基を表わ し、
χ4〜χ6は独立して一 CO—、 一 S—、 一 S02—、 一〇—または下記一般式 (1 2)で示される二価の結合基を表わす。
^38
式 (
-C一 12)
I
π39 ここで R38〜R39は独立して水素、 ハロゲンもしくは炭素数 4以下のアルキル基 を表わす。
上記ジァミン化合物 (B) は、 b + c + d力く 0ではな ゝものがプリプレグの可 使時間の点で好ましい。 b + c + d = 0の場合エポキシ基との反応性が高し、ため、 可使時間が短く実用性の点で問題が起こる場合がある。 さらに、 b- l、 c = d = 0のごとくべンゼン環を分子内に 2個有するものが好ましい。 この理由として ベンゼン環がより少ない方が架橋密度が上がり高耐熱となりやすいためである。 ここで言う可使時間とは、 プリプレダのタック性 (粘着性) 、 ドレープ性 (しな やかさ) といった取り扱い性が、 初期の状態から大きく低下しないで使用できる 時間のことを言う。 プリプレダには、 エポキシ樹脂中にエポキシ樹脂との反応性 を有するジァミン化合物が配合されているため、 保存時 (あるいは使用時) に徐 々にではあるが反応が進行し、 これに伴ってエポキシ樹脂の粘度が上昇する。 ェ ポキシ樹脂の粘度はプリプレダのタック性、 ドレープ性に影響を与えため、 使用 が可能な時間 (日数) には限界がある。 プリプレダのタック性、 ドレープ性は触 感により評価されることが多く、 定量的な基準は確立されてはいないが、 簡易の 評価法として未硬化のプリプレダのガラス転移点を D S Cにより測定し、 この経 時変化が小さいものが相対的に好ましいとされる。
ジァミン化合物 (B ) の好ましい例として、 3, 4 ' —ジアミノジフエニルス ルホン、 3, 3 ' —ジァミノジフヱニルスルホン、 3 , 4 ' —ジァミノジフヱ二 ルメタン、 3, 3 ' ージアミノジフヱニルメタン、 3 , 4 ' —ジアミノジフエ二 ルェ一テルおよびそのァルキル置換誘導体が挙げられる。 これらを使用すること で、 より少ない配合量でエポキシ樹脂を硬化することができる。
なかでも、 3, 4 * ージァミノジフヱニルスルホン、 3 , 3 ' ージアミノジフ ェニルスルホンが特に可使時間が長いためさらに好ましく使用できる。 これら、 一 S 0 2—を有するものはァミノ基のエポキシ基との反応性を S〇 2の求電子効果 により弱めるため、 可使時間が長いという利点がある。 中でも 3 , 3 ' ージアミ ノジフヱニルスルホンは添加量が少なく済む点、 また可使時間に加え分子内に 2 箇所のメ夕置換フ 二ル基を有し、 高温高湿時の圧縮強度が向上する効果が最も 顕著に発現される点で好ましい。
これらジアミン化合物の配合方法は、 溶媒を用いてエポキシ中にジアミン化合 物を均一に溶解する配合方法、 または溶媒を使用せずに混練し、 エポキシ樹脂中 に分散させる配合方法があるが、 後者の配合方法が好ましい。 溶解ではなく分散 させる方が可使時間がより長くなる利点があるためである。
プリプレダの製造過程で樹脂フィルムのコ一ティングゃ炭素繊維への含浸を行 う際に、 粒径の大きなものがあるとコーティングマシンの口ール間につまったり、 炭素繊維間に含浸しないため、 これらジァミン化合物は 9 0重量%以上カ、 粒径 4 0 / m以下であることが好ましい。
また、 保存時のプリプレグ中でのジァミン化合物とエポキシ樹脂との反応はジ ァミン化合物粒子とエポキシ樹脂との界面付近で進行する。 このためジァミン化 合物粒子の表面積が小さい方がエポキシ樹脂との接触面積が少くなり、 可使時間 力、'より長くなる。 一定体積の物質があるとき、 粒径が小さくなればなるほど表面 積は大きくなる。 このため、 表面積をあるレベルまでに抑え好ましい可使時間を 得るためには、 粒径が 1 以下の粒子が 1重量%以下であることが好ましい。 中でも前記ジアミン化合物の粒径分布がメジアン径が 1 5 m以下であり、 力、 つ [ (平均粒径 +標準偏差) / (平均粒径) ] で算出される が 2 . 0以下であ るもの力、'、 プロセス性可使時間共に優れているため特に好ましい。
ジァミン化合物のァミノ基の活性水素がエポキシ樹脂のエポキシ基と 1 : 1で 反応する組成は、 マ卜リックス樹脂中のジァミン化合物のモル数が、 エポキシ樹 脂中のエポキシ基のモル数の 0 . 2 5倍である組成であるが、 優れた圧縮強度を 得るために適した組成は、 この組成とは異なり、 マトリックス樹脂中の 3 , 3 ' ージァミノジフ Xニルスルホンのモル数が、 エポキシ樹脂中のエポキシ基のモル 数の 0 . 1 5ないし 0 . 2倍である組成である。
本発明のプリプレダのマ卜リックス樹脂には、 耐衝繫性を付与する観点から熱 可塑性樹脂 (C ) が 1種または複数含まれる。 本発明で用いられる熱可塑性樹脂 は耐熱性の点から T gが 1 8 0て以上であり、 2 0 0 以上であることが好まし く、 さらには 2 1 5て以上であることが好ましい。 熱可塑性樹脂 (C ) はェポキ シ樹脂に可溶であることが好ましい。 ここで、 熱可塑性樹脂がエポキシ樹脂に可 溶であるとは、 熱可塑性樹脂を配合したエポキシ樹脂組成物が均一相をなす温度 領域が存在することを意味する。 室温での樹脂組成物の相分雜や、 樹脂組成物の 硬化過程における相分雜が起こってもかまわない。 熱可塑性樹脂としては、 ポリ スルホン、 ポリイミ ド、 ポリケトン、 芳香族ポリエステルなどを用いることがで きる力、'、 なかでも、 下記一般式 ( 1 3 ) 、 (1 4 ) で表わされるポリスルホンあ るいはポリィミ ドが高耐熱性かつ高靭性である点で好ましい。
式 ( 1 3 ) 闩 40 X/- 式中、 nは 5ないしは 100の数値を表わし、 X7は- C〇一、 一 S—、 一 S〇2 一または一 0—の 、ずれかを表わし、 R 40は下記式で示されるいずれかの構造を 表わす。
式(14)
式中、 nは 5ないしは 100の数値を表わし、 Xaは直接結合、 一CO—、 一 S 一 S02—、 一 0—または下記式(15) で示される二価の結合基を表わし、 R, 'は下記一般式 (16) で示されるいずれかの構造を表わす。
式 (15)
式 (16) 式中、 Χ9は直接結合、 一 CO—、 一 S-、 -S02-または一 0-で示される. 価の結合基を表す。 また、 エポキシ樹脂に対する溶解性の点から骨格中にエーテル結合を有する, とがより好ましい。 このような熱可塑性樹脂としで最も好ましいのは、 下記式 ( 1 7 ) 、 (1 8 ) で表わされる構造のものである。
式 ( 1 7 )
式 (1 8 ) 式中、 nは 5ないしは 1 0 0の数値を表す。
熱可塑性樹脂 ( C ) の好まし 、分子量は、 数平均分子量にして約 2 0 0 0〜 2
5 0 0 0の範囲が好ましい。 これより分子量が小さい場合、 靭性向上効果が小さ く、 またこれより分子量が大きければ樹脂粘度の増加が著しく、 プリプレダの製 造にかかる作業性の低下およびプリプレダのタック性ドレープ性といった取り扱 い性の低下が顕著である。
熱可塑性樹脂 (C ) の好ましい含有量は、 エポキシ樹脂に対して!〜 1 5重量
%である。 1 %より少ないと成形硬化時の流動が多くなり過ぎることがあり、 1 5 %を越えるとエポキシ樹脂に溶解した場合の粘度が高くなるため、 プリプレダ のタック性、 ドレープ性といった取り扱い性力、'低下する場合がある。 樹脂の流動 性とプリプレグのタック性、 ドレープ性のバランスのため、 1〜 1 0重量%でぁ ることが好ましい。 また硬化物の靭性向上のためにはある程度の含有量が必要で あるため、 さらに好ましい範囲としては 5〜 1 0重量%である。
硬化過程で熱可塑性樹脂に富む相が分雜する場合には、 相間の接着が不十分な 場合、 樹脂靭性が向上せず、 結果として耐衝擎性が改善しない場合がある。 この 場合、 熱可塑性樹脂にエポキシ樹脂あるいは硬化剤と反応し得るエポキシ基、 力 ルポキシル基、 水酸基、 アミノ基などの官能基をもたせると、 相間の接着が改良 され硬化物の破壌伸びを向上させる効果があるため好ましい。 また、 エポキシ樹 脂と、 これに配合する熱可塑性樹脂の双方に親和性をもつ相溶化剤を含有するこ とも接着性改良のために好ましい。 このような相溶化剤としては、 特開平 2— 2 0 2 9 1 3号公報に開示されている式 (1 9 ) で表わされるフエノキシ樹脂が好 ましく用いられる。 式 (1 9 ) 式中 nは 5 0ないしは 1 5 0の数値を表す。
使用する熱可塑性樹脂と骨格が同一で分子置がより小さく (オリゴマー領域であ ることが望ましい) 、 反応性の官能基を末端に有する物質もこのような相溶化剤 として機能するため、 好ましく配合される。
熱可塑性樹脂 (C ) の配合方法としては、 エポキシ樹脂に予め溶解しておいて もよいし、 粉末状態でエポキシ中に分散させておき、 成形時に溶解させてもよい。 本発明に係るプリプレダの強化維維としては、 一般に先進複合材料として用い られる耐熱性および引張強度の良好な維維が有効である。 たとえば、 炭素繊維、 黒鉛繊維、 ァラミ ド繊維、 炭化ゲイ素繊維、 アルミナ維維、 ボロン繊維、 タング ステンカーバイド繊維、 ガラス繊維などが用いられる。 このうち比強度、 比弾性 率が良好で軽量化に大きな寄与が認められる炭素繊維ゃ黑鉛繊維が本発明にはよ り好ましい。 用途に応じてあらゆる種類の炭素繊維や黒铅鏃維を用 、ることが可 能である力、'、 引張強度 4 : 4 0 ? 3、 引張伸度1 . 7 %以上の高強度高伸度炭素 維維が最も適している。
炭素維維の断面形状に関しては、 従来からある円形断面糸には特に限定されな いが、 特開平 4 - 2 0 2 8 1 5号公報、 特開平 3 - 1 8 5 1 2 1号公報、 特開平 3 - 9 7 9 1 7号公報に開示されているような断面形状が三角形、 四角形、 中空、 多葉形、 H型等の異形断面の炭素繊維は、 円形断面の炭素維維に比較して繊維の 座屈が起こりにく、 得られる繊維強化複合材料の圧縮特性を向上させるため好ま しく用いられる。 このような異形断面の炭素繊維を用いる場合、 単繊維の断面形状が 3〜 5葉の 多葉形であり、 それぞれの葉がその付け根から先端に向かって一旦膨らみを有す る実質的に複数個の円が接合した形であるものが好ましく用いられる。 さらには 繊維断面形状の外接円半径 Rと内接円半径 rとの比 R / rで定義される異形度が 1 . 5〜3であるものが、 座屈を防ぐ効果が大きいためより好ましい。
強化繊維の形態は特に限定されるものではなく、 たとえば、 一方向に引き揃え た長繊維、 トウ、 織物、 マツト、 ニット、 組み紐などが用いられる。 また、 特に、 比強度、 比弾性率が高 L、ことを要求される用途には強化繊維が単一方向に引き揃 えられた配列が最も適しているが、 取り扱いの容易なクロス (織物) 状の配列も 本発明には適している。
第 1の発明などにおける吸水率は、 プリプレダの硬化物を 7 1 の温水に 2週 間浸漬後の吸水率をいう。 吸水が起こるとマ卜リックス樹脂が可塑化され、 高温 時の弾性率低下が乾燥時に比較して大きくなる。 このため高温高湿時においても 高い物性を保持するためには、 吸水率が低い方がよく、 1 %以下であると高温高 湿時の物性低下が少なくなり、 0 . 9 %以下であることが好ましく、 さらには 0 .
8 5 %以下であることが好ましい。
プリプレダの作製に関しては、 特に限定されず、 通常のプリプレグ製造プロセ スを適用することができる。
また、 シ一ト状のプリプレダの積層により作製される複合材料を構造材料とし て用いる場合、 重要になる物性として、 衝擊後圧縮強度がある。 これは、 工具落 下、 小石などの衝突による部材への衝擊で、 複合材料の層間に剥離が生じ圧縮強 度が低下する現象があり、 これが著しいと構造材料として用いることができない ためである。
一般に衝擊後圧縮強度を高めるためには、 プリプレダの片面または両面の表面 近傍に高靱性材料を存在させ、 積層、 硬化して得られた複合材料の層間に高靭性 材料を分布させることが有効であることが知られている。 高靭性材料としては、 例えば特開昭 6 3—】 6 2 7 3 2号公報に示されるような熱可塑性樹脂、 例えば 特開平 4 - 2 6 8 3 6 1号公報に示されるようなエラストマ一、 例えば米国特許 3 , 4 7 2 , 7 3 0号公報に示されるようなエラストマ一変牲熱硬化性樹脂を用 いる方法が知られている。 これらエラストマ一、 エラス卜マー変性熱硬化性樹脂 を層間強化に用いる場合、 耐衝擊性は向上するものの高温時の圧縮特性の低下が 顕著であるため、 適用範囲に制約を受ける。 一方、 本発明の前記特定のプリプレ グは、 熱可塑性樹脂を用いて層間強化を行うことによって、 高温高湿時において も圧縮強度を保持しつつ、 予測できないほどの衝撃後圧縮強度が発現される。 ここで、 前記熱可塑性樹脂 (D ) の 9 0重量%以上がプリプレグ表面からプリ プレダの厚さの 1 5 %の深さの範囲内に局在化することが、 衝撃後圧縮強度を効 果的に高めるため好ましい。
プリプレダの片面または、 表面に存在させる熱可塑性樹脂 (D ) としては、 ポ リアミ ド、 ポリイミ ド、 ポリエーテルィミ ド、 ポリアミ ドィミ ド、 ポリスルホン、 ポリエーテルスルホンなどが好ましい。 このなかでも、 靭牲およびマ卜リックス 樹脂との接着性にすぐれるポリアミ ド力、'特に好ましい。 ポリアミ ドは、 特開平 1 - 1 0 4 6 2 4号公報に示されるようにエポキシ樹脂で変性したものを用いるこ とも可能である。
上記熱可塑性樹脂 (D ) の形態としては、 フィルム、 粒子、 繊維またはこれら の少なくとも 2種の複合物といった種々の形態を採ることができる。
フィルム形態の場合、 米国特許 4 , 6 0 4 , 3 1 9号公報の如く完全にプリプレ グ表面を覆うと、 表面タックを失うことになる力、'、 待開昭 6 3 - 9 7 6 3 5号公 報に示されるように通孔を設ける、 特開平 5— 1 3 8 7 8 5号公報に示されるよ うに多孔質にする、 特開平 5— 2 8 7 0 9 1号公報に示されるようにテープ状フ イルムを配列する、 特開平 2— 6 7 3 3 3号公報に示されるようにフィルムを細 かく切断することによりフレーク状とするなどの方法を採ることにより、 表面夕 ックを保持することができる。
前記熱可塑性樹脂 (D ) の形状が維維であるものは、 プリプレダのタック性、 ドレープ性が優れたものとなるため好ましい。 この場合、 繊維であれば、 繊維長、 繊維の集合形態等どのような形態であっても良い。 特開平 2 — 6 7 3 3 3号公報 に示されるように繊維を細かく切断したフロック状のもの、 特開平 2— 6 9 5 6 6号公報に示されるような短鏃維、 特開平 4— 2 9 2 6 3 4号公報に示されるよ うな長繊維平行配列、 特開平 2— 3 2 8 4 3号公報に示されるような織物、 国際 公開第 940 1 6003号公報に示されるような不織布、 ニッ卜などいずれの形 態のものを用いることも可能であるが、 不織布、 またはニットであることがタツ ク性、 ドレープ性がより優れるために好ましい。
粒子形態の場合、 粒子の形状は、 特開平】一 1 1 0537号公報に示されるよ うな球状粒子でも、 特開平 1一 1 1 0536号公報に示されるような非球状粒子 でも、 特開平 5— 1 159号公報に示されるような多孔質粒子でもよい。
また、 上記フィルム、 繊維または粒子を単独で用いても良いし、 繊維あるいは 粒子を含むフィルム、 粒子と繊維の併用といったように組み合わせて用 、ても良 い。
前記熱可塑性樹脂 (D) がエポキシ樹脂またはビスマレイミ ド樹脂とセミ I P
N化したもしくはセミ I PN化しうる熱可塑性樹脂粒子であることは、 粒子その もめが耐溶剤性に優れ、 複合材料全体の耐溶剤性を維持するため好ましい。 ここ で、 I PNとはインターぺネトレ一ティングポリマーネットワーク ( I n t e r p e n e t r a t i n g P o l yme r Ne two r k) の略で、 架橋高分 子同士の相互侵入網目構造をいい、 一方、 セミ I PNとは、 架橋高分子と直鎖状 高分子との相互侵入網目構造をいう。 このようなセミ I PN化の方法としては常 法を用いることができるが、 一例としては、 熱可塑性樹脂と熱硬化性樹脂を共通 溶媒に溶解させ均一に混合した後、 再沈等の方法により得ることができる。 この ような熱可塑性樹脂 (D) がエポキシ樹脂とセミ I PN化したポリアミ ドからな る粒子であるものを用いることは高いレベルの耐熱性、 耐衝擊性をプリプレダに 付与する点で好ましい。
上記のような熱可塑牲樹脂をプリプレグ表面近傍に存在させる方法としては、 通常の方法で作製したプリプレダの片面または両面に単に熱可塑性樹脂を貼着ま たは散布する方法、 通常の方法で作製したプリプレダの片面または両面に、 熱可 塑性樹脂にマ卜リックス樹脂を含浸させたフィルムまたはマトリックス樹脂に熱 可望牲樹脂を分散させたフィルムを貼着する方法などを用いることができる。 前記熱可望牲樹脂を分散させたフィルムを貼着する方法にお t、ては前記熱可塑 性樹脂 (D) がメジアン径 30 以下の粒子であることが、 このようなフィル ムをコ一ティングするとき、 コ一夕一ロールに粒子が詰まらないために好ましい。 前記のプリプレグは、 耐衝撃性及び高温高湿時の圧縮強度に優れた複合材料を 与えるものであるが、 擬似等方構成で 16層積層し、 1 80 、 圧カ0. 588 MP aの条件で 2時間硬化し、 0° 方向が 305mm、 90° 方向が 38 mmの 長方形で中央部に直径 6. 35 mmの円形の孔を穿孔した有孔板の高温高湿時圧 縮強度 (71 の温水に 2週間浸漬後 82 で測定) が 275 MP a以上である ものは、 高温高湿時の圧縮強度にとりわけ優れており、 構造物の大型化に伴い要 求される高度な圧縮強度を満たすため好ましい。
また、 擬似等方構成で 24層積層し、 1 80 、 圧カ0. 588MP aの条件 で 2時間硬化し、 0° 方向が 305mm、 90° 方向が 38 mmの長方形に切り 出し、 その中央に 30. 5N - mの落錘衝擊を与えた後の圧縮強度が 275 MP a以上であるものは、 耐衝擊性にとりわけ優れており好ましい。
前記プリプレダが硬化されてなる繊維強化複合材は耐衝擊性及び高温高湿時の 圧縮強度に優れた複合材料を与えるものであり、 高度な損傷許容性と構造物の大 型化に伴い要求される高度な圧縮強度を満たすため、 構造設計上の自由度が拡大 し、 軽量かつ高性能な複合材料を与えるため好ましい。 実 施 例
以下、 本発明を実施例によりさらに詳細に説明する。
なお、 複合材料の吸水率測定、 有孔板圧縮強度測定、 衝撃後残存圧縮強度測定 等の評価は次のような条件で行った。
A. 吸水率測定
擬似等方構成で 16層積層 [(+45/0/— 45/90)2S]し、 ォ一トクレーブ中 で 180 、 圧力 0. 588MP aで 2時間硬化した複合材料板をえた。
この複合材料板から 0度方向が 304. 8 mm, 90度方向が 38. 1 mmの 長方形に切り出し、 中央部に直径 6. 35 mmの円形の孔を穿孔し有孔板試験片 とした。 この有孔板を 120 で 24時間乾燥した後、 乾燥質量を測定した。 続 いて 71 の温水に 2週間浸潰し、 吸水重量を得た。 この吸水前後の重量より、 吸水による重量増加率を算出した。
B. 有孔板圧縮強度測定 A項で作成した有孔板をインス卜ロン 1 128型試験機を用いて、 下記の圧縮 強度を測定した。
•乾燥サンプルの室温 ( 25 )
• A項で得た吸水サンプルの高温 (82 )
C. 衝擊後残存圧縮強度測定
擬似等方構成で 24層積層 [ひ 45/0/— 45/90 )3S] し、 オートクレープ 中で 180 、 圧力 0. 588 MP aで 2時間硬化した複合材料板をえた。 この複合材料板から 0度方向が 152. 4mm90度方向が 101. 6 mmの 長方形に切り出し試験片とした。 この試験片の中央に 30. 5N ' mの落錘衝撃 を与えその後の圧縮強度をインストロン 1 128型試験機を用いて測定した。
(実施例 1 )
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テトラグリシジルジアミノジフエニルメタン (A 1)
(ELM434, 住友化学工業 (株) 製) 90. ビスフヱノール A型エポキシ樹脂 (エポキシ当量 175) (a 1 )
(ェピコ一ト 825、 油化シヱルエポキシ (株)製) 10. ポリエーテルスルホン (C 1 )
(PES 5003 P、 三井東圧化学 (株) 製) 12. 7重量部
3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 35. 0重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テトラグリシジルジァミノジフエニルメタン ( A 1 )
(ELM434, 住友化学工業(株) 製) 90. 0重量部 ビスフヱノール A型エポキシ樹脂 (エポキシ当量 175) (a 1)
(ェピコート 825、 油化シヱルエポキシ (株) 製) 10. 0重量部 ポリエーテルスルホン (C 1 )
(PES 5003 P, 三井東圧化学 (株) 製) 4. 3重量部 3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 35. 0重量部 エポキシ変性ナイ口ン粒子 (D 1 ) 35.
3, 3' —ジァミノジフヱニルスルホンは風力分級機内蔵の衝撃粉砕機 (ホソ カヮミクロン (株) ACM— 10) を用いて粉砕を行い、 メジアン径 1 1 m、 90重量%が、 粒径 22 m以下、 粒径が 1 m以下の粒子がほぼ 0 %であり、 σβは 1. 83であった。 この組成においては、 3, 3' ージアミノジフエニルス ルホンのモル数はエポキシ基のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン樹脂は、 特開平 1一 104624 号公報の実施例 1に示されている非晶質透明ナイロン (三菱化成 (製) グリルァ ミ KTR—55) 、 ビスフヱノール A型エポキシ樹脂、 ポリアミ ド系エポキシ硬 化剤からなる平均粒径 16 ^mのセミ I PN粒子を用いた。
(B) プリプレダの作製
( A ) で調製した一次樹脂をリバースロールコーターを用 L、て離型紙上に塗布 量が 31.2g/m2になるよう塗布して樹脂フィルムを作製した。 次いで、 二次樹脂 を塗布量が 20.5g/ra2になるよう塗布して樹脂フィルムを作製した。
一方向に引き揃えた弾性率 294 GP a、 伸度 1. 9%の炭素繊維 (T800H、 東レ (株) 製) を両側から、 前記の一次樹脂フィルムではさみ、 加熱加圧して樹 脂を含浸させ、 さらにその両側に二次樹脂フィルムを貼り付けて、 炭素繊維目付 190g/m\ 炭素繊維含有率 64.8%のプリプレグを得た。
(C) 硬化板の作製
(B) で作製したプリプレダを(+45/0/-45/90)2S、 および 45/0/ 一 45/90 )3Sの構成で積層した。 これらをォ一トクレーブ中で、 温度 180て、 圧力 0. 588MP aの条件で 2時間硬化を行った。
(D) 吸水率および圧縮強度の測定
結果は以下の通り、 高温高湿時の有孔板圧縮強度、 衝擊後圧縮強度ともに高い 値を示した。
吸水率 0. 85%
有孔板圧縮強度 室温時 325MP a
高温高湿時 : 278MP a
衝撃後圧縮強度 : 305MP a
(実施例 2 )
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テトラグリシジノレジアミノジフヱニルメタン (A 1 )
(ELM434, 住友化学工業 (株) 製) 60. 0重量部 卜リス (4—グリシジルォキシフヱニル) メタン (A3)
(T ACT I X 742、 ダウケミカル (株) 製) 20. 0重量部 レゾルシノールジグリシジルェ一テル ( a 3 )
(デナコール EX— 201、 ナガセ化成工業 (株) 製) 20. 0重量部 ポリエーテルスルホン (C 1 )
(PES 5003 P、 三井東圧化学 (株) 製) 1 2. 6重量部 3, 3' —ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 34. 0重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テトラグリシジルジァミノジフエニルメタン ( A 1 )
(ELM434, 住友化学工業 (株)製) 60. 0重量部 トリス (4—グリシジルォキシフヱニル) メタン (A3)
(TACT I X 742、 ダウケミカル (株) 製) 20. 0重量部 レゾノレシノーノレジグリシジルエーテル (a 3)
(デナコール EX - 201、 ナガセ化成工業 (株) 製) 20. 0重量部 ポリエーテルスルホン (C 1 )
(PES 5003 P、 三井東圧化学 (株) 製) 4. 3重量部
3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株)製) 34. 0重量部 エポキシ変性ナイロン粒子 (D 1) 35. 0重量部
3, 3' ージアミノジフエニルスルホンは実施例 1と同じものを用 、た。 この 組成においては、 3, 3' —ジアミノジフエニルスルホンのモノレ数はエポキシ基 のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン粒子は、 実施例 1と同じものを用 いた。
(B) 吸水率および圧縮強度の測定
(A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 高温高湿時の有孔板圧縮強度、 衝撃後圧縮強 度ともに高い値を示した。
吸水率 : 0. 88%
有孔板圧縮強度
室温時 331 MP a
i¾温 r¾湿時 269MP a
衝擊後圧縮強度 314MP a
(実施例 3)
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テトラグリシジルジァミノジフエニルメタン ( A 1 )
(ELM434, 住友化学工業 (株) 製) 80. 0重量部 1, 6—ジグリシジルォキシナフタレン (A 2)
(HP 4032、 大日本インキ (株)製) 10. 0重量部 レゾノレシノーノレジグリシジルエーテル (a 3)
(デナコール EX— 201、 ナガセ化成工業 (株) 製) 10 0重量部 ポリエーテルィミ ド (C 2)
(ULTEM 1000、 ゼネラルエレク卜リック (株)製)
12. 7重量部
3, 3' ージアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 34. 5重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テトラグリシジルジアミノジフヱニルメタン (A 1) (ELM434, 住友化学工業 (株) 製) 80
1, 6—ジグリシジルォキシナフタレン (A 2)
(HP 4032、 大日本インキ (株) 製)'' 10. 0重量部 レゾルシノールジグリシジルエーテル (a 3)
(デナコール EX - 201、 ナガセ化成工業 (株) 製) 10. 0重量部 ポリエーテルィミ ド (C 2)
(ULTEM 1000、 ゼネラルエレク卜リック (株) 製)
4. 3重量部
3, 3' -ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 34. 5重量部 エポキシ変性ナイロン粒子 (D 1) 34. 5重量部
3, 3' —ジァミノジフヱニルスルホンは実施例 1と同じものを用いた。 この 組成においては、 3, 3' —ジァミノジフヱニルスルホンのモル数はエポキシ基 のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン粒子は、 実施例 1と同じものを用 いた。
(B)圧縮強度の測定
(A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 高温高湿時の有孔板圧縮強度、 衝撃後圧縮強 度ともに高い値を示した。
吸水率 0. 85%
有孔板圧縮強度
室温時 32 IMP a
28 IMP a
衝擊後圧縮強度 316MP a
(実施例 4)
(A)樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テ卜ラグリシジルジアミノジフエニルメタン (A1) (ELM434, 住友化学工業 (株) 製) 30. 0重量部
1, 6—ジグリシジルォキシナフタレン (A 2)
(HP 4032、 大日本インキ (株) 製) 60. 0重量部 レゾルシノールジグリシジルエーテル ( a 3 )
(デナコール EX - 201、 ナガセ化成工業 (株) 製) 10. 0重量部 ポリエーテルィミ ド (C 2)
(ULTEM1000、 ゼネラルエレク トリック (株) 製)
1 2. 7重量部
3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 3 1. 6重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テ卜ラグリシジルジァミノジフヱニルメタン (A 1 )
(ELM434, 住友化学工業 (株) 製) 30. 0重量部
1, 6—ジグリシジルォキシナフタレン (A2)
(HP 4032、 大日本インキ (株) 製) 60. 0重量部 レゾルシノ一ルジグリシジルエーテル ( a 3 )
(デナコール EX - 201、 ナガセ化成工業 (株) 製) 1 0. 0重量部 ポリエーテルィミ ド (C 2)
(ULTEM 1000、 ゼネラルエレク 卜リック (株) 製)
4. 3重量部
3, 3' —ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株)製) 31. 6重量部 エポキシ変性ナイロン粒子 (D 1) 34. 3重量部
3, 3' —ジァミノジフヱニルスルホンは実施例 1と同じものを用いた。 この 組成においては、 3, 3' —ジアミノジフエニルスルホンのモル数はエポキシ基 のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン粒子は、 実施例 1と同じものを用 いた。
(B) 圧縮強度の測定 (A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 高温高湿時の有孔板圧縮強度、 衝撃後圧縮強 度ともに高い値を示した。
吸水率 0. 83%
有孔板圧縮強度
室温時 307MP a
高温高湿時 27 OMP a
衝擊後圧縮強度 328MP a
(実施例 5 )
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
1, 6—ジグリシジルォキシナフタレン (A 2)
(HP 4032、 大日本インキ (株) 製) 90. 0重量部 レゾルシノ一ルジグリシジルエーテル ( a 3 )
(デナコール EX— 201、 ナガセ化成工業 (株) 製) 10. 0重量部 ポリエーテルィミ ド (C 2)
(ULTEM1000、 ゼネラルエレク トリック (株) 製)
1 2 2重量部
3, 3' —ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 29. 5重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た c
1, 6—ジグリシジルォキシナフタレン (A2)
(HP 4032、 大日本インキ (株) 製) 90. 0重量部 レゾルシノールジグリシジルエーテル ( a 3 )
(デナコール EX— 201、 ナガセ化成工業 (株) 製) 10. 0重量部 ポリエーテルィミ ド (C 2)
(ULTEM 1000、 ゼネラルエレクトリック (株) 製)
4. 3重量部
3, 3' —ジァミノジフヱニルスルホン (B 1 ) (和歌山精化 (株) 製) 29.
エポキシ変性ナイロン粒子 (D 1) 33. 8重量部
3, 3' —ジアミノジフエニルスルホンは実施例 1と同じものを用いた。 この 組成においては、 3, 3' ージアミノジフエニルスルホンのモル数はエポキシ基 のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン粒子は、 実施例 1と同じものを用 いた。
(B) 圧縮強度の測定
(A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 高温高湿時の有孔板圧縮強度、 衝擊後圧縮強 度ともに高い値を示した。
吸水率 0. 83%
有孔板圧縮強度
室温時 305MP a
湿時 272MP a
衝擊後圧縮強度 33 IMP a
(実施例 6)
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テトラグリシジルジァミノジフエニルメタン ( A 1 )
(ELM434, 住友化学工業(株) 製) 90. 0重量部 ビスフヱノール A型エポキシ樹脂 (エポキシ当量 175) (a 1 )
(ェピコート 825、 油化シェルエポキシ (株) 製) 10. 0重量部 ポリエーテルスルホン (C 1)
(PES5003 P、 三井東圧化学 (株) 製) 12. 7重量部 3, 3' —ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株)製) 35. 0重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テトラグリシジルジアミノジフエニルメタン (A 1) (ELM434, 住友化学工業 (株) 製) 90
ビスフヱノール A型エポキシ樹脂 (エポキシ当量 1 75) (a 1 )
(ェピコート 825、 油化シェルエポキシ (株) 製) 10. 0重量部 ポリエーテルスルホン (C 1 )
(PES 5003 P, 三井東圧化学 (株) 製) 4. 3重量部 3, 3' —ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 35 エポキシ変性ナイロン粒子 (D 1) 35
3, 3' ージアミノジフエニルスルホンは実施例 1と同じものを用いた。 この 組成においては、 3, 3' —ジアミノジフエニルスルホンのモル数はエポキシ基 のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン粒子は、 実施例 1と同じものを用 いた。
(B) 圧縮強度の測定
(A) で調製した樹脂を用い、 炭素繊維として、 特開平 4— 2028 1 5号公 報に製法が開示されている弾性率 294 GP a、 伸度 1. 9 %かつ、 異形度 R/ rが 2. 6の炭素繊維を用いた他は実施例 1と同様にして吸水率および圧縮強度 を測定した。 結果は以下の通り、 高温高湿時の有孔板圧縮強度、 衝撃後圧縮強度 ともに高い値を示した。
吸水率 : 0. 81 %
有孔板圧縮強度
室温時 332MP a
)¾温局湿時 292MP a
衝擊後圧縮強度 338MP a
(実施例 7 )
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テ卜ラグリシジルジアミノジフエニルメタン ( A 1 ) (ELM434, 住友化学工業 (株) 製) 90. 0重量部 ビスフヱノール A型エポキシ樹脂 (エポキシ当量 175) (a 1 )
(ェピコ一卜 825、 油化シヱルエポキシ (株) 製) 10. 0重量部 ポリスルホン (C 3)
(UDEL P 1700、 日産化学工業 (株) 製) 12.
3, 3' —ジァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 35. 0重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テ卜ラグリシジルジァミノジフエ二ルメタン (A 1 )
(ELM434, 住友化学工業 (株) 製) 90. 0重量部 ビスフエノール A型エポキシ樹脂 (エポキシ当量 175) (a 1 )
(ェピコート 825、 油化シェルエポキシ (株) 製) 1 0. 0重量部 ポリスルホン (C3)
(UDEL P 1 700、 日産化学工業 (株) 製) 4. 3重量部 3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 35. 0重量部 エポキシ変性ナイ口ン粒子 (D 1 ) 35. 2重量部
3, 3' —ジァミノジフヱニルスルホンは実施例 1と同じものを用いた。 この 組成においては、 3, 3' ージァミノジフヱニルスルホンのモル数はエポキシ基 のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイロン粒子は、 実施例 1と同じものを用 いた。
(B) 圧縮強度の測定
(A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 高温高湿時の有孔板圧縮強度は配合した熱可 塑性樹脂の T gが他の実施例の熱可塑性樹脂に比較してやや低いため、 若干低く はなったものの、 衝撃後圧縮強度ともに高い値を示した。
吸水率 : 0. 85%
有孔板圧縮強度 室温時 : 327MP a
高温高湿時 : 265 M P a
衝擊後圧縮強度 : 320 M P a
(比較例 1 )
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テ卜ラグリシジノレジァミノジフエニルメタン (A 1 )
(ELM434, 住友化学工業 (株) 製) 90. 0重量部 ビスフエノール F型エポキシ樹脂 (エポキシ当量 172) (a 2)
(ェピクロン 830、 大日本インキ (株) 製) 10. 0重量部 ポリエーテルスルホン (C 1 )
(PE S 5003 P, 三井東圧化学 (株) 製) 1 2. 4, 4' —ジァミノジフヱニルスルホン (b 1 )
(スミキユア S、 住友化学 (株) 製) 35. 0重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テトラグリシジノレジァミノジフヱニルメタン (A 1 )
(ELM434, 住友化学工業 (株)製) 90 0重量部 ビスフエノール F型エポキシ樹脂 (エポキシ当量 1 72) (a 2)
(ェピクロン 830、 大日本インキ (株) 製) 10 0重量部 ポリエーテルスルホン ( C 1 )
(PES 5003 P、 三井東圧化学 (株) 製) 4. 3重量部 4, 4* —ジアミノジフエニルスルホン (b 1 )
(スミキユア S、 住友化学 (株) 製) 35. 0重量部 エポキシ変性ナイ口ン粒子 (D 1 ) 35. 2重量部 この組成においては、 4. 4' —ジアミノジフヱニルスルホンのモル数はェポ キシ基のモル数の 0. 175倍である。
2次樹脂の原料のうちエポキシ変性ナイ口ン樹脂は、 実施例 1と同じものを用い
(B) 圧縮強度の測定 (A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 衝撃後圧縮強度に関しては、 層間強化により 高 、値がえられたが、 有孔板圧縮強度に関しては硬化剤が本発明のものから外れ るため十分なものとはならなかった。
吸水率 : 1. 10%
有孔板圧縮強度
室温時 294MP a
高温高湿時 248MP a
衝撃後圧縮強度 308MP a
(比較例 2)
(A) 樹脂組成物調製
下記原料を混練し、 一次樹脂組成物を得た。
テ卜ラグリシジルジァミノジフエニルメタン (A 1 )
(ELM434, 住友化学工業 (株) 製) 60 ビスフ ノール F型エポキシ樹脂 (エポキシ当量 172) (a 2)
(ェピクロン 830、 大日本インキ (株) 製) 40. 0重量部 ポリエーテルスルホン (C 1 )
(PE S 5003 P、 三井東圧化学 (株) 製) 1 2. 7重量部 3, 3' ージァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 31. 8重量部 さらに、 下記原料を混練し、 二次樹脂組成物を得た。
テ卜ラグリシジルジァミノジフヱニルメタン (A 1 )
(ELM434, 住友化学工業 (株) 製) 60. 0重量部 ビスフヱノール F型エポキシ樹脂 (エポキシ当量 172) (a 2)
(ェピクロン 830、 大日本インキ (株) 製) 40. 0重量部 ポリエーテルスルホン (C 1 )
(PES 5003 P、 三井東圧化学 (株) 製) 4. 3重量部 3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 31. 8重量部 エポキシ変性ナイロン粒子 (D 1 ) 35. 2重量部 この組成においては、 3, 3* —ジアミノジフエニルスルホンのモル数はェポ キシ基のモル数の 0. 1 75倍である。
2次樹脂の原料のうちエポキシ変性ナイ口ン樹脂は、 実施例 1と同じものを用い た。
(B) 圧縮強度の測定
(A) で調製した樹脂を用いた他は実施例 1と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 衝撃後圧縮強度に関しては、 層間強化により 高 、値がえられたが、 有孔板圧縮強度に関しては樹脂組成が本発明のから外れる ため十分なものとはならなかった。
吸水率 : 1. 05%
有孔板圧縮強度
室温時 29 OMP a
高温高湿時 236MP a
衝撃後圧縮強度 312MP a
(比較例 3 )
(A) 樹脂組成物調製
テトラグリシジルジァミノジフエニルメタン (A 1 )
(ELM434、 住友化学工業(株) 製) 50. 0重量部 トリグリシジル一 m -アミノフエノール ( a 4 )
(ELM120、 住友化学工業 (株) 製) 50. 0重量部 3, 3' ージァミノジフヱニルスルホン (B 1 )
(和歌山精化 (株) 製) 36. 5重量部 ポリエーテルスルホン (C 1 )
(PE S 5003 P、 三井東圧化学 (株) 製) 34. 1重量部 この組成においては、 3, 3' -ジアミノジフエニルスルホンのモル数はェポ キシ基のモル数の 0. 175倍、 PE Sは全マトリックス中の 20重量%である。
(B) プリプレダの作製
( A ) で調製した樹脂をリバースロールコ一夕一を用 t、て離型紙上に塗布量が 51.7g/m2 になるよう塗布して樹脂フィルムを作製した。
一方向に引き揃えた弾性率 294 GP a、 伸度 1. 9 %の炭素繊維 (T800H、 東レ (株) 製) を両側から、 前記の樹脂フィルムではさみ、 加熱加圧して樹脂を 含浸させて炭素繊維目付 190g/m\ 炭素繊維含有率 64. 8。ノ0のプリプレグを 得た。
(C) 圧縮強度の測定
実施例 1と同様にして吸水率および圧縮強度を測定した。 結果は以下の通り、 衝撃後圧縮強度に関しては、 層間強化を行っていないため十分な物性が得られず、 高温高湿時の有孔板圧縮強度に関しては、 樹脂組成が本発明のから外れる (耐湿 熱性に劣る 3官能ァミノフエノ一ル型エポキシ樹脂が多く含まれる) ため十分な ものとはならなかった。
吸水率 : 1. 15%
有孔板圧縮強度
室温時 325MP a
高温高湿時 22 IMP a
衝擊後圧縮強度 138MP a
(比較例 4)
(A) 樹脂組成物調製
テトラグリシ.ジルジアミノジフエニルメタン ( A 1 )
(ELM434、 住友化学工業(株)製) 30. 0重量部 ビスフヱノール F型エポキシ樹脂 (エポキシ当量 172) (a 2)
(ェピクロン 830、 大日本インキ (株)製) 20. 0重量部 トリグリシジルー 4—アミノクレゾール(エポキシ当量 107) (a 5)
(ELM 100、 住友化学工業(株) 製) 50. 0重量部
3, 3' —ジアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 36. 4重量部 ポリエーテルィミ ド (C 2)
(ULTEM1000、 ゼネラルエレクトリック (株) 製)
34. 1重量部 この組成においては、 3, 3' —ジアミノジフエニルスルホンのモル数はェポ キシ基のモル数の 0. 175倍、 ポリエーテルイミ ドは全マトリックス中の 20 重量%である。
(B) プリプレダの作製
(A) で調製した樹脂を用いた他は比較例 3と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 衝撃後圧縮強度に関しては、 層間強化を行つ ていないため十分な物性が得られず、 高温高湿時の有孔板圧縮強度に関しては、 樹脂組成が本発明のから外れる (耐湿熱性に劣る 3官能ァミノフ ノール型ェポ キシ樹脂が多く含まれる) ため十分なものとはならなかつた。
吸水率 1. 12%
有孔板圧縮強度
室温時 31 OMP a
高温高湿時 212MP a
衝擊後圧縮強度 159MP a
(比較例 5 )
(A) 樹脂組成物調製
テトラグリシジルジァミノジフエニルメタン ( A 1 )
(ELM434、 住友化学工業 (株) 製) 1 00. 0重量部 ビス [4— (3—アミノフエノキシ) フエニル] スルフォン (b 2)
(B APS— M、 和歌山精化 (株) 製) 63. 1重量部 ポリエーテルィミ ド (C 2)
(ULTEM 1000. ゼネラルエレクトリック (株) 製)
18. 1重量部 この組成においては、 3, 3* —ジアミノジフエニルスルホンのモル数はェポ キシ基のモル数の 0. 175倍、 ポリエーテルイミ ドは全マトリックス中の 10 重量%である。
(B) プリプレダの作製
(A) で調製した樹脂を用いた他は比較例 3と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り。 このプリプレダは樹脂粘度が高過ぎるため、 炭素繊維への樹脂の含浸が不十分で、 複合材料の断面には多数のボイド (空洞) が存在し、 このため十分な物性が発現しなかった。
吸水率 1. 11
有孔板圧縮強度
室温時 208MP a
高温高湿時 12 IMP a
衝擊後圧縮強度 117MP a
(比較例 6 )
(A)樹脂組成物調製
テトラグリシジルジアミノジフヱニルメタン (A1)
(ELM434、 住友化学工業 (株) 製) 60. 0重量部 トリグリシジルー 4一アミノクレゾ一ノレ(エポキシ当量 107) (a 5)
(ELM100、 住友化学工業 (株) 製) 40. 0重量部
3, 3' —ジァミノジフヱニルスルホン (B 1)
(和歌山精化 (株) 製) 38. 1重量部 ポリエーテルィミ ド (C 2)
(ULTEM1000、 ゼネラルエレクトリック (株) 製)
15. 3重量部 この組成においては、 3, .3' —ジアミノジフエニルスルホンのモル数はェポ キシ基のモル数の 0. 175倍、 ポリエーテルイミ ドは全マトリックス中の 20 重量%である。
(B) プリプレダの作製
(A)で調製した樹脂を用いた他は比較例 3と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 衝擊後圧縮強度に関しては、 層間強化を行つ ていないため十分な物性が得られず、 高温高湿時の有孔板圧縮強度に関しては、 樹脂組成が本発明のから外れる (耐湿熱性に劣る 3官能ァミノフヱノ一ル型ェポ キシ樹脂が多く含まれる) ため十分なものとはならなかった。 。
吸水率 1. 12%
有孔板圧縮強度 室温時 : 317MP a
高温高湿時 : 227MP a
衝撃後圧縮強度 145MP a
(比較例 7)
(A) 樹脂組成物調製
ビスフエノール F型エポキシ樹脂 (エポキシ当量 172) (a 2)
(ェピクロン 830、 大日本インキ (株) 製) 50. 0重量部 トリグリシジルー 4一アミノクレゾール(エポキシ当量 107) (a 5)
(ELM 100、 住友化学工業 (株) 製) 50. 0重量部
3, 3' ージアミノジフエニルスルホン (B 1 )
(和歌山精化 (株) 製) 33. 1重量部 ポリエーテルスルホン (C 1 )
(PES 5003 P、 三井東圧化学 (株) 製) 42. 3重量部 この組成においては、 3, 3' —ジアミノジフエニルスルホンのモル数はェポ キシ基のモル数の 0. 175倍、 ポリエーテルイミ ドは全マトリックス中の 24 重量%である。
(B) プリプレダの作製
(A) で調製した樹脂を用いた他は比較例 3と同様にして吸水率および圧縮強 度を測定した。 結果は以下の通り、 衝皋後圧縮強度に関しては、 層間強化を行つ ていないため十分な物性が得られず、 高温高湿時の有孔板圧縮強度に関しては、 樹脂組成が本発明のから外れる (耐湿熱性に劣る 3官能ァミノフヱノ一ル型ェポ キシ樹脂が多く含まれる) ため十分なものとはならなかった。 。
吸水率 : 1. 12%
有孔板圧縮強度
室温時 264MP a
r¾温 r¾ii&時 194MP a
衝撃後圧縮強度 20 OMP a
) 表 3
1 2 3 4 5 6 7 率
(%) 0.85 0.88 0.85 0.83 0.83 0.81 0.85 室温 325 331 321 307 305 332 327 有孔板圧編^度
(MP a)
高 Sff湿 278 269 281 270 272 292 265 衡 後残存 度
(MP a) 305 314 316 328 331 338 320 表 4
比較 W
1 2 3 4 5 6 7 吸水率
(%) 1.10 1.05 1.15 1.12 1.11 1.12 1.12 室溫 294 290 325 310 208 317 264 有孔板圧縮《度
(MP a)
高湿 248 236 221 212 121 227 194 養 *後残存圧《tt度
(MP a) 308 312 138 159 117 145 200 産 業 上 の 利 用 可 能 性 本発明のプリプレダは、 卓越した湿熱時の圧縮特性を有する複合材料を与え得 るため、 積層、 硬化して繊維強化材料に加工して構造材料としたり、 マンドレル に巻き付けて竿やシャフト等に加工するなどして、 好適な利用を可能とするもの である。

Claims

請 求 の 範 囲
1. 強化維維とマ卜リックス樹脂とを含むプリプレダであって、 該マトリックス 樹脂が、
(A)エポキシ樹脂
(B)骨格中に 1ないし 3個のフヱニル基を有し、 そのうちの少なくとも 1個の フヱニル基には 2つのアミノ基へつながるそれぞれの結合基がメタ位置に結合し ているジァミン化合物 、
(C) ガラス転移温度が 180て以上である熱可塑性樹脂
を少なくとも含み、 該エポキシ樹脂 (A) の 70重; 1%以上が、 下記 (A 1 ) な いし (A3) よりなる群から選ばれるエポキシ樹脂の少なくとも 1種もしくは複 数種の混合物からなるプリプレグであって、 その硬化物を 71ての温水に 2週間 浸漬後の吸水率が 1 %以下であるプリプレダ。
(A 1)縮合していないベンゼン環に直結したジグリシジルアミノ基を複数個 有するエポキシ樹脂
(A2)骨格中に縮合芳香族環を有するエポキシ樹脂
(A3) 下記一般式 (1)で表わされるグリシジルエーテル型エポキシ樹脂
一般式 ( 1 )
(式中 aは 1または 2を表わす)
2. 強化繳維とマトリックス樹脂とを含むプリプレダであって、 該マトリックス 樹脂が、
(A) エポキシ樹脂
(B)骨格中に 1ないし 3個のフエ二ル基を有し、 そのうちの少なくとも 1個の フエニル基には 2つのアミノ基へつながるそれぞれの結合基がメタ位置に結合し ているジアミン化合物 (C) ガラス転移温度が 180て以上である熱可塑性樹脂
(D)熱可塑性樹脂からなるフィルム、 粒子、 繊維またはこれらの複合物 を少なくとも含み、 該エポキシ樹脂 (A) の 70童: 1%以上が、 下記 (A 1) な いし (A3) よりなる群から選ばれるエポキシ樹脂の少なくとも 1種もしくは祓 数種の混合物であり、 熱可塑性樹脂 (D) がプリプレダの片面または両面に配置 されてなるプリプレダ。
( A 1 ) 縮合していないべンゼン環に直結したジグリシジルァミノ基を複数個 有するエポキシ樹脂
(A 2)骨格中に縮合芳香族環を有するエポキシ樹脂
(A3)下記一般式 (1)で表わされるグリシジルエーテル型エポキシ樹脂
—般式 ( 1 )
(式中 aは 1または 2を表わす)
3. 強化繊維とマトリックス樹脂とを含むプリブレグであって、 該マトリックス 樹脂が、
(A)エポキシ樹脂
(B)骨格中に 1ないし 3個のフエ二ル基を有し、 そのうちの少なくとも 1個の フエニル基には 2つのアミノ基へつながるそれぞれの結合基がメタ位置に結合し ているジアミン化合物
(C)ガラス転移温度が 180て以上である熱可塑性樹脂
(D)熱可塑性樹脂からなるフイルム、 粒子、 維維またはこれらの複合物 を少なくとも含み、 該エポキシ樹脂 (A) の 70重量6以上が、 下記 (A 1) な いし (A3) よりなる群から選ばれるエポキシ樹脂の少なくとも 1種もしくは複 数種の混合物であり、 熱可塑性樹脂 (D) がプリプレダの片面または両面に配置 され、 その硬化物を 71 の温水 2週間漫¾後の吸水率が 1%以下であるプリ プレダ。 (A 1 ) 縮合していないベンゼン環に直結したジグリシジルァミノ基を複数個 有するエポキシ樹脂
(A2) 骨格中に縮合芳香族環を有するェポキジ'樹脂
(A3) 下記一般式 (1) で表わされるグリシジルエーテル型エポキシ樹脂
-般式 ( 1 )
(式中 aは 1または 2を表わす)
4. 前記ジアミン化合物 (B) が下記一般式 (5)で表わされる化合物である請 求項 1ないし請求項 3のいずれかに記載のプリプレグ。
—般式 ( 5 )
式中、 b、 c, dは独立して 0または 1を表わし、 b + c + dく 3を 満たし、
R25〜R37は独立して水素、 ハロゲン、 炭素数 4以下のアルキル基を 表わし、
X X2は独立して一 C〇-、 一 S—、 一 S02—、 一 0-または下記 —般式 (6) で示される二価の結合基を表わす。
?38
-C— 一般式 ( 6 )
R 39
5. 前記ジァミン化合物 (B) が前記一般式 (5) で表わされ、 式中 b = lであ る請求項 4に記載のプリプレダ。
6. 前記ジァミン化合物 (B) が前記一般式 (5)''で表わされ、 式中 c = d = 0 である請求項 5に記載のプリプレグ。
7. 前記ジアミン化合物 (B) が前記一般式 (5) で表わされ、 式中 X がー C〇 一または— S〇 2—である請求項 6に記載のプリプレダ。
8. 前記ジァミン化合物 (B) が前記一般式 (5) で表わされ、 式中 X 4がー SO 2 -である請求項 Ίに記載のプリプレグ。
9. 前記ジァミン化合物 (B) 力く 3, 3' —ジァミノジフヱニルスルホンである 請求項 8に記載のプリプレグ。
1 0. 前記ジァミン化合物 (B) の含有量が前記エポキシ樹脂 (A) 中のェポキ シ基モル数に対してモル数が 0. 1 5ないし 0. 2倍である請求項 1ないし請求 項 9のレ、ずれかに記載のプリプレグ。
1 1. 前記プリプレグ中の前記ジアミン化合物 (B) の 90重量%以上が粒径 4 O ^m以下であり、 かつ粒径 1 m以下のものが 1重量%以下である請求項 1な いし請求項 1 0のいずれかに記載のプリプレダ。
1 2. 前記プリプレダ中の前記ジァミン化合物 (B) のメジアン径が 1 以 下であり、 かつ [ (平均粒径 +標準偏差) / (平均粒径) ] で算出される σ«が 2. 0以下である請求項 1ないし請求項 1 1のいずれかに記載のプリプレダ。
1 3. 前記熱可塑性樹脂 (C) がポリスルホンまたはポリイミ ドから選ばれた少な くとも一種である、 請求項 1ないし請求項 1 2のいずれかに記載のプリプレダ。
14. 前記熱可塑性樹脂 (C) が主鎖にエーテル結合を有するポリスルホンである 請求項 1 3に記載のプリプレグ。
1 5. 前記熱可塑性樹脂 (C) が主鎖にエーテル結合を有するポリイミ ドである請 求項 1 3に記載のプリプレダ。
1 6. 前記熱可塑性樹脂 (C) の含有量が前記エポキシ樹脂 (Α) に対して 1ない し 1 5重量%である請求項 1ないし請求項 1 5に記載プリプレダ。
1 7. 前記エポキシ樹脂 (Α) 力く 2官能エポキシ樹脂を含むものである請求項 1 な ヽし請求項 1 6の L、ずれかに記載のプリプレグ。
18. 前記 2官能エポキシ樹脂がビスフヱノール F型エポキシ樹脂、 ビスフヱノ ール A型エポキシ樹脂またはレゾルシノ一ルジグリシジルエーテルである請求項 17に記載のプリプレグ。
19. 前記エポキシ樹脂 (A 1) が下記一般式 (7) で表わされるものである請 ί 求項 1ないし請求項 18のいずれかに記載のプリプレダ。
一般式 ( Ί )
20. 前記エポキシ樹脂 (A 1) 力、'テ卜ラグリシジルジアミノジフエニルスルホ ンである請求項 19に記載のプリプレダ。
21. 前記エポキシ樹脂 (A2) が下言己一般式 (8) で表わされるものである請 求項 1ない
一般式 ( 8 )
22. 前記エポキシ樹脂 (A) 中のテトラグリシジルジアミノジフエニルスルホ ンが 80重 i%を越えるものである請求項 20または請求項 21のいずれかに記 載のプリプレダ。
23. 前記強化 锥力、'炭素維維である請求項 1ないし請求項 22のいずれかに記 載のプリプレダ。
24. 前記炭素 が引張強度 4. 4GP a以上、 引 度 1. 7%以上である 高強度高伸^素繊維である請求項 23に記載のプリプレグ。
25. 前記熱可塑性樹脂 (D) の 90重: S%以上がプリプレダ表面からプリプレ グの厚さの 15%の深さの範囲内に局在化ていることを特徴とする請求項 2ない し請求項 24のいずれかに記載のプリプレダ。
26. 前記熱可塑性樹脂 (D) がポリアミ ド、 ポリアミ ドィミ ドおよびポリエー テルイミ ドよりなる群から選ばれた少なくとも 1種であることを特徴とする請求 項 2ないし請求項 25の L、ずれかに記載のプリプレグ。
27. 前記プリプレダ中の前記熱可塑性樹脂 (D) の形状が繊維であることを特 徵とする請求項 2ないし請求項 26のし、ずれかに記載のプリプレダ。
28. 前記プリプレグ中の前記熱可塑性樹脂 (D) の形状が粒子であることを特 徴とする請求項 2ないし請求項 26の L、ずれかに記載のプリプレグ。
29. 前記プリプレグ中の前記熱可塑性樹脂 (D) がメジアン径 30 /m以下の 粒子であることを特徴とする請求項 28のプリプレダ。
30. 前記プリプレダ中の前記熱可塑性樹脂 (D) 力エポキシ樹脂またはビスマ レイミ ド樹脂と熱可塑性樹脂とがセミ I PN化されてなる粒子であることを特徴 とする請求項 29のプリプレダ。
31. 前記プリプレダ中の前記熱可塑性樹脂 (D) がエポキシ樹脂とポリアミ ド とがセミ I PN化されてなる粒子であることを特徴とする請求項 30のプリプレ グ。
32. 擬似等方構成で 16層積層し、 180 、 圧カ0. 588MP aの条件で 2時間硬化し、 0° 方向が 305mm、 90° 方向が 38 mmの長方形で中央部 に直径 6. 35 mmの円形の孔を穿孔した有孔板の高温高湿時圧縮強度 (7 1 の温水に 2週間浸漬後 82 で測定) が 275 M P a以上である請求項 1ないし 請求項 31のいずれかに記載のプリプレダ。
33. 擬似等方構成で 24層積層し、 180 、 圧カ0. 588MP aの条件で 2時間硬化し、 0° 方向が 305mm、 90° 方向が 38 mmの長方形に切り出 し、 その中央に 30. 5N · mの落錘衝撃を与えた後の圧縮強度が 275MP a 以上である請求項 1ないし請求項 32のいずれかに記載のプリプレダ。
34. 請求項 1ないし請求項 33のいずれかに記載のプリプレダが硬化されてな る繊維強化複合材料。
PCT/JP1995/002474 1994-12-02 1995-12-04 Preimpregne et materiau composite renforces par des fibres WO1996017006A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP51592996A JP3359037B2 (ja) 1994-12-02 1995-12-04 「プリプレグおよび繊維強化複合材料」
US08/682,761 US5985431A (en) 1994-12-02 1995-12-04 Prepreg, and a fiber reinforced composite material
DE69530188T DE69530188T2 (de) 1994-12-02 1995-12-04 Prpeg und faserverstärktes verbundmaterial
KR1019960704204A KR970700720A (ko) 1994-12-02 1995-12-04 프리프레그 및 섬유 강화 복합 재료(A Prepreg, and a Fiber Reinforced Composite Material)
EP95938641A EP0745640B1 (en) 1994-12-02 1995-12-04 Prepreg and fiber-reinforced composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32958894 1994-12-02
JP6/329588 1994-12-02

Publications (1)

Publication Number Publication Date
WO1996017006A1 true WO1996017006A1 (fr) 1996-06-06

Family

ID=18223034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002474 WO1996017006A1 (fr) 1994-12-02 1995-12-04 Preimpregne et materiau composite renforces par des fibres

Country Status (6)

Country Link
US (1) US5985431A (ja)
EP (1) EP0745640B1 (ja)
JP (1) JP3359037B2 (ja)
KR (1) KR970700720A (ja)
DE (1) DE69530188T2 (ja)
WO (1) WO1996017006A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302760A (ja) * 2000-04-21 2001-10-31 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
JP2006124670A (ja) * 2004-09-28 2006-05-18 Hitachi Chem Co Ltd プリプレグ、金属箔張積層板及びこれらを使用した印刷回路板
WO2006095516A1 (ja) * 2005-03-09 2006-09-14 The Yokohama Rubber Co., Ltd. 硬化性樹脂組成物およびプリプレグならびにこれを用いた複合材料
WO2011118106A1 (ja) 2010-03-23 2011-09-29 東レ株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2014017340A1 (ja) 2012-07-25 2014-01-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2014112180A1 (ja) 2013-01-15 2014-07-24 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2015005411A1 (ja) 2013-07-11 2015-01-15 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2019098243A1 (ja) 2017-11-14 2019-05-23 東レ株式会社 プリプレグおよび繊維強化複合材料
JP2020508382A (ja) * 2017-02-23 2020-03-19 ヘクセル コーポレイション 熱可塑性強化エポキシ複合材の高温湿潤条件下での圧縮強度の保持

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026912A1 (fr) * 1996-12-18 1998-06-25 Toray Industries, Inc. Pre-impregne de fibres de carbone
FR2773809B1 (fr) 1998-01-22 2000-03-17 Inst Francais Du Petrole Compositions de polymeres, leurs preparations et leurs utilisations
DE19836892A1 (de) * 1998-08-14 2000-02-17 Krankenhauszweckverband Ingols Schutzanzug
JP3233618B2 (ja) * 1999-07-28 2001-11-26 川崎重工業株式会社 複合材の吸湿方法
US6379799B1 (en) * 2000-06-29 2002-04-30 Cytec Technology Corp. Low moisture absorption epoxy resin systems with alkylated diamine hardeners
US7247876B2 (en) * 2000-06-30 2007-07-24 Intel Corporation Three dimensional programmable device and method for fabricating the same
JP3894035B2 (ja) * 2001-07-04 2007-03-14 東レ株式会社 炭素繊維強化基材、それからなるプリフォームおよび複合材料
EP1454936B1 (en) * 2001-11-07 2007-01-10 Toray Industries, Inc. Epoxy resin compositions for fiber-reinforced composite materials, process for production of the materials and fiber-reinforced composite materials
US6821931B2 (en) * 2002-03-05 2004-11-23 Alpine Mud Products Corporation Water-based drilling fluid additive containing talc and carrier
US7056867B2 (en) * 2002-07-17 2006-06-06 Alpine Mud Products Corp Drilling fluid additive system containing graphite and carrier
US7060660B2 (en) * 2002-07-17 2006-06-13 Alpine Mud Products Corp Drilling fluid additive system containing talc and graphite
CA2600808C (en) * 2005-03-11 2013-07-16 National Research Council Of Canada Novel highly microporous thermoplastic/bismaleimide semi-interpenetrating polymer network
GB0619401D0 (en) * 2006-10-02 2006-11-08 Hexcel Composites Ltd Composite materials with improved performance
WO2008127556A1 (en) * 2007-04-17 2008-10-23 Hexcel Corporation Pre-impregnated composite materials with improved performance
GB0622060D0 (en) * 2006-11-06 2006-12-13 Hexcel Composites Ltd Improved composite materials
US8409704B2 (en) * 2007-01-25 2013-04-02 Panasonic Corporation Prepreg, printed wiring board, multilayer circuit board, and process for manufacturing printed wiring board
GB0717507D0 (en) * 2007-09-07 2007-10-17 Cytec Tech Corp Composite materials and their use
US8034453B2 (en) * 2008-10-07 2011-10-11 Hexcel Corporation Composite materials with improved burn properties
US8039109B2 (en) * 2008-10-07 2011-10-18 Hexcel Corporation Epoxy resins with improved burn properties
JP5385011B2 (ja) * 2009-05-30 2014-01-08 東邦テナックス株式会社 プリプレグ
US8470923B2 (en) 2010-04-21 2013-06-25 Hexcel Corporation Composite material for structural applications
GB201222934D0 (en) 2012-12-19 2013-01-30 Cytec Ind Inc Particle toughening for improving fracture toughness
CN105408386B (zh) * 2013-07-26 2017-07-21 东丽株式会社 环氧树脂组合物、预浸料坯及纤维增强复合材料
CN107250200B (zh) * 2015-03-17 2019-06-28 东丽株式会社 环氧树脂组合物、预浸料坯及碳纤维增强复合材料
FR3053627B1 (fr) 2016-07-05 2021-07-30 Porcher Ind Feuille composite a base de tissu et de polyetherimide a porosite controlee

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974118A (ja) * 1982-09-15 1984-04-26 ザ・ブリテイツシユ・ピトロ−リアム・コンパニ−・ピ−エル・シ− エポキシ樹脂組成物
JPH04234440A (ja) * 1990-10-23 1992-08-24 Amoco Corp 向上した室温貯蔵安定性を有するプリプレグ

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3472730A (en) * 1967-12-28 1969-10-14 Minnesota Mining & Mfg Heat-curable filament-reinforced resinous sheeting and laminating process using same
GB1299177A (en) * 1969-01-17 1972-12-06 Ciba Geigy Uk Ltd Reinforced composites
US4661559A (en) * 1983-05-20 1987-04-28 Union Carbide Corporation Impact resistant matrix resins for advanced composites
US4517321A (en) * 1983-05-20 1985-05-14 Union Carbide Corporation Preimpregnated reinforcements and high strength composites therefrom
ZA84548B (en) * 1983-05-20 1984-12-24 Union Carbide Corp Impact resistant matrix resins for advanced composites
US4579885A (en) * 1983-09-22 1986-04-01 Union Carbide Corporation Epoxy compositions containing substituted diamine hardeners
EP0159482A3 (en) * 1984-03-28 1987-02-25 American Cyanamid Company Resin matrix composites with controlled flow and tack
US4604319B1 (en) * 1984-06-01 1995-07-04 American Cyanamid Co Thermoplastic interleafed resin matrix composites with improved impact strength and toughness
JPH07105707B2 (ja) * 1985-07-31 1995-11-13 株式会社日立製作所 3ステ−ト回路
JPH0778138B2 (ja) * 1985-12-16 1995-08-23 東レ株式会社 繊維強化プリプレグ用樹脂組成物
JPS62297312A (ja) * 1986-06-18 1987-12-24 Toray Ind Inc プリプレグ用樹脂組成物およびその製造法
US4863787A (en) * 1986-07-09 1989-09-05 Hercules Incorporated Damage tolerant composites containing infusible particles
JPH01104624A (ja) * 1987-10-16 1989-04-21 Toray Ind Inc 樹脂微粒子を用いたプリプレグ
DE3789054T2 (de) * 1986-12-25 1994-07-07 Toray Industries Zähe Verbundmaterialien.
US4868050A (en) * 1987-02-27 1989-09-19 Ube Industries, Ltd. Interleaf-containing, fiber-reinforced epoxy resin prepreg
US4992325A (en) * 1987-12-15 1991-02-12 The Dexter Corporation Inorganic whisker containing impact enhanced prepregs and formulations formulations
US4874661A (en) * 1987-12-15 1989-10-17 Browne James M Impact enhanced prepregs and formulations
US5025045A (en) * 1987-12-24 1991-06-18 Hercules Incorporated Damage tolerant composites containing infusible particles
US4956411A (en) * 1988-02-05 1990-09-11 Mitsubishi Rayon Company, Ltd. Epoxy resin composition for composite material from m- or o-substituted triglycidylaminophenols, diaminodiphenylsulfone and latent curing agents
US4908088A (en) * 1988-02-29 1990-03-13 Basf Aktiengesellschaft Extreme damage tolerant graphite composites and method of making same
EP0351025A3 (en) * 1988-07-15 1991-10-23 Amoco Corporation Fiber reinforced composites toughened with carboxylated rubber particles
JPH0267331A (ja) * 1988-07-15 1990-03-07 Amoco Corp 繊維強化複合材に対する強靱化材料としてのカルボキシル化ゴム粒
EP0351026A3 (en) * 1988-07-15 1991-10-23 Amoco Corporation Fiber-reinforced composites toughened with elongated rigid particles
EP0351028A3 (en) * 1988-07-15 1991-10-23 Amoco Corporation Resin particle-filled, fiber-reinforced composites
US5169710A (en) * 1988-07-15 1992-12-08 Amoco Corporation Fiber-reinforced composites toughened with porous resin particles
JPH0639519B2 (ja) * 1988-12-02 1994-05-25 東邦レーヨン株式会社 エポキシ樹脂組成物及びプリプレグ
US5242748A (en) * 1989-01-04 1993-09-07 Basf Aktiengesellschaft Toughened thermosetting structural materials
US4954195A (en) * 1989-02-13 1990-09-04 Lockheed Corporation Production of thermoset composites containing thermoplastic fillers
US5248711A (en) * 1989-02-16 1993-09-28 Hexcel Corporation Toughened resin systems for composite applications
US5037689A (en) * 1989-02-17 1991-08-06 Basf Aktiengesellschaft Toughened thermosetting structural materials
US5087657A (en) * 1989-02-23 1992-02-11 Amoco Corporation Fiber-reinforced composites toughened with resin particles
EP0392348A3 (en) * 1989-04-14 1991-12-27 Cytec Technology Corp. Toughened thermosetting structural materials
US4957801A (en) * 1989-05-17 1990-09-18 American Cyanamid Company Advance composites with thermoplastic particles at the interface between layers
CA2055059A1 (en) * 1990-11-16 1992-05-17 Anita N. Chan Damage tolerant composites containing infusible particles
US5258456A (en) * 1991-03-15 1993-11-02 Tomoegawa Paper Co., Ltd. Epoxy resin with phenolic OH-aramide/ban block copolymer
JPH0778138A (ja) * 1993-06-30 1995-03-20 Canon Inc コメント付与方法及び文書処理装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974118A (ja) * 1982-09-15 1984-04-26 ザ・ブリテイツシユ・ピトロ−リアム・コンパニ−・ピ−エル・シ− エポキシ樹脂組成物
JPH04234440A (ja) * 1990-10-23 1992-08-24 Amoco Corp 向上した室温貯蔵安定性を有するプリプレグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0745640A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302760A (ja) * 2000-04-21 2001-10-31 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
JP2006124670A (ja) * 2004-09-28 2006-05-18 Hitachi Chem Co Ltd プリプレグ、金属箔張積層板及びこれらを使用した印刷回路板
JP4736671B2 (ja) * 2004-09-28 2011-07-27 日立化成工業株式会社 プリプレグ、金属箔張積層板及びこれらを使用した印刷回路板
WO2006095516A1 (ja) * 2005-03-09 2006-09-14 The Yokohama Rubber Co., Ltd. 硬化性樹脂組成物およびプリプレグならびにこれを用いた複合材料
WO2011118106A1 (ja) 2010-03-23 2011-09-29 東レ株式会社 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
US9765194B2 (en) 2012-07-25 2017-09-19 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
WO2014017340A1 (ja) 2012-07-25 2014-01-30 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
US11111345B2 (en) 2012-07-25 2021-09-07 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
US11286359B2 (en) 2012-07-25 2022-03-29 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
WO2014112180A1 (ja) 2013-01-15 2014-07-24 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
KR20150105316A (ko) 2013-01-15 2015-09-16 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그 및 탄소 섬유 강화 복합 재료
WO2015005411A1 (ja) 2013-07-11 2015-01-15 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2020508382A (ja) * 2017-02-23 2020-03-19 ヘクセル コーポレイション 熱可塑性強化エポキシ複合材の高温湿潤条件下での圧縮強度の保持
WO2019098243A1 (ja) 2017-11-14 2019-05-23 東レ株式会社 プリプレグおよび繊維強化複合材料
KR20200080225A (ko) 2017-11-14 2020-07-06 도레이 카부시키가이샤 프리프레그 및 섬유 강화 복합재료

Also Published As

Publication number Publication date
US5985431A (en) 1999-11-16
KR970700720A (ko) 1997-02-12
JP3359037B2 (ja) 2002-12-24
EP0745640A1 (en) 1996-12-04
DE69530188D1 (de) 2003-05-08
DE69530188T2 (de) 2004-01-29
EP0745640A4 (en) 2000-05-31
EP0745640B1 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
WO1996017006A1 (fr) Preimpregne et materiau composite renforces par des fibres
KR101511186B1 (ko) 열가소성 입자들의 블렌드를 갖는 복합 재료
US6596373B1 (en) Epoxy resin composition for fiber-reinforced composite material prepreg, and fiber-reinforced composite material
EP2655512B1 (en) Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications
JP3440615B2 (ja) プリプレグおよび繊維強化複合材料
EP2311892A1 (en) Epoxy resin composition and prepreg using same
JP2010059225A (ja) 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
JP2006233188A (ja) 複合材料用プリプレグ、および複合材料
KR20140127869A (ko) 섬유강화 복합 재료
EP3746499B1 (en) Prepreg for use in making composite parts which tolerate hot and wet conditions
JP2006265458A (ja) プリプレグ用樹脂組成物およびプリプレグ
JP2003026768A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP4475880B2 (ja) エポキシ樹脂組成物
JP2003238657A (ja) エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
JP4734729B2 (ja) 複合材料成形用中間体及び繊維強化複合材料
JP2010095557A (ja) プリプレグおよび繊維強化複合材料
JPS63170428A (ja) プリプレグの製造方法
JP2002363253A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP4655329B2 (ja) 一方向プリプレグおよび繊維強化複合材料
JP2001114915A (ja) プリプレグ及び繊維強化複合材料
JP3508346B2 (ja) プリプレグおよび繊維強化複合材料
JP2022539778A (ja) ハイブリッドポリアミド粒子で強化されたマトリックス樹脂
JP2000017090A (ja) プリプレグおよび繊維強化複合材料
JP3365110B2 (ja) プリプレグおよび繊維強化複合材料
JP5668329B2 (ja) エポキシ樹脂組成物およびそれを用いた繊維強化複合材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995938641

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995938641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08682761

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1995938641

Country of ref document: EP