WO1995025374A1 - Method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment, and a detection unit for said equipment - Google Patents

Method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment, and a detection unit for said equipment Download PDF

Info

Publication number
WO1995025374A1
WO1995025374A1 PCT/IB1995/000171 IB9500171W WO9525374A1 WO 1995025374 A1 WO1995025374 A1 WO 1995025374A1 IB 9500171 W IB9500171 W IB 9500171W WO 9525374 A1 WO9525374 A1 WO 9525374A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
arc
equipment
detection unit
electrical
Prior art date
Application number
PCT/IB1995/000171
Other languages
German (de)
French (fr)
Inventor
Markus Real
Heinrich HÄBERLIN
Original Assignee
Alpha Real Ag
Hinsch, Andreas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Real Ag, Hinsch, Andreas filed Critical Alpha Real Ag
Publication of WO1995025374A1 publication Critical patent/WO1995025374A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a method for protecting an electrical system according to the preamble of patent claim 1, an electrical system according to the preamble of patent claim 4, a detection unit according to the preamble of patent claim 8 and its use according to patent claim 14.
  • switching a circuit sub-area is understood to mean a switching process in which this circuit sub-area is connected in such a way that it can pose no danger, in particular no danger from a burning arc.
  • the circuit section is connected in such a way that the arc extinguishes in the defective line area. This can in particular be the case with photovoltaic systems, e.g. B. happen that this line area of the electricity-generating Solarmodu ⁇ len or these are short-circuited.
  • visible arcs such as z. B. in the event of line short-circuits, with loosening clamp connections, etc., as well as invisible (encapsulated) arcs, as z. B. in defective electrical components, insulators, etc. can be understood.
  • photovoltaic systems as DC voltage systems usually have a plurality of solar modules, which can be connected to one another in series or in parallel in assemblies.
  • the public electricity network as well as individual consumers such as lights, pumps, refrigerators, etc. come into question as loads.
  • the adaptation to the public grid takes place via a maximum power tracker and an inverter.
  • a battery is usually interposed.
  • photovoltaic systems are particularly at risk from short circuits.
  • the short-circuit currents on the DC voltage side are limited by the fact that the solar module (solar cell) can deliver a maximum of 1.2 times the short-circuit current compared to the nominal current due to its physical properties. With low light irradiation, the short-circuit current is even far below their nominal current. That is, Fuses and automatic fuses cannot be used to interrupt the current in the event of a short circuit.
  • the object of the invention is to provide a method and a detection unit with or with which an occurring arc, in particular direct current arc in an electrical system, for. B. can be determined in a DC system.
  • the object of the invention is achieved in that electromagnetic radiation emanating from an arc, in particular a direct current arc, contrary to the technical opinion - see, for. BR Minder, "The Swiss 500 kW Photovoltaic Power Plant Phalk Mont-Soleil", ll th EC Photovoltaic Solar Energy Conf. , Oct. 12-16, 1992, Montreux, Switzerland, pp. 1009-1013 - can be detected with simple means. Contrary to a widespread specialist opinion on a direct current arc, such as that used for. B. was used as an arc lamp for lighting purposes, namely an arc in the line network between lines with different potential or between line interruptions does not burn constantly, but, as test series have shown, pulsating. It is assumed that the pulsation is caused by metal drops which form or drip from the line material melted by the arc heat.
  • this radiation preferably propagates as electromagnetic line wave on the Wegungsleitun ⁇ gene, in particular the lines which are galvanically connected to the arc from.
  • photovoltaic systems or low-voltage systems up to 1,000 V DC listed above, battery systems, systems with fuel cells, electrical systems in cars, in particular in electric and hybrid cars, and on ships, in particular on yachts
  • this arc is used precisely for vibration excitation in resonant circuits.
  • the amplitude and / or the temporal behavior of the excited vibration, in particular the temporal sequence of one another The following vibration bursts can now be discriminated and used to switch off the switching arc when a predetermined value is reached or exceeded.
  • Several detection units and separating elements can also be integrated in a system circuit, so that only small areas of the entire circuit arrangement are switched off, so that the function of the entire system is only insignificantly impaired, but its safety with regard to a possible fire is sufficiently guaranteed.
  • an important advantage of these safety devices is that not only arcs between positive and negative conductors, between current-carrying conductors and earth potential, but also arcs in the event of line interruptions, such as those in the event of animal feeding, poor connections or violent breaks, can be determined.
  • FIG. 1 shows a block diagram of a photovoltaic system with a detection unit for detecting an accidental Lig, arcing caused by a defect in the system between its plus and minus line,
  • FIG. 2 shows a circuit diagram of the detection unit used in the photovoltaic system shown in FIG. 1 and
  • FIG. 3 shows a block diagram analogous to FIG. 1, but the arc has arisen due to a line break.
  • the photovoltaic system shown in FIG. 1 has a solar generator 1 with ⁇ ech ⁇ solar modules 3. Two of the ⁇ ech ⁇ solar modules 3 are each connected in series, so that there are three rows of solar modules 3 connected in parallel. These three rows are connected to a so-called field distributor 7 by means of solar generator cables 5a and 5b. To protect the system, fuses 8, isolating switches 9 and diodes 10 are accommodated in the field distributor 7. The solar generator cables 5a and 5b are each brought together in the field distributor 7 to form a positive busbar 11a and 11b. A load 13 with electrical energy generated in the solar modules 3 is then supplied via these busbars 11a and 11b.
  • a detection unit 15 is connected to the two busbars 11a and 11b via two signal lines 17a and 17b.
  • An output line 19 connects the detection unit 15 to a switching unit 21, which is connected to the relay coil 24 of the isolating switch 9 via three line pairs 23a to 23c.
  • the circuit diagram of the detection unit 15 shown in FIG. 2 has a series resonant circuit 25 of high electrical quality with two having an inductance Ll in
  • the resonance frequency f res of this series resonant circuit 25 is between 300 and 500 kHz, preferably between 350 and 450 kHz, ie in a frequency range between medium and long wave. This prevents interference from radio transmitters. This frequency selection also reduces possible interference due to interference radiation from a possibly existing inverter, since one is already in the protection area of relevant EMC standards (e.g. EN 55014, limit values from 150 kHz). A further suppression of disturbances takes place by means of a parallel oscillation circuit 26 described below, which in particular reduces PWM switching frequencies of inverters or maximum power trackers.
  • the inductance L j _ is inductively via a coupling factor, preferably the parallel resonant circuit 26 coupled between 0.05 and 0.5, ins ⁇ particular from 0.21 to 0.28 with an inductor L2.
  • a coupling factor preferably the parallel resonant circuit 26 coupled between 0.05 and 0.5, ins ⁇ particular from 0.21 to 0.28 with an inductor L2.
  • Higher coupling factors can also be used.
  • An optimal coupling factor is set taking into account the line properties of the connecting lines connected to the series resonant circuit 25, on which an arc (as a result of a short circuit or current path interruption) is to be detected. Also considering the costs, sensitivity, technical effort, ... other coupling factors than those listed above can be selected.
  • the parallel resonant circuit 26 has the inductance L 2 and a capacitance C 2 and is connected to an envelope detector 29 which has a diode D 2 and a resistor R 3 connected in parallel with a capacitance C 3 .
  • the output 31 of the envelope detector 29 leads to the input of a first comparator 33.
  • the output signal of this comparator 33 is sent via line 34 to a first input of an AND gate 35 and via a delay circuit 37 with different rise and fall delays fed its second input.
  • the delay circuit 37 has two diodes D 4 and D 5 , two resistors R 4 and R 5 , a capacitor C 4 and a second capacitor.
  • gate 39 whose output is connected to a second input of the AND gate 35.
  • the rise delay of the delay circuit 37 is determined by the resistor R 4 and the capacitor C 4 and should preferably be set between 50 ms and 2 ⁇ .
  • the deceleration delay is determined by the resistor R 5 and the capacitor C 4 and should preferably be set between 0.5 s and 20 ⁇ .
  • the output of the AND gate is connected to the S input of a flip-flop 41.
  • the output of the flip-flop 41 is connected via the line 19 to the switching unit 21, via which the isolating switches 9 can be switched on and off. After opening the disconnector 9, the flip-flop can be reset via its R input.
  • the series resonant circuit 25 is excited to oscillate by the negative differential resistance of the arc 44; since the arc burns irregularly due to the droplet formation of the above-mentioned dripping line material, the resonant circuit 25 is excited again.
  • interference signals are reduced ⁇ tly by both the series resonant circuit 25 and the parallel resonant circuit 26.
  • the envelope detector 29 now demodulates the signal vibrating at the parallel resonant circuit 26 with a high frequency and a typical time constant between 5 and 250 ms, depending on the selected circuitry.
  • the output signal of the envelope detector 29 is now - 1 1 -
  • the comparator 33 due to a reference voltage at its second input U refl of a few 100 mV supplied with a hysteresis.
  • a safe suppression is provided by the rise delay (R 4 , C 4 ⁇ 50 ms ... 2 s) which can be set with the delay circuit 37 and the adjustable fall delay (R 5 , C 4 ⁇ 0.5 s ... 20 s) an undesired triggering by switching operations in the system as well as ensuring triggering by terminal fires, which are characterized by sparks spaced in time.
  • Well-defined switching edges are generated by the second comparator 39 for the downstream AND gate 35; by selecting the reference voltage U ref2 at its second input, the delay times can also be fine- tuned .
  • the flip-flop 41 is then only set when a second high-frequency pulse also arrives in the delay time triggered by a first high-frequency pulse of a burning direct-current arc via the delay circuit 37.
  • the pulse widths of the high-frequency pulses can be set within certain limits by the choice of the reference voltages U refl and U ref2 .
  • the disconnector 9 in question is opened via the switching unit 21.
  • the detection circuit described above can also detect arcs which occur from the plus and minus busbars to earth. Correct arc detection can also be achieved if it is not a short-circuit arc, but an arc 45 between a current path interruption (conductor interruption, poor line connection in a terminal, ...), as shown in FIG. 3 .
  • the signal lines 17a and 17b for detection unit 15 can now z. B. with a (not shown) selector switch to the lines of individual dialing fields one after the other in time order and the reference voltage U refl are set on the comparator in such a way that only one arc triggers a response in the currently selected sub-area of the overall circuit.
  • these areas can also be assigned to detection units.
  • the detection units can also be connected in such a way that B. with the plus, the minus ⁇ ammel ⁇ chiene and between the two, whereby the location of the arc is then precisely ascertainable.
  • the detection unit 15 can be connected to other lines which are galvanically connected to the location of the direct current arc.
  • the two ends of the series resonant circuit 25 can also be designed as an antenna or antenna and earth. The antenna is then installed in the circuit section, the lines and connections of which are to be monitored for arcing.

Abstract

In a method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment having at least one solar module, electromagnetic radiation emitted by an arc accompanying a short circuit and/or a current path interruption is detected. An alarm is then triggered and/or the circuit section experiencing the short-circuit or current path interruption is switched off. Detection is carried out by a detection unit (15) which is disposed in the equipment and which comprises at least one electrical oscillating circuit (25, 26) which is activated by the electromagnetic radiation emitted by an in particular pulsating direct current arc. The detection unit (15) is preferably connected to leads which are in turn connected voltaically to the location of the arc. The detection unit (15) can also be used for monitoring and/or protecting alternating current equipment, in particular low-voltage equipment.

Description

Verfahren zum Schutz einer elektrischen Anlage. insbeson¬ dere einer Gleichspannunσs-. z. B. einer Photovoltaik-An- laσe. Anlage sowie Detektionseinheit für die Anlage Process for protecting an electrical system. in particular a DC voltage. z. B. a photovoltaic system. System and detection unit for the system
Die Erfindung betrifft ein Verfahren zum Schutz einer elektrischen Anlage gemäß dem Oberbegriff des Patentan¬ spruchs 1, eine elektrische Anlage gemäß dem Oberbegriff des Patentanspruchs 4, eine Detektionseinheit gemäß dem Oberbegriff des Patentanspruchs 8 sowie deren Verwendung gemäß Patentanspruch 14.The invention relates to a method for protecting an electrical system according to the preamble of patent claim 1, an electrical system according to the preamble of patent claim 4, a detection unit according to the preamble of patent claim 8 and its use according to patent claim 14.
Unter dem Ausdruck "Sicherschalten eines Schaltungs- teilbereichs" wird ein Schaltvorgang verstanden, bei dem dieser Schaltungsteilbereich derart verschaltet wird, daß von ihm keine Gefahr, insbesondere keine Gefahr durch einen brennenden Lichtbogen ausgehen kann. Der Schaltungs- teilbereich wird derart verschaltet, daß der Lichtbogen im schadhaften Leitungsbereich erlischt. Dies kann insbeson¬ dere bei Photovoltaik-Anlagen z. B. dadurch geschehen, daß dieser Leitungsbereich von den stromerzeugenden Solarmodu¬ len getrennt oder diese kurzgeschlossen werden. Unter einem einen Kurzschluß und/oder einen Strom¬ pfadunterbruch begleitenden Lichtbogen werden einerseits offene, sichtbare Lichtbögen wie sie z. B. bei Leitungs- kurzschlüssen, bei sich lockernden Klemmverbindungen, etc. vorkommen können, sowie auch unsichtbare (abgekapselte) Lichtbögen, wie sie z. B. in defekten elektrischen Kompo¬ nenten, Isolatoren, etc vorkommen können, verstanden.The term "switching a circuit sub-area" is understood to mean a switching process in which this circuit sub-area is connected in such a way that it can pose no danger, in particular no danger from a burning arc. The circuit section is connected in such a way that the arc extinguishes in the defective line area. This can in particular be the case with photovoltaic systems, e.g. B. happen that this line area of the electricity-generating Solarmodu¬ len or these are short-circuited. Under an arc accompanying a short circuit and / or a current path interruption, on the one hand open, visible arcs such as z. B. in the event of line short-circuits, with loosening clamp connections, etc., as well as invisible (encapsulated) arcs, as z. B. in defective electrical components, insulators, etc. can be understood.
Photovoltaik-Anlagen als Gleichspannungs-Anlagen ha¬ ben je nach Anwendungsbereich meist mehrere Solarmodule, welche in Baugruppen seriell oder parallel miteinander verschaltet sein können. Als Last kommt einerseits das öf¬ fentliche Stromnetz wie auch Einzelverbraucher, wie Leuch- ten, Pumpen, Kühlschränke, etc. in Frage. Im ersten Fall erfolgt die Anpassung an das öffentliche Netz über einen Maximum-Power-Tracker und einen Wechselrichter. Im zweiten Fall wird in der Regel eine Batterie zwischengeschaltet.Depending on the area of application, photovoltaic systems as DC voltage systems usually have a plurality of solar modules, which can be connected to one another in series or in parallel in assemblies. The public electricity network as well as individual consumers such as lights, pumps, refrigerators, etc. come into question as loads. In the first case, the adaptation to the public grid takes place via a maximum power tracker and an inverter. In the second case, a battery is usually interposed.
Photovoltaik-Anlagen sind gegenüber anderen elektri¬ schen Anlagen durch Kurzschlüsse besonders gefährdet. In einer Photovoltaik-Anlage sind die Kurzschlußströme auf der Gleichspannungsseite dadurch begrenzt, daß das Solar¬ modul (Solarzelle) bedingt durch ihre physikalischen Ei- genschaften maximal den 1,2-fachen Kurzschlußstrom im Ver¬ gleich zum Nennstrom liefern kann. Bei geringer Lichtein- εtrahlung liegt der Kurzschlußstrom sogar weit unter deren Nennstrom. D. h. Schmelzsicherungen und Sicherungsautoma¬ ten können nicht für die Unterbrechung des Stromes im Kurzschlußfall verwendet werden.Compared to other electrical systems, photovoltaic systems are particularly at risk from short circuits. In a photovoltaic system, the short-circuit currents on the DC voltage side are limited by the fact that the solar module (solar cell) can deliver a maximum of 1.2 times the short-circuit current compared to the nominal current due to its physical properties. With low light irradiation, the short-circuit current is even far below their nominal current. That is, Fuses and automatic fuses cannot be used to interrupt the current in the event of a short circuit.
Da elektrische Kurzschlüsse in der Regel immer mit einem Lichtbogen einhergehen, ergibt sich hier ein akutes Gefahrenpotential für Brände. In der Tat sind auch schon Teile von Solar-Anlagen abgebrannt (z. B. ein Teil der An¬ lage auf dem Mont Soleil).Since electrical short circuits are usually always accompanied by an arc, there is an acute risk potential for fires. In fact, parts of solar systems have already burned down (e.g. part of the system on Mont Soleil).
Wie z. B. in G. Bopp, D. Geyer, "Elektrische Sicher- heit in Photovoltaik-Anlagen", Forschungsverbund Sonnen¬ energie: Themen 92/93 ausgeführt wird, können sich in Pho¬ tovoltaik-Anlagen folgende Ursachen für Kurzschlüsse bzw. für die Entstehung von Lichtbogen ergeben:Such as B. in G. Bopp, D. Geyer, "Electrical safety unit in photovoltaic systems ", Solar Energy Research Association: Topics 92/93, the following causes of short circuits or arcing can occur in photovoltaic systems:
- Schlechte oder gar gelöste Klemmverbindungen im Lei¬ tungsverlauf;- Bad or even loosened clamp connections in the line course;
- hochohmiger Kurzschluß mit einer Erdschlußkomponen- te, z. B. durch einen Isolationsfehler zwischen Plus-Leiter und geerdetem Teil;- high-resistance short circuit with an earth fault component, eg. B. due to an insulation fault between the positive conductor and the earthed part;
- hochohmiger Kurzschluß ohne Erdschlußkomponente, z. B. durch einen Isolationsfehler zwischen Plus- und Minus-Leiter;- High impedance short circuit without earth fault component, e.g. B. due to an insulation fault between positive and negative conductors;
- Lösung einer Verbindung durch Vibration, Werkstoff- ermüdung oder unzureichende Montage;- loosening of a connection due to vibration, material fatigue or insufficient assembly;
- Versprödung der Isolation durch Umwelteinflüsse wie Feuchtigkeit, Chemikalien, Wärme, UV-Strahlung;- Embrittlement of the insulation due to environmental influences such as moisture, chemicals, heat, UV radiation;
- mechanische Beschädigung der Isolation durch Scheu¬ ern oder direkte Krafteinwirkung; - Fraß an der Isolation durch Tiere (Mäuse, Marder, Termiten) ;- Mechanical damage to the insulation due to abrasion or direct force; - feeding on isolation from animals (mice, martens, termites);
- Beschädigung der Isolation durch Überspannungen.- Damage to the insulation due to overvoltages.
Ausgehend von obiger Veröffentlichung ist die Lei- tungsisolation in einer Photovoltaik-Anlage die größte Schwachstelle.Based on the above publication, the line insulation in a photovoltaic system is the biggest weak point.
Zur Erhöhung der Sicherheit werden hier nun Anweisun¬ gen zur Erkennung von Isolationsdefekten, wie Isolatioπs- Überwachung und Lichtbogenschutzschaltung sowie konkrete Installationshinweise, insbesondere zur Leitungswahl und deren Verlegung angegeben.In order to increase safety, instructions for detecting insulation defects, such as insulation monitoring and arc protection circuit, as well as specific installation instructions, in particular for the choice of lines and their laying, are now given here.
In den provisorischen Sicherheitsvorschriften für photovoltaische Energieerzeugungsanlagen des Eidgenössi¬ schen Starkstrominspektorats vom Juni 1990 wird ebenfalls in Kapitel 2.2 "Verkabelung", unter 2.2.1 "Kabelarten und Kabelschutz" darauf hingewiesen, daß dem mechanischen Schutz und der Lichtbeständigkeit der Kabel besondere Be¬ deutung beizumessen sei. Da der elektrische Kabelschutz im Kurzschlußfall nicht gewährleistet werden kann, ist die Verkabelung in Sonderisolierung auszuführen und erd- und kurzschlußfest zu verlegen.The provisional safety regulations for photovoltaic energy generation systems of the Federal Power Inspectorate of June 1990 also apply in Chapter 2.2 "Cabling", under 2.2.1 "Cable types and cable protection", it was pointed out that the mechanical protection and the light resistance of the cables should be given special importance. Since the electrical cable protection cannot be guaranteed in the event of a short circuit, the cabling must be made with special insulation and laid earth and short-circuit proof.
Die beste Weise, die Fehlerfälle und Lichtbogenbil- düng zu verhindern, ist nach dem Stand der Technik die kurzschluß- und erdschlußsichere Verlegung nach VDE 0100, Teil 520, Abschnitt 10.2. Der bei Photovoltaik-Anlagen zu installierende Überspannungsschutz ist in der IEC-Nor 1173 definiert.The best way to prevent the occurrence of faults and arcing is, according to the state of the art, short-circuit and earth-fault-proof installation according to VDE 0100, part 520, section 10.2. The surge protection to be installed in photovoltaic systems is defined in IEC standard 1173.
In der Veröffentlichung G. Bopp, D. Geyer, "Elektri¬ sche Sicherheit in Photovoltaik-Anlagen", Forschungsver¬ bund Sonnenenergie: Themen 92/93, Seite 67, wird sogar eine Lichtbogenschutzschaltung angeführt, bei der der Spannungsabfall auf einer zu überwachenden Leitungsstrecke überprüft wird. Jeder Lichtbogen bedingt einen Spannungs¬ abfall von mindestens 10 V. Dieser liegt wesentlich über den ohmschen Verlusten der Leiter und wird somit erkannt. Diese einfachen Überlegungen lassen sich jedoch nicht für einen Lichtbogen zwischen dem Plus- und Minusleiter sowie zwischen einem der Leiter und Erde anwenden.In the publication G. Bopp, D. Geyer, "Electrical Safety in Photovoltaic Systems", Research Association Solar Energy: Topics 92/93, page 67, an arc protection circuit is even given in which the voltage drop on a line section to be monitored is checked. Each arc causes a voltage drop of at least 10 V. This is significantly higher than the ohmic losses of the conductors and is therefore recognized. However, these simple considerations cannot be used for an arc between the plus and minus conductors and between one of the conductors and earth.
In der Veröffentlichung D. Stellbogen, ""Intelligent Monitoring" - Online-Simulation for the Detection of Faults in PV-Array Filds", llth E.C. Photovoltaic Solar Energy Conf. , 12 - 16 Okt. 1992, Montreux, Schweiz, wird obiges Problem dadurch gelöst, daß die augenblicklichen elektrischen Daten der Anlage gemessen und mit abgespei¬ cherten theoretischen Daten laufend verglichen werden.In the publication D. Stellbogen, "" Intelligent Monitoring "- Online-Simulation for the Detection of Faults in PV-Array Filds", ll th EC Photovoltaic Solar Energy Conf. , Oct. 12-16, 1992, Montreux, Switzerland, the above problem is solved by measuring the instantaneous electrical data of the system and continuously comparing it with stored theoretical data.
Die aus dem Stand der Technik bekannten Maßnahmen zum Sch tze von elektrischen Gleichspannungs-, insbesondere von Photovoltaik-Anlagen, können zwar, sofern eine sorg- fältige Schaltungsauslegung durchgeführt wird, einen Bei¬ trag zur Sicherheit einer Gleichspannungsanlage erbringen, eine Erkennung eines auftretenden Lichtbogens ist jedoch, abgesehen von den komplizierten Ausführungsarten von D. Stellbogen und G. Bopp et al. , mit einfachen Mitteln nicht möglich.The measures known from the prior art for protecting electrical direct voltage systems, in particular photovoltaic systems, can indeed be used if a careful complex circuit design is performed, make a contribution to the safety of a DC voltage system, but detection of an occurring arc is, apart from the complicated embodiments by D. Stellbogen and G. Bopp et al. , not possible with simple means.
Die Aufgabe der Erfindung ist es, ein Verfahren und eine Detektionseinheit zu schaffen, mit dem bzw. mit der ein auftretender Lichtbogen, insbesondere Gleichstrom¬ lichtbogen in einer elektrischen Anlage, z. B. in einer Gleichspannungs-Anlage feststellbar ist.The object of the invention is to provide a method and a detection unit with or with which an occurring arc, in particular direct current arc in an electrical system, for. B. can be determined in a DC system.
Die Aufgabe der Erfindung wird dadurch gelöst, daß von einem Lichtbogen, insbesondere einem Gleichstromlicht- bogen ausgehende elektromagnetische Strahlung entgegen der Fachmeinung - siehe z. B. R. Minder, "The Swiss 500 kW Photovoltaic Power Plant Phalk Mont-Soleil" , llth E.C. Photovoltaic Solar Energy Conf. , 12 - 16 Okt. 1992, Mon- treux, Schweiz, S. 1009 - 1013 - mit einfachen Mittel de- tektierbar ist. Entgegen einer weitverbreiteten Fachmei¬ nung über einen Gleichstromlichtbogen, wie er z. B. als Lichtbogenlampe für Beleuchtungszwecke verwendet wurde, brennt nämlich ein Lichtbogen im Leitungsnetz zwischen Leitungen mit unterschiedlichem Potential oder zwischen Leitungsunterbrüchen nicht konstant, sondern, wie Ver¬ suchsreihen gezeigt haben, pulsierend. Es wird angenommen, daß das Pulsieren durch sich bildende bzw. abtropfende Me¬ talltropfen des durch die Lichtbogenhitze geschmolzenen Leitungsmaterials hervorgerufen wird.The object of the invention is achieved in that electromagnetic radiation emanating from an arc, in particular a direct current arc, contrary to the technical opinion - see, for. BR Minder, "The Swiss 500 kW Photovoltaic Power Plant Phalk Mont-Soleil", ll th EC Photovoltaic Solar Energy Conf. , Oct. 12-16, 1992, Montreux, Switzerland, pp. 1009-1013 - can be detected with simple means. Contrary to a widespread specialist opinion on a direct current arc, such as that used for. B. was used as an arc lamp for lighting purposes, namely an arc in the line network between lines with different potential or between line interruptions does not burn constantly, but, as test series have shown, pulsating. It is assumed that the pulsation is caused by metal drops which form or drip from the line material melted by the arc heat.
Es hat sich nun weiter gezeigt, daß die durch den Lichtbogen in einer elektrischen Gleichspannungs-Anlage sowie auch in einer Wechselspannungε-, insbesondere in einer sog. Niederspannungs-Anlage (bis 1 500 V Wechsel- spannung) emittierte elektromagnetische Strahlung sich im freien Raum ausbreitet und mit einer Antenne detektierbar ist. Bevorzugt breitet sich jedoch diese Strahlung als elektromagnetische Leitungswelle auf den Schaltungsleitun¬ gen, insbesondere den Leitungen, welche galvanisch mit dem Lichtbogen in Verbindung stehen, aus.It has now also been shown that the electromagnetic radiation emitted by the arc in an electrical DC system and also in an AC voltage, in particular in a so-called low-voltage system (up to 1,500 V AC), propagates in free space and can be detected with an antenna. However, this radiation preferably propagates as electromagnetic line wave on the Schaltungsleitun¬ gene, in particular the lines which are galvanically connected to the arc from.
Als elektrische Anlagen, welche durch die Verwendung (Einbau) der erfindungεgemäßen Detektionseinheit gegen de¬ ren teilweiεe oder völlig Zerεtörung εowie Beεchädung der die Anlagen aufnehmenden bzw. an εie angrenzenden Bauten, Gerätschaften, Maschinen, ... schützbar sind, εeien hier beiεpielεhaft fürElectrical systems which can be protected against the partial or complete destruction thereof by the use (installation) of the detection unit according to the invention, and damage to the structures, equipment, machines, ... accommodating the systems or adjacent to them, are exemplary here
Gleichεpannungε-AnlagenDC voltage systems
die oben εchon aufgeführten Photovoltaik-Anlagen bzw. Niederεpannungsanlagen (bis 1 000 V Gleichspannung) , Batterie-Anlagen, Anlagen mit Brennstoffzellen, elek¬ trische Anlagen in Autos, insbeεondere in Elektro- und Hybridautoε, sowie auf Schiffen, insbesondere auf Jachtenthe photovoltaic systems or low-voltage systems (up to 1,000 V DC) listed above, battery systems, systems with fuel cells, electrical systems in cars, in particular in electric and hybrid cars, and on ships, in particular on yachts
sowiesuch as
für Wechselspannungs-Anlagen,for AC systems,
sofern die gerade aufgeführten Beispiele nicht auch schon einen Wechselspannungsschaltungsbereich aufwei¬ sen, die oben bereits aufgeführten Niederspannungsan- lagen (bis 1 500 V Wechselspannung) und Hausinstalla- tionen und -verteileranlagenif the examples just listed do not already have an AC voltage switching area, the low-voltage systems (up to 1,500 V AC) and house installations and distribution systems already listed above
erwähnt.mentioned.
In einer unten beschriebenen, bevorzugten Ausfüh- rungsart einer Detektionseinheit für diese Strahlung wird dieser Lichtbogen mit seiner negativen Kennlinie gerade zur Schwingungsanregung in Schwingkreisen verwendet. Die Amplitude und/oder das zeitliche Verhalten der angeregten Schwingung, insbesondere die zeitliche Folge aufeinander- folgender Schwingungsbursts, kann nun diskriminiert werden und bei Erreichen bzw. Überschreiten eines vorgegebenen Werts zum Abschalten des Schaltungεlichtbogenε verwendet werden.In a preferred embodiment of a detection unit for this radiation, described below, this arc, with its negative characteristic curve, is used precisely for vibration excitation in resonant circuits. The amplitude and / or the temporal behavior of the excited vibration, in particular the temporal sequence of one another The following vibration bursts can now be discriminated and used to switch off the switching arc when a predetermined value is reached or exceeded.
- Auch können mehrere Detektionseinheiten und Trennele¬ mente in einer Anlagenεchaltung integriert werden, so daß jeweils nur kleine Bereiche der gesamten Schaltungsanord¬ nung abgeschaltet werden, wodurch die Funktion der gesam- ten Anlage nur unwesentlich beeinträchtigt, jedoch deren Sicherheit mit Blick auf einen eventuellen Brandfall, aus¬ reichend gewährleistet wird.- Several detection units and separating elements can also be integrated in a system circuit, so that only small areas of the entire circuit arrangement are switched off, so that the function of the entire system is only insignificantly impaired, but its safety with regard to a possible fire is sufficiently guaranteed.
Neben der einfachen Ausgestaltung der Detektionsein- heit ist ein wesentlicher Vorteil dieser Sicherheitsein¬ richtungen darin zu sehen, daß nicht nur Lichtbögen zwi¬ schen Plus- und Minusleitern, zwischen stromführenden Lei¬ tern und Erdpotential, sondern auch Lichtbögen bei Lei¬ tungsunterbrüchen, wie sie bei Tierfraß, schlechten Ver- bindungen oder gewaltsamen Brüchen auftreten können, fest¬ stellbar sind.In addition to the simple design of the detection unit, an important advantage of these safety devices is that not only arcs between positive and negative conductors, between current-carrying conductors and earth potential, but also arcs in the event of line interruptions, such as those in the event of animal feeding, poor connections or violent breaks, can be determined.
Weitere Vorteile des erfindungεgemäßen Verfahrens, der erfindungsgemäßen Anlage und der erfindungsgemäßen De- tektionseinheit ergeben sich aus der untenstehenden Be¬ schreibung.Further advantages of the method according to the invention, the system according to the invention and the detection unit according to the invention result from the description below.
Im folgenden werden Ausführungsbeiεpiele des erfin- dungsge äßen Verfahrens, der erfindungsgemäßen elektri- sehen Anlage und der erfindungsgemäßen Detektionseinheit anhand von Zeichnungen näher erläutert, wobei hier eine beispielsweise Photovoltaik-Anlage als Gleichεpannungε-An- lage beεchrieben wird. Eε wird jedoch nochmalε betont, daß die hier dargelegten Eigenεchaften sich auch auf andere Anlagen übertragen lasεen. Es zeigen:In the following, exemplary embodiments of the method according to the invention, the electrical system according to the invention and the detection unit according to the invention are explained in more detail with the aid of drawings, a photovoltaic system, for example, being described here as a DC voltage system. However, it is emphasized again that the properties described here can also be transferred to other systems. Show it:
Fig. 1 ein Blockschaltbild einer Photovoltaik-Anlage mit einer Detektionseinheit zur Erfaεεung eineε zufäl- lig, durch einen Defekt in der Anlage entεtehenden Lichtbogenε zwiεchen deren Plus- und Minusleitung,1 shows a block diagram of a photovoltaic system with a detection unit for detecting an accidental Lig, arcing caused by a defect in the system between its plus and minus line,
Fig. 2 ein Schaltbild der in der in Figur 1 dargestellten Photovoltaik-Anlage eingesetzten Detektionεeinheit undFIG. 2 shows a circuit diagram of the detection unit used in the photovoltaic system shown in FIG. 1 and
Fig. 3 ein Blockschaltbild analog zu Figur 1, wobei je¬ doch der Lichtbogen durch einen Leitungsunterbruch entstanden ist.3 shows a block diagram analogous to FIG. 1, but the arc has arisen due to a line break.
Die in Figur 1 dargestellte Photovoltaik-Anlage hat einen Solargenerator 1 mit εechε Solarmodulen 3. Von den εechε Solarmodulen 3 sind jeweils zwei in Reihe geschal¬ tet, so daß sich drei Reihen parallel geschalteter Solar¬ module 3 ergeben. Diese drei Reihen sind mittels Solarge¬ neratorkabeln 5a und 5b an einen sog. Feldverteiler 7 an¬ geschlossen. Zum Schutz der Anlage sind in dem Feldvertei- 1er 7 Sicherungen 8, Trennschalter 9 und Dioden 10 unter¬ gebracht. Im Feldverteiler 7 werden die Solargenerator¬ kabel 5a und 5b zu je einer positiven Sammelschiene 11a und llb zuεammengeführt. Über diese Sammelεchienen 11a und 11b wird dann eine Laεt 13 mit in den Solarmodulen 3 er- zeugter elektriεcher Energie verεorgt.The photovoltaic system shown in FIG. 1 has a solar generator 1 with εechε solar modules 3. Two of the εechε solar modules 3 are each connected in series, so that there are three rows of solar modules 3 connected in parallel. These three rows are connected to a so-called field distributor 7 by means of solar generator cables 5a and 5b. To protect the system, fuses 8, isolating switches 9 and diodes 10 are accommodated in the field distributor 7. The solar generator cables 5a and 5b are each brought together in the field distributor 7 to form a positive busbar 11a and 11b. A load 13 with electrical energy generated in the solar modules 3 is then supplied via these busbars 11a and 11b.
Eine Detektionεeinheit 15 iεt über zwei Signalleitun¬ gen 17a und 17b mit den beiden Sammelεchienen 11a und llb verbunden. Eine Ausgangsleitung 19 verbindet die Detekti- onseinheit 15 mit einer Schalteinheit 21, welche über drei Leitungspaare 23a bis 23c mit der Relaiεεpule 24 der Trennεchalter 9 verbunden iεt.A detection unit 15 is connected to the two busbars 11a and 11b via two signal lines 17a and 17b. An output line 19 connects the detection unit 15 to a switching unit 21, which is connected to the relay coil 24 of the isolating switch 9 via three line pairs 23a to 23c.
Das Schaltbild der in Figur 2 dargestellten Detekti- onseinheit 15 weist einen Serienschwingkreis 25 hoher elektrischer Güte mit zwei mit einer Induktivität Ll inThe circuit diagram of the detection unit 15 shown in FIG. 2 has a series resonant circuit 25 of high electrical quality with two having an inductance Ll in
Reihe geschalteten gleichgroßen Kapazitäten C1 auf. Die beiden Kapazitäten Cλ liegen symmetrisch zur Induktivi- - 9 -Series switched equal capacities C 1 . The two capacitances C λ are symmetrical to the inductive - 9 -
tät L-L und sind direkt mit beiden Sammelschienen 11a und llb über die Signalleitungen 17a und 17b verbunden. Die Resonanzfrequenz fres dieεes Reihenschwingkreiseε 25 liegt zwischen 300 und 500 kHz, bevorzugt zwischen 350 und 450 kHz, d. h. in einem Frequenzbereich zwischen Mittel- und Langwelle. Hierdurch werden Störungen durch Rundfunk¬ sender vermieden. Durch diese Frequenzwahl werden auch eventuelle Störungen durch Störstrahlungen eines eventuell vorhandenen Wechselrichters reduziert, da man sich bereits im Schutzbereich einschlägiger EMV-Nor en (z.B. EN 55014, Grenzwerte ab 150 kHz) befindet. Eine weitere Unter¬ drückung von Störungen erfolgt durch einen unten beschrie¬ benen Parallelεchwingkreiε 26, der insbesondere PWM- Schaltfrequenzen von Wechselrichtern oder Maxi um-Power- Trackern reduziert. Die Induktivität L-j_ ist induktiv über einen Koppelfaktor, bevorzugt zwischen 0,05 und 0,5, ins¬ besondere zwischen 0,21 und 0,28 mit einer Induktivität L2 des Parallelschwingkreises 26 gekoppelt. Es können auch höhere Kopplungεfaktoren verwendet werden. Ein optimaler Kopplungsfaktor wird unter Beachtung der Leitungseigen¬ schaften der an den Serienschwingkreis 25 angeschlossenen Verbindungsleitungen, an denen ein Lichtbogen (infolge Kurzschluß oder Strompfadunterbruch) detektiert werden soll, eingestellt. Auch können unter Beachtung von Kosten, Empfindlichkeit, technischem Aufwand, ... andere als die oben aufgeführten Kopplungsfaktoren ausgewählt werden. Der Parallelschwingkreis 26 weist die Induktivität L2 und eine Kapazität C2 auf und ist mit einem Enveloppendetektor 29 verbunden, der eine Diode D2 und einen zu einer Kapazi- tat C3 parallel geεchalteten Widerεtand R3 hat. Der Auε- gang 31 deε Enveloppendetektorε 29 führt zum Eingang eines ersten Ko parators 33. Das Ausgangsεignal dieεes Kompara- torε 33 wird über die Leitung 34 einem ersten Eingang ei¬ nes UND-Gatters 35 und über eine Verzögerungεεchaltung 37 mit unterεchiedlicher Anstiegs- und Abfallsverzögerung dessen zweitem Eingang zugeführt. Die Verzögerungsεchal- tung 37 weist zwei Dioden D4 und D5, zwei Widerstände R4 und R5, eine Kapazität C4 sowie einen zweiten Ko para- tor 39 auf, dessen Ausgang mit einem zweiten Eingang des UND-Gatters 35 verbunden ist. Die Anstiegεverzögerung der Verzögerungεschaltung 37 wird durch den Widerstand R4 und den Kondensator C4 bestimmt und sollte bevorzugt zwischen 50 ms und 2 ε eingestellt werden. Die Abfallsverzögerung wird durch den Widerstand R5 und den Kondensator C4 be¬ stimmt und sollte bevorzugt zwischen 0,5 s und 20 ε einge¬ stellt werden. Der Ausgang des UND-Gatters ist mit dem S-Eingang eines Flipflops 41 verbunden. Der Ausgang des Flipflops 41 ist über die Leitung 19 mit der Schaltein¬ heit 21 verbunden, über die die Trennschalter 9 ein- und auεεchaltbar εind. Nach Öffnen deε bzw. der Trennεchal- ter 9 kann das Flipflop über seinen R-Eingang zurückge¬ setzt werden.act LL and are directly connected to both busbars 11a and 11b via the signal lines 17a and 17b. The resonance frequency f res of this series resonant circuit 25 is between 300 and 500 kHz, preferably between 350 and 450 kHz, ie in a frequency range between medium and long wave. This prevents interference from radio transmitters. This frequency selection also reduces possible interference due to interference radiation from a possibly existing inverter, since one is already in the protection area of relevant EMC standards (e.g. EN 55014, limit values from 150 kHz). A further suppression of disturbances takes place by means of a parallel oscillation circuit 26 described below, which in particular reduces PWM switching frequencies of inverters or maximum power trackers. The inductance L j _ is inductively via a coupling factor, preferably the parallel resonant circuit 26 coupled between 0.05 and 0.5, ins¬ particular from 0.21 to 0.28 with an inductor L2. Higher coupling factors can also be used. An optimal coupling factor is set taking into account the line properties of the connecting lines connected to the series resonant circuit 25, on which an arc (as a result of a short circuit or current path interruption) is to be detected. Also considering the costs, sensitivity, technical effort, ... other coupling factors than those listed above can be selected. The parallel resonant circuit 26 has the inductance L 2 and a capacitance C 2 and is connected to an envelope detector 29 which has a diode D 2 and a resistor R 3 connected in parallel with a capacitance C 3 . The output 31 of the envelope detector 29 leads to the input of a first comparator 33. The output signal of this comparator 33 is sent via line 34 to a first input of an AND gate 35 and via a delay circuit 37 with different rise and fall delays fed its second input. The delay circuit 37 has two diodes D 4 and D 5 , two resistors R 4 and R 5 , a capacitor C 4 and a second capacitor. gate 39 whose output is connected to a second input of the AND gate 35. The rise delay of the delay circuit 37 is determined by the resistor R 4 and the capacitor C 4 and should preferably be set between 50 ms and 2 ε. The deceleration delay is determined by the resistor R 5 and the capacitor C 4 and should preferably be set between 0.5 s and 20 ε. The output of the AND gate is connected to the S input of a flip-flop 41. The output of the flip-flop 41 is connected via the line 19 to the switching unit 21, via which the isolating switches 9 can be switched on and off. After opening the disconnector 9, the flip-flop can be reset via its R input.
Tritt nun ein Kurzschluß mit einem Lichtbogen 44, wie in Figur 1 dargestellt, zwischen den beiden Sammelschie¬ nen 11a und llb auf, so wird der Reihenεchwingkreis 25 durch den negativen differentiellen Widerstand des Licht- bogenε 44 zu Schwingungen angeregt; da der Lichtbogen durch die Tröpfchenbildung des oben erwähnten abtropfenden Leitungsmaterials unregelmäßig brennt, erfolgt eine wie¬ derholte Anregung des Schwingkreises 25. Wie oben erwähnt, werden Störsignale sowohl durch den Reihenschwingkreis 25 und den Parallelschwingkreis 26 εtark reduziert. Der Enve- loppendetektor 29 demoduliert nun das am Parallelschwing¬ kreis 26 hochfrequent schwingende Signal mit einer typi¬ schen Zeitkonstante je nach ausgewählter Beschaltung zwi¬ schen 5 und 250 ms. Bei einer kleinen Zeitkonstante ist ein Klemmenbrand (Strompfadunterbruch) schwierig zu detek- tieren. Störεpannungsεpitzen eineε nicht entεtörten Wech¬ selrichters lassen sich jedoch dann gut eliminieren. Eine größere Zeitkonstante ergibt öfter Fehldetektionen durch nicht oder schlecht entstörte Wechselrichter, hat aber eine höhere Empfindlichkeit gegenüber sich bildenden Lichtbögen.If there is a short circuit with an arc 44, as shown in FIG. 1, between the two busbars 11a and 11b, the series resonant circuit 25 is excited to oscillate by the negative differential resistance of the arc 44; since the arc burns irregularly due to the droplet formation of the above-mentioned dripping line material, the resonant circuit 25 is excited again. As mentioned above, interference signals are reduced εtly by both the series resonant circuit 25 and the parallel resonant circuit 26. The envelope detector 29 now demodulates the signal vibrating at the parallel resonant circuit 26 with a high frequency and a typical time constant between 5 and 250 ms, depending on the selected circuitry. With a small time constant, a terminal fire (current path interruption) is difficult to detect. Interference voltage peaks of a non-interference-suppressed inverter can, however, then be easily eliminated. A larger time constant often results in incorrect detections due to inverters with poor or no interference suppression, but has a higher sensitivity to arcing.
Daε Auεgangεεignal des Enveloppendetektors 29 wird nun - 1 1 -The output signal of the envelope detector 29 is now - 1 1 -
dem Ko parator 33 bedingt durch eine Referenzspannung an dessen zweitem Eingang Urefl von einigen 100 mV mit einer Hystereεe zugeführt. Durch die mit der Verzögerungsschal¬ tung 37 einstellbare Anstiegsverzögerung (R4, C4 → 50 ms ... 2 s) und die einstellbare Abfallsverzögerung (R5, C4 → 0,5 s ... 20 s) wird eine sichere Unterdrückung einer un¬ erwünschten Auslösung durch Schalthandlungen in der Anlage sowie eine Sicherstellung der Auslösung durch Klemmenbrän¬ de, die durch zeitlich distanzierte Funken gekennzeichnet sind, erreicht. Durch den zweiten Komparator 39 werden für das nachgeεchaltete UND-Gatter 35 wohl definierte Schalt¬ flanken erzeugt; auch kann durch die Wahl der Referenz- εpannung Uref2 an seinem zweiten Eingang eine Feineinstel¬ lung der Verzögerungszeiten erreicht werden. Das Flip- flop 41 wird nun nur dann gesetzt, wenn in der von einem ersten Hochfrequenzpuls eines brennenden Gleichεtromlicht- bogens ausgelösten Verzögerungszeit über die Verzögerungs¬ schaltung 37 ebenfalls ein zweiter Hochfrequenzpuls ein¬ trifft. Die Pulsbreiten der Hochfrequenzpulεe sind durch die Wahl der Referenzspannungen Urefl und Uref2 in ge- wiεεen Grenzen einstellbar.the comparator 33 due to a reference voltage at its second input U refl of a few 100 mV supplied with a hysteresis. A safe suppression is provided by the rise delay (R 4 , C 4 → 50 ms ... 2 s) which can be set with the delay circuit 37 and the adjustable fall delay (R 5 , C 4 → 0.5 s ... 20 s) an undesired triggering by switching operations in the system as well as ensuring triggering by terminal fires, which are characterized by sparks spaced in time. Well-defined switching edges are generated by the second comparator 39 for the downstream AND gate 35; by selecting the reference voltage U ref2 at its second input, the delay times can also be fine- tuned . The flip-flop 41 is then only set when a second high-frequency pulse also arrives in the delay time triggered by a first high-frequency pulse of a burning direct-current arc via the delay circuit 37. The pulse widths of the high-frequency pulses can be set within certain limits by the choice of the reference voltages U refl and U ref2 .
Hat das Flipflop 41 umgeschaltet, so werden über die Schalteinheit 21 die betreffenden Trennschalter 9 geöff- net.If the flip-flop 41 has switched over, the disconnector 9 in question is opened via the switching unit 21.
Die oben beschriebene Detektionsschaltung kann nun außer einem Gleichεtromlichtbogen zwiεchen der Plus- und der Minussammeischiene 11a und llb ebenfalls Lichtbögen detektiert, welche von der Plus- bzw. Minuεschiene gegen Erde erfolgen. Eine einwandfreie Lichtbogendetektion ist auch erreichbar, wenn es sich nicht um einen Kurzεchluß- lichtbogen, sondern um einen Lichtbogen 45 zwischen einem Strompfadunterbruch (Leiterunterbruch, schlechte Leitungs- Verbindung in einer Klemme, ...), wie in Figur 3 darge¬ stellt, handelt.In addition to a direct-current arc between the plus and minus busbars 11a and 11b, the detection circuit described above can also detect arcs which occur from the plus and minus busbars to earth. Correct arc detection can also be achieved if it is not a short-circuit arc, but an arc 45 between a current path interruption (conductor interruption, poor line connection in a terminal, ...), as shown in FIG. 3 .
Die Signalleitungen 17a und 17b zur Detektionsein- heit 15 können nun z. B. mit einem (nicht dargestellten) Wahlschalter an die Leitungen einzelner Wahlfelder in zeitlicher Reihenfolge nacheinander angeεchloεsen werden und die Referenzspannung Urefl an dem Komparator derart eingeεtellt werden, daß nur ein Lichtbogen in dem gerade angewählten Teilbereich der Geεamtεchaltung ein Anεprechen auslöst.The signal lines 17a and 17b for detection unit 15 can now z. B. with a (not shown) selector switch to the lines of individual dialing fields one after the other in time order and the reference voltage U refl are set on the comparator in such a way that only one arc triggers a response in the currently selected sub-area of the overall circuit.
Anstatt mit einem Wahlschalter einzelne Schaltungs- teilbereiche auf brennenden Lichtbögen abzufragen, können dieεen Bereichen auch Detektionεeinheiten feεt zugeordnet werden. Auch können die Detektionseinheiten derart ange- schlosεen werden, daß εie z. B. mit der Plus-, der Minus- εammelεchiene und zwischen beiden angeschloεεen werden, wodurch der Ort deε Lichtbogenε dann genau feststellbar ist.Instead of using a selector switch to interrogate individual circuit sub-areas on burning arcs, these areas can also be assigned to detection units. The detection units can also be connected in such a way that B. with the plus, the minus εammelεchiene and between the two, whereby the location of the arc is then precisely ascertainable.
Obige Schaltungsbeschreibung stellt nur eine prinzi¬ pielle Schaltungεerklärung dar. So wurde z. B. nicht auf notwendige Schaltungsmaßnahmen für einen Überspannungs- εchutz , Schutzdioden, Sicherungen, ... eingegangen. Auch wurde ein Ausgangsverεtärker in der Leitung 19 nicht ex¬ plizit dargestellt.The above circuit description represents only a basic circuit explanation. B. not dealt with necessary circuit measures for overvoltage protection, protective diodes, fuses, ... An output amplifier in line 19 was also not shown explicitly.
Anstatt die Detektionseinheit 15 an die Stromsammei¬ schienen 11a und llb anzuschließen, kann sie mit anderen mit dem Ort des Gleichstromlichtbogens in galvanischer Verbindung stehenden Leitungen verbunden werden. Es können auch die beiden Enden des Serienschwingkreises 25 als An- tenne bzw. Antenne und Erde auεgebildet εein. Die Antenne wird dann in dem Schaltungsteilbereich verlegt, dessen Leitungen und Anschlüsεe auf entstehende Lichtbögen über¬ wacht werden sollen. Instead of connecting the detection unit 15 to the current busbars 11a and 11b, it can be connected to other lines which are galvanically connected to the location of the direct current arc. The two ends of the series resonant circuit 25 can also be designed as an antenna or antenna and earth. The antenna is then installed in the circuit section, the lines and connections of which are to be monitored for arcing.

Claims

Patentansprüche claims
1. Verfahren zum Schutz einer elektrischen Anlage, insbe- sondere einer Gleichspannungε-, wie z. B. einer Photo¬ voltaik-Anlage mit mindestens einem Solarmodul (3), dadurch gekennzeichnet, daß die von einem, einen Kurz¬ schluß und/oder einen Strompfadunterbruch begleitenden Lichtbogen (44, 45) ausgehende elektromagnetische Strahlung detektiert und anεchließend ein Alarm ausge¬ löst und/oder der den Kurzschluß und/oder Strompfadun¬ terbruch aufweisende Schaltungεteilbereich εicherge- schaltet wird.1. A method for protecting an electrical system, in particular a DC voltage, such as. B. a photovoltaic system with at least one solar module (3), characterized in that the outgoing from an, a short circuit and / or a current path interruption accompanying arc (44, 45) detects outgoing electromagnetic radiation and then an alarm triggers and / or the circuit section having the short circuit and / or current path interruption is safely switched.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die von Lichtbogen (44, 45) ausgehende elektromagneti¬ sche Strahlung mit einer elektrische Leitungwellen de- tektierenden Einheit (15) detektiert wird.2. The method according to claim 1, characterized in that the emanating from arcing (44, 45) electromagnetic radiation is detected with an electrical line wave detecting unit (15).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die von dem Lichtbogen (44, 45) ausgehende elektromagnetische Strahlung frequenzεelektiv, bevor¬ zugt im Frequenzbereich zwiεchen Mittel- und Langwel¬ le, detektiert und erst beim Überschreiten eines vor- gegebenen Empfangεpegelε eine Alarmauεlösung bzw. Ab¬ schaltung vorgenommen wird, um einerseits elektroma¬ gnetische Störstrahlung anderer Störquellen zu unter¬ drücken und andererseits bei mehreren in der Anlage vorhandenen Detektionseinrichtungen eine räumliche Se- lektion zur gezielten Sicherung einzelner Schaltungs¬ bereiche vornehmen zu können.3. The method according to claim 1 or 2, characterized gekennzeich¬ net that the electromagnetic radiation emanating from the arc (44, 45) frequency-selective, preferably in the frequency range between medium and long wave, detected and only when a pre- given the reception level, an alarm is triggered or switched off, on the one hand to suppress electromagnetic interference radiation from other sources of interference and on the other hand to be able to carry out a spatial selection in order to specifically secure individual circuit areas in the case of a plurality of detection devices present in the system.
4. Elektrische Anlage, insbeεondere Gleichspannungε-, z. B. Photovoltaik-Anlage mit mindeεtenε einem Solar- modul (3), zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, gekennzeichnet durch eine De¬ tektionεeinheit (15) zur Detektion elektromagnetischer Strahlung eines, inεbeεondere pulεierenden, Gleich- stromlichtbogens (44, 45).4. Electrical system, in particular DC voltage, for. B. photovoltaic system with at least one solar module (3) for carrying out the method according to one of claims 1 to 3, characterized by a detection unit (15) for detecting electromagnetic radiation of an, in particular, pulsating, direct current arc (44, 45).
5. Anlage nach Anspruch 4, dadurch gekennzeichnet, daß die Detektionseinheit (15) zwischen einer positiven und einer negativen Stromschiene (11a, llb) für den Stromtransport aus dem bzw. aus den Solarmodulen (3) angeschlossen ist, um die auf den Stromschienen (11a, llb) sich ausbreitenden Leitungεwellen des Lichtbogens (44a, 45) zu detektieren.5. Plant according to claim 4, characterized in that the detection unit (15) between a positive and a negative busbar (11a, llb) for the current transport from or from the solar modules (3) is connected to the on the busbars ( 11a, 11b) to detect propagating line waves of the arc (44a, 45).
6. Anlage nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Detektionseinheit (15) einen Diεkriminationε- εchaltungεteil (33, 35, 37, 39, 41) aufweist, der erst beim Einfall einer charakteristischen Abstrahlcharak- teristik der empfangenen elektromagnetischen Strahlung anspricht, damit Störstrahlungen, welche nicht vom Lichtbogen (44, 45) herrühren, weitgehendst eliminier¬ bar εind.6. System according to claim 4 or 5, characterized in that the detection unit (15) has a Diεkriminationε- εchaltungεteil (33, 35, 37, 39, 41), which only responds when a characteristic radiation characteristic of the electromagnetic radiation received, so that interference radiation which does not originate from the arc (44, 45) can be largely eliminated.
7. Anlage nach Anεpruch 6, gekennzeichnet durch die elek¬ trische Schaltungsanordnung, insbesondere die Gleich- spannungsschaltungsanordnung, in mehrere Schaltungsbe¬ reiche aufteilende elektrische Elemente, zwischen de¬ nen jeweils eine Detektionseinheit (15) angeordnet iεt, deren Diskriminationsschaltungεteil (33, 35, 37, 39, 41) derart eingestellt ist, daß er nur durch die empfangene elektromagetiεche Strahlung deε in dieεen Schaltbereich sich bildenden Lichtbogens ausgelöst wird.7. System according to claim 6, characterized by the electrical circuit arrangement, in particular the direct voltage circuit arrangement, electrical elements dividing into several circuit areas, between each of which a detection unit (15) is arranged, the discrimination circuit part (33, 35, 37, 39, 41) is set such that it is only triggered by the received electromagnetic radiation of the arc forming in this switching area.
8. Detektionseinheit (15) für die Anlage nach einem der Ansprüche 4 bis 7, gekennzeichnet durch wenigstens einen elektrischen Schwingkreis (25, 26) der durch die von einem pulsierenden Gleichstromlichtbogen (44, 45) ausgehende elektromagnetische Strahlung angestoßen wird.8. detection unit (15) for the system according to one of claims 4 to 7, characterized by at least one electrical resonant circuit (25, 26) which is initiated by the electromagnetic radiation emanating from a pulsating direct current arc (44, 45).
9. Einheit nach Anεpruch 8, gekennzeichnet durch je einen, bevorzugt elektrisch floatenden Anschluß an die negative und die positive Stromschiene (11a, llb) einer Photovoltaik-Anlage.9. Unit according to claim 8, characterized by a, preferably electrically floating connection to the negative and positive busbars (11a, 11b) of a photovoltaic system.
10. Einheit (15) nach Anspruch 8 oder 9, gekennzeichnet durch wenigstens eine elektrische Ausgangsleitung (19), welche mit elektrischen Elementen (9) zum Si¬ chern eines Schaltungεbereichs der Anlage verbindbar ist, und einem Diskriminationεεchaltungsteil (33, 35, 37, 39, 41), mit dem Störpegel anderer Strahlungsquel¬ len gegenüber der Strahlung deε, bevorzugt pulεieren- den, Gleichεtromlichtbogens eliminierbar sind.10. Unit (15) according to claim 8 or 9, characterized by at least one electrical output line (19), which can be connected to electrical elements (9) for securing a circuit region of the system, and a discrimination circuit part (33, 35, 37, 39, 41) with which the interference level of other radiation sources can be eliminated with respect to the radiation of the, preferably pulsating, direct current arc.
11. Einheit nach einem der Ansprüche 8 bis 10, gekenn- zeichnet durch wenigstenε einen Schwingkreis (25, 26) hoher Güte, bevorzugt mit einer Mittelfrequenz im Be¬ reich zwischen dem Mittel- und Langwellenbereich.11. Unit according to one of claims 8 to 10, characterized by at least one resonant circuit (25, 26) of high quality, preferably with a medium frequency in the range between the medium and long wave range.
12. Einheit nach Anspruch 11, gekennzeichnet durch einen mit einem Parallelschwingkreis (26) elektrisch in Rei¬ he geschalteten Reihenschwingkreiε (25), welcher be¬ vorzugt zwiεchen die negative und die poεitive Strom- εchiene (11a, llb) einer Photovoltaik- Anlage oder einem Anlagenteilbereich schaltbar ist.12. Unit according to claim 11, characterized by a series oscillating circuit (25) electrically connected in series with a parallel resonant circuit (26), which preferably between the negative and the positive current rail (11a, 11b) of a photovoltaic system or a part of the system is switchable.
13. Einheit nach Anspruch 12, dadurch gekennzeichnet, daß der Parallelschwingkreiε (26) mit dem Reihenschwing¬ kreis (25) induktiv (!,_ , L2) gekoppelt ist.13. Unit according to claim 12, characterized in that the parallel oscillating circuit (26) with the series oscillating circuit (25) is inductively coupled (!, _, L 2 ).
14. Verwendung der Einheit nach einem der Ansprüche 8 bis 13 in einer Wechselspannungε-, inεbesondere Nieder¬ spannungs-Anlage zu deren Überwachung und/oder Schutz . 14. Use of the unit according to one of claims 8 to 13 in an AC voltage, in particular low voltage system for monitoring and / or protection.
PCT/IB1995/000171 1994-03-16 1995-03-15 Method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment, and a detection unit for said equipment WO1995025374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH77794 1994-03-16
CH777/94-0 1994-03-16

Publications (1)

Publication Number Publication Date
WO1995025374A1 true WO1995025374A1 (en) 1995-09-21

Family

ID=4194947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1995/000171 WO1995025374A1 (en) 1994-03-16 1995-03-15 Method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment, and a detection unit for said equipment

Country Status (1)

Country Link
WO (1) WO1995025374A1 (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010556A2 (en) * 2002-07-20 2004-01-29 Technische Universität Ilmenau Arrangement providing inherent protection against internal arcs in photovoltaic installations
DE202007002077U1 (en) * 2007-02-13 2008-04-03 Dehm, Christian Emergency shutdown for solar power systems
DE102006052295B3 (en) * 2006-11-03 2008-06-12 Sma Technologie Ag Method and circuit arrangement for monitoring a photovoltaic generator
WO2011017721A1 (en) 2009-08-14 2011-02-17 Fronius International Gmbh Method for detecting arcs in photovoltaic systems and such a photovoltaic system
DE102009044695A1 (en) 2009-11-27 2011-06-01 Müller, Ingo, Dr. Solar module, modular switch, solar cable, busbar, multi-contact connector
DE102010011476A1 (en) * 2010-03-16 2011-09-22 Adensis Gmbh Insulation test method for large photovoltaic plants
WO2012000533A1 (en) * 2010-06-28 2012-01-05 Sma Solar Technology Ag Device and method for monitoring a photovoltaic system
WO2011073772A3 (en) * 2009-12-15 2012-03-01 Eaton Corporation Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults
DE102011008140A1 (en) 2010-08-31 2012-03-01 Ellenberger & Poensgen Gmbh Method and device for switching a DC voltage system
CN102565635A (en) * 2010-11-09 2012-07-11 太阳能安吉科技有限公司 Arc detection and prevention in power generation system
WO2012116722A1 (en) 2011-02-28 2012-09-07 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
DE102011076553A1 (en) 2011-05-26 2012-11-29 Solarworld Ag CONTROL OF THE DC FLOW OF A PHOTOVOLTAIC SYSTEM
WO2012159652A1 (en) 2011-05-20 2012-11-29 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
WO2013004295A1 (en) 2011-07-04 2013-01-10 Sma Solar Technology Ag Method and system for detecting an arc fault in a photovoltaic power system
DE102012109749A1 (en) 2011-10-14 2013-04-18 Sma Solar Technology Ag Method and device for detecting an arc in a DC circuit
AU2009202125B2 (en) * 2008-05-29 2014-02-13 Zener International Pty Ltd Photovoltaic Array Protection System
EP2368128B1 (en) * 2008-12-22 2014-02-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for detecting an electric arc in photovoltaic equipment
WO2014032650A1 (en) * 2012-08-27 2014-03-06 Newtos Ag Method and device for detecting arcs
EP2315328A3 (en) * 2009-10-20 2014-04-30 Eaton Corporation String and system employing direct current electrical generating modules and a number of string protectors
DE102013108166A1 (en) * 2013-07-30 2015-02-05 Sma Solar Technology Ag DEVICE FOR DETECTING AC POWER IN A DC CIRCUIT
DE102014115779A1 (en) 2013-11-05 2015-05-07 Sma Solar Technology Ag APPARATUS AND METHOD FOR ARROW DETECTION
EP2122432B1 (en) 2007-02-20 2015-09-09 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Voltage limiter and protection for a photovoltaic module
DE102014106130A1 (en) * 2014-04-30 2015-11-05 Phoenix Contact Gmbh & Co. Kg Short circuit sensor
WO2016001824A1 (en) 2014-06-30 2016-01-07 Societa' Elettrica S.R.L. Device for protecting a direct current photovoltaic plant
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
WO2017036112A1 (en) * 2015-08-31 2017-03-09 上海正泰电源系统有限公司 Dc fault arc detection method
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9746528B2 (en) 2011-07-04 2017-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Detection of electrical arcs in photovoltaic equipment
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9843288B2 (en) 2013-08-29 2017-12-12 Commissariat à l'énergie atomique et aux énergies alternatives Parallel electric arc detection across the main terminals of a photovoltaic installation
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN108809255A (en) * 2018-04-27 2018-11-13 国网安徽省电力有限公司六安供电公司 A kind of photovoltaic generating system DC side arc fault method for comprehensive detection and system
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10432139B2 (en) 2013-08-29 2019-10-01 Commissariat à l'énergie atomique et aux énergies alternatives Electric arc detection in photovoltaic installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
WO2021116399A1 (en) 2019-12-12 2021-06-17 Sma Solar Technology Ag A method and a system for series arc detection in a power circuit
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
CN116106731A (en) * 2022-09-08 2023-05-12 深圳深爱半导体股份有限公司 Relay testing device
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986005651A1 (en) * 1985-03-18 1986-09-25 Strand Century, Inc. Arc suppression technique
GB2235342A (en) * 1989-08-03 1991-02-27 Pramod Agrawal Apparatus for detecting a fault in a transmission line
GB2270217A (en) * 1992-08-27 1994-03-02 Univ Bath Detecting faults in power lines.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986005651A1 (en) * 1985-03-18 1986-09-25 Strand Century, Inc. Arc suppression technique
GB2235342A (en) * 1989-08-03 1991-02-27 Pramod Agrawal Apparatus for detecting a fault in a transmission line
GB2270217A (en) * 1992-08-27 1994-03-02 Univ Bath Detecting faults in power lines.

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010556A3 (en) * 2002-07-20 2004-04-08 Univ Ilmenau Tech Arrangement providing inherent protection against internal arcs in photovoltaic installations
WO2004010556A2 (en) * 2002-07-20 2004-01-29 Technische Universität Ilmenau Arrangement providing inherent protection against internal arcs in photovoltaic installations
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2463676A1 (en) 2006-11-03 2012-06-13 SMA Solar Technology AG Method for monitoring a photovoltaic generator
DE102006052295B3 (en) * 2006-11-03 2008-06-12 Sma Technologie Ag Method and circuit arrangement for monitoring a photovoltaic generator
US7812592B2 (en) 2006-11-03 2010-10-12 Sma Solar Technology Ag Method of monitoring a photovoltaic generator
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
DE202007002077U1 (en) * 2007-02-13 2008-04-03 Dehm, Christian Emergency shutdown for solar power systems
EP2122432B1 (en) 2007-02-20 2015-09-09 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Voltage limiter and protection for a photovoltaic module
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
AU2009202125B2 (en) * 2008-05-29 2014-02-13 Zener International Pty Ltd Photovoltaic Array Protection System
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2368128B1 (en) * 2008-12-22 2014-02-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for detecting an electric arc in photovoltaic equipment
US9389272B2 (en) 2008-12-22 2016-07-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for detecting an electric arc in a photovoltaic installation
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
WO2011017721A1 (en) 2009-08-14 2011-02-17 Fronius International Gmbh Method for detecting arcs in photovoltaic systems and such a photovoltaic system
US8576520B2 (en) 2009-08-14 2013-11-05 Fronius International Gmbh Method for detecting arcs in photovoltaic systems and such a photovoltaic system
CN102472789A (en) * 2009-08-14 2012-05-23 弗罗纽斯国际有限公司 Method for detecting arcs in photovoltaic systems and such a photovoltaic system
EP2315328A3 (en) * 2009-10-20 2014-04-30 Eaton Corporation String and system employing direct current electrical generating modules and a number of string protectors
DE102009044695A1 (en) 2009-11-27 2011-06-01 Müller, Ingo, Dr. Solar module, modular switch, solar cable, busbar, multi-contact connector
WO2011063803A2 (en) 2009-11-27 2011-06-03 Mueller Ingo Module switch, solar module, solar cable, busbar, and device
US8218274B2 (en) 2009-12-15 2012-07-10 Eaton Corporation Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults
WO2011073772A3 (en) * 2009-12-15 2012-03-01 Eaton Corporation Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults
EP2386870A2 (en) 2010-03-16 2011-11-16 Adensis GmbH Isolation test method for large-scale photovoltaic assemblies
DE102010011476A1 (en) * 2010-03-16 2011-09-22 Adensis Gmbh Insulation test method for large photovoltaic plants
US9625516B2 (en) 2010-06-28 2017-04-18 Sma Solar Technology Ag Device and method for monitoring a photovoltaic system
CN103026248A (en) * 2010-06-28 2013-04-03 Sma太阳能技术股份公司 Device and method for monitoring a photovoltaic system
WO2012000533A1 (en) * 2010-06-28 2012-01-05 Sma Solar Technology Ag Device and method for monitoring a photovoltaic system
AU2011297965B2 (en) * 2010-08-31 2015-04-09 Ellenberger & Poensgen Gmbh Method and device for safely switching a photovoltaic system after differentiating the arc type
JP2013542699A (en) * 2010-08-31 2013-11-21 エレンベルガー ウント ペンスゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for safely shutting down a photovoltaic system after identifying an arc type
DE102011008140A1 (en) 2010-08-31 2012-03-01 Ellenberger & Poensgen Gmbh Method and device for switching a DC voltage system
WO2012028247A1 (en) 2010-08-31 2012-03-08 Ellenberger & Poensgen Gmbh Method and device for safely switching a photovoltaic system after differentiating the arc type
AU2011297965C1 (en) * 2010-08-31 2015-09-24 Ellenberger & Poensgen Gmbh Method and device for safely switching a photovoltaic system after differentiating the arc type
KR101530300B1 (en) * 2010-08-31 2015-06-19 엘렌베르거 앤드 포엔스겐 게엠베하 Method and device for safely switching a photovoltaic system after differentiating the arc type
DE202011110757U1 (en) 2010-08-31 2016-02-23 Ellenberger & Poensgen Gmbh Device for switching a DC voltage system
US8929038B2 (en) 2010-08-31 2015-01-06 Ellenberger & Poensgen Gmbh Method and device for safely switching a photovoltaic system after differentiating the arc type
CN102565635A (en) * 2010-11-09 2012-07-11 太阳能安吉科技有限公司 Arc detection and prevention in power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
WO2012116722A1 (en) 2011-02-28 2012-09-07 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
WO2012159652A1 (en) 2011-05-20 2012-11-29 Sma Solar Technology Ag Method and system for detecting an arc fault in a power circuit
US9368652B2 (en) 2011-05-26 2016-06-14 Solarworld Ag Controlling the direct current flow in a photovoltaic system
DE102011076553A1 (en) 2011-05-26 2012-11-29 Solarworld Ag CONTROL OF THE DC FLOW OF A PHOTOVOLTAIC SYSTEM
WO2013004295A1 (en) 2011-07-04 2013-01-10 Sma Solar Technology Ag Method and system for detecting an arc fault in a photovoltaic power system
US9746528B2 (en) 2011-07-04 2017-08-29 Commissariat à l'énergie atomique et aux énergies alternatives Detection of electrical arcs in photovoltaic equipment
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
DE102012109749A1 (en) 2011-10-14 2013-04-18 Sma Solar Technology Ag Method and device for detecting an arc in a DC circuit
WO2013053912A1 (en) 2011-10-14 2013-04-18 Sma Solar Technology Ag Method and apparatus for detecting an arc in a dc circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
WO2014032650A1 (en) * 2012-08-27 2014-03-06 Newtos Ag Method and device for detecting arcs
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
DE102013108166B4 (en) * 2013-07-30 2016-03-31 Sma Solar Technology Ag DEVICE FOR COLLECTING AC POWER IN A DC CIRCUIT AND USING THE DEVICE
US10436821B2 (en) 2013-07-30 2019-10-08 Sma Solar Technology Ag Apparatus for detecting AC components in a DC circuit and use of the apparatus
DE102013108166A1 (en) * 2013-07-30 2015-02-05 Sma Solar Technology Ag DEVICE FOR DETECTING AC POWER IN A DC CIRCUIT
US9843288B2 (en) 2013-08-29 2017-12-12 Commissariat à l'énergie atomique et aux énergies alternatives Parallel electric arc detection across the main terminals of a photovoltaic installation
US10432139B2 (en) 2013-08-29 2019-10-01 Commissariat à l'énergie atomique et aux énergies alternatives Electric arc detection in photovoltaic installations
DE102014115779A1 (en) 2013-11-05 2015-05-07 Sma Solar Technology Ag APPARATUS AND METHOD FOR ARROW DETECTION
DE102014106130A1 (en) * 2014-04-30 2015-11-05 Phoenix Contact Gmbh & Co. Kg Short circuit sensor
US10310001B2 (en) 2014-04-30 2019-06-04 Phoenix Contact Gmbh & Co. Kg Short-circuit sensor
WO2016001824A1 (en) 2014-06-30 2016-01-07 Societa' Elettrica S.R.L. Device for protecting a direct current photovoltaic plant
WO2017036112A1 (en) * 2015-08-31 2017-03-09 上海正泰电源系统有限公司 Dc fault arc detection method
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN108809255A (en) * 2018-04-27 2018-11-13 国网安徽省电力有限公司六安供电公司 A kind of photovoltaic generating system DC side arc fault method for comprehensive detection and system
US11808821B2 (en) 2019-12-12 2023-11-07 Sma Solar Technology Ag Method of and system for detecting a serial arc fault in a power circuit
US11567142B2 (en) 2019-12-12 2023-01-31 Sma Solar Technology Ag Method of and system for detecting a serial arc fault in a power circuit
WO2021116399A1 (en) 2019-12-12 2021-06-17 Sma Solar Technology Ag A method and a system for series arc detection in a power circuit
US11067638B2 (en) 2019-12-12 2021-07-20 Sma Solar Technology Ag Method of and system for detecting a serial arc fault in a power circuit
CN116106731B (en) * 2022-09-08 2023-12-29 深圳深爱半导体股份有限公司 Relay testing device
CN116106731A (en) * 2022-09-08 2023-05-12 深圳深爱半导体股份有限公司 Relay testing device

Similar Documents

Publication Publication Date Title
WO1995025374A1 (en) Method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment, and a detection unit for said equipment
DE4235329C2 (en) Short-circuit device, in particular for extinguishing arcing faults in low-voltage switchgear for distributing electrical energy, arrangement and use therefor
EP2581941A2 (en) Photovoltaic system
CN107408814A (en) High voltage appearance Surge suppression system
DE4438593B4 (en) Arrangement for extinguishing arcs between conductors in switchgear or busbar trunking
CN205544206U (en) Intelligence PT harmonic elimination selects device of looks
CN105356441A (en) Intelligent PT harmonic elimination and phase selection method and device
DE102012109012A1 (en) Circuit arrangement for a solar power plant with a DC voltage source for an offset voltage
EP3616972A1 (en) Charging device and method for controlling a dccharging device outside the vehicle
EP0061652A1 (en) Overvoltage protection device for domestic electrical appliances
WO2020015820A1 (en) Method and device for detecting an error in a high-voltage direct current transmission line and generating an activating signal for a direct current circuit breaker
DE102008024348B4 (en) Method for reducing pulsed earth currents on a large electric device and compensating circuit for earth current displacement
WO1988007283A1 (en) Overcurrent protection device for power generating plants for residential and industrial buildings and similar buildings
DE102011011984B4 (en) Residual current protective device with frequency-dependent switching for voltage multiplication
EP2951047A2 (en) Overvoltage protection device for protecting an onboard power system of an electric vehicle from electrical overvoltage and corresponding method and electric vehicle having the overvoltage protection device
Deng et al. Fault protection in medium voltage dc microgrids
DE102016212944A1 (en) Power distribution system
EP0567773A2 (en) Multiphase switching system and generator system with the same
EP3991195A1 (en) Circuit breaker for direct currents
DE102015115284B3 (en) Protective device for an electrical power supply device and electrical power supply device with such a protective device
EP0053229B1 (en) Method and circuit for detecting and breaking disturbing electric arcs
EP3743980A1 (en) Changeover apparatus
KR101936103B1 (en) Dual Class SURGE and EMP Protector
US20230378746A1 (en) Electrical Power Transmission
DE102016217431A1 (en) Method for operating a safety device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase