WO1995019654A1 - Uninterruptible power supply - Google Patents
Uninterruptible power supply Download PDFInfo
- Publication number
- WO1995019654A1 WO1995019654A1 PCT/GB1995/000058 GB9500058W WO9519654A1 WO 1995019654 A1 WO1995019654 A1 WO 1995019654A1 GB 9500058 W GB9500058 W GB 9500058W WO 9519654 A1 WO9519654 A1 WO 9519654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power supply
- output
- coupled
- switching circuit
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/062—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/061—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
Definitions
- the present invention relates to uninterruptible power supplies and in particular, though not necessarily, to uninterruptible power supplies for computers.
- Uninterruptible power supplies are required for many computer installations such as network file servers, telecommunications equipment or other applications where a sudden loss of power would create an unacceptable and costly occurrence. Such occurrences include the loss of data during a data transfer or the shutdown of an entire business as a result of the loss of a computer.
- the power supply includes a battery providing electrical energy in the event of a power failure, an AC to DC converter and an inverter converting electrical energy back from DC to AC.
- the electrical device's internal power supply then receives the AC output from the uninterruptible power supply and in turn converts this to the various regulated and unregulated voltages required for the device.
- the AC to DC converter of the conventional uninterruptible power supply converts the AC power to DC power at approximately the battery voltage with a trickle charge being available to ensure that the battery, generally a lead acid battery, remains charged at all times.
- the inverter then reconverts the DC energy from the DC battery voltage back to an AC power supply approximating standard utility AC power.
- the internal DC voltage from the AC to DC converter drops below the battery output voltage. This is sensed and causes the battery to begin supplying the DC power to the inverter in place of the DC to AC converter.
- the battery continues to supply power until AC utility power is restored or the battery is discharged. While such arrangements work satisfactorily, they are relatively expensive and inefficient.
- an uninterruptible power supply comprising first and second inputs for receiving AC and DC power respectively, first and second switching circuits coupled to corresponding ones of the inputs, an additional auxiliary power supply coupled to said first and second inputs, and selection means for selectively providing power from at least one of the first switching circuit, the second switching circuit and the auxiliary power supply, to an output of the power supply.
- an uninterruptible power supply comprising: first and second inputs for receiving AC and DC power respectively; first and second switching circuits coupled to said first and second inputs respectively, the switching circuits being operable to enable either AC power or DC power to be selected for consumption; a transformer having a primary winding coupled to the output of the first switching circuit, a tertiary winding coupled to the output of the second switching circuit, and a secondary winding arranged to provide DC power to an output of the supply; and an auxiliary power supply including energy storage means, coupled to said first and second inputs to receive either AC or DC power therefrom and having an output coupled to the supply output through auxiliary switching means, which means is arranged to couple power stored in the storage means of the auxiliary power supply to the supply output when the power available on the AC and/or DC inputs falls below a predefined limit.
- an uninterruptible power supply comprising an auxiliary power supply for supplying power to an output through an auxiliary switching circuit, a transformer, an AC to DC converter for receiving AC power and coupled between an AC input and a primary winding of the transformer through a first switching circuit, and a DC to DC converter for receiving DC power and coupled between a DC input and a tertiary winding of the transformer through a second switching circuit, the transformer being provided with a secondary winding for coupling power from the primary and tertiary windings to said output, the uninterruptible power supply including a pulse width modulator coupled to the first, second and auxiliary switching circuits for controlling said switching circuits to regulate the outputs thereof.
- an uninterruptible power supply comprising: a connection to standard AC utility power and/or a connection to DC utility power in the voltage range 18V- 70V; an AC to DC converter; a pulse width modulator capable of driving three switching circuits which control a regulated output signal; a transformer having a primary and a tertiary winding, connected to respective switching circuits, and one or more secondary windings; and an internally connected auxiliary power source, such as a battery, coupled to provide DC power in the event that the AC to DC or DC to DC converters are unable to provide DC power because of a utility power failure.
- the conventional AC to DC converter need not be duplicated and the efficiency losses associated with the duplicated converters may be substantially eliminated.
- the internal power supply may thus facilitate reduced cost, improved efficiency and reduced power dissipation.
- the AC filter capacitor may be used to make possible the same power supply hold up as when in AC input mode.
- the input filter capacitor is shared by both modes.
- a battery small enough to fit within a standard personal computer power supply can provide auxiliary power to run a typical personal computer for six to seven minutes. Longer auxiliary power intervals can be achieved by utilising larger, external batteries with internal connection to the regulated power supply.
- Figure 1 shows an uninterruptible regulating supply embodying the present invention
- Figure 2A shows an AC to DC converter of the power supply of Figure 1.
- Figure 2B shows an alternative AC to DC converter of the power supply shown in Figure 1;
- Figure 2C shows a push-pull converter of the power supply of Figure 1;
- Figure 3 shows a charging circuit of the power supply of Figure 1;
- Figure 4 shows an isolation circuit of the power supply of Figure 1
- Figure 5 shows a half bridge switching circuit of the power supply of Figure 1;
- Figure 6 shows a secondary side current sensor of the power supply of Figure 1;
- Figure 7 shows a circuit for generating auxiliary supplies in a "sleep mode" of the power supply of Figure 1; and.
- FIG 8 shows, in schematic form, circuitry for controlling the gating of the PWM signals of the power of supply of Figure 1.
- an uninterruptible power supply UPS
- UPS uninterruptible power supply
- the double pole, single throw, main power switch 13 has a first terminal 13A shown closed against a contact 13B to conduct power from an AC utility input to an electromagnetic radiation interference (EMI) filter 14.
- EMI electromagnetic radiation interference
- a second terminal 13C is shown closed against a contact 13D to communicate a control signal, from a 10 second one-shot circuit 80, to respective enable inputs of a voltage regulator 68 and a power switch 82 as will be described hereinbelow. Opening of the main power switch 13 opens both the contacts 13B and 13C.
- an AC to DC converter and switch circuit 16 receives AC power of 110V or 240V through the EMI filter 14 and uses either a boost regulator circuit to full wave rectify the AC power and drive DC power rails 20, 22 with unreferenced 385 volts DC ( Figure 2A) or a conventional doubler circuit to rectify the AC power and drive the DC power rails 20, 22 with unreferenced 300 volts DC ( Figure 2B) .
- Figure 2B circuit is fed from a 110V supply one of its capacitors 106, 107 is shorted out by a switch (not shown) .
- a half bridge switching circuit or inverter XI includes transistors which selectively and alternately couple the primary winding terminal 30 of a transformer 32 via diodes 87, 88 to the plus and minus DC voltage rails 20, 22 in response to pulse width modulated switching control signals generated by a pulse width modulation unit 52 and transmitted to the switching circuit XI via an isolation transformer 34.
- the primary winding P of the transformer 32 is thus continually energised with pulse width modulated plus and minus 150 volt alternating power signals.
- the duty cycle of the pulse width modulation is selected to maintain a selected reference voltage at one of the outputs of the power supply 10.
- a capacitor 17 is coupled across the output lines of the AC to DC converter, before the switching circuit XI, and acts to maintain the voltage at 300V, or 385V, for a short time following AC power loss. This prevents the auxiliary power supply from switching in where the AC power loss or drop occurs only for a very short period.
- the transformer 32 has two sets of centre tapped secondary windings 35, 36 each arranged as a push-pull winding pair. The first set of secondary windings 35 is selectively wound to produce a 5 volt output while the second set of secondary windings 36 is wound to produce plus and minus 12 volt outputs.
- the first set of secondary windings 35 are coupled through a pair of rectifying diodes to a winding 40 of a power distributing inductor 42 and then to a +5 volt "regulated" output.
- the inductor 42 is a conventional power distributing powdered permalloy core inductor which enables the regulated voltages to be maintained notwithstanding unequal current drains from the different regulated voltage outputs.
- a filter capacitor 50 interconnects the +5 volt and common terminals of the secondary winding 35.
- a signal +5VREF is taken from the +5 volt terminal and is returned as a reference input, together with a current feedback signal from a circuit Isense-l arranged to sense the current flowing in the primary winding of the transformer 32, to a pulse width modulation control circuit which forms part of the unit 52.
- the PWM circuit (UC3846) of unit 52 is commercially available in integrated form from Texas Instruments Corporation and provides all of the timing and control signals required to provide pulse width modulated switching signals to maintain the 5 volt output of secondary winding 35 at the desired 5 volt reference level.
- the switching signals are coupled through the isolation transformer 31 to the inverter XI.
- the second set of secondary windings 36 of the transformer 32 are coupled through a pair rectifying diodes to an inductor winding 46 of the inductor 42 to a +12 volt output and through a further pair of rectifying diodes and a winding 48 of the inductor 42 to an opposite polarity -12 volt output.
- a further winding 44 of the inductor 42 has a number of turns selected to provide an approximately 30 volt charging voltage which is communicated through a rectifying diode 60 and a filter capacitor 62 which provides a connection to ground.
- This provides a filtered charging voltage signal which is communicated through a one amp current limiting voltage regulator 68 to a positive terminal (via line 5) of an auxiliary power supply, which in this case is a pair of series connected 12 volt lead acid batteries 64, 66.
- the voltage regulator 68 is designed to provide a battery float voltage of approximately 27.4 volts which is sufficient to maintain a substantially full charge on the normal 24 volt battery 64, 66 without inflicting overcharge damage.
- AC power is received through the main power switch 13 and is passed through the EMI filter 14 to the AC to DC converter 16 and the switching circuit XI.
- the AC to DC converter 16 converts the AC input power to either a 300 volt or a 385 volt DC rail voltage which is applied to the primary winding P of the transformer 32 with a duty cycle sufficient to maintain the +5 volt secondary output at the reference voltage of 5 volts. If the reference voltage drops slightly the pulse width modulator of unit 52 increases the duty cycle so as to increase the power through transformer 32 to maintain the regulated output voltage. Similarly, if the +5 volt reference should increase slightly, the duty cycle level is decreased until the output voltage returns to the +5 volt reference level.
- winding 44 of the power balancing inductor 42 provides a trickle charge signal which ensures that the batteries 64, 66 remain fully charged and ready for standby operation.
- An internal power supply circuit 128 receives half wave rectified power from a diode 72 connected to secondary winding 36 which operates a low voltage detector or comparator 70, and provides power (V AUX) to various locations within the power supply circuit 10.
- a direct tap-off smoothed by a lO ⁇ F capacitor 74 provides a substantially unregulated voltage 25VUR whilst a zener diode 128A and filter capacitor 128B provide a regulated 12 volt supply for low power usage.
- Comparator 70 has a first input coupled to the +5VREF reference voltage generated from the secondary winding 35 and a second input derived from V AUX which is delivered by the diode 72 via a pair of voltage divider resistors 76, 78 having values of 47K and 22K ohms respectively.
- the voltage divider circuit causes the voltage on the second input of the comparator to fall below 5V, and the comparator 70 to be actuated, when the nominal 25 volt output of the diode 72 drops below 15.68 volts.
- the filter capacitor 74 has a value of lO ⁇ F to maintain the output of diode 72 above 15.68 volts under normal operating conditions, but to quickly discharge and reduce the output of diode 72 below 15.68 volts rapidly after a termination of input power. Capacitor 74 is sufficiently small to permit the power loss to be detected before the 5 volt and 12 volt regulated outputs drop below specification requirements, which are typically plus or minus five percent.
- the output of comparator 70 goes high to trigger a 10 second one-shot multi-vibrator circuit 80.
- the one- shot circuit 80 sets and maintains an output signal for a fixed time of approximately 10 seconds.
- This output signal is coupled via unit 52 as an enable input to a power switch 82 and as a disable input to the battery recharging voltage regulator 68 (since there is a degree of power loss in the battery charging circuit it is inefficient to use the battery to recharge itself) .
- the power switch 82 When enabled by the one-shot circuit 80, the power switch 82 operates in response to the pulse width control signals from the pulse width modulator of unit 52 to alternately drive opposite sides of the 12 volt secondary winding 36 of the transformer 32 with the nominal 24 volt auxiliary power from the batteries 64, 66.
- the pulse width modulator When in this backup mode, the pulse width modulator is controlled by a current feedback signal 13 from a sensing circuit Isense3 arranged to sense the current drawn from the batteries rather than by the signal II from Isense-1.
- the power supplied to the secondary winding 36 of the transformer 32 from batteries 64, 66 is reflected through the transformer 32 to the other secondary winding 35 and through the transformer primary winding P back through the rectifying diodes 87, 88 to the plus and minus DC voltage power rails 20, 22.
- the second pole 13C, 13D of the mains power switch 13 serves to prevent the one-shot circuit 80 from automatically commanding auxiliary power when the main power switch 13 is turned off. Without the second pole 13C, 13D, the comparator 70 would treat this loss or drop of power the same way as it would a power failure and cause the one-shot circuit output signal to command use of auxiliary power.
- Duplication of circuitry is avoided by using the same pulse width modulator to regulate the secondary winding voltages during battery operation and normal AC to DC utility power operation. Furthermore, by driving the secondary winding 36 under battery power the use of additional windings, or even additional transformers, to couple the battery power into the regulated voltage windings is avoided. The uninterruptible feature of the power supply is thus provided by internal connection to a regulating AC source power supply without unnecessary additional cost or loss of power efficiency.
- One of the problems associated with a power supply having internally connected auxiliary power is detection of a return of AC utility power. This is handled automatically by the comparator 70 and the 10 second one- shot circuit 80 in the present embodiment. As indicated previously, the 10 second one-shot circuit 80 enables the power switch 82 to provide battery power to the secondary winding 36 for a period of 10 seconds. At the end of that time, if AC utility power has not been restored, the energy stored by the filter capacitors of the AC to DC converter 16 will begin to dissipate and the nominal 25 volt output voltage from diode 72 and capacitor 74 will begin to drop. As soon as this voltage drops below 15.68 volts the comparator 70 will again become actuated and will activate the one-shot circuit 80 for another 10 second time interval.
- a test is thus conducted for return of AC utility power every 10 seconds. If AC power returns, the control voltage will not drop when the 10 second signal from the one-shot circuit 80 terminates and standby power will be automatically discontinued. The 10 second cycles will thus continue indefinitely until either the batteries 64, 66 become discharged or AC power is returned.
- the auxiliary power source for the uninterruptible power supply 10 is thus automatically internally connected upon loss of AC utility power and automatically disconnected upon restoration of the utility AC power. All this occurs with no disruption of the regulated output voltages as these voltages are maintained within designed specification limits.
- FIG. 2B the AC to DC converter 16 and inverter XI are shown in detail.
- the AC to DC converter section 100 and the inverter section 102 are responsive to control signals transmitted via the isolation transformer 31.
- a pair of rectifying diodes 104, 105 charge holding capacitors 106, 107 for the DC voltage rails 20, 22.
- the capacitors have their junction connected via a further capacitor to the primary winding P and are functionally equivalent to the capacitor 17 of Figure 1, while two transistors 110, 111 operate as inverters to selectively couple the primary winding P to the high and low voltage rails 20, 22 respectively.
- Figure 2A is similar to Figure 2B but uses a full wave rectifying bridge and inductor LI at the input end of the convertor.
- the voltage regulator 68 is shown in somewhat greater detail in Figure 3, to which reference is now made.
- the disabling of the voltage regulator which is formed by a LM317MP circuit 122 is accomplished by connecting the ground input (ADJ) to a voltage divider circuit having a 232 ⁇ , a 3.01K ⁇ and a 1.96K ⁇ resistor chain 115, 116, 117 connected in series between the output voltage line (VO) and ground.
- the ground terminal of the LM317MP circuit is connected between the 232 ⁇ resistor 115 and the 3.01K ⁇ resistor 116.
- a transistor 120 is turned on to short out the 1.96K ⁇ resistor 117. This pulls the voltage of the ground terminal of the LM317MP voltage regulator circuit 122 sufficiently low that the circuit
- an isolation circuit 130 forming part of unit 52 which enables the pulse width modulator to have an open collector output Cl connected to isolation transformer 31 and power switch 82 by separate connections having different pull-up voltages.
- a similar isolation circuit is connected to the collector output C2 to provide the other connection to transformer 31 and power switch 82.
- the Cl output of the pulse width modulator is connected to a cathode of a Schottky diode 132 and through a pull- up resistor 134 to 12 volts provided by voltage supply circuit 128.
- the annode of the Schottky diode 132 is connected through a voltage divider resistor 136 to ground, through a voltage divide resistor 138 to the 25 VUR terminal, and to the base of a transistor 140.
- Schottky diode 132 has a sufficiently low voltage drop that when output Cl turns on, transistor 140 turns off.
- the collector of the transistor 140 thus represents a logical inversion of the output terminal Cl.
- the voltage dividers 136, 138 are selected to maintain transistor 140 biased on, when the output Cl presents a high impedance.
- a double pole, single throw, DC power switch X10 has a first terminal X10A shown closed against a contact X10B to conduct power from the DC input in the voltage range 18-70V to a small capacitive EMI filter Xll.
- the second pole contacts X10C, X10D of switch X10 are wired in a similar fashion to the AC power switch 13 to the output of the one-shot 80.
- a DC to DC converter 15 connected to the output of filter Xll boosts the DC I/P, typically 18V, to approximately 100V on line 3.
- a push-pull switching circuit X5 shown in more detail in Figure 2C, is coupled to the converter 15 to receive the output therefrom and includes transistors Q3 and Q4 which selectively and alternately couple winding terminals X12, X13 of a tertiary winding T of the transformer 32 to the isolated power ground in response to pulse width modulated switching control signals generated by the pulse width modulator and transmitted via an isolation transformer X14.
- the tertiary winding T of the transformer 32 has a centre tap connected to the 100V on line 3 and is thus continually energised with a pulse width modulated 100V DC signal.
- the duty cycle of the pulse width modulation is selected to maintain a selected reference voltage at one of the outputs of the power supply 10.
- the pulse width modulator circuit of unit 52 is controlled by a current sensing circuit Isense2 coupled to the tertiary winding of the transformer which delivers a current feedback signal 12.
- a feature of the DC mode of operation is its use of the AC input filter capacitor 17 to achieve the same hold up time as is possible in the AC mode of operation.
- the power supplied to the tertiary winding T of the transformer 32 is reflected through the transformer primary winding P, back through the rectifying diodes 87, 88, to the plus and minus DC voltage power rails 20, 22 so that the input filter capacitor 17 is fully charged.
- the need for a second hold-up capacitor in the DC input circuit is therefore eliminated.
- a comparator in the detection and control circuit 52 senses (via the input DC detect) any abnormalities in the DC input and switches to AC mode when the DC input falls outwith acceptable limits. If the DC recovers and is within specification then control logic returns operation to the DC mode; if not then the supply enters a backup mode. If the DC recovers whilst in backup mode then the supply will return to DC mode.
- the DC mode makes use of the same control circuitry on the secondary side of the transformer described with reference to the AC mode.
- Figure 5 shows an alternative configuration of the half bridge switching circuit XI, having a clamping winding P 1 connected between clamping diodes 104, 105 and the junction of storage capacitors 106, 107 which prevents magnetic saturation of the main transformer caused by the pulse by pulse nature of current mode control.
- Figure 1 shows the use of three separate current sensors Isensel, 2, 3 for AC mode, DC mode and Backup mode respectively, each delivering to unit 52. These can be combined as shown in Figure 6 to produce secondary side current sensing. This has the advantage of having all current sensing on the secondary side and the magnitude of the current sense signal irrespective of the mode of operation is always the same. There is no need to match up the current sense signals for each of the three modes.
- the embodiment shown in Figure 1 can be adapted for voltage mode operation by changing the push-pull switching circuit X5 to a half bridge switching circuit, removing the current sensors Isensel, 2, 3, and the adding a voltage feed-forward signal to the PWM part of the control circuitry 52 derived from the peak voltage presented by the winding 35 to the rectifying diode of the 5V output.
- the 1 amp voltage regulator 68 may be adapted to charge a Nickel Cadmium battery pack whilst monitoring battery voltage and temperature.
- FIG. 7 shows the adaptation of the boost inductors LI and L2 of convertor 16 and DC/DC convertor 15 to have auxiliary windings which provide auxiliary power when the main outputs from the UPS 10 are off.
- These power outputs are diode mixed by a diode and capacitor assembly 160 so that as long as one AC or DC input is present then auxiliary power is available. They are also mixed with V AUX such that V AUX will take over supplying auxiliary power when the main outputs from the UPS 10 are enabled.
- Figure 8 shows a configuration of unit 52 where the PWM is gated out to the required switching network depending on which one of the three modes is selected.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95905696A EP0739546A1 (en) | 1994-01-12 | 1995-01-12 | Uninterruptible power supply |
US08/669,552 US5781422A (en) | 1994-01-12 | 1995-01-12 | Uninterruptible power supply with AC and DC power inputs |
AU14207/95A AU1420795A (en) | 1994-01-12 | 1995-01-12 | Uninterruptible power supply |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9400499A GB9400499D0 (en) | 1994-01-12 | 1994-01-12 | Improved uninterruptible power supply |
GB9400499.1 | 1994-01-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995019654A1 true WO1995019654A1 (en) | 1995-07-20 |
Family
ID=10748689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1995/000058 WO1995019654A1 (en) | 1994-01-12 | 1995-01-12 | Uninterruptible power supply |
Country Status (5)
Country | Link |
---|---|
US (1) | US5781422A (en) |
EP (1) | EP0739546A1 (en) |
AU (1) | AU1420795A (en) |
GB (1) | GB9400499D0 (en) |
WO (1) | WO1995019654A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003038984A1 (en) * | 2001-11-01 | 2003-05-08 | Inovatech Limited | Power supply |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9500969D0 (en) * | 1995-01-18 | 1995-03-08 | Magnum Power Solutions Ltd | Uninterruptible power supplies |
US6230710B1 (en) * | 1996-06-21 | 2001-05-15 | Integrated Medical Systems, Inc. | Electrical power system for a self-contained transportable life support system |
US5872984A (en) * | 1997-04-01 | 1999-02-16 | International Business Machines Corporation | Uninterruptible power supply providing continuous power mainstore function for a computer system |
JP3224756B2 (en) * | 1997-04-16 | 2001-11-05 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Power supply device with internal AC adapter and portable electronic device |
US5942811A (en) * | 1997-07-28 | 1999-08-24 | Sony Corporation | Apparatus and method for extending the supply of reserved power during a line power interruption |
US6098175A (en) * | 1998-02-24 | 2000-08-01 | Smartpower Corporation | Energy-conserving power-supply system |
US6311279B1 (en) * | 1998-10-27 | 2001-10-30 | Compaq Computer Corporation | Network node with internal battery backup |
US6175510B1 (en) * | 1999-04-06 | 2001-01-16 | Pit-Kin Loh | Direct conversion uninterruptible power supply |
US6175166B1 (en) | 1999-06-14 | 2001-01-16 | Abb Power T&D Company Inc. | System for mitigating voltage disturbances and interruptions for power distribution applications |
US6819576B2 (en) | 1999-08-13 | 2004-11-16 | Powerware Corporation | Power conversion apparatus and methods using balancer circuits |
US6160722A (en) * | 1999-08-13 | 2000-12-12 | Powerware Corporation | Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof |
US6483730B2 (en) | 1999-08-13 | 2002-11-19 | Powerware Corporation | Power converters with AC and DC operating modes and methods of operation thereof |
US7933780B2 (en) * | 1999-10-22 | 2011-04-26 | Telaric, Llc | Method and apparatus for controlling an infusion pump or the like |
US6577106B2 (en) | 2000-11-30 | 2003-06-10 | Honeywell International Inc. | Multi-functional AC/DC converter |
JP2002171692A (en) * | 2000-12-06 | 2002-06-14 | Hitachi Ltd | Dc power supply |
US6330174B1 (en) * | 2001-01-24 | 2001-12-11 | Hong-Ching Yeah | High efficiency uninterruptible power supply |
EP1227565A1 (en) * | 2001-01-25 | 2002-07-31 | Marconi Communications GmbH | Power-supply arrangement |
EP1598923A3 (en) | 2001-10-31 | 2008-03-26 | Mobility Electronics, Inc. | Dual input AC and DC power supply having a programmable DC output utilizing a secondary buck converter |
WO2003055047A2 (en) * | 2001-12-05 | 2003-07-03 | Montante Charles J | Dual input voltage adapter system and method |
US7343535B2 (en) * | 2002-02-06 | 2008-03-11 | Avago Technologies General Ip Dte Ltd | Embedded testing capability for integrated serializer/deserializers |
US7412208B1 (en) * | 2002-03-11 | 2008-08-12 | Agilent Technologies, Inc. | Transmission system for transmitting RF signals, power and control signals via RF coaxial cables |
US20060007718A1 (en) * | 2003-05-27 | 2006-01-12 | Zippy Technology Corp. | Power supply apparatus providing medium voltage direct current |
US20050063648A1 (en) * | 2003-09-19 | 2005-03-24 | Wilson Robert Edward | Alignment post for optical subassemblies made with cylindrical rods, tubes, spheres, or similar features |
US7520679B2 (en) * | 2003-09-19 | 2009-04-21 | Avago Technologies Fiber Ip (Singapore) Pte. Ltd. | Optical device package with turning mirror and alignment post |
US20050063431A1 (en) * | 2003-09-19 | 2005-03-24 | Gallup Kendra J. | Integrated optics and electronics |
US6982437B2 (en) * | 2003-09-19 | 2006-01-03 | Agilent Technologies, Inc. | Surface emitting laser package having integrated optical element and alignment post |
US6953990B2 (en) * | 2003-09-19 | 2005-10-11 | Agilent Technologies, Inc. | Wafer-level packaging of optoelectronic devices |
US20050076254A1 (en) * | 2003-10-01 | 2005-04-07 | Robinson Michael A. | Sleep recovery circuit and method |
US7653827B2 (en) * | 2004-02-11 | 2010-01-26 | Hewlett-Packard Development Company, L.P. | Power distribution system having redundant mixed sources and method |
US20050213995A1 (en) * | 2004-03-26 | 2005-09-29 | Myunghee Lee | Low power and low jitter optical receiver for fiber optic communication link |
CA2502798C (en) * | 2004-03-31 | 2011-06-14 | University Of New Brunswick | Single-stage buck-boost inverter |
US20060119104A1 (en) * | 2004-12-07 | 2006-06-08 | Wall Jerrold R | Portable wind up DC generator |
FR2885459B1 (en) * | 2005-05-03 | 2007-08-24 | Air Liquide | POWER CIRCUIT WITHOUT INTERRUPTION |
US7468595B2 (en) * | 2005-07-26 | 2008-12-23 | Eaton Corporation | System and method of controlling the start-up of an adjustable speed motor drive based sinusoidal output power conditioner |
CN100483906C (en) * | 2005-12-16 | 2009-04-29 | 鸿富锦精密工业(深圳)有限公司 | Three-sectional switch circuit and power-supply circuit-thereby |
US7748623B2 (en) * | 2006-11-08 | 2010-07-06 | Battelle Memorial Institute | Container screener |
US7818840B2 (en) | 2007-11-09 | 2010-10-26 | Integrated Medical Systems, Inc. | Foldable, portable trauma treatment and monitoring patient platform |
US8033281B2 (en) * | 2007-11-09 | 2011-10-11 | Todd Douglas Kneale | Modular transportable life support device |
US7888818B2 (en) * | 2008-02-22 | 2011-02-15 | Liebert Corporation | Substation based high voltage uninterruptible power supply |
US20100011228A1 (en) * | 2008-07-09 | 2010-01-14 | Chien-Hung Chen | Power supply |
ES2571939T3 (en) * | 2008-11-21 | 2016-05-27 | Otis Elevator Co | Operation of a three-phase regenerative drive from mixed DC and AC single phase AC power supplies |
US20100290258A1 (en) * | 2009-05-17 | 2010-11-18 | CapTech Development Corporation | Inverter Topology For Improved Efficiency And Reduced Harmonic Distortion |
KR101649268B1 (en) * | 2009-10-14 | 2016-08-18 | 삼성전자주식회사 | Switching mode power supply and fusing apparatus |
WO2012077165A1 (en) * | 2010-12-08 | 2012-06-14 | パナソニック株式会社 | Power supply circuit, power supply method and power supply system |
US9450452B2 (en) | 2012-04-03 | 2016-09-20 | Micorsoft Technology Licensing, LLC | Transformer coupled current capping power supply topology |
CN105379045B (en) * | 2013-05-29 | 2018-11-06 | 施耐德电气It公司 | LPS architectures for ups system |
EP3053248A4 (en) | 2013-09-30 | 2017-06-07 | Schneider Electric IT Corporation | Ups for mixed ac and dc loads |
US9979218B2 (en) | 2013-11-22 | 2018-05-22 | Schneider Electric It Corporation | LPS architecture for UPS systems |
US10033210B2 (en) | 2014-01-30 | 2018-07-24 | Micrsoft Technology Licensing, LLC | Power supply for use with a slow-response power source |
US9831717B2 (en) * | 2015-09-16 | 2017-11-28 | General Electric Company | Systems and methods for operating uninterruptible power supplies |
US10998746B2 (en) | 2017-04-03 | 2021-05-04 | Smart Charging Technologies Llc | Direct current uninterruptible power supply with AC power supply and related methods |
US10923947B2 (en) | 2017-04-03 | 2021-02-16 | Smart Charging Technologies Llc | Direct current uninterruptible power supply with cloud server and related methods |
US10256731B2 (en) | 2017-04-17 | 2019-04-09 | Simmonds Precision Products, Inc. | High-efficiency holdup circuit for switch-mode power supply |
CN113595381B (en) * | 2021-08-02 | 2024-04-02 | 成都迈林特科技有限公司 | Expandable airborne power supply device containing TVS anti-interference circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2570918A1 (en) * | 1984-09-27 | 1986-03-28 | Ceag Licht & Strom | Discharge lamp ballast circuit |
EP0243061A2 (en) * | 1986-04-17 | 1987-10-28 | AT&T Corp. | Off-line switcher with battery reserve |
US4719550A (en) * | 1986-09-11 | 1988-01-12 | Liebert Corporation | Uninterruptible power supply with energy conversion and enhancement |
WO1991007803A1 (en) * | 1989-11-13 | 1991-05-30 | National Csf Corporation | Uninterruptible power supply |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4564767A (en) * | 1983-11-07 | 1986-01-14 | Tii Industries, Inc. | Uninterruptible switching power supply system |
US4672228A (en) * | 1985-09-03 | 1987-06-09 | Pioneer Magnetics, Inc. | Battery backup system for switched power supply |
US5319249A (en) * | 1992-08-07 | 1994-06-07 | The United States Of America As Represented By The Secretary Of The Navy | Power conversion system modification to permit use of DC power source |
-
1994
- 1994-01-12 GB GB9400499A patent/GB9400499D0/en active Pending
-
1995
- 1995-01-12 EP EP95905696A patent/EP0739546A1/en not_active Withdrawn
- 1995-01-12 WO PCT/GB1995/000058 patent/WO1995019654A1/en not_active Application Discontinuation
- 1995-01-12 US US08/669,552 patent/US5781422A/en not_active Expired - Fee Related
- 1995-01-12 AU AU14207/95A patent/AU1420795A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2570918A1 (en) * | 1984-09-27 | 1986-03-28 | Ceag Licht & Strom | Discharge lamp ballast circuit |
EP0243061A2 (en) * | 1986-04-17 | 1987-10-28 | AT&T Corp. | Off-line switcher with battery reserve |
US4719550A (en) * | 1986-09-11 | 1988-01-12 | Liebert Corporation | Uninterruptible power supply with energy conversion and enhancement |
WO1991007803A1 (en) * | 1989-11-13 | 1991-05-30 | National Csf Corporation | Uninterruptible power supply |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003038984A1 (en) * | 2001-11-01 | 2003-05-08 | Inovatech Limited | Power supply |
Also Published As
Publication number | Publication date |
---|---|
US5781422A (en) | 1998-07-14 |
AU1420795A (en) | 1995-08-01 |
EP0739546A1 (en) | 1996-10-30 |
GB9400499D0 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5781422A (en) | Uninterruptible power supply with AC and DC power inputs | |
US5289045A (en) | Uninterruptible power supply | |
US5909360A (en) | Uninterruptible power supplies | |
US8659263B2 (en) | Power supply circuit having low idle power dissipation | |
KR100707763B1 (en) | Start-up circuit for flyback converter having secondary pulse width modulation control | |
US4564767A (en) | Uninterruptible switching power supply system | |
US5610451A (en) | Uninterruptible power supply with power factor correction | |
EP0696831A2 (en) | Modular power supply system | |
EP0479453A2 (en) | Single conversion power factor correction using sepic converter | |
EP0866538A2 (en) | Uninterruptible power supply | |
CA2258340A1 (en) | Uninterruptible power supply | |
EP0592977B1 (en) | Single transformer switching regulator | |
EP1034614B1 (en) | Frequency converter and ups employing the same | |
US5737209A (en) | Power quality and demand management module | |
US20220376548A1 (en) | Online interactive uninterruptible power supply and method for control thereof | |
WO1999039427A1 (en) | Flyback converter with limited output power | |
KR100661470B1 (en) | Un-interrupted Switching Mode Power Supply | |
JP3425596B2 (en) | High power factor switching power supply | |
GB2243961A (en) | DC-DC Power supply circuit | |
CN215580523U (en) | Medical equipment and power supply management system thereof | |
KR20020015465A (en) | Uninterruptable switching mode power supply | |
JPH09289772A (en) | Uninterruptible switching regulator | |
JP2825874B2 (en) | Battery charging / discharging circuit for power supply unit | |
JP2974114B2 (en) | converter | |
WO2024042427A1 (en) | Battery charger and method of charging a battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995905696 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995905696 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08669552 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995905696 Country of ref document: EP |