WO1996016621A1 - Optical treatment method - Google Patents

Optical treatment method Download PDF

Info

Publication number
WO1996016621A1
WO1996016621A1 PCT/AU1995/000794 AU9500794W WO9616621A1 WO 1996016621 A1 WO1996016621 A1 WO 1996016621A1 AU 9500794 W AU9500794 W AU 9500794W WO 9616621 A1 WO9616621 A1 WO 9616621A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
spherical aberration
lens
focus
altering
Prior art date
Application number
PCT/AU1995/000794
Other languages
French (fr)
Inventor
Michael John Collins
Christine Frances Wildsoet
Original Assignee
Queensland University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Queensland University Of Technology filed Critical Queensland University Of Technology
Priority to US08/849,196 priority Critical patent/US6045578A/en
Priority to AU39744/95A priority patent/AU695812B2/en
Publication of WO1996016621A1 publication Critical patent/WO1996016621A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Definitions

  • This invention relates to an optical treatment method.
  • This invention has particular but not exclusive application to the treatment of focusing disorders of the human eye, and for illustrative purposes reference will be made to such application. However, it is to be understood that this invention could be used in other applications such as to prevent the progression of focusing disorders of the eye such as myopia and hyperopia.
  • myopia and hyperopia for which correctional lenses in the form of spectacles, or rigid or soft contact lenses, are prescribed.
  • the conditions are generally described as the imbalance between the length of the eye and the focus of the optical elements of the eye, myopic eyes focusing in front of the retinal plane and hyperopic eyes focusing behind the retinal plane.
  • Myopia typically develops because the axial length of the eye grows to be longer than the focal length of the optical components of the eye, that is, the eye grows too long.
  • Hyperopia typically develops because the axial length of the eye is too short compared with the focal length of the optical components of the eye, that is, the eye does not grow enough.
  • the corrective lenses are used to alter the gross focus of the eye to render a clearer image at the retinal plane, by shifting the focus from in front of the plane to correct myopia, or from behind the plane to correct hyperopia, respectively.
  • the corrective approach to the conditions does not address the cause of the condition but is merely prosthetic.
  • Most eyes do not have simple myopia or hyperopia, but have myopic astigmatism or hyperopic astigmatism.
  • Astigmatic errors of focus cause the image of a point source of light to form as two mutually perpendicular lines at different focal distances.
  • myopia and hyperopia are used to include simple myopia or myopic astigmatism and hyperopia and hyperopic astigmatism respectively.
  • the spherical aberration of the normal eye is not constant.
  • accommodation that is, the change in optical power of the eye derived primarily through change to the internal crystalline lens causes the spherical aberration to change from positive to negative.
  • Emmetropisation is the process whereby eye growth is self-regulated to achieve an optimum match between the optics and axial length of the eye. Emmetropisation is responsible for the leptokurtosis apparent in refractive error distribution in humans and has been demonstrated to act in various animals to compensate for visual deprivation induced refractive errors. Juvenile-onset myopia is a common form of refractive error beginning in childhood and progressing up until the mid to late teens.
  • the emmetropisation process can be regulated by the effect of spherical aberration on eye growth.
  • emmetropisation is controlled by spherical aberration and that, for example, young myopes have higher levels of negative spherical aberration than emme ropes, which promotes inappropriate eye growth.
  • this invention in one aspect resides broadly in a method of altering the focus of the eye including changing the spherical aberration of the retinal image by a direction and degree selected to alter the growth in eye length.
  • the spherical aberration to be altered is preferably the longitudinal spherical aberration, that is, the spherical aberration of the optical system of the eye in the direction of the lens axis.
  • the expression “spherical aberration” is to be taken to mean longitudinal spherical aberration unless otherwise specified, "Positive spherical aberration” refers to spherical aberration resulting in a marginal focus between the paraxial focus and the lens, whereas negative spherical aberration refers to spherical aberration resulting in the marginal focus occurring on the side of the paraxial focus remote from the lens.
  • the adult eye typically has a spherical aberration of approximately +0.50 D, and it is presumed that the eye length growth feedback mechanism, whatever its mode of action, operates to stop eye length growth at or about this degree of positive spherical aberration. Accordingly it is preferred that myopia be treated by altering the spherical aberration of the eye from the generally negative spherical aberration apparent in the condition, to somewhere in the range of 0-5 D, and preferably as positive as about +0.50 D.
  • the presence of negative spherical aberration in the retinal image would promote eye growth, particularly during early childhood, and the eye will continue growing until the spherical aberration reaches its final state of approximately +0.50 D, irrespective of whether or not the paraxial focus is ideally on the retinal plane. Accordingly, in an eye that has failed to grow long enough, that is, a hyperopic eye, the introduction of negative spherical aberration may encourage growth in eye length and thereby correct the hyperopia.
  • preventative treatment may comprise the alteration of the spherical aberration to be less negative (more positive).
  • preventative treatment may comprise the alteration of the spherical aberration to be less positive (more negative).
  • the means by which the spherical aberration of the eye may be altered in accordance with the present invention may include surgical alteration of the shape of the cornea, implantation of a lens into the eye, spectacle lenses or contact lenses.
  • the means for alteration of the spherical aberration comprises a contact lens.
  • the change in spherical aberration induced by a contact lens on the eye depends upon a number of parameters including the power of the lens, shape of the front and back surfaces of the lens, refractive index of the lens material, corneal radius of curvature and shape, axial length of the eye and pupil size. Whilst the foregoing methods refer to the effect of variation of spherical aberration on focussing errors in the unaccommodating eye focused at infinity, it is also observed that spherical aberration of the eye varies as a function of accommodation. In the unaccommodated state, the eye normally has about +0.50 D of spherical aberration for average pupil sizes, as observed above.
  • the spherical aberration becomes less positive and at a level of accommodation of about 1.00 to 1.50D the eye has minimal spherical aberration.
  • Higher levels of accommodation produce increasing negative spherical aberration with about -1.00D of spherical aberration present at an accommodation level of 3.00D (Ivanoff, 1956; Jenkins, 1963; Tousey and Scolnik, 1949).
  • a method for impeding the onset of accommodation induced myopia in children comprising maintaining positive spherical aberration on the subject eye during close work.
  • the amount of benefit derived would depend on the relationship between spherical aberration and accommodation for each subject and the amount of near work undertaken by each subject.
  • the degree of positive spherical aberration is selected whereby accommodation demand during close work is also reduced.
  • this invention resides in prosthetic lens apparatus of optical characteristics selected to alter the spherical aberration of the retinal image of an eye in a direction and to a degree sufficient to influence eye length growth.
  • the lens may comprise a spectacle lens, or rigid or soft contact lens.
  • the lens may serve as a corrective lens for focusing errors of the eye as well as altering the spherical aberration of the eye, or alternatively may be piano, that is, of no correcting power for paraxial rays, serving only to alter the spherical aberration of the retinal image.
  • the spherical aberration in the prosthetic lens may be produced by any desired method, such as by the use of diffraction, or by providing a variation in the refractive index of the material.
  • the spherical aberration be introduced by varying the shape of the lens surface or surfaces, such as by using an aspheric surface.
  • an ellipsoidal surface may be selected for ease of manufacture and such that the transition from optical-correction portion to growth-control portion may be gradual.
  • the shaping of the lens to provide for the alteration to the spherical aberration of the retinal image may be by any means known to the art of producing lenses.
  • FIG. 1 shows the effect of positive spherical aberration on an eye
  • FIG. 2 illustrates the effect of negative spherical aberration on an eye
  • FIG. 3 is a diagram of a myopic eye fitted with a lens having positive spherical aberration
  • FIG. 4 is a diagram of a hyperopic eye fitted with a lens having negative spherical aberration.
  • paraxial rays Rays of light which enter through the central portion of an eye are termed paraxial rays and rays of light entering through the periphery of a lens are termed marginal or peripheral rays.
  • Spherical aberration occurs when paraxial and marginal rays do not share a common point of focus. As shown in FIG. 1, positive spherical aberration occurs when marginal rays 10 focus closer to the lens 11 than paraxial rays 12. Negative spherical aberration occurs when marginal rays 20 focus further from a lens 21 than paraxial rays 22, as illustrated in FIG. 2.
  • the convex cornea 30 of a myopic eye 31 has been fitted with a lens 32 having its inner surface 33 formed spherically and its outer surface 34 formed as part of an ellipsoid having increasing dioptric power, that is, decreasing radius of curvature, away from the axis 35 of the lens and cornea 30, that is, an oblate ellipsoid.
  • Paraxial light rays 36 entering the central portion 37 of the lens 32 are focused on the retina 40 of the eye 31, producing a clear image of an object.
  • Marginal light rays 41 entering the peripheral portion 42 of the lens 32 and passing to the cornea 30 are focused in a plane between the cornea 30 and the retina 40, and produce positive spherical aberration of the image on the latter. This positive spherical aberration produces a physiological effect on the eye which tends to inhibit growth of the eye, thus mitigating the tendency for the myopic eye to grow longer.
  • the cornea 50 of a hyperopic eye 51 has been fitted with a lens 52 having its inner surface 53 formed spherically, and its outer surface 54 formed as part of an ellipsoid having decreasing dioptric power, that is, increasing radius of curvature, away from the axis 55 of the lens and cornea 50, that is, a prolate ellipsoid.
  • Paraxial light rays 56 entering the central portion 57 of the lens 52 and passing to the cornea 50 are focused on the retina 60 of the eye 51, producing a clear image of an object.
  • Marginal light rays 61 entering the peripheral portion 62 of the lens and passing to the cornea 50 are focused behind the retina 60, and produce a negative spherical aberration of the image on the latter.
  • This negative spherical aberration produces a physiological effect on the eye which tends to enhance growth of the eye, thus mitigating hyperopia.
  • a -3.00 D myopic eye when treated with a spherical prosthetic (contact) lens exhibits corrected focus, with little effect on progression of the myopia.
  • This progression is typically at a rate of about -0.50 D to -0.75 D per year.
  • substitution in one eye with a prosthesis having an aspheric front surface in the form of an oblate ellipse having the same corrective power for paraxial rays as the spherical lens but inducing a positive spherical aberration of +0.75 D on the eye, produces a cessation or slowing of the development of myopia.

Abstract

Paraxial rays and marginal rays entering the eye do not share a common point of focus in emmetropes, adults usually having a slightly positive spherical aberration. There is provided a method of treatment and prevention of myopia by inducing positive spherical aberration in the myopic eye. The cornea (30) of a myopic eye (31) is fitted with a lens (32) having its outer surface (34) formed having increasing dioptric power away from the axis (35) of the lens (32) and cornea (30). Paraxial light rays (36) entering the central portion (37) of the lens (32) are focused on the retina (40) of the eye (31), producing a clear image of an object. Marginal light rays (41) entering the peripheral portion (42) of the cornea (30) are focused in a plane between the cornea (30) and the retina (40), and produce positive spherical aberration of the image on the latter. This positive spherical aberration produces a physiological effect on the eye which tends to inhibit growth of the eye, thus mitigating the tendency for the myopic eye to grow longer. Methods of treatment of hyperopia, and methods for prevention of focusing disorders based on the same principles are also provided.

Description

"OPTICAL TREATMENT METHOD" This invention relates to an optical treatment method. This invention has particular but not exclusive application to the treatment of focusing disorders of the human eye, and for illustrative purposes reference will be made to such application. However, it is to be understood that this invention could be used in other applications such as to prevent the progression of focusing disorders of the eye such as myopia and hyperopia.
Common conditions which lead to reduced visual acuity are myopia and hyperopia, for which correctional lenses in the form of spectacles, or rigid or soft contact lenses, are prescribed. The conditions are generally described as the imbalance between the length of the eye and the focus of the optical elements of the eye, myopic eyes focusing in front of the retinal plane and hyperopic eyes focusing behind the retinal plane. Myopia typically develops because the axial length of the eye grows to be longer than the focal length of the optical components of the eye, that is, the eye grows too long. Hyperopia typically develops because the axial length of the eye is too short compared with the focal length of the optical components of the eye, that is, the eye does not grow enough.
The corrective lenses are used to alter the gross focus of the eye to render a clearer image at the retinal plane, by shifting the focus from in front of the plane to correct myopia, or from behind the plane to correct hyperopia, respectively. However, the corrective approach to the conditions does not address the cause of the condition but is merely prosthetic. Most eyes do not have simple myopia or hyperopia, but have myopic astigmatism or hyperopic astigmatism. Astigmatic errors of focus cause the image of a point source of light to form as two mutually perpendicular lines at different focal distances. In the foregoing discussion, the terms myopia and hyperopia are used to include simple myopia or myopic astigmatism and hyperopia and hyperopic astigmatism respectively. In normal or emmetropic adult eyes, light from both distant and close objects and passing through the central or paraxial region of the aperture or pupil is focused by the crystalline lens inside the eye close to the retinal plane where the inverted image is sensed. It is observed however that most normal eyes exhibit a positive longitudinal spherical aberration, generally in the region of about +0.50 Diopters (D) for a 5 mm aperture, meaning that rays passing through the aperture or pupil at its periphery are focused +0.50 D in front of the retinal plane when the eye is focused to infinity. As used herein the measure D is the dioptric power, defined as the reciprocal of the focal distance of a lens or optical system, in meters.
The spherical aberration of the normal eye is not constant. For example, accommodation, that is, the change in optical power of the eye derived primarily through change to the internal crystalline lens causes the spherical aberration to change from positive to negative.
Emmetropisation is the process whereby eye growth is self-regulated to achieve an optimum match between the optics and axial length of the eye. Emmetropisation is responsible for the leptokurtosis apparent in refractive error distribution in humans and has been demonstrated to act in various animals to compensate for visual deprivation induced refractive errors. Juvenile-onset myopia is a common form of refractive error beginning in childhood and progressing up until the mid to late teens.
Whilst the length of the eye increases throughout life, growth is most pronounced during childhood. It has been observed that spherical aberration of the eye changes with age in children (Stine, 1930; Jenkins, 1963), from negative spherical aberration in children younger than about 6 years of age when focused on distant objects, to positive spherical aberration at about 6-7 years of age. Most adults display positive spherical aberration of the eye focussed at infinity for the remainder of their lives.
It is proposed that the emmetropisation process can be regulated by the effect of spherical aberration on eye growth. Particularly, it is proposed that emmetropisation is controlled by spherical aberration and that, for example, young myopes have higher levels of negative spherical aberration than emme ropes, which promotes inappropriate eye growth.
It is thus an object of the present invention to provide methods for the treatment and/or prevention of refractive error of the eye, and apparatus therefor.
With the foregoing and other objects in view this invention in one aspect resides broadly in a method of altering the focus of the eye including changing the spherical aberration of the retinal image by a direction and degree selected to alter the growth in eye length.
The spherical aberration to be altered is preferably the longitudinal spherical aberration, that is, the spherical aberration of the optical system of the eye in the direction of the lens axis. For the purposes of this description, the expression "spherical aberration" is to be taken to mean longitudinal spherical aberration unless otherwise specified, "Positive spherical aberration" refers to spherical aberration resulting in a marginal focus between the paraxial focus and the lens, whereas negative spherical aberration refers to spherical aberration resulting in the marginal focus occurring on the side of the paraxial focus remote from the lens.
Typically, for viewing objects at a far distance through a 5 mm pupil, the adult eye has a spherical aberration of approximately +0.50 D, and it is presumed that the eye length growth feedback mechanism, whatever its mode of action, operates to stop eye length growth at or about this degree of positive spherical aberration. Accordingly it is preferred that myopia be treated by altering the spherical aberration of the eye from the generally negative spherical aberration apparent in the condition, to somewhere in the range of 0-5 D, and preferably as positive as about +0.50 D.
On the other hand, the presence of negative spherical aberration in the retinal image would promote eye growth, particularly during early childhood, and the eye will continue growing until the spherical aberration reaches its final state of approximately +0.50 D, irrespective of whether or not the paraxial focus is ideally on the retinal plane. Accordingly, in an eye that has failed to grow long enough, that is, a hyperopic eye, the introduction of negative spherical aberration may encourage growth in eye length and thereby correct the hyperopia.
If on the other hand a juvenile presents as emme ropic but having a markedly negative spherical aberration, this may be regarded as predictive for the onset of juvenile myopia, and preventative treatment may comprise the alteration of the spherical aberration to be less negative (more positive). Alternatively if the juvenile presents as emmetropic but having markedly positive spherical aberration , this may be regarded as predictive for the onset of juvenile hyperopia, and preventative treatment may comprise the alteration of the spherical aberration to be less positive (more negative).
The means by which the spherical aberration of the eye may be altered in accordance with the present invention may include surgical alteration of the shape of the cornea, implantation of a lens into the eye, spectacle lenses or contact lenses. Preferably, the means for alteration of the spherical aberration comprises a contact lens.
The change in spherical aberration induced by a contact lens on the eye depends upon a number of parameters including the power of the lens, shape of the front and back surfaces of the lens, refractive index of the lens material, corneal radius of curvature and shape, axial length of the eye and pupil size. Whilst the foregoing methods refer to the effect of variation of spherical aberration on focussing errors in the unaccommodating eye focused at infinity, it is also observed that spherical aberration of the eye varies as a function of accommodation. In the unaccommodated state, the eye normally has about +0.50 D of spherical aberration for average pupil sizes, as observed above. As the level of accommodation increases, the spherical aberration becomes less positive and at a level of accommodation of about 1.00 to 1.50D the eye has minimal spherical aberration. Higher levels of accommodation produce increasing negative spherical aberration with about -1.00D of spherical aberration present at an accommodation level of 3.00D (Ivanoff, 1956; Jenkins, 1963; Tousey and Scolnik, 1949).
The association between near work and myopia development has been proposed for many years. It is now proposed that since near work increases the amount of negative spherical aberration present in the retinal image, more time spent performing close work would encourage axial length growth in children.
Accordingly, in a further aspect there is provided a method for impeding the onset of accommodation induced myopia in children comprising maintaining positive spherical aberration on the subject eye during close work. The amount of benefit derived would depend on the relationship between spherical aberration and accommodation for each subject and the amount of near work undertaken by each subject. Preferably, the degree of positive spherical aberration is selected whereby accommodation demand during close work is also reduced.
In a further aspect, this invention resides in prosthetic lens apparatus of optical characteristics selected to alter the spherical aberration of the retinal image of an eye in a direction and to a degree sufficient to influence eye length growth. The lens may comprise a spectacle lens, or rigid or soft contact lens.
The lens may serve as a corrective lens for focusing errors of the eye as well as altering the spherical aberration of the eye, or alternatively may be piano, that is, of no correcting power for paraxial rays, serving only to alter the spherical aberration of the retinal image.
The spherical aberration in the prosthetic lens may be produced by any desired method, such as by the use of diffraction, or by providing a variation in the refractive index of the material. However, it is preferred that the spherical aberration be introduced by varying the shape of the lens surface or surfaces, such as by using an aspheric surface. For example, an ellipsoidal surface may be selected for ease of manufacture and such that the transition from optical-correction portion to growth-control portion may be gradual. The shaping of the lens to provide for the alteration to the spherical aberration of the retinal image may be by any means known to the art of producing lenses.
In order that this invention may be more easily understood and put into practical effect, reference will now be made to the accompanying drawings which illustrate a preferred embodiment of the invention, wherein:-
FIG. 1 shows the effect of positive spherical aberration on an eye;
FIG. 2 illustrates the effect of negative spherical aberration on an eye; FIG. 3 is a diagram of a myopic eye fitted with a lens having positive spherical aberration, and
FIG. 4 is a diagram of a hyperopic eye fitted with a lens having negative spherical aberration.
Rays of light which enter through the central portion of an eye are termed paraxial rays and rays of light entering through the periphery of a lens are termed marginal or peripheral rays. Spherical aberration occurs when paraxial and marginal rays do not share a common point of focus. As shown in FIG. 1, positive spherical aberration occurs when marginal rays 10 focus closer to the lens 11 than paraxial rays 12. Negative spherical aberration occurs when marginal rays 20 focus further from a lens 21 than paraxial rays 22, as illustrated in FIG. 2.
As shown in FIG. 3, the convex cornea 30 of a myopic eye 31 has been fitted with a lens 32 having its inner surface 33 formed spherically and its outer surface 34 formed as part of an ellipsoid having increasing dioptric power, that is, decreasing radius of curvature, away from the axis 35 of the lens and cornea 30, that is, an oblate ellipsoid. Paraxial light rays 36 entering the central portion 37 of the lens 32 are focused on the retina 40 of the eye 31, producing a clear image of an object. Marginal light rays 41 entering the peripheral portion 42 of the lens 32 and passing to the cornea 30 are focused in a plane between the cornea 30 and the retina 40, and produce positive spherical aberration of the image on the latter. This positive spherical aberration produces a physiological effect on the eye which tends to inhibit growth of the eye, thus mitigating the tendency for the myopic eye to grow longer.
Referring now to FIG. 4, it will be seen that the cornea 50 of a hyperopic eye 51 has been fitted with a lens 52 having its inner surface 53 formed spherically, and its outer surface 54 formed as part of an ellipsoid having decreasing dioptric power, that is, increasing radius of curvature, away from the axis 55 of the lens and cornea 50, that is, a prolate ellipsoid. Paraxial light rays 56 entering the central portion 57 of the lens 52 and passing to the cornea 50 are focused on the retina 60 of the eye 51, producing a clear image of an object. Marginal light rays 61 entering the peripheral portion 62 of the lens and passing to the cornea 50 are focused behind the retina 60, and produce a negative spherical aberration of the image on the latter. This negative spherical aberration produces a physiological effect on the eye which tends to enhance growth of the eye, thus mitigating hyperopia.
In a clinical example, a -3.00 D myopic eye when treated with a spherical prosthetic (contact) lens exhibits corrected focus, with little effect on progression of the myopia. This progression is typically at a rate of about -0.50 D to -0.75 D per year. However, substitution in one eye with a prosthesis having an aspheric front surface in the form of an oblate ellipse, having the same corrective power for paraxial rays as the spherical lens but inducing a positive spherical aberration of +0.75 D on the eye, produces a cessation or slowing of the development of myopia.
It will of course be realised that while the above has been given by way of illustrative example of this invention, all such and other modifications and variations thereto as would be apparent to persons skilled in the art are deemed to fall within the broad scope and ambit of this invention as defined in the claims appended hereto.

Claims

1. A method of altering the focus of the eye including changing the spherical aberration of the retinal image by a direction and degree selected to alter the growth in eye length.
2. A method of altering the focus of the eye according to Claim 1, wherein said spherical aberration is the longitudinal spherical aberration of the eye.
3. A method of altering the focus of the eye according to Claim 2, wherein said spherical aberration is altered in a positive direction to substantially halt eye length growth.
4. A method of altering the focus of the eye according to Claim 3, wherein said spherical aberration is altered to be more than about +0.50 D.
5. A method of altering the focus of the eye according to Claim 2, wherein spherical aberration of the eye is made more negative to promote eye growth.
6. A method of altering the focus of the eye according to Claim 5, wherein said spherical aberration is altered to be less than about +0.50 D.
7. A method for preventing the onset, or reducing the progression, of myopia comprising inducing a positive change in the spherical aberration of the eye.
8. A method in accordance with Claim 7, wherein said positive change is sufficient to alter the spherical aberration of the unaccommodated eye to about +0.50 D.
9. A method for treating hyperopia comprising inducing a change in the spherical aberration of the eye to below about +0.50 D.
10. A method in accordance with any one of Claims 1 to 9, wherein alteration of the spherical aberration is by prosthetic means selected from implanted lenses, spectacles and contact lenses, or surgical means.
11. A method for impeding the onset of accommodation induced myopia comprising maintaining positive spherical aberration in the eye during close work.
12. A method according to Claim 11, wherein said positive spherical aberration is further selected to reduce accommodation demand under close work conditions.
13. Prosthetic lens apparatus of optical characteristics selected to alter the spherical aberration of the retinal image of an eye in a direction and to a degree sufficient to influence eye length growth.
14. Prosthetic lens apparatus according to Claim 13, comprising a contact lens.
15. Prosthetic lens apparatus according to Claim 14, wherein said lens serves as a corrective lens for focusing errors of the eye.
16. Prosthetic lens apparatus according to Claim 14, wherein said lens is piano for paraxial rays.
PCT/AU1995/000794 1994-11-28 1995-11-28 Optical treatment method WO1996016621A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/849,196 US6045578A (en) 1995-11-28 1995-11-28 Optical treatment method
AU39744/95A AU695812B2 (en) 1994-11-28 1995-11-28 Optical treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPM9702 1994-11-28
AUPM9702A AUPM970294A0 (en) 1994-11-28 1994-11-28 An optical control method

Publications (1)

Publication Number Publication Date
WO1996016621A1 true WO1996016621A1 (en) 1996-06-06

Family

ID=3784212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1995/000794 WO1996016621A1 (en) 1994-11-28 1995-11-28 Optical treatment method

Country Status (2)

Country Link
AU (1) AUPM970294A0 (en)
WO (1) WO1996016621A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041796A1 (en) * 2005-10-12 2007-04-19 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens element for myopia correction
JP2007511803A (en) * 2003-11-19 2007-05-10 ヴィジョン・シーアールシー・リミテッド Method and apparatus for changing relative field curvature and peripheral off-axis focal position
WO2008144497A1 (en) * 2007-05-21 2008-11-27 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
US8057034B2 (en) 2007-10-26 2011-11-15 Brien Holden Vision Institute Methods and apparatuses for enhancing peripheral vision
JP2012526302A (en) * 2009-05-04 2012-10-25 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Contact lens with reduced optical range and method thereof
WO2014050879A1 (en) 2012-09-25 2014-04-03 国立大学法人大阪大学 Contact lens having myopia progression suppression capability, and contact lens set having myopia progression suppression capability
US8690319B2 (en) 2007-05-21 2014-04-08 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
US8876287B2 (en) 2009-05-04 2014-11-04 Coopervision International Holdings Company, Lp Ophthalmic lenses and reduction of accommodative error
US8899746B2 (en) 2009-10-22 2014-12-02 Coopervision International Holding Company, Lp Contact lens sets and methods to prevent or slow progression of myopia or hyperopia
JP5923640B1 (en) * 2015-04-13 2016-05-24 国立大学法人大阪大学 Method for designing and manufacturing contact lens for suppressing myopia progression
CN106405867A (en) * 2015-07-28 2017-02-15 亨泰光学股份有限公司 Contact lens and processing method thereof
WO2021186873A1 (en) * 2020-03-17 2021-09-23 ホヤ レンズ タイランド リミテッド Spectacle lens

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5819686A (en) * 1985-05-08 1986-12-04 Hecht Contactlinsen G.m.b.H. Contact lens
AU2063188A (en) * 1987-08-17 1989-02-23 Cyril Harold Evans Method of making hydrogel contact lenses having aspheric front surfaces
US4957506A (en) * 1988-09-06 1990-09-18 Essilor International Cie Generale D'optique Optical system using an ophthalmic lens and an intra-ocular lens to improve the sight of a person suffering from macular degeneration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5819686A (en) * 1985-05-08 1986-12-04 Hecht Contactlinsen G.m.b.H. Contact lens
AU2063188A (en) * 1987-08-17 1989-02-23 Cyril Harold Evans Method of making hydrogel contact lenses having aspheric front surfaces
US4957506A (en) * 1988-09-06 1990-09-18 Essilor International Cie Generale D'optique Optical system using an ophthalmic lens and an intra-ocular lens to improve the sight of a person suffering from macular degeneration

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511803A (en) * 2003-11-19 2007-05-10 ヴィジョン・シーアールシー・リミテッド Method and apparatus for changing relative field curvature and peripheral off-axis focal position
US7862171B2 (en) 2005-10-12 2011-01-04 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens element for myopia correction
WO2007041796A1 (en) * 2005-10-12 2007-04-19 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens element for myopia correction
US8690319B2 (en) 2007-05-21 2014-04-08 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
WO2008144497A1 (en) * 2007-05-21 2008-11-27 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
US7637612B2 (en) 2007-05-21 2009-12-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
JP2010528339A (en) * 2007-05-21 2010-08-19 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Ophthalmic lens for preventing myopia progression
RU2458373C2 (en) * 2007-05-21 2012-08-10 Джонсон Энд Джонсон Вижн Кэа, Инк. Ophthalmologic lenses for preventing development of myopia
AU2008254861B2 (en) * 2007-05-21 2013-10-10 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
US8057034B2 (en) 2007-10-26 2011-11-15 Brien Holden Vision Institute Methods and apparatuses for enhancing peripheral vision
JP2012526302A (en) * 2009-05-04 2012-10-25 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ Contact lens with reduced optical range and method thereof
US8876287B2 (en) 2009-05-04 2014-11-04 Coopervision International Holdings Company, Lp Ophthalmic lenses and reduction of accommodative error
US8899746B2 (en) 2009-10-22 2014-12-02 Coopervision International Holding Company, Lp Contact lens sets and methods to prevent or slow progression of myopia or hyperopia
WO2014050879A1 (en) 2012-09-25 2014-04-03 国立大学法人大阪大学 Contact lens having myopia progression suppression capability, and contact lens set having myopia progression suppression capability
US9594258B2 (en) 2012-09-25 2017-03-14 Osaka University Contact lens having myopia progression suppression capability, and contact lens set having myopia progression suppression capability
JP5923640B1 (en) * 2015-04-13 2016-05-24 国立大学法人大阪大学 Method for designing and manufacturing contact lens for suppressing myopia progression
CN106405867A (en) * 2015-07-28 2017-02-15 亨泰光学股份有限公司 Contact lens and processing method thereof
WO2021186873A1 (en) * 2020-03-17 2021-09-23 ホヤ レンズ タイランド リミテッド Spectacle lens

Also Published As

Publication number Publication date
AUPM970294A0 (en) 1994-12-22

Similar Documents

Publication Publication Date Title
US6045578A (en) Optical treatment method
AU2017202382B2 (en) Asymmetric lens design and method for preventing and/or slowing myopia progression
US9977257B2 (en) Multifocal lens design and method for preventing and/or slowing myopia progression
EP1799166B1 (en) System for optical treatment
US9733494B2 (en) Free form lens design and method for preventing and/or slowing myopia progression
US7178918B2 (en) Ophthalmic lenses with induced aperture and redundant power regions
US7025460B2 (en) Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
EP1381908B1 (en) Multifocal ophthalmic lens with induced aperture
US7503655B2 (en) Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
CN110554515A (en) Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression
KR20160022774A (en) Pupil size-independent lens design and method for preventing and/or slowing myopia progression
US20210228337A1 (en) High definition and extended depth of field intraocular lens
WO1996016621A1 (en) Optical treatment method
AU695812B2 (en) Optical treatment method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UG US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 08849196

Country of ref document: US

122 Ep: pct application non-entry in european phase