WO1996008223A1 - Spyrosorbent wound dressings for exudate management - Google Patents
Spyrosorbent wound dressings for exudate management Download PDFInfo
- Publication number
- WO1996008223A1 WO1996008223A1 PCT/US1995/011564 US9511564W WO9608223A1 WO 1996008223 A1 WO1996008223 A1 WO 1996008223A1 US 9511564 W US9511564 W US 9511564W WO 9608223 A1 WO9608223 A1 WO 9608223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- exudate
- form composite
- wound
- dressing
- Prior art date
Links
- 210000000416 exudates and transudate Anatomy 0.000 title claims abstract description 130
- 239000002131 composite material Substances 0.000 claims abstract description 34
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims abstract description 17
- 239000010410 layer Substances 0.000 claims description 97
- 230000001070 adhesive effect Effects 0.000 claims description 48
- 239000000853 adhesive Substances 0.000 claims description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000006260 foam Substances 0.000 claims description 27
- 229920000642 polymer Polymers 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 15
- 239000004753 textile Substances 0.000 claims description 14
- 239000000416 hydrocolloid Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 11
- 229920002635 polyurethane Polymers 0.000 claims description 10
- 239000004814 polyurethane Substances 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 7
- 229920003226 polyurethane urea Polymers 0.000 claims description 6
- 239000003814 drug Substances 0.000 claims description 4
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 208000027418 Wounds and injury Diseases 0.000 description 151
- 206010052428 Wound Diseases 0.000 description 150
- 239000010408 film Substances 0.000 description 102
- 239000000463 material Substances 0.000 description 42
- 239000000499 gel Substances 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 17
- 229920000615 alginic acid Polymers 0.000 description 17
- 239000000017 hydrogel Substances 0.000 description 17
- 235000010443 alginic acid Nutrition 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- 230000035876 healing Effects 0.000 description 14
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 13
- 229940072056 alginate Drugs 0.000 description 13
- 239000007788 liquid Substances 0.000 description 12
- 239000012790 adhesive layer Substances 0.000 description 11
- -1 however Substances 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 229920000742 Cotton Polymers 0.000 description 6
- 208000035874 Excoriation Diseases 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 239000004202 carbamide Chemical group 0.000 description 6
- 230000002500 effect on skin Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229920006254 polymer film Polymers 0.000 description 6
- 239000002594 sorbent Substances 0.000 description 6
- 230000029663 wound healing Effects 0.000 description 6
- 208000025865 Ulcer Diseases 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 208000005156 Dehydration Diseases 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000000227 bioadhesive Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229920001477 hydrophilic polymer Polymers 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 231100000397 ulcer Toxicity 0.000 description 4
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 208000004210 Pressure Ulcer Diseases 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical group [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 231100000065 noncytotoxic Toxicity 0.000 description 3
- 230000002020 noncytotoxic effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 210000004911 serous fluid Anatomy 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- GKFPPCXIBHQRQT-UHFFFAOYSA-N 6-(2-carboxy-4,5-dihydroxy-6-methoxyoxan-3-yl)oxy-4,5-dihydroxy-3-methoxyoxane-2-carboxylic acid Chemical compound OC1C(O)C(OC)OC(C(O)=O)C1OC1C(O)C(O)C(OC)C(C(O)=O)O1 GKFPPCXIBHQRQT-UHFFFAOYSA-N 0.000 description 2
- 241001474374 Blennius Species 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 206010011985 Decubitus ulcer Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002334 Spandex Polymers 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 235000010410 calcium alginate Nutrition 0.000 description 2
- 239000000648 calcium alginate Substances 0.000 description 2
- 229960002681 calcium alginate Drugs 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 230000000642 iatrogenic effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000003119 painkilling effect Effects 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920006264 polyurethane film Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000004759 spandex Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 230000000472 traumatic effect Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N 2,3,4,5-tetrahydroxypentanal Chemical compound OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 240000008886 Ceratonia siliqua Species 0.000 description 1
- 235000013912 Ceratonia siliqua Nutrition 0.000 description 1
- 239000004970 Chain extender Substances 0.000 description 1
- 244000303965 Cyamopsis psoralioides Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 206010056340 Diabetic ulcer Diseases 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical group CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- RYECOJGRJDOGPP-UHFFFAOYSA-N Ethylurea Chemical compound CCNC(N)=O RYECOJGRJDOGPP-UHFFFAOYSA-N 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 208000034693 Laceration Diseases 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000148 Polycarbophil calcium Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 208000028990 Skin injury Diseases 0.000 description 1
- 235000015125 Sterculia urens Nutrition 0.000 description 1
- 240000001058 Sterculia urens Species 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 208000002847 Surgical Wound Diseases 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- 206010054880 Vascular insufficiency Diseases 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000002009 allergenic effect Effects 0.000 description 1
- 229940086737 allyl sucrose Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001804 debridement Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KUQWZSZYIQGTHT-UHFFFAOYSA-N hexa-1,5-diene-3,4-diol Chemical compound C=CC(O)C(O)C=C KUQWZSZYIQGTHT-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000012633 leachable Substances 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007793 ph indicator Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229950005134 polycarbophil Drugs 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000010409 propane-1,2-diol alginate Nutrition 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 230000003144 traumatizing effect Effects 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 208000023577 vascular insufficiency disease Diseases 0.000 description 1
- 201000002282 venous insufficiency Diseases 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000003357 wound healing promoting agent Substances 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/023—Adhesive bandages or dressings wound covering film layers without a fluid retention layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00727—Plasters means for wound humidity control
- A61F2013/00731—Plasters means for wound humidity control with absorbing pads
- A61F2013/0074—Plasters means for wound humidity control with absorbing pads containing foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00727—Plasters means for wound humidity control
- A61F2013/00748—Plasters means for wound humidity control with hydrocolloids or superabsorbers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00855—Plasters pervious to air or vapours
- A61F2013/00876—Plasters pervious to air or vapours vapour permeability >500 g/mg/24h
Definitions
- This invention relates to wound dressings and, in particular, to structures suitable for spyrosorbent wound dressings. Background of the Invention
- a wound produces a mixture of fluids throughout its healing sequence.
- This fluid is termed exudate.
- the exudate's biochemical and physical composition is a function of wound type and its position in the healing sequence. Exudate may range from blood and serous fluids to highly viscous proteinaceous liquids. Exudate is beneficial to the wound repair process and contains the cellular and enzymatic materials beneficial to wound healing. The type of wound dictates such parameters as exudate production and speed of healing, etc. Wounds can be categorized into two broad types: wounds without tissue loss; and- wounds with tissue loss.
- Wounds without loss of tissue are typically incision wounds formed either as a result of surgery or intro cut.
- Wounds which result in the loss of tissue may be the result of trauma or as a secondary event in chronic ailments, e.g., vascular insufficiency, diabetes, etc. Iatrogenic wounds may also result in the loss of tissue. This is exemplified in such wounds as skin graft donor sites, dermabrasions, etc.
- a wound dressing For the purposes of designing a wound dressing, acute and chronic wounds with significant loss of tissue are a challenging area. Wounds that have significant tissue loss are: dermal ulcers (venous stasis, diabetic and pressure sores) , abrasions (traumatic and iatrogenic) , donor sites, and burns. Dermal ulcers are the result of a patient's underlying physical condition. Venous stasis and diabetic ulcers are a direct result of a degeneration of the cardiovascular system. This leads to reduced blood flow in the extremities and subsequent tissue necrosis resulting in the formation of dermal lesions. Pressure sores, or decubitus ulcers, are formed when skin is subjected to unrelenting pressure and abrasion. These factors induce tissue necrosis and ulceration.
- dermal ulcers venous stasis, diabetic and pressure sores
- abrasions traumatic and iatrogenic
- Abrasions arise due to trauma, as in the case of "road rash", or from elective procedures such as dermabrasion. These wounds initially produce copious amounts of exudate composed of blood and serous fluid. Traumatic abrasions are frequently contaminated with physical debris which if unattended to will lead to infection.
- Donor sites are created by the removal of a thin layer of skin which is utilized as a "skin graft.” As in the case of abrasions, donor sites exude blood and serous fluid. These wounds are painful and often require the patient to undergo painkilling treatment.
- wound dressings have been designed and introduced into the market predominantly to absorb the exudate expected from a particular wound. Therefore, a problem arises if a wound dressing which was designed for use on a wound producing a large amount of exudate is used on a wound which produces little exudate. The latter type wound can become desiccated, resulting in a clinically undesirable situation.
- modern synthetic wound dressings should also be provided having a structure which allows the dressing to be left on the wound for prolonged periods of time, e.g., about 3 to about 7 days. Therefore, there is a need and desire for a wound dressing capable of accommodating varying degrees of exudate while maintaining a consistent moist wound healing environment.
- differential control of wound exudate is highly desirable if a moist occlusive wound microenvironment is to be maintained. It can be appreciated that if a dressing removes all the exudate that a wound produces, a "dry" wound results and a condition suboptimal for wound healing arises. Similarly, if the dressing does not control the level of exudate sufficiently, then an excess "pool" of exudate can collect which can subsequently leak thus soiling clothing, bed linen, and also breaching any protective barrier to bacterial infection of the wound. Ideally, a wound dressing also adhesively attaches itself to the wound site.
- the adhesive utilized must be bioco patible, non-cytotoxic and free of toxic leachable substances, as well as have the desired balance of physical properties such as moisture vapor transport rate, tack, long term adhesion properties, etc. Inasmuch as in use the adhesive will be in direct contact with the wound site and surrounding intact area, it must be physiologically non-toxic and should elicit no more than a minimal allergenic response.
- An ideal wound dressing also provides a barrier preventing bacteria from entering the wound through the dressing from the ambient environment while providing the proper moisture vapor transport rate.
- Other desirable aspects include a dressing's ability to conform to irregular contours of the body, to be self supporting whether wet or dry, and allow passage of gases from the wound. This may be accomplished in part by utilizing elastomeric, flexible, polymeric materials in the construction of the dressing.
- Conventional wound dressings can be categorized into several broad classes: hydrocolloid dressings; film dressings; foam dressings and gel dressings. These dressings maintain specific microenvironments, e.g., moisture, temperature, gaseous transport, etc., around a wound by utilizing a variety of physical mechanisms.
- wound dressings have been categorized by determining their capacity to absorb exudate. This has been routinely accomplished by performing laboratory trials in which dressings are immersed in liquids and the quantity of liquid absorbed quantified.
- MVTR moisture vapor transmission rate
- spyrosorbent dressings More recently, a new class of environmental wound dressings, "spyrosorbent dressings", have been created.
- the term “spyrosorbent” is defined as breathable absorbent.
- a spyrosorbent dressing has a differential
- Spyrosorbent wound dressings not only manage exudate by absorption but have the ability to adjust their moisture vapor transport properties in response to the level of exudate available. That is to say, spyrosorbent dressings possess a level of active intelligence due to their physical and chemical structure.
- Film dressings are typically relatively thin films, which utilize exclusively the moisture vapor transport properties of the film materials from which they are constructed. Film dressings are conformable, but on moderately to highly exuding wounds the exudate tends to collect under such film dressings and form "pools". This collection of exudate indicates that the MVTR of conventional polymer film dressings is too low to handle the exudate from many wounds. It has also been suggested that the "pool” of exudate may increase the risk of bacterial proliferation leading to infection. Similarly, if the "pool” reaches excessive proportions, leakage will occur, thus breaking the bacterial barrier.
- the thin film category of dressings has also shown, however, that by suitable choice of film thickness and molecular structure of the film, MVTR can be substantially increased or reduced dependent upon the requirements of the dressing.
- Hydrocolloid and gel dressings all utilize absolute absorption mechanisms by which to manage exudate. As a result of this absorption, they generally tend to be relatively thicker dressings, and less conformable than the film dressings. This can cause a series of problems when utilized in a clinical environment. For example, the ability for moisture to pass through the dressing to the external environment is minimal. On highly exuding wounds, the dressing's absorption capacity can be exceeded leading to leakage and subsequent disruption of the bacterial barrier. Some hydrocolloid compositions can dissolve and enter into the wound bed itself, thus requiring time consuming cleaning, which disrupts the wound site, at subsequent dressing changes.
- Alginate dressings a subset of gel dressings composed of alginate, are examples of dressings which are sometimes supplied as dehydrated or partially hydrated structures. On application to the wound and subsequent absorption of exudate such dressings undergo gelation. However, the swelling of the dressing results in the dressing structure moving away from the wound bed and providing potential air spaces and pockets in which bacteria may proliferate. Moreover, dressings which are supplied in a partially hydrated state are not supplied with a pressure sensitive adhesive coating. Further taping or application of a secondary dressing is therefore required to assure adequate attachment.
- Alginate dressings are supplied as a dry, fibrous, mat structure. Alginate dressings are capable of absorbing large quantities of exudate. During absorption they undergo a gelation reaction due to the interchange of sodium and calcium ions between the exudate in the wound bed and the alginate material in the dressing. Alginate dressings, like other gel dressings, require the use of secondary dressings to secure them.
- Gel dressings are generally water or saline hydratable or swellable gel (hydrogel) materials supplied on a moisture impermeable polymeric backing sheet.
- the backing sheet prevents the hydrogel from dehydrating and desiccating the underlying wound.
- These gel materials have little or no vapor transport capacity.
- Gel wound dressings in general, do not dissolve and contaminate the wound and, when hydrated, are more conformable than hydrocolloid dressings but less conformable than thin film dressings.
- Foam type dressings utilize both a moisture vapor transport and absorption mechanism by which to manage exudate. These dressings, due to their chemical nature and high degree of hydrophilicity, however, tend to swell and lose mechanical integrity when wet.
- Foam dressings manage exudate by evaporation of the aqueous portion of the exudate through the dressing to the surrounding environment.
- the control of MVTR is a function of the chemical composition of the foam coupled with the pore structure. Due to the gross pore sizes of conventional foams, however, foam dressings tend to desiccate wounds resulting in dressings which become brittle and non-conformable during use. These hardened dressings often traumatize the underlying healing wound bed. In addition, either special processing or a wetting agent, or both, are required to make the foam hydrophilic. Dependent upon the type of foam structure used, exudate can also be managed by capillary action into the pores of the structure.
- a surgical wound dressing composed of a continuous hydrophilic film laminated to a discontinuous adhesive layer.
- the film is selected to have a higher moisture vapor permeability when it is in contact with water than with moisture vapor.
- the moisture vapor permeability of the laminate dressing is stated to be not more than 2000 g/m 2 /24 hrs when the adhesive layer is in contact with water vapor but not liquid water, and not less than 2,500 g/m/24 hrs when the adhesive layer is in contact with liquid water.
- a MVTR of not more than 2,000 g/m 2 /24 hrs is undesirably low for the management of moderate to heavy exudate.
- Sheet-form wound dressings which comprise a porous sheet of absorbent elastomeric segmented polyurethane having an open pore size gradient, such that larger pores are away from the wound side, and an apertured adhesive facing contiguous with the large pore surface.
- This apertured adhesive structure enhances the management of exudate by providing fluid channels for capillary transport of proteinaceous exudate to the interior of the porous sheets.
- This spyrosorbent environmental membrane laminate dressing has been developed and sold under the trademark, MITRAFLEX ® by PolyMedica Industries, Inc. (Golden, CO) , the assignee of this invention. Briefly described, this dressing is a trilaminate structure of porous, pressure sensitive adhesive attached to an absorptive, polyurethane, microporous membrane which is laminated to a thin, transparent, hydrophilic, polyurethane film.
- This spyrosorbent wound dressing is used to manage exudate from dermal ulcers, skin donor sites, superficial burns, abrasions and lacerations.
- the spyrosorbent wound dressings of the present invention further satisfy the ongoing need for exudate management by providing dressing structures having differential MVTR properties and improved exudate management capability.
- Such structures desirably adjust a dressing's exudate transport away from the wound site in response to the quantity of exudate produced by a wound and modulate the rate of exudate transport.
- the present invention contemplates sheet-form composites suitable for spyrosorbent wound dressings.
- the term "spyrosorbent” as applied to wound dressings herein refers to wound dressings which enhance the healing of a wound by providing around the wound a microenvironment which promotes healing by modifying and self-adjusting the moisture vapor transport rate (MVTR) of the dressing in response to the level of exudate produced by the wound.
- MVTR moisture vapor transport rate
- a preferred spyrosorbent dressing is a laminate structure having a MVTR greater than 2,000 g/m 2 /24 hrs when dry and comprising: (1) a relatively thin film layer of continuous, monolithic, hydrophilic material which possesses a differential MVTR property; and (2) at least one exudate transport layer contiguous with all or a portion of the film layer.
- the differential wet-to-dry MVTR ratio for the spyrosorbent dressing is at least about 1.5. In use the exudate transport layer is applied in contact with the wound.
- Spyrosorbent dressing structures contemplated herein possess an absorption mechanism and breathability mechanism which allows for exudate management to be controlled by the combined effects of absorption and evaporation.
- the film layer is a monolithic, microporous hydrophilic polymer, preferably less than about 5 mils (about 125 microns) in thickness, when dry.
- the film layer used in the dressings of the present invention possesses the property of having a differential MVTR between "wet” and “dry” states.
- the term “differential” means that in a fully hydrated (wet) condition the polymeric film possesses a wet MVTR which is significantly greater than that exhibited by the same film when it is only partially or totally dehydrated (dry) .
- the differential wet to dry MVTR ratio for the film is greater than 1, and preferably is at least about 3:1.
- the MVTR of the film in its dry state is at least about 2,600 g/m/24 hrs.
- the ability of the film to adjust its MVTR allows the overall dressing structure to self-adjust and increase its overall MVTR to manage levels of exudate in highly exuding wounds, then reduce its MVTR when the wound no longer produces copious exudate.
- varying exudate levels can be controlled and managed, and a balanced and desirable optimal moist wound healing environment can be maintained.
- the exudate transport layer is constituted by physiologically tolerable material that is hydrophilic and is hydratable or swellable by, but not soluble in, the wound exudate.
- the exudate transport layer can be comprised of one or more of the following absorptive materials: hydrocolloids, gels (hydrogels or hydroalcoholic gels) , foams, textiles (woven or nonwoven) , membranes (microporous or macroporous) and hydrophilic adhesives (pressure-sensitive or bioadhesive) .
- a releasable liner layer can be attached to the external face of the exudate transport layer.
- plural such exudate layers constituted by different materials selected from the foregoing grouping.
- the spyrosorbent dressings of the present invention maintain a desired level of moisture, temperature and vapor exchange at the wound site. By the control of these properties, the microenvironment thus produced optimizes wound healing conditions.
- the spyrosorbent dressings of the present invention manage exudate, are biocompatible, non-toxic, and conformable, and provide a barrier against bacterial contamination as well.
- the disclosed spyrosorbent dressings incorporate the ability to adjust its MVTR according to the degree of exudate production of the wound thus providing a level of "interaction" or "intelligence" between the dressing and wound.
- the spyrosorbent wound dressings of the present invention advantageously control exudate and moisture level at the wound site by controlling the overall absorption and moisture vapor transport rate of the exudate.
- FIG. 1 is a perspective view of a spyrosorbent dressing embodiment of the present invention
- FIG. 2 is a perspective view illustrating another spyrosorbent dressing embodiment of the present invention as applied to a wound site;
- FIG. 3 is a graphic representation of the ratio of wet to dry moisture vapor transport rate as a function of the dry moisture vapor transport rate of spyrosorbent wound dressings embodying the principles of this invention.
- FIG. 4 is a graphic representation of the dry moisture vapor transport rate of a spyrosorbent polymeric film embodiment plotted as a function of film thickness.
- a wound dressing 10 of the present invention includes a continuous, monolithic, hydrophilic film layer 12 contiguous with a discrete, hydrophilic, absorptive exudate transport layer 14.
- continuous and monolithic as used herein mean that the film material, while vapor permeable, is a unitary structure and contains no discontinuities visible to the naked eye.
- a releasable liner 16 can be attached to adhesive layer 18 which is coextensive with exudate transport layer 14.
- the exudate transport layer 14 can be contiguous with a portion of transparent film layer 12 so as to form an "island" under the film.
- the peripheral or border portion of the film layer which extends beyond the island can contact the skin of the patient beyond the wound site for securement of the dressing.
- a physiologically tolerable, biocompatible, hydrophilic adhesive layer 18 which is pressure sensitive can be included in at least the border portion but can also be substantially coextensive with the exudate transport layer.
- biocompatible refers to a material that is relatively non-thrombogenic and non-irritating when used in direct contact with blood and with tissue.
- the MVTR of the materials or dressing were determined by a modified
- ASTM E-96 method A description of the ASTM E-96 method can be found in "Standard Test Methods For Water Vapor Transmission Of Materials.”, Annual Book Of ASTM Standards. 15.09. pp 833-842, (1986) .
- a circular dressing sample of about 3 inches (about 7.5 cm) diameter is sealed with the bottom or wound contacting side against the open mouth of an aluminum "test cup" containing about 10 to about 20 milliliters of distilled water and weighed.
- This cup assembly is then placed in a dry incubator with an air flow and a controlled ambient temperature set at about 37°C (about 98.6°F) for about 24 hours.
- MVTR was determined by periodically manually weighing the cup to measure the amount of water lost over time.
- the test cups were placed upright to expose the dressing to low moisture contact (i.e., 100% relative humidity water vapor) and inverted to expose the dressing to high moisture contact (i.e., in direct contact with liquid water) .
- the ratio of the value obtained for wet MVTR to that of dry MVTR for the sheet-form composite is an important factor in producing a dressing which can self-adjust and accommodate the varying levels of absolute exudate production. It was found that a desirable ratio preferably lies in the range of from about 1.5 to about 10, more preferably from about 2.5 to about 5.5. It may readily be appreciated that this ratio is related to the combined effects of moisture transport rate through the exudate transport layer and the ability of the polymeric film contiguous therewith in the dressing structures to cycle between "low” and “high” (or vice versa) MVTRs and thus manage "low” to "high” (or vice versa) exudate levels.
- the absolute moisture vapor transport of the dressing's material is an important factor in providing an occlusive spyrosorbent dressing with broad clinical utility. It has been found that the minimum dry MVTR of the dressing is greater than 2,000 g/m 2 /24 hrs, preferably about 2,200 g/m 2 /24 hrs to about 2,600 g/m 2 /24 hrs, regardless of ambient temperature, to provide widely applicable, clinically superior spyrosorbent dressings of this invention.
- two parameters can be used to delineate a range or area within which the spyrosorbent dressings of the current invention preferably operate.
- This range is diagrammatically represented in Fig. 3 for illustrative embodiments of the present invention.
- the calculated average wet to dry MVTR ratio is plotted as a function of the average dry MVTR value for each of the spyrosorbent structures _ described in Examples 1, and 3-7, below.
- the fixed ratio of the wet to dry MVTR values obtained for the non-spyrosorbent wound dressing described in Example 8 is also shown.
- Each of the described composite structures embodying the present invention possesses an average dry MVTR of greater than about 2000 g/m/24 hrs and a wet to dry MVTR ratio of at least about 1.5.
- the dashed boundary line in FIG. 3 clearly illustrates the performance capabilities of the present dressings.
- the sorbency of the dressings described by Potter et al. in U.S. Patents No. 4,774,401 and No. 4,595,001 reportedly have a dry MVTR of 1100 to 1800 g/m 2 /24 hrs when exposed to water vapor which dry MVTR value is considerably below that of the spyrosorbent dressings disclosed herein. - I f
- the exudate transport layer can be applied to be either in contact with the entire surface cf the film layer or alternately to be present as an island on a portion of the film layer as illustrated in FIGS. 1 and 2 respectively. If pressure sensitive adhesive is applied, it is preferably applied in a discontinuous fashion such as a printed pattern.
- the dressing structures described can also have the wound contacting side of the exudate transport layer affixed to a suitable protective release liner system, such as siliconized paper. These dressing structures also can be cut to the desired shape and size and packaged in suitable sterilizable pouches.
- the dressing structures can be sterilized by an appropriate method, such as gamma irradiation, ethylene oxide sterilization, steam, or the like, prior to use as a wound dressing.
- the film layer of the wound dressings of the present invention is a hydrophilic, moisture vapor permeable film having a relatively high MVTR wet as well as dry, and having a differential wet-to-dry MVTR ratio that is greater than 1, preferably at least about 3:1.
- the dry MVTR of the hydrophilic film is greater than about 2,600 g/m 2 /24 hrs, preferably about 3,000 to about 4,000 g/m 2 /24 hrs.
- the film layer is preferably a continuous, monolithic, hydrophilic polymer.
- a particularly preferred film layer is made from a segmented polyurethane which can be cast as a thin, continuous, monolithic film of desired thickness from a solvent and which is liquid impermeable but water vapor permeable.
- polyurethanes are described in U.S. Patent No. 4,849,458 ('458 Patent) to Reed et al. , assigned to the assignee of the present invention, the disclosure of which are incorporated herein by reference. To appreciate fully the usefulness of these polyurethane based films, a brief discussion of their properties and mode of action is warranted.
- the polyurethanes disclosed in the '458 Patent are hydrophilic, segmented polyether polyurethane-urea resins (hereafter referred to as polyetherurethanes) based on polytetramethylene glycol and polyethylene glycol polyols.
- These materials exhibit an increase in tensile strength and elongation when wet with water, exhibit an MVTR several orders of magnitude higher than that of silicone derived films and are capable of forming visually clear films.
- the hydrophilicity and hence the MVTR, of these polyetherurethanes can be controlled either intrinsically by varying the composition and ratio of the segments or extrinsically by incorporating hydrophilic polymers or wetting agents which are soluble in the segmented polyetherurethane resin, or both.
- hydrophilicity and hence the MVTR, of these polyetherurethanes can be controlled either intrinsically by varying the composition and ratio of the segments or extrinsically by incorporating hydrophilic polymers or wetting agents which are soluble in the segmented polyetherurethane resin, or both.
- a series of materials can be synthesized with varying moisture vapor transport rates. By increasing the polyethylene glycol concentration in these formulations, it has been found that increases in moisture vapor transport rate may be accomplished.
- Patent behave as follows. Water, being a small, highly polar molecule, is known to participate in "bridging" reactions with various chemical groupings through its hydrogen atom.
- the hydrogen atoms in the water molecules participate in a "bridging" reaction between oxygen atoms in the polyether "soft" block segments.
- the "soft" blocks are considered to be coiled and the hydrogen "bridging” takes place both between oxygen contained in adjacent loops of the mixed polyether coil and between oxygen present in other surrounding coils (either in the same polymer chain or a second chain) .
- the "bridging" increases the strength of the respective chain which is observed as an increase in mechanical strength of the polymer.
- Virtual cross-linking may be enhanced by the presence of hydrogen bonding molecules such as water.
- Water assisted virtually cross-linked polyetherurethanes can be prepared. These polyetherurethanes become stronger when hydrated or saturated with hydrogen bonding liquids.
- Virtual cross-links are approximately 1/20th of the normal covalent bond strength, and may be formed and broken an infinite number of times. This ability to be formed and broken provides strong conformable polymers with high flex lives.
- the density of virtual cross-links and their positioning in the polyetherurethane chain used to manufacture the polymeric film of the present invention has been designed to facilitate the desired degree of virtual cross-linking so as to enable the molecules to attain a coiled conformation.
- the formation and retention of the coil conformation is assisted by the presence of hydrogen bonding materials such as water.
- Virtual cross-linking may be controlled by factors such as the type of polyurethane extension agent, the type, the molecular weight, and stoichiometry of the macroglycols used in the synthesis of the polymer.
- the proposed polyetherurethane conformation is such that when equilibrated with a hydrogen bonding liquid such as water, a molecular bridging reaction occurs.
- the polyetherurethane adopts a coiled conformation.
- the coils maintain their conformation by the bridging reaction of the water molecules.
- the presence of the coiled molecules in the film allows small charged molecules such as water, to pass through the center of the coil thus passing through the film at an increased rate.
- the coils partially collapse. The collapse of the coils hinders the movement of water molecules through the film.
- a differential MVTR is useful in monitoring whether a wound is highly exuding or only minimally exudating.
- Such a mechanism provides for a wound dressing which, when placed on a highly exuding wound, can accordingly increase its MVTR to manage the increased amount of exudate.
- the wound dressing in response to the reduced level of exudate production becomes less hydrated and also reduces its MVTR.
- this polymeric film layer is permeable to gases, such as C0 2 and 0 2 . It will be readily appreciated that due to the film's monolithic characteristics, the film material is impermeable to liquids or bacteria.
- the thickness of the polymeric film is also a factor in obtaining a.desired wet MVTR.
- FIG. 4 where the wet MVTR of a segmented polyetherurethane polymer film is plotted against a film thickness ranging from about 1 mil (about 25 microns) to about 17 mil (about 425 microns) .
- a wet MVTR of about 6,000 g/m/24 hrs was achieved at a film thickness of about 2.5 mil (about 62.5 microns). While a thickness of greater than 3 mil can be used, e.g., 5 mil (125 microns) no further advantage in MVTR is to be expected.
- the film thickness more preferably is about 3 mil (about 75 microns) or less, and most preferably about 1 mil (about
- Useful materials for the film layer include but are not limited to the following segmented polyetherurethane-urea resins available commercially under the designation MITRATHANE ® from PolyMedica Industries, Inc. (Golden, CO.) .
- MITRATHANE ® M1020 is a segmented polyetherurethane-urea derived from diphenylmethane diisocyanate, polytetramethylene glycol having a number average molecular weight of about 1,000, and organic amines in an amount sufficient to provide for about 20- fold chain extension;
- MITRATHANE ® M2007 is a segmented polyetherurethane-urea derived from diphenylmethane diisocyanate, polytetramethylene glycol having a number average molecular weight of about 2,000, and organic amines in an amount sufficient to provide for about 7- fold chain extension; and MITRATHANE ® MPU-5 is a segmented polyetherurethane-urea derived from diphenylmethane diisocyanate, polytetramethylene glycol, polyethylene glycol, and organic amines as chain extenders.
- the exudate transport layer of the dressing is affixed to one surface of the film layer and preferably has an absorptive capacity for transporting exudate to the film.
- a spyrosorbent wound dressing embodying the principles of this invention can balance its MVTR in response to the level of exudate.
- the rate limiting layer is primarily the exudate transport layer since it is closest to the wound.
- the film layer which is furthest from the wound, further balances the MVTR by virtue of its differential MVTR property in response.
- Exemplary hydrophilic materials for the exudate transport layer can include hydrocolloids, gels, foams, textiles, membranes, pressure sensitive adhesives and combinations thereof without limitation so long as the material is physiologically tolerable and clinically acceptable.
- Suitable hydrocolloids include, but are not limited to, natural gums, such as plant exudates (gum arabic, ghatti, karaya, and tragacanth) ; plant seed gums (guar, locust bean and acacia) , seaweed extracts (agar, algin, alginate salts and carrageenin) , cereal gums (searches and modified starches) , fermentation or microbial gums (dextran and xanthan gum) , modified celluloses (hydroxymethylcellulose, microcrystalline cellulose and carboxymethylcellulose, microcrystalline cellulose and carboxymethylcellulose) pectin, gelatin, casein and synthetic gums (polyvinylpyrrolidone, low methoxyl pectin, propyleneglycol alginates, carboxymethyl locust bean gum and carboxy ethyl guar gum) and like water-swellable or hydratable hydrocolloids.
- natural gums such as plant exudates
- Exemplary gels include, but are not limited to, gels comprising a hydrophilic lattice of long-chain polymers containing from about 1% to about 99% water (referred to as hydrogels) and hydroalcoholic gels thereof.
- the polymers can be cross-linkable polymers of polyacrylamide and polymethacrylic acid, which preferably are swellable by, but not soluble in, the water present in wound exudate to form a viscous gel- like dispersion.
- Suitable hydrophilic polymer materials are polyacrylic acid allylsucrose copolymers and salts thereof.
- the so-called carbomers are the homopolymers of acrylic acid crosslinked with an allylether cf pentaerythritol, an allylether of sucrose or an allylether of propylene and are sold in varying viscosities and molecular weights under the trademark CARBOPOL by B.F. Goodrich Company (Cleveland, OH) .
- Also useful are non-drying, aqueous jellies of glycerol polyacrylate sold under the trademark HISPAGEL in varying viscosities by Hispano Quimica S.A.
- alginates are a special variation supplied as a fibrous material manufactured from varieties of plants, especially extracts of kelp or seaweed.
- Sodium alginate produce viscous liquids and calcium alginate forms gels. Consequently sodium and calcium salt can be blended to achieve the desired level of gelation.
- Alginates are typically available in substantially dehydrated form and swell upon absorption of wound exudate.
- Useful membrane structures preferably have a microporous as well as a macroporous structure.
- Exemplary membrane structures include elastomeric polymers having controlled pore sizes prepared from the segmented polyetherurethane-urea family of polymers sold under the trademark MITRATHANE by PolyMedica Industries, Inc. (Golden, CO) .
- MITRATHANE PolyMedica Industries, Inc.
- a description of the properties and preparation of these polymers can be found in U.S. Patent No. 4,704,130 to Gilding et al. and U.S. Patent No. 3,635,907 to Schulze et al., the disclosures of which are incorporated herein by reference.
- Other such spandex type polymers which can be used are available under the designations LYCRA ® from G.I. DuPont de Nemours, PELLETHANE ® from Dow Chemical Co. and ESTANE from B.F. Goodrich Co.
- Exemplary foams include, but are not limited to, hydrophilic polyester polyurethanes and polyetherurethanes of open or closed cell foam type.
- Exemplary textiles include textiles that can be woven as well as nonwoven, of natural or synthetic fibers or blends thereof. These can be cellulosic such as cotton lint, cotton gauze, cotton wool pads, cotton and rayon wool pads, linen cloth and the like. Cotton gauze, in particular, is typically used in hospitals and doctors' offices, is defined in the U.S. Pharmacopeia, and is well known in the art.
- Synthetic nonwoven textiles include, but are not limited to, polyester including spun bonded polyester, polypropylene including melt blown polypropylene, microporous films of plasticized polyvinyl chloride, composites of synthetic films with natural fibers and like commercially available materials. A number of other non-woven textiles suitable for use in dressings are well known in the art.
- the film layer is preferably laminated to the exudate transport layer by either application of heat or pressure, or both, or by a suitable adhesive.
- exudate transport layers of hydrocolloids or gels can exhibit adhesive properties in conjunction with their absorption capability.
- the exudate transport layer itself can be a hydrophilic adhesive, preferably be pressure sensitive, or of a material possessing bioadhesive properties.
- the exudate transport layer is a pressure sensitive adhesive, and is applied as by a printing technique in a defined pattern with open spacing, only minimal absorptive capacity is achieved.
- the adhesive properties of the dressing afford a method whereby the dressing can be attached to the intact skin surrounding a wound site.
- an adhesive layer can be contiguous with the film layer.
- Adhesives can be formed from polymers containing hydrophilic groups, such as hydroxyl, carboxyl, amine, amide, ether and alkoxy, so long as the resulting adhesive is not soluble in the exudate, and remains noncytoxic and substantially nonallergenic to the patient.
- hydrophilic groups such as hydroxyl, carboxyl, amine, amide, ether and alkoxy
- the adhesive is a visco-elastic, acrylic-based pressure sensitive adhesive which is cohesive and inherently tacky in its normal dry state, and is capable of forming a lamina with the film layer or exudate transport layer under heat or pressure.
- Exemplary materials used as adhesives include blends of vinyl ether or acrylic polymers, with or without added tackifying resins.
- One preferred acrylic-based adhesive is a copolymer of 2-ethylhexyl acrylate and about 10 to about 25 mol percent acrylic acid. A description of this adhesive can be found in U.S. Patent No. 4,906,240 to Reed et al. , incorporated herein by reference.
- the adhesive can be applied to the film layer or to the exudate transfer layer by known techniques as a hot melt, by a transfer print process, or the like expedients. A transfer print process is preferred.
- the adhesive can be applied to a suitable release liner first and the adhesive coated surface of the liner applied to all or a portion of the wound contacting layer of the wound dressing, and removing the liner thereafter.
- Bioadhesives Water-swellable, but water-insoluble, fibrous cross-linked carboxy-functional polymers suitable as bioadhesives are described in U.S. Patent No. 4,615,697 to Robinson, the relevant disclosures of which are incorporated herein by reference.
- One preferred bioadhesive is a polyacrylic acid cross-linked with divinyl glycol commercially sold under the designation POLYCARBOPHIL by A.H. Robbins (Richmond, VA) .
- Other non-cytotoxic acrylic polymers suitable as pressure sensitive adhesives are known in the art and some of which are described in U.S. Patent No. 3,645,835 to Hodgson, the relevant disclosure of which is incorporated by reference.
- the spyrosorbent dressings of the present invention can further include medicaments or other active or diagnostic agents in the exudate transport layer which can be released or can contribute to maintaining a sterile microenvironment.
- medicaments and like agents can be included, as desired, to be released for administration either continuously to exhaustion or in a controlled manner through selective dissolution, and can include wound healing agents, odor destroying agents, antiseptic agents, bacteriostatic agents, antimicrobial agents, wound debridement agents, moisture level indications, pain killing agents, pH indicators, and the like. Colorants and fillers can be included as well, if desired.
- the spyrosorbent dressings are preferably low profile, self-supporting and conformable. However, supporting structures, such as mesh or filamentous scrim, can be included in the dressing architecture if desired or needed. The following examples illustrate typical processes and compositions for practicing the present invention, but are not to be construed as limitations thereof.
- a polymeric film layer was prepared from a segmented polyetherurethane-urea, sold under the trademark, MITRATHANE ® (PolyMedica Industries, Inc., Golden, CO) as described below. The material was supplied as a 25 weight percent solids solution in dimethylacetamide (DMAC) . Suitable materials of this type are described in U.S. Patent No. 4,849,458 to Reed et al.
- a series of films were prepared having a dry thickness in the range from of about 0.1 mil (about 0.25 microns) to about 20 mil (about 500 microns), preferably from about 0.1 mil to about 10 mils (about 250 microns) , and more preferably from about 0.5 mil (about 12.5 microns) to about 2.5 mils (about 62.5 microns).
- the physical and sorbent properties of the polymeric films produced having a thickness of about 1.3 to 1.5 mil (32.5 to 37.5 microns) were: tensile strength at break about 2.01 ⁇ 0.33 kg/mm 2 ; elongation at break about 776 ⁇ 55%; wet MVTR of about 13,285 ⁇ 1839 g/m 2 /24 hrs; and dry MVTR about 3,807 + 151 g/m 2 /24 hrs. The calculated average ratio of wet to dry MVTR was about 3.5.
- EXAMPLE 2 Manufacture of Adhesive Exudate Transport Layer
- An adhesive exudate transport layer was prepared from a non-cytotoxic acrylic copolymer. Many pressure sensitive adhesives of this type are available commercially. A particularly useful adhesive sold under the trade name GELVATM (Monsanto Chemical Co., St. Louis, MO) was employed. These adhesive materials are supplied as 40% solids solution in a solvent mixture.
- the adhesive solution was printed onto a suitable release liner, e.g. siliconized paper, plastic film, etc., using a patterned gravure roller.
- a preferred pattern was that of a diamond shape with between about 20% and about 80% of the pattern being an open area.
- the release paper with its wet patterned adhesive print was placed in a forced hot air oven at a temperature of about 45°C to about 75°C for a period of about 2 hours to remove substantially all residual solvent.
- the final solvent-free material was a patterned pressure sensitive adhesive attached to a release liner.
- a polymeric film layer was prepared as described in Example 1 having a thickness of about 1.5 - 2.0 mil ⁇ 0.2 (about 37.5 to 50 microns) .
- the film was then laminated together with the adhesive exudate transport layer prepared in Example 2 as follows.
- the lamination was performed by placing the film together with the patterned adhesive layer (supported by the release liner) such that the release liner face was away from the polymeric film face. Pressure was then applied to the composite structure to attain a bond between the polymeric film layer and the adhesive layer.
- the resulting laminate structure comprised the polymeric film attached to a patterned adhesive exudate transport layer. This laminate was further adhered to the release liner.
- the release liner was removed, and the MVTR properties were determined.
- the typical sorbent properties of this type of film and adhesive spyrosorbent dressing indicated the following.
- Wet MVTR was about 7,057 ⁇ 411 g/m 2 /24 hrs and dry MVTR was about 2,507 + 117 g/m 2 /24 hrs.
- the calculated average MVTR ratio of wet to dry MVTR was about 2.8.
- a polymeric film was prepared as described in Example 1 to a thickness of about 1.5 - 2.0 ⁇ 0.2 mil (about 37.5 to 50 microns).
- a gel material comprise cross- linked polymeric matrices which contain between about 5% and about 99% (by weight) of water. For convenience, these are referred to as hydrogels.
- the hydrogel material exhibits some pressure sensitive adhesive properties.
- Hydrogels of the type having utility in this invention can be obtained from a variety of commercial sources such as the material sold under the designation POLYHESIVE ® sold by Valleylab, Inc., Boulder, Colorado; the designation PROMEON ® hydrogel sold by Promeon, a division of Medtronic, Minneapolis, Minnesota; and under the designation Hydrogel Pressure Sensitive Adhesive sold by the 3M Company, Minneapolis, Minnesota. Particularly preferred materials are those, sold under the trademark POLYHESIVE ® , by Valleylab, Inc., Boulder, CO.
- Lamination of the polymeric film to the hydrogel was accomplished by placing the layers together and applying suitable pressure to attain the desired bond. This may be accomplished using nip rollers, or by applying weights to a platen placed on the laminate structure.
- the completed laminate comprised a polymeric film bonded to the hydrogel layer.
- the wound contacting surface of the hydrogel in turn was further adhered to a release liner removable for use.
- hydrogel can be formed in situ on the polymeric film, thus removing the requirement for a subsequent lamination step in the process.
- the hydrogel film composite can then be further laminated to a suitable release liner.
- Samples of this structure exhibited the following "intelligent" or differential MVTR properties: a wet MVTR of about 4,435 ⁇ 274 g/m 2 /24 hrs; a dry MVTR of about 2,876 ⁇ 69 g/m 2 /24 hrs and a water absorption capacity of about 271 ⁇ 8% of original weight after 3 hours immersion in distilled water.
- the calculated wet to dry MVTR ratio is about 1.5.
- a polymeric polyurethane film was prepared as described in Example 1 to a film thickness of about 1.5 -2.0 + 0.2 mils (about 37.5 to 50 microns).
- a layer of hydrophilic foam as described below.
- the preferred range of foam thickness was about 1/16 inch (about 0.17cm) to about 1/2 inch (about 1.27 cm), and more preferably about 1/16 inch to about 1/4 inch (about 0.64 cm) .
- Useful hydrophilic foams of this type are sold under the name EPILOCK ® by Calgon/Vestal Laboratories (St. Louis, MO), which is a polyurethane based material and foam manufactured from a chemical foaming system called HYPOLTM (W.R. Grace & Co.).
- the polymeric film layer was laminated to the foam layer by applying heat at a temperature of from about 60°C to about 120°C and pressure of about 5 to about 20 pounds per square inch for a period of time of from about 10 minutes to about 1 hour.
- the spyrosorbent polymeric film/adhesive laminate structure described in Example 3 can be further laminated to the foam by removing the release liner and affixing the adhesive face onto the foam and applying pressure sufficient to attain the desired bond.
- the foam can cover all or a portion of the adhesive face to be present as an "island" on the film.
- Wound dressings of the film and foam type (without the adhesive) exhibited the following differential MVTR sorbent properties; a wet MVTR of about 4,045 ⁇ 483 g/m/24 hrs; a dry MVTR of about 2,120 ⁇ 103 g/m 2 /24 hrs and a water absorption capacity of about 208 ⁇ 64% of original weight after 3 hours immersion in water.
- the calculated average ratio of wet to dry MVTR was about 1.9.
- a polymeric film/adhesive laminate was prepared as described in Example 3. The release liner was then removed. To the adhesive layer of this structure, a fibrous mat of calcium alginate material was adhered by exerting a pressure on the alginate sufficient to activate the pressure sensitive adhesive properties of the underlying adhesive layer.
- Calcium alginate materials are supplied as fibrous mats and are approximately 1/16 inch (about 0.17 cm) to about 1/2 inch (about 1.27 cm) in thickness. They are available in a variety of sizes. Useful alginates are commercially available under the Trademark SORBSAN ® sold by Dow Hicka Pharmaceuticals, Inc., (Sugar Land, TX) and KALTOSTAT ® sold by Calgon Vestal Laboratories (St. Louis, MO) . Particularly preferred is KALTOSTAT ® .
- the alginate was positioned on the film/adhesive structure to form an "island".
- This provides for an adhesive border extending beyond the alginate layer affording a method of fixation of the dressing to the wound site.
- the alginate can cover the entire adhesive surface.
- the resulting dressing requires a further securement means to affix it to the wound site.
- Spyrosorbent wound dressings of this film-and-alginate composite exhibited the following differential MVTR properties: a wet MVTR of about 8,539 ⁇ 616 g/m/24 hrs and a dry MVTR of about 2,307 + 81 g/m 2 /24 hrs. The calculated ratio of wet to dry MVTR was about 3.7.
- a polymeric film/adhesive laminate was prepared as described in Example 3. The release liner was then removed. To the adhesive layer was attached a textile material, such as gauze, or nonwoven textile, such as melt blown polypropylene, or nonwoven cotton containing blends by exerting pressure sufficient to activate the adhesive.
- a textile material such as gauze, or nonwoven textile, such as melt blown polypropylene, or nonwoven cotton containing blends by exerting pressure sufficient to activate the adhesive.
- the textile material was medical grade gauze as supplied by Johnson & Johnson Co. Structures fabricated using gauze exhibited the following differential sorbent properties: a wet MVTR of about 14,515 + 1686 g/m/24 hrs; a dry MVTR of about 2705 + 34 g/m 2 /24 hrs; and water absorption capacity of about 326 ⁇ 40% of original after 3 hours immersion in water.
- the calculated ratio of wet to dry MVTR was about 5.4.
- Dressings manufactured from melt blown polypropylene materials (Kimberly Clark, Roswell, GA) exhibited the following differential sorbent properties: a wet MVTR of about 7,799 +. 750 g/m 2 /24 hrs and a dry MVTR of about 2,444 + 175 g/m 2 /24 hrs. The calculated ratio of wet to dry MVTR was about 3.2.
- This example illustrates a conventional laminate wound dressing structure which does not exhibit differential MVTR.
- the adhesive exudate transport layer described in Example 2 was prepared.
- a hydrocolloid mixture of hydroxymethylcellulose, pectin, gelatin, mineral oil, and rubber adhesive blend is sold under the tradename STOMAHESIVETM by Convatec/Squibb (Princeton, NJ) .
- STOMAHESIVETM by Convatec/Squibb (Princeton, NJ
- This laminated structure exhibited a fixed MVTR as shown by the following data: a wet MVTR of about 29 ⁇ 27 g/m 2 /24 hrs and a dry MVTR of about 29 ⁇ 27 g/m 2 /24 hrs. This calculates to a ratio of wet and dry MVTR of 1.
- the laminated structures described above in each of Examples 3-7 can be cut into desired shapes and sizes and packaged into appropriate sized medical pouches.
- the packaged structure can be sterilized, preferably by gamma irradiation although steam or ethylene oxide sterilization techniques can be used.
- the sterile structure can then be used as a wound covering or dressing on a wide variety of dermal lesions and skin injuries.
- Example 9 Initiation of Moisture Vapor Transmission
- wound dressing samples about 3 inches in diameter were sealed against the open mouth of an upright aluminum cup that contained about 10 to 20 milliliters of water.
- sample bearing cups were then placed on a laboratory bench and kept there at ambient temperature (about 20-25°C).
- a glass sheet having a moisture sensitive paste on one face of the sheet was placed over each sample bearing cup with the moisture sensitive paste contiguous with the sample.
- the moisture sensitive paste was SAR-GEL, commercially available from Sartomer Company, Exton, PA, U.S.A. This particular moisture sensitive paste undergoes a color change from "white” to "red-purple" when exposed to water.
- control was the moisture sensitive paste applied to a glass plate and exposed to ambient laboratory atmosphere.
- the dressing of the present invention exhibiting the longest time period for onset of moisture vapor transmission (“breathing") was the hydrogel/hydrophilic film laminate and the dressing of the present invention exhibiting the shortest time period was the hydrophilic film above.
- These results demonstrate that the time period to initiate "breathing" by the present wound dressings can be suitably adjusted and modulated by the selection of one or more hydrophilic exudate transport layers to meet specific wound exudate management requirements.
- the moisture vapor transmission lag time preferably is in the range of about 30 minutes to about 150 minutes.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8510294A JPH10505769A (en) | 1994-09-13 | 1995-09-13 | Spirosorbent bandage for exudate treatment |
EP95933082A EP0825843B1 (en) | 1994-09-13 | 1995-09-13 | Spyrosorbent wound dressings for exudate management |
DE69530869T DE69530869T2 (en) | 1994-09-13 | 1995-09-13 | SPIROABSORBIEREN WOUND ASSOCIATION FOR THE RECORDING OF WUNDEXSUDAT |
AT95933082T ATE240706T1 (en) | 1994-09-13 | 1995-09-13 | SPIRO-ABSORBENT WOUND DRESSING FOR ABSORBING WOUND EXUDATE |
CA002199357A CA2199357C (en) | 1994-09-13 | 1995-09-13 | Spyrosorbent wound dressings for exudate management |
MX9701890A MX9701890A (en) | 1994-09-13 | 1995-09-13 | Spyrosorbent wound dressings for exudate management. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US305,273 | 1994-09-13 | ||
US08/305,273 US5653699A (en) | 1994-09-13 | 1994-09-13 | Spyrosorbent wound dressings for exudate management |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996008223A1 true WO1996008223A1 (en) | 1996-03-21 |
Family
ID=23180135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/011564 WO1996008223A1 (en) | 1994-09-13 | 1995-09-13 | Spyrosorbent wound dressings for exudate management |
Country Status (9)
Country | Link |
---|---|
US (1) | US5653699A (en) |
EP (1) | EP0825843B1 (en) |
JP (1) | JPH10505769A (en) |
AT (1) | ATE240706T1 (en) |
CA (1) | CA2199357C (en) |
DE (1) | DE69530869T2 (en) |
ES (1) | ES2200004T3 (en) |
MX (1) | MX9701890A (en) |
WO (1) | WO1996008223A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998001166A1 (en) * | 1996-07-04 | 1998-01-15 | Innovative Technologies Limited | Treatment of wounds |
WO1998015245A1 (en) * | 1996-10-07 | 1998-04-16 | Minnesota Mining And Manufacturing Company | Moisture-regulating adhesive dressing |
WO2001045762A2 (en) * | 1999-12-20 | 2001-06-28 | Flen Pharma, Naamloze Vennootschap | Wound healing medical pharmaceutical product |
GB2429161B (en) * | 2004-02-13 | 2008-12-24 | Bristol Myers Squibb Co | Multi layered wound dressing |
US7749205B2 (en) * | 2003-03-10 | 2010-07-06 | Hitachi, Ltd. | Automatic urine disposal device and urine receptacle used therefor |
US8376972B2 (en) | 2005-02-15 | 2013-02-19 | Wilhelm Fleischmann | Wound treatment device |
GB2496128A (en) * | 2011-10-31 | 2013-05-08 | Akol Sarah Aturia | Stick-on absorbent swab |
GB2504167A (en) * | 2009-09-18 | 2014-01-22 | Respiratory Clinical Trials Ltd | Absorbent sheet material for taking a sample of bodily fluid |
US9271730B2 (en) | 2010-12-15 | 2016-03-01 | Wilhelm Fleischmann | Instrument for stretching the skin |
US9414840B2 (en) | 2007-03-08 | 2016-08-16 | Wilhelm Fleischmann | Device for stretching the skin |
EP1255575B2 (en) † | 2000-02-17 | 2018-12-12 | 3M Innovative Properties Company | Foam/film composite medical articles |
US11172923B2 (en) | 2016-11-23 | 2021-11-16 | Biowim Products Gmbh | Instrument for skin stretching |
EP3915530A1 (en) * | 2020-05-25 | 2021-12-01 | Mölnlycke Health Care AB | A negative pressure wound therapy (npwt) dressing |
CN115666470A (en) * | 2020-05-25 | 2023-01-31 | 墨尼克医疗用品有限公司 | Negative Pressure Wound Therapy (NPWT) dressing |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5885236A (en) * | 1996-03-28 | 1999-03-23 | Restorative Care Of America Incorporated | Means for supporting the burned foot of a patient |
US6929853B2 (en) * | 1996-07-31 | 2005-08-16 | Kimberly-Clark Worldwide, Inc. | Multilayer breathable film |
US5976117A (en) * | 1996-09-25 | 1999-11-02 | 3M Innovative Properties Company | Wound dressing |
US6420623B2 (en) * | 1998-04-06 | 2002-07-16 | Augustine Medical, Inc. | Bandage for autolytic wound debridement |
US6824820B1 (en) | 1999-06-07 | 2004-11-30 | 3M Innovative Properties Company | Polyurea-based adhesives, articles therefrom and methods of their preparation and use |
US6673980B1 (en) | 1999-07-16 | 2004-01-06 | Kimberly-Clark Worldwide, Inc. | Absorbent product with creped nonwoven dampness inhibitor |
US6495229B1 (en) * | 1999-09-17 | 2002-12-17 | Avery Dennison Corporation | Pattern coated adhesive article |
US6663611B2 (en) * | 1999-09-28 | 2003-12-16 | Kimberly-Clark Worldwide, Inc. | Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover |
CN1269464C (en) * | 2000-01-03 | 2006-08-16 | 比奥梅达科学公司 | Novel wound dressing, process of manufacture and useful articles thereof |
US6566576B1 (en) | 2000-01-04 | 2003-05-20 | James F. Komerska | Hydrocolloid foam medical dressings and method of making the same |
US6566575B1 (en) | 2000-02-15 | 2003-05-20 | 3M Innovative Properties Company | Patterned absorbent article for wound dressing |
US6977323B1 (en) * | 2000-02-17 | 2005-12-20 | 3M Innovative Properties Company | Foam-on-film medical articles |
NZ505514A (en) * | 2000-06-30 | 2003-02-28 | Bee & Herbal New Zealand Ltd | Method of manufacturing a wound dressing for the application of honey |
GB0017080D0 (en) * | 2000-07-12 | 2000-08-30 | Bristol Myers Squibb Co | Multi layered wound dresssing |
US6635272B2 (en) | 2000-11-09 | 2003-10-21 | Richard N. Leaderman | Wound dressing and drug delivery system |
US7005143B2 (en) * | 2002-04-12 | 2006-02-28 | 3M Innovative Properties Company | Gel materials, medical articles, and methods |
US8407065B2 (en) | 2002-05-07 | 2013-03-26 | Polyremedy, Inc. | Wound care treatment service using automatic wound dressing fabricator |
WO2003094811A1 (en) * | 2002-05-07 | 2003-11-20 | Polyremedy Llc | Method for treating wound, dressing for use therewith and apparatus and system for fabricating dressing |
US7612248B2 (en) * | 2002-12-19 | 2009-11-03 | 3M Innovative Properties Company | Absorbent medical articles |
US7227050B2 (en) | 2002-12-31 | 2007-06-05 | Ossur Hf | Method for producing a wound dressing |
US20040127873A1 (en) * | 2002-12-31 | 2004-07-01 | Varona Eugenio Go | Absorbent article including porous separation layer with capillary gradient |
ES2564294T3 (en) * | 2003-09-17 | 2016-03-21 | Bsn Medical Gmbh | Wound dressing and manufacturing procedure |
US7531711B2 (en) * | 2003-09-17 | 2009-05-12 | Ossur Hf | Wound dressing and method for manufacturing the same |
US20050070688A1 (en) * | 2003-09-26 | 2005-03-31 | 3M Innovative Properties Company | Reactive hydrophilic oligomers |
US20050066816A1 (en) * | 2003-09-29 | 2005-03-31 | Wright Vivian A. | Tracheostomy nebulizing pad |
US7384984B2 (en) * | 2003-12-10 | 2008-06-10 | 3M Innovative Properties Company | Reactive hydrophilic oligomers |
US20050184049A1 (en) * | 2004-02-20 | 2005-08-25 | Horng-Yee Lee | Manufacturing process method for pneumathode of the inflatable body-heat retaining jacket |
US7074839B2 (en) * | 2004-03-01 | 2006-07-11 | 3M Innovative Properties Company | Crosslinkable hydrophilic materials from reactive oligomers having pendent photoinitiator groups |
US7342047B2 (en) * | 2004-03-02 | 2008-03-11 | 3M Innovative Properties Company | Crosslinkable hydrophilic materials from reactive oligomers having pendent unsaturated groups |
EP1778142A4 (en) * | 2004-07-16 | 2011-02-02 | Polyremedy Inc | Wound dressing and apparatus for manufacturing |
US7230043B2 (en) * | 2004-09-07 | 2007-06-12 | 3M Innovative Properties Company | Hydrophilic polymer composition |
DE102004061406A1 (en) * | 2004-12-21 | 2006-07-06 | Bayer Innovation Gmbh | Infection-resistant polyurethane foams, process for their preparation and use in antiseptic-treated wound dressings |
US7335690B2 (en) * | 2005-01-25 | 2008-02-26 | 3M Innovative Properties Company | Crosslinkable hydrophilic materials from polymers having pendent Michael donor groups |
US8609131B2 (en) * | 2005-01-25 | 2013-12-17 | 3M Innovative Properties Company | Absorbent dressing comprising hydrophilic polymer prepared via Michael reaction |
US7161056B2 (en) * | 2005-01-28 | 2007-01-09 | Ossur Hf | Wound dressing and method for manufacturing the same |
US8067662B2 (en) * | 2009-04-01 | 2011-11-29 | Aalnex, Inc. | Systems and methods for wound protection and exudate management |
US8036773B2 (en) * | 2006-05-10 | 2011-10-11 | Mckesson Automation Inc. | System, method and corresponding apparatus for storing, retrieving and delivering unit dose blisters |
US7981949B2 (en) * | 2006-05-23 | 2011-07-19 | 3M Innovative Properties Company | Curable hydrophilic compositions |
CA2600249C (en) * | 2006-09-12 | 2014-05-20 | Tyco Healthcare Group Lp | Thin film dressing |
JP5085090B2 (en) * | 2006-10-19 | 2012-11-28 | 日東電工株式会社 | Porous resin membrane with adhesive layer, method for producing the same, and filter member |
US8237007B2 (en) * | 2007-01-10 | 2012-08-07 | Polyremedy, Inc. | Wound dressing with controllable permeability |
US9842518B2 (en) | 2010-08-10 | 2017-12-12 | Avery Dennison Retail Information Services, Llc | Breathable heat transfer labels |
EP2222261B1 (en) * | 2007-11-13 | 2018-05-09 | Medela Holding AG | Wound drainage covering |
US20100241447A1 (en) * | 2008-04-25 | 2010-09-23 | Polyremedy, Inc. | Customization of wound dressing using rule-based algorithm |
US8237009B2 (en) * | 2008-06-30 | 2012-08-07 | Polyremedy, Inc. | Custom patterned wound dressings having patterned fluid flow barriers and methods of manufacturing and using same |
US8454990B2 (en) * | 2008-08-01 | 2013-06-04 | Milliken & Company | Composite article suitable for use as a wound dressing |
US8247634B2 (en) * | 2008-08-22 | 2012-08-21 | Polyremedy, Inc. | Expansion units for attachment to custom patterned wound dressings and custom patterned wound dressings adapted to interface with same |
WO2010099182A1 (en) * | 2009-02-25 | 2010-09-02 | Board Of Regents Of The University Of Nebraska | Activated creatinine and precursors as antibacterial agents, compositions and products containing such agents and uses thereof |
BR112012008775B8 (en) | 2009-10-14 | 2021-06-22 | Hisamitsu Pharmaceutical Co | adhesive bandage |
EP2512535A1 (en) * | 2009-12-16 | 2012-10-24 | Baxter International Inc | Hemostatic sponge |
FR2955032B1 (en) * | 2010-01-14 | 2012-03-02 | Urgo Lab | NEW DRESSING COMPRISING PARTICULATE AGGLOMERATES CAPABLE OF GELIFIER OR RAPIDLY SOLUBULIZE |
FR2955033B1 (en) * | 2010-01-14 | 2012-03-02 | Urgo Lab | NEW DRESSING COMPRISING A MICROFIBRE OR NANOFIBRE SAIL CAPABLE OF GELIFIER OR SOLUBILIZE |
USD686734S1 (en) * | 2010-01-28 | 2013-07-23 | Hisamitsu Pharmaceutical Co., Inc. | Medical patch |
US20130243847A1 (en) * | 2010-02-24 | 2013-09-19 | Board Of Regents Of The University Of Nebraska | Activated creatinine and precursors thereof as antibacterial agents, compositions and products containing such agents and use thereof |
USD686735S1 (en) * | 2010-05-28 | 2013-07-23 | Hisamitsu Pharmaceutical Co., Inc | Medical patch |
USD698928S1 (en) | 2010-11-05 | 2014-02-04 | Hisamitsu Pharmaceutical Co., Inc. | Medical patch |
CA2826575C (en) | 2011-02-22 | 2016-10-11 | Oleg Siniaguine | Adaptive and optionally also otherwise adaptable wound dressing |
US8630908B2 (en) | 2011-11-02 | 2014-01-14 | Avery Dennison Corporation | Distributed point of sale, electronic article surveillance, and product information system, apparatus and method |
US20130116645A1 (en) * | 2011-11-07 | 2013-05-09 | Tyco Healthcare Group Lp | Absorbent Foam Tape And Related Methods Thereof |
EP3191041B1 (en) | 2014-09-10 | 2022-06-08 | C. R. Bard, Inc. | Protective dressing for skin-placed medical device |
WO2021248127A1 (en) * | 2020-06-05 | 2021-12-09 | Roxilla Llc | On-demand agent dispensing devices and related methods |
USD993424S1 (en) * | 2020-09-16 | 2023-07-25 | Mölnlycke Health Care Ab | Wound dressing |
USD1014764S1 (en) * | 2021-11-16 | 2024-02-13 | Raymond Lovell Francis | Skin-attachable block set that provides no-touch protection for skin insults |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554317A (en) * | 1982-04-06 | 1985-11-19 | David Behar | Synthetic wound covering |
US4657006A (en) * | 1982-10-02 | 1987-04-14 | Smith And Nephew Associated Companies P.L.C. | Surgical dressing |
US4747401A (en) * | 1982-04-08 | 1988-05-31 | Smith And Nephew Associated Companies P.L.C. | Surgical adhesive dressing |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO134790C (en) * | 1968-07-09 | 1984-03-22 | Smith & Nephew | Kleber ,; PRESSURE SENSITIVE, WATERPUME-PERMEABLE PRODUCT FOR SKIN USE BY HUMANS. |
BE789739A (en) * | 1971-10-05 | 1973-04-05 | Lock Peter M | SURGICAL DRESSING |
US3949742A (en) * | 1974-09-20 | 1976-04-13 | Frigitronics, Inc. | Medical dressing |
US3978855A (en) * | 1975-01-17 | 1976-09-07 | Ionics Lyo Products Company | Polyurethane foam surgical dressing |
GB1562244A (en) * | 1976-11-11 | 1980-03-05 | Lock P M | Wound dressing materials |
US4477325A (en) * | 1982-07-12 | 1984-10-16 | Hollister Incorporated | Skin barrier composition comprising an irradiated crosslinked ethylene-vinyl acetate copolymer and polyisobutylene |
DE3371743D1 (en) * | 1982-07-21 | 1987-07-02 | Smith & Nephew Ass | Adhesive wound dressing |
US4513739A (en) * | 1983-02-15 | 1985-04-30 | Howmedica, Inc. | Wound dressing |
US4704130A (en) * | 1985-10-18 | 1987-11-03 | Mitral Medical, International, Inc. | Biocompatible microporous polymeric materials and methods of making same |
US4906240A (en) * | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US5098500A (en) * | 1988-02-01 | 1992-03-24 | Polymedica Industries, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4849458A (en) * | 1988-06-17 | 1989-07-18 | Matrix Medica, Inc. | Segmented polyether polyurethane |
-
1994
- 1994-09-13 US US08/305,273 patent/US5653699A/en not_active Expired - Lifetime
-
1995
- 1995-09-13 EP EP95933082A patent/EP0825843B1/en not_active Expired - Lifetime
- 1995-09-13 MX MX9701890A patent/MX9701890A/en not_active Application Discontinuation
- 1995-09-13 WO PCT/US1995/011564 patent/WO1996008223A1/en active IP Right Grant
- 1995-09-13 JP JP8510294A patent/JPH10505769A/en not_active Ceased
- 1995-09-13 DE DE69530869T patent/DE69530869T2/en not_active Expired - Lifetime
- 1995-09-13 ES ES95933082T patent/ES2200004T3/en not_active Expired - Lifetime
- 1995-09-13 AT AT95933082T patent/ATE240706T1/en not_active IP Right Cessation
- 1995-09-13 CA CA002199357A patent/CA2199357C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4554317A (en) * | 1982-04-06 | 1985-11-19 | David Behar | Synthetic wound covering |
US4747401A (en) * | 1982-04-08 | 1988-05-31 | Smith And Nephew Associated Companies P.L.C. | Surgical adhesive dressing |
US4657006A (en) * | 1982-10-02 | 1987-04-14 | Smith And Nephew Associated Companies P.L.C. | Surgical dressing |
Non-Patent Citations (1)
Title |
---|
REED A.M.: "Mitraflex: Development of an Intelligent Spyrosorbent Wound Dressing", JOURNAL OF BIOMATERIALS APPLICATIONS, vol. 6, July 1991 (1991-07-01), pages 3 - 41, XP008084865 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998001166A1 (en) * | 1996-07-04 | 1998-01-15 | Innovative Technologies Limited | Treatment of wounds |
WO1998015245A1 (en) * | 1996-10-07 | 1998-04-16 | Minnesota Mining And Manufacturing Company | Moisture-regulating adhesive dressing |
US5849325A (en) * | 1996-10-07 | 1998-12-15 | Minnesota Mining And Manufacturing Company | Moisture-regulating adhesive dressing |
WO2001045762A2 (en) * | 1999-12-20 | 2001-06-28 | Flen Pharma, Naamloze Vennootschap | Wound healing medical pharmaceutical product |
BE1013184A3 (en) * | 1999-12-20 | 2001-10-02 | Sollie Philippe | Wound healing medical pharmaceutical product. |
WO2001045762A3 (en) * | 1999-12-20 | 2002-03-14 | Flen Pharma Nv | Wound healing medical pharmaceutical product |
EP1255575B2 (en) † | 2000-02-17 | 2018-12-12 | 3M Innovative Properties Company | Foam/film composite medical articles |
US7749205B2 (en) * | 2003-03-10 | 2010-07-06 | Hitachi, Ltd. | Automatic urine disposal device and urine receptacle used therefor |
GB2429161B (en) * | 2004-02-13 | 2008-12-24 | Bristol Myers Squibb Co | Multi layered wound dressing |
US9555170B2 (en) | 2005-02-15 | 2017-01-31 | Wilhelm Fleischmann | Wound treatment device |
US8376972B2 (en) | 2005-02-15 | 2013-02-19 | Wilhelm Fleischmann | Wound treatment device |
US9012714B2 (en) | 2005-02-15 | 2015-04-21 | Wilhelm Fleischmann | Wound treatment device |
US10231797B2 (en) | 2007-03-08 | 2019-03-19 | Wilhelm Fleischmann | Device for stretching the skin |
US9414840B2 (en) | 2007-03-08 | 2016-08-16 | Wilhelm Fleischmann | Device for stretching the skin |
US10206755B2 (en) | 2007-03-08 | 2019-02-19 | Wilhelm Fleischmann | Method for stretching the skin |
GB2504167A (en) * | 2009-09-18 | 2014-01-22 | Respiratory Clinical Trials Ltd | Absorbent sheet material for taking a sample of bodily fluid |
US9271730B2 (en) | 2010-12-15 | 2016-03-01 | Wilhelm Fleischmann | Instrument for stretching the skin |
US10194909B2 (en) | 2010-12-15 | 2019-02-05 | Wilhelm Fleischmann | Instrument for stretching the skin |
GB2496128A (en) * | 2011-10-31 | 2013-05-08 | Akol Sarah Aturia | Stick-on absorbent swab |
US11172923B2 (en) | 2016-11-23 | 2021-11-16 | Biowim Products Gmbh | Instrument for skin stretching |
EP3915530A1 (en) * | 2020-05-25 | 2021-12-01 | Mölnlycke Health Care AB | A negative pressure wound therapy (npwt) dressing |
WO2021239660A1 (en) * | 2020-05-25 | 2021-12-02 | Mölnlycke Health Care Ab | A negative pressure wound therapy (npwt) dressing |
CN115666470A (en) * | 2020-05-25 | 2023-01-31 | 墨尼克医疗用品有限公司 | Negative Pressure Wound Therapy (NPWT) dressing |
CN115666468A (en) * | 2020-05-25 | 2023-01-31 | 墨尼克医疗用品有限公司 | Negative Pressure Wound Therapy (NPWT) dressing |
Also Published As
Publication number | Publication date |
---|---|
EP0825843A4 (en) | 1999-11-24 |
CA2199357A1 (en) | 1996-03-21 |
EP0825843B1 (en) | 2003-05-21 |
DE69530869T2 (en) | 2004-05-06 |
US5653699A (en) | 1997-08-05 |
MX9701890A (en) | 1997-06-28 |
ATE240706T1 (en) | 2003-06-15 |
CA2199357C (en) | 2007-01-09 |
EP0825843A1 (en) | 1998-03-04 |
JPH10505769A (en) | 1998-06-09 |
DE69530869D1 (en) | 2003-06-26 |
ES2200004T3 (en) | 2004-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5653699A (en) | Spyrosorbent wound dressings for exudate management | |
MXPA97001890A (en) | Spirosorbent bandage for wounds for the management of exud | |
AU2012314476B2 (en) | Improved wound dressing | |
US4759354A (en) | Wound dressing | |
US4909244A (en) | Hydrogel wound dressing | |
US5010883A (en) | Surgical dressing | |
EP0528091B1 (en) | Wound dressing having a roll configuration | |
JP2875469B2 (en) | Wound dressing | |
EP0710095B1 (en) | Surgical dressing | |
JP5756124B2 (en) | Hydrogel matrix with improved tack | |
JP2010518888A (en) | Multilayer absorbent wound dressing with hydrophilic wound contact layer | |
JP2004515267A (en) | Multi-layer absorbable wound dressing | |
JPH07444A (en) | Bandage for wound | |
WO1983002054A1 (en) | Absorbent body with semipermeable membrane | |
JP2004520096A (en) | Hydrogel wound dressing | |
JPS63153068A (en) | Adhesive article | |
WO2002028447A1 (en) | SKINFRIENDLY ADHESIVE WITH pH-LOWERING SUBSTANCE | |
JPH04303445A (en) | Wound covering material | |
EP0509703B1 (en) | Absorbent, moisture transmitive occlusive dressing | |
WO2024158798A1 (en) | Bandage component with sap coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP MX |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2199357 Country of ref document: CA Ref country code: CA Ref document number: 2199357 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1997/001890 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995933082 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995933082 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995933082 Country of ref document: EP |