WO1995018195A1 - Optically clear hydrophobic coating composition - Google Patents
Optically clear hydrophobic coating composition Download PDFInfo
- Publication number
- WO1995018195A1 WO1995018195A1 PCT/US1994/014688 US9414688W WO9518195A1 WO 1995018195 A1 WO1995018195 A1 WO 1995018195A1 US 9414688 W US9414688 W US 9414688W WO 9518195 A1 WO9518195 A1 WO 9518195A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polysiloxane
- range
- group
- optically clear
- recited
- Prior art date
Links
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 41
- 239000008199 coating composition Substances 0.000 title claims description 56
- -1 polysiloxane Polymers 0.000 claims abstract description 162
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 158
- 229920000728 polyester Polymers 0.000 claims abstract description 61
- 238000000576 coating method Methods 0.000 claims abstract description 57
- 239000011248 coating agent Substances 0.000 claims abstract description 53
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000002253 acid Substances 0.000 claims abstract description 29
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 27
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 21
- 125000003118 aryl group Chemical group 0.000 claims abstract description 15
- 229920000642 polymer Polymers 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims description 37
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- 150000001335 aliphatic alkanes Chemical group 0.000 claims description 12
- 230000003301 hydrolyzing effect Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 7
- 150000007522 mineralic acids Chemical class 0.000 claims description 5
- 238000007865 diluting Methods 0.000 claims description 3
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 31
- 239000004615 ingredient Substances 0.000 abstract description 26
- 238000006068 polycondensation reaction Methods 0.000 abstract description 19
- 239000011253 protective coating Substances 0.000 abstract description 15
- 239000000126 substance Substances 0.000 abstract description 10
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 9
- 230000007062 hydrolysis Effects 0.000 abstract description 8
- 238000006116 polymerization reaction Methods 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 18
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 239000011260 aqueous acid Substances 0.000 description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 6
- 229910008051 Si-OH Inorganic materials 0.000 description 5
- 229910006358 Si—OH Inorganic materials 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 239000004566 building material Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910003849 O-Si Inorganic materials 0.000 description 4
- 229910003872 O—Si Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910002808 Si–O–Si Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102200014657 rs121434437 Human genes 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- JLGNHOJUQFHYEZ-UHFFFAOYSA-N trimethoxy(3,3,3-trifluoropropyl)silane Chemical compound CO[Si](OC)(OC)CCC(F)(F)F JLGNHOJUQFHYEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/30—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/46—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
- C04B41/48—Macromolecular compounds
- C04B41/4838—Halogenated polymers
- C04B41/4842—Fluorine-containing polymers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/46—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
- C04B41/49—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
- C04B41/4905—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
- C04B41/4988—Organosilicium-organic copolymers, e.g. olefins with terminal silane groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
Definitions
- This invention relates to the formation of an optically clear coating that serves to reduce the surface energy of a substrate for purposes of promoting liquid run-off, enhancing the substrate's weather, heat and chemical resistance.
- Protective coatings are needed to protect a variety of substrates from premature deterioration and destruction due to the particular environment that the substrate is subjected to.
- Typical substrates for which such protection is desired may include building materials such as masonry, wood, and steel. Applying a protective coating onto these materials forms a barrier between the surface of the substrate and the environment to protect the underlying material from deterioration which, if left unchecked, could ultimately result in not only aesthetic damage but in the mechanical failure of the substrate.
- Coatings used to protect such building materials are known in the art and typically take the form of a water-repellant composition that is applied to the surface of the substrate in liquid form and then allowed to cure.
- Such water-repellant coatings are known to comprise siloxane compounds which participate in polycondensation reactions upon application to the substrate surface via evaporation to form a strong polymer barrier.
- These coatings sire typically applied to the surface of the substrate in relatively thick films to form a substantial physical barrier between the environment and the substrate surface.
- These coatings may also be colored or colorless, depending on the need to preserve the underlying aesthetic features of the substrate. For example, when using a protective coating to protect a substrate surface such as wood used for outdoor furniture or decks and the like it is desirable that the coating be clear to preserve the aesthetic features of the wood surface.
- Protective coatings are also needed to protect substrates other then the typical building materials mentioned above.
- protective coatings may be desired to protect the surface of objects made from plastic or glass from the harmful effects of weather, heat and chemicals.
- the known protective coatings designed for use with the above mentioned building materials may not be well suited for providing the desired protection to the surface of such materials.
- Objects made from plastic or glass materials are typically made from such material due to either a particular aesthetic or functional purpose.
- glass and plastic materials such as Plexiglass and the like are commonly used to make windows for homes, buildings, automobiles, or airplanes and the like.
- the desired feature of a window is the ability to look through it to view an object on the other side. Windows are typically installed to separate an indoor environment from an outdoor environment while preserving the ability to view one environment from the other. Accordingly, at least one surface of the window is exposed to the same elements that are known to cause weather damage and deterioration in other building materials.
- Glass is inherently weather, chemical and heat resistant, therefore, a protective coating to enhance such resistance is not desirable.
- plastic materials do not display the same degree of weather, chemical and heat resistance as glass and, may therefore require treatment with a protective coating to protect the surface of the plastic from deterioration.
- a factor known to adversely affect the usefulness of windows made from either clear plastic or glass is the accumulation of water on the surface of the window. Water accumulation on the surface of a window, due to rain or contact with a body of water, makes viewing objects though the glass difficult, typically distorting the object on the other side.
- a protective coating is needed to both protect the surface of clear plastic materials from the harmful effects of weather, chemicals and heat, and minimize the ability of substrate surfaces to accumulate water. It is desirable that the protective coating be optically clear so that it will neither impair the function of the substrate surface nor detract from the aesthetic features of the underlying substrate surface. It is desirable that the protective coating be useful to protect a variety of substrates, as well as glass and clear plastic, where optical clarity is required for purposes of looking through the substrate surface or for retaining the underlying aesthetic features of the substrate surface.
- the protective coating be capable of retaining properties of optical clarity and hydrophobicity upon submersion in water. It is desirable that the protective coating be easy to apply without special equipment or procedures.
- This invention provides such a protective coating that is both optically clear and hydrophobic.
- the optically clear hydrophobic coating is prepared by combining in the presence of water a fluorinated polysiloxane, a polysiloxane, a polyester modified polysiloxane, an acid, and an alcohol.
- the fluorinated polysiloxane has the formula
- R4 may be selected from the group including hydroxy groups or hydrolyzable side groups including alkyl, aryl, or alkoxy groups, and where each R4 group may either be the same or different than other R4 groups, and where the alkyl, aryl, or alkoxy groups comprise in the range of from one to four carbon atoms, and where R5 may comprise an alkane group having in the range of from two to four carbon atoms.
- the polysiloxane combined with the fluorinated polysiloxane has the formula
- R6 comprises an alkane having in the range of from one to three carbon atoms, and where each R6 group may be the same or different, and where n j is in the range of from one to five.
- polyester modified polysiloxane combined with the polysiloxane and fluorinated polysiloxane has the formula
- R7 is selected from the group consisting of alkyl, aryl, and alkoxy groups having in the range of from one to six carbon atoms
- R8 comprises an alkyl group having in the range of from one to three carbon atoms
- r ⁇ is in the range of from one to five
- X comprises a polyester group.
- the polyester group has the formula
- R9 is selected from the group consisting of a hydroxy or an alkoxy group, and where the alkoxy group comprises in the range of from one to five carbon atoms, and where r-3 is in the range of from one to two.
- the polysiloxane ingredients are blended together in the desired proportions and combined with an acid and alcohol mixture.
- the polysiloxane ingredients undergo hydrolytic polycondensation and polymerization to form a fluorinated polyester modified polysiloxane polymer that when applied to a substrate surface cures at ambient temperatures to form a durable, weather, chemical and heat resistant, optically clear hydrophobic coating.
- An optically clear coating for decreasing the surface energy of a substrate surface and enhancing the weather, heat and chemical resistance of the substrate may have as significant ingredients a fluorinated polysiloxane, a polysiloxane, a polyester modified polysiloxane, water, an acid, and an alcohol.
- a preferred optically clear coating composition may be prepared according to principles of this invention by combining in the presence of water: (a) a fluorinated polysiloxane having the formula
- R4 may be selected from the group including hydroxy groups or hydrolyzable side groups including alkyl, aryl, or alkoxy groups, and where each R4 group may either be the same or different than other- R4 groups, and where the alkyl, aryl, or alkoxy groups comprise in the range of from one to four carbon atoms, and where R5 may comprise an alkane group having in the range of from two to four carbon atoms; with (b) a polysiloxane having the formula
- R6 may comprise an alkane having in the range of from one to three carbon atoms, and where each R6 group may be the same or different than the other R6 group, where n ⁇ may be in the range of from one to five, and where n ⁇ is an average number of repeating units.
- n 3
- some of the polysiloxane molecules may have one or two repeating units and some may have four or five, but most have three and the average is about three; with (c) a polyester modified polysiloxane having the formula
- R7 may comprise an alkyl, aryl, or alkoxy group having in the range of from about one to six carbon atoms
- R8 may comprise an alkyl group having in the range of from one to three carbon atoms
- n 2 may be in the range from one to five, where n 2 is an average number of repeating units
- X comprises a polyester group having the formula
- R9 comprises a hydroxy group or an alkoxy group, the alkoxy group having in the range of from about one to five carbon atoms, where n may be in the range of from one to two, and where n3 is an average number of repeating units;
- an aqueous acid such as acetic acid or aqueous inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like, with;
- an alcohol having in the range of from about one to four carbon atoms.
- the R4 group comprise less than about five carbon atoms to facilitate hydrolytic polycondensation and/or polymerization.
- a fluorinated polysiloxane comprising R4 groups having greater than four carbon atoms may adversely affect, via steric hindrance, the fluorinated polysiloxane' s ability to readily participate in the hydrolytic polycondensation and/or polymerization reactions forming the coating composition.
- the R4 group comprise less than five carbon atoms so that the alcohol analog of the R4 group formed via during the hydrolysis and polymerization of the fluorinated polysiloxane is easily evaporated, speeding the curing time of the coating composition.
- the optically clear coating composition prepared according to principles of this invention may comprise in the range of from 0.2 to 1 percent by weight fluorinated polysiloxane.
- the fluorinated polysiloxane serves to increase the hydrophobicity, and thus decrease the surface energy, of the silicon polymer formed according to principles of this invention.
- a coating composition comprising less than about 0.2 percent by weight of the fluorinated polysiloxane does not display a desired immediate increase in the hydrophobicity of a coated substrate upon application. Additionally, the hydrophobic properties that do eventually develop on the substrate surface after application decrease sharply as the coating ages.
- a coating composition comprising greater than about 1 percent by weight of the fluorinated polysiloxane does not increase the hydrophobic properties of the coating beyond that obtained by using a lesser amount. Accordingly, the range of the fluorinated polysiloxane used in preparing the optically clear coating reflects an optimum amount that is both economical and provides the desired degree of hydrophobicity.
- a preferred coating composition comprises approximately 0.5 percent by weight fluorinated polysiloxane.
- a preferred fluorinated polysiloxane comprises 3,3,3 trifluoropropyl trimethoxysilane produced by H ⁇ ls Americal, Inc. of Piscataway, New Jersey, under the product name PS 184-S, and PCR Inc. of Gainesville, Florida under the product name PCR 12092-3.
- the coating composition may comprise in the range of from ten to sixty percent by weight polysiloxane.
- the polysiloxane does not participate in the reaction forming the optically clear coating, but rather is bound in the polymer network to provide lubricity during application of the coating and provide initial hydrophobic characteristics to the substrate surface.
- a coating composition comprising less than about ten percent by weight of the polysiloxane does not cover the substrate surface evenly due to decreased lubricity, reducing the consistency of the coating's ability to effect water run-off.
- a coating composition comprising greater than about sixty percent by weight of the polysiloxane has been shown to make application difficult, causing streaking and difficulties in polishing, which ultimately reduces the clarity of the coating.
- a preferred coating composition may comprise approximately thirty percent by weight of the polysiloxane.
- a preferred polysiloxane may have an average viscosity in the range of from ten centistokes (cSt) to fifty cSts. The viscosity of the polysiloxane ingredient is directly proportional to the value of n- j . Accordingly, a polysiloxane comprising an n j in the range of from one to five represents a polysiloxane having a viscosity within the desired range.
- a coating composition comprising a polysiloxane having a viscosity greater than about fifty cSts does not provide an optically clear surface because the relatively high viscosity of the composition makes polishing the coating to an optically clear finish unobtainable.
- a preferred polysiloxane comprises polydimethyl polysiloxane produced by Dow Corning of Midland, Michigan, under the product name 200 FLUID; BYK CHEMIE of Wallingford, Connecticut under the product name BYK396.
- the coating composition may comprise in the range of from 0.05 to 0.2 percent by weight polyester modified polysiloxane. The polyester modified polysiloxane serves to improve surface tension and improve substrate wetting.
- a coating composition comprising less than about 0.05 percent of the polyester modified polysiloxane displays both poor hydrophobic properties and poor coating durability.
- a coating comprising greater than about 0.2 percent by weight of the polyester modified polysiloxane displays decreased optical clarity, ultimately developing a yellow color with time.
- a preferred coating composition comprises approximately 0.13 percent by weight of the polyester modified polysiloxane.
- the polyester modified polysiloxane have an average viscosity in the range of from ten cSts to fifty cSts.
- the viscosity of the polyester modified polysiloxane is directly proportional to the value of n 2 . Accordingly, a polyester modified polysiloxane comprising an n 2 in the range of from one to five represents a polyester modified polysiloxane having a viscosity within the desired range.
- a polyester modified polysiloxane having a viscosity of greater than about fifty cSts produces a coating composition that is resinous, has an increased curing or drying time, and is difficult to polish to an optically clear surface.
- a preferred polyester modified polysiloxane comprises polyester polydimethyl polysiloxane produced by BYK CHEMIE under the product name BYK 371.
- the coating composition may comprise in the range of from five to twenty-five percent by weight of the acid.
- the acid may comprise an aqueous acetic acid or aqueous inorganic acid which serves to catalyze the hydrolytic polycondensation of the polysiloxane resins forming the ambient curing optically clear coating. It is desired that the acid have a pH of less than about five to both enhance the compatibility and promote the hydrolytic polycondensation of the polysiloxane resins.
- a coating composition comprising less than about five percent by weight of the acid displays an increased cure time, which effectively increases the period before which the desired hydrophobic properties of the coating can occur.
- a coating composition comprising greater than twenty-five percent by weight acid displays a cure time that is shorter than the time needed to apply the coating, making application and polishing of the coating to an optically clear surface difficult.
- the acid may be selected from the group of aqueous acids including acetic acid or inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.
- a preferred acid comprises phosphoric acid.
- a preferred aqueous phosphoric acid solution may comprise approximately 85 percent phosphoric acid.
- a particularly preferred coating composition comprises approximately nine percent of the 85 percent phosphoric acid.
- a coating composition may comprise in the range of from about forty to seventy percent by weight alcohol.
- the alcohol ingredient serves to reduce the viscosity of the coating composition to both promote application and control the film thickness of the coating.
- a coating composition comprising less than about forty percent of the alcohol results in a rapid build up of the coating material during application, making polishing to an optically clear surface difficult.
- a coating composition comprising more than about seventy percent by weight of the alcohol decreases the viscosity of the coating, making a desired coating film thickness unobtainable via single application, thus requiring multiple applications to obtain the desired hydrophobic surface properties.
- a particularly preferred alcohol is isopropyl alcohol.
- a particularly preferred coating composition comprises approximately sixty percent alcohol.
- the coating composition comprise in the range of from 0.1 to 10 percent by weight water.
- the water ingredient may comprise water present in the aqueous acid solution, free water added to the reaction, or water present as atmospheric moisture.
- the water serves to facilitate the hydrolytic polycondensation of the polysiloxane resins by ionization, forming hydrogen ion (H + ) and hydroxyl ion (OH).
- a coating composition comprising less than about 0.1 percent water does not comprise a sufficient amount of H + ions and OH " ions to promote the hydrolytic polycondensation of the polysiloxane resins.
- a coating composition comprising greater than about ten percent water comprises more water than that needed to effect hydrolytic polycondensation and displays an increased cure time due to the additional time needed to evaporate the excess water.
- a preferred coating composition comprises approximately two percent water.
- the coating composition may be prepared by combining the fluorinated polysiloxane, polysiloxane, and polyester polysiloxane according to the previously described proportions, and blending together the three polysiloxane ingredients until the composition is clear.
- the alcohol and acid ingredients are combined according to the previously described proportions and blended together.
- the acid and alcohol composition is added to the polysiloxane composition slowly while maintaining a high speed of mixing. During the mixing of the polysiloxane ingredients and the acid and alcohol composition it is desired that the temperature of the mixture be maintained below about 100°F to promote a controlled reaction of the chemical ingredients.
- the ingredients are believed to undergo hydrolysis and polycondensation reactions which are exothermic in nature, causing the temperature of the composition to increase. It is desired that the temperature of the composition be maintained below about 100°F to promote a controlled reaction, and not accelerate the chemical reaction to form a gel.
- the mixture of polysiloxane ingredients and acid and alcohol composition is allowed to stand for approximately three hours to obtain complete reaction between the chemical ingredients via polycondensation.
- the above described composition is diluted to approximately twenty percent by weight by the addition of a solvent. Diluting the composition with a solvent serves to retard the hydrolysis and polycondensation reactions, thereby allowing the composition to be stored in a sealed container for future use. Upon the opening of the container and application of the composition the polycondensation reactions are driven to completion, and the composition is cured to provide a durable hydrophobic coating, by the evaporation of the solvent.
- Suitable solvents are miscible with the composition and may include alcohols, such as those alcohols previously described for the alcohol ingredient of the composition, glycols such as glycol acetates and the like, and water, providing the acidity of the composition is maintained between a pH of about three and four.
- a preferred solvent comprises a mixture of isopropyl alcohol and ethanol. A preferred weight ratio of isopropyl alcohol to ethanol is approximately 1:1.
- the optically clear coating is produced in the following manner.
- the aqueous acid and alcohol composition to the blended fluorinated polysiloxane, polysiloxane, and polyester modified polysiloxane composition it is believed that one or more of the R4 groups of the fluorinated polysiloxane undergoes a hydrolysis reaction with the ionization products of the water to form an alcohol analog of the R4 group and a hydroxy substituted fluorinated polysiloxane, as shown in exemplary Reaction (1).
- the hydroxy substituted fluorinated polysiloxane hydrolysis product reacts with other fluorinated polysiloxane molecules through hydrolytic heteropolymerization, forming a fluorinated polysiloxane polymer and an alcohol analog of the R4 groups, as shown in exemplary Reaction (2).
- R4 group undergo hydrolysis and substitution with a hydroxy group.
- Multiple hydroxy substitutions serve to facilitate the heteropolymerization of the hydroxy substituted fluorinated polysiloxane and the fluorinated polysiloxane by providing additional reaction sites.
- the polyester modified polysiloxane Upon addition of the aqueous acid and alcohol composition, the polyester modified polysiloxane is also believed to undergo homopolycondensation with other polyester modified polysiloxane molecules to form a polyester modified polysiloxane polymer and water, as shown in exemplary Reaction (3).
- the hydroxy substituted fluorinated polysiloxane formed in Reaction (1) may also undergo heteropolycondensation with the polyester modified polysiloxane, forming a fluorinated polyester modified polysiloxane molecule and water as shown in Reaction (4) CF 3
- the hydroxy substituted fluorinated polysiloxane may undergo homopolycondensation with other hydroxy substituted fluorinated polysiloxane molecules, forming a fluorinated polysiloxane polymer and water as shown in Reaction (5).
- the polysiloxane ingredient does not participate in the hydrolytic polycondensation reactions with the other polysiloxane resins but, rather is bound up in the polymerization product formed by the polycondensation reactions, providing lubricity and imposing initial hydrophobic characteristics to the coating during application.
- the fluorinated polysiloxane, hydroxy substituted fluorinated polysiloxane, and polyester modified polysiloxane all undergo polycondensation with each other forming an optically clear hydrophobic fluorinated polyester modified polysiloxane polymer network.
- the formation of the fluorinated polyester modified polysiloxane polymer network is evidenced by an increase in the viscosity of the combined polysiloxane ingredients shortly after the addition of the aqueous acid and alcohol composition.
- the hydrolysis of the fluorinated polysiloxane is driven to completion by the addition of water, via both the addition of the aqueous acid and homopolycondensation of the polyester modified polysiloxane.
- the homopolycondensation reactions between the hydroxy substituted fluorinated polysiloxane molecules, the homopolycondensation reactions between polyester modified polysiloxane molecules, and the heteropolycondensation reactions between the hydroxy substituted fluorinated polysiloxane molecules and the polyester modified polysiloxanes, forming the optically clear hydrophobic fluorinated polyester modified polysiloxane polymer network are driven by the evaporation of water. Accordingly, the amount of water used to prepare the coating composition reflects a compromise of competing considerations, i.e., the need to effect hydrolysis versus the need to effect a quick curing coating composition. .
- the coating composition is applied to a substrate surface exposed to the atmosphere, facilitating the evaporation of the water and, thereby driving the polycondensation reactions forming the optically clear hydrophobic fluorinated polyester modified polysiloxane polymer to completion.
- the coating composition prepared according to principles of this invention is an optically clear hydrophobic coating that is resistant to weather, i.e. , premature ultraviolet degradation, solvents, acids and heat.
- the optically clear coating is compatible with a variety of substrates such as masonry, wood, plastic, glass and the like and cures under ambient temperature conditions without need for special curing conditions or special equipment.
- the coating composition is quick curing, curing completely at ambient temperature and above fifty percent relative humidity in approximately two to three hours.
- the coating composition may be stored and sold in a single pack system and may be applied by cloth, spray, brush, or roller without the need for thinning or using special application techniques or equipment.
- optically clear hydrophobic coating composition Accordingly, within the scope of the appended claims, the optically clear hydrophobic coating composition according to principles of this invention may be prepared other than as specifically described herein.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002180137A CA2180137C (en) | 1993-12-29 | 1994-12-20 | Optically clear hydrophobic coating composition |
EP95905435A EP0738309B1 (en) | 1993-12-29 | 1994-12-20 | Optically clear hydrophobic coating composition |
KR1019960703519A KR100189580B1 (en) | 1993-12-29 | 1994-12-20 | Optically clear hydrophobic coating composition |
JP7518119A JP2912018B2 (en) | 1993-12-29 | 1994-12-20 | Optically transparent hydrophobic coating composition |
DE69430324T DE69430324T2 (en) | 1993-12-29 | 1994-12-20 | OPTICALLY CLEAR HYDROPHOBIC COATING COMPOSITION |
AU14050/95A AU683975B2 (en) | 1993-12-29 | 1994-12-20 | Optically clear hydrophobic coating composition |
DK95905435T DK0738309T3 (en) | 1993-12-29 | 1994-12-20 | Optically clear, hydrophobic coating composition |
NO19962716A NO311894B1 (en) | 1993-12-29 | 1996-06-27 | Optically clear coating composition having hydrophobic properties and method of forming such coating composition |
FI962657A FI962657A (en) | 1993-12-29 | 1996-06-27 | Optically clear hydrophobic coating composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/175,133 | 1993-12-29 | ||
US08/175,133 US5417744A (en) | 1993-12-29 | 1993-12-29 | Optically clear hydrophobic coating composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995018195A1 true WO1995018195A1 (en) | 1995-07-06 |
Family
ID=22639056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/014688 WO1995018195A1 (en) | 1993-12-29 | 1994-12-20 | Optically clear hydrophobic coating composition |
Country Status (15)
Country | Link |
---|---|
US (1) | US5417744A (en) |
EP (1) | EP0738309B1 (en) |
JP (1) | JP2912018B2 (en) |
KR (1) | KR100189580B1 (en) |
AU (1) | AU683975B2 (en) |
CA (1) | CA2180137C (en) |
DE (1) | DE69430324T2 (en) |
DK (1) | DK0738309T3 (en) |
ES (1) | ES2173174T3 (en) |
FI (1) | FI962657A (en) |
MY (1) | MY119159A (en) |
NO (1) | NO311894B1 (en) |
NZ (1) | NZ278534A (en) |
SG (1) | SG46688A1 (en) |
WO (1) | WO1995018195A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017059161A1 (en) * | 2015-10-02 | 2017-04-06 | The Chemours Company Fc, Llc | Coatings incorporating hydrophobic compounds |
US11274220B2 (en) | 2015-10-02 | 2022-03-15 | The Chemours Company Fc, Llc | Hydrophobic extenders in non-fluorinated surface effect coatings |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5613185A (en) * | 1995-06-01 | 1997-03-18 | Air Products And Chemicals, Inc. | Atmospheres for extending life of wire mesh belts used in sintering powder metal components |
US6013752A (en) * | 1997-06-04 | 2000-01-11 | Ameron International Corporation | Halogenated resin compositions |
US20020009464A1 (en) * | 1997-07-03 | 2002-01-24 | Camilo Colaco | Modified glycosides, compositions comprised thereof and methods of use thereof |
US6344520B1 (en) | 1999-06-24 | 2002-02-05 | Wacker Silicones Corporation | Addition-crosslinkable epoxy-functional organopolysiloxane polymer and coating compositions |
US6432181B1 (en) | 2000-03-03 | 2002-08-13 | Resource Development, L.L.C. | Silicone compositions, methods of making and using VOC free, non-flammable creams, pastes and powders to render nonporous surfaces water, soil and stain repellent |
US8500274B2 (en) | 2000-11-03 | 2013-08-06 | High Performance Optics, Inc. | Dual-filter ophthalmic lens to reduce risk of macular degeneration |
DE10123012C1 (en) * | 2001-05-11 | 2002-07-25 | Pharm Pur Gmbh | Passivation of intraoccular lens, especially silicone, polymethyl methacrylate and acrylic intraoccular lens, comprises dipping in solution of fluoroalkyl-hydroxy- and/or -alkoxy-silane to deactivate Bronsted centers on surface |
WO2004009505A1 (en) * | 2002-07-23 | 2004-01-29 | Shell Internationale Research Maatschappij B.V. | Hydrophobic surface treatment composition and method of making and using same |
US7129310B2 (en) | 2003-12-23 | 2006-10-31 | Wacker Chemical Corporation | Solid siliconized polyester resins for powder coatings |
US20050266166A1 (en) * | 2004-05-26 | 2005-12-01 | Halsey Glenn T | Method for coating paper machines |
US20090104243A1 (en) * | 2007-09-07 | 2009-04-23 | Qlt Plug Delivery, Inc. - Qpdi | Drug cores for sustained release of therapeutic agents |
WO2011056742A1 (en) | 2009-11-04 | 2011-05-12 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern and methods of making the same |
US20110229659A1 (en) * | 2010-03-22 | 2011-09-22 | Timothy Ray Reynolds | Ion beam assisted deposition of ophthalmic lens coatings |
US9481766B2 (en) | 2014-03-12 | 2016-11-01 | Brock University | Siloxane-containing hybrid materials |
US9803055B2 (en) | 2015-02-24 | 2017-10-31 | Hempel A/S | Method for producing fluorinated polysiloxane |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3372052A (en) * | 1964-12-24 | 1968-03-05 | Union Carbide Corp | Water repellent for masonry |
US3442664A (en) * | 1966-04-26 | 1969-05-06 | Minnesota Mining & Mfg | Treating composition,method of treating and treated surfaces |
US3579540A (en) * | 1968-11-01 | 1971-05-18 | Howard G Ohlhausen | Method for protecting nonporous substrates and for rendering them water repellent |
US4465712A (en) * | 1983-01-19 | 1984-08-14 | Dow Corning Limited | Siloxane-polyester compositions and use thereof |
US5051129A (en) * | 1990-06-25 | 1991-09-24 | Dow Corning Corporation | Masonry water repellent composition |
US5073195A (en) * | 1990-06-25 | 1991-12-17 | Dow Corning Corporation | Aqueous silane water repellent compositions |
US5112393A (en) * | 1990-10-09 | 1992-05-12 | Prosoco, Inc. | Method of rendering masonry materials water repellent with low voc organoalkoxysilanes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2927909A (en) * | 1960-03-08 | Masonry water repellent composition | ||
US3427271A (en) * | 1966-11-04 | 1969-02-11 | Dow Corning | Novel organosilicon compositions |
US3972850A (en) * | 1972-09-08 | 1976-08-03 | The Boeing Company | Hydrophobic windshield wipers and process for making same |
US4846886A (en) * | 1988-05-05 | 1989-07-11 | Dow Corning Corporation | Water beading-water shedding repellent composition |
US4874431A (en) * | 1988-07-14 | 1989-10-17 | Dow Corning Corporation | Low volatility water repellents |
JPH0745332B2 (en) * | 1989-04-27 | 1995-05-17 | アサヒビール株式会社 | Scratch-shielding agent for glass container, glass container in which scratches are shielded, and method for shielding scratches in glass container |
-
1993
- 1993-12-29 US US08/175,133 patent/US5417744A/en not_active Expired - Lifetime
-
1994
- 1994-12-20 DE DE69430324T patent/DE69430324T2/en not_active Expired - Fee Related
- 1994-12-20 JP JP7518119A patent/JP2912018B2/en not_active Expired - Fee Related
- 1994-12-20 AU AU14050/95A patent/AU683975B2/en not_active Ceased
- 1994-12-20 SG SG1996008381A patent/SG46688A1/en unknown
- 1994-12-20 DK DK95905435T patent/DK0738309T3/en active
- 1994-12-20 CA CA002180137A patent/CA2180137C/en not_active Expired - Fee Related
- 1994-12-20 EP EP95905435A patent/EP0738309B1/en not_active Expired - Lifetime
- 1994-12-20 KR KR1019960703519A patent/KR100189580B1/en not_active IP Right Cessation
- 1994-12-20 WO PCT/US1994/014688 patent/WO1995018195A1/en active IP Right Grant
- 1994-12-20 ES ES95905435T patent/ES2173174T3/en not_active Expired - Lifetime
- 1994-12-20 NZ NZ278534A patent/NZ278534A/en not_active IP Right Cessation
- 1994-12-28 MY MYPI94003524A patent/MY119159A/en unknown
-
1996
- 1996-06-27 NO NO19962716A patent/NO311894B1/en unknown
- 1996-06-27 FI FI962657A patent/FI962657A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3372052A (en) * | 1964-12-24 | 1968-03-05 | Union Carbide Corp | Water repellent for masonry |
US3442664A (en) * | 1966-04-26 | 1969-05-06 | Minnesota Mining & Mfg | Treating composition,method of treating and treated surfaces |
US3579540A (en) * | 1968-11-01 | 1971-05-18 | Howard G Ohlhausen | Method for protecting nonporous substrates and for rendering them water repellent |
US3579540B1 (en) * | 1968-11-01 | 1984-03-20 | ||
US4465712A (en) * | 1983-01-19 | 1984-08-14 | Dow Corning Limited | Siloxane-polyester compositions and use thereof |
US5051129A (en) * | 1990-06-25 | 1991-09-24 | Dow Corning Corporation | Masonry water repellent composition |
US5073195A (en) * | 1990-06-25 | 1991-12-17 | Dow Corning Corporation | Aqueous silane water repellent compositions |
US5112393A (en) * | 1990-10-09 | 1992-05-12 | Prosoco, Inc. | Method of rendering masonry materials water repellent with low voc organoalkoxysilanes |
Non-Patent Citations (1)
Title |
---|
See also references of EP0738309A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017059161A1 (en) * | 2015-10-02 | 2017-04-06 | The Chemours Company Fc, Llc | Coatings incorporating hydrophobic compounds |
US11274220B2 (en) | 2015-10-02 | 2022-03-15 | The Chemours Company Fc, Llc | Hydrophobic extenders in non-fluorinated surface effect coatings |
US11359099B2 (en) | 2015-10-02 | 2022-06-14 | The Chemours Company Fc, Llc | Hydrophobic extenders in fluorinated surface effect coatings |
Also Published As
Publication number | Publication date |
---|---|
CA2180137A1 (en) | 1995-07-06 |
ES2173174T3 (en) | 2002-10-16 |
KR100189580B1 (en) | 1999-06-01 |
DK0738309T3 (en) | 2002-07-29 |
NO311894B1 (en) | 2002-02-11 |
NO962716D0 (en) | 1996-06-27 |
NO962716L (en) | 1996-08-27 |
JPH09507261A (en) | 1997-07-22 |
DE69430324D1 (en) | 2002-05-08 |
CA2180137C (en) | 2001-04-17 |
EP0738309A4 (en) | 1996-11-06 |
AU1405095A (en) | 1995-07-17 |
EP0738309A1 (en) | 1996-10-23 |
FI962657A (en) | 1996-08-26 |
DE69430324T2 (en) | 2002-11-21 |
MY119159A (en) | 2005-04-30 |
FI962657A0 (en) | 1996-06-27 |
AU683975B2 (en) | 1997-11-27 |
NZ278534A (en) | 1997-06-24 |
JP2912018B2 (en) | 1999-06-28 |
SG46688A1 (en) | 1998-02-20 |
EP0738309B1 (en) | 2002-04-03 |
US5417744A (en) | 1995-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0738309B1 (en) | Optically clear hydrophobic coating composition | |
US4410563A (en) | Repellent coatings for optical surfaces | |
US4324712A (en) | Silicone resin coating composition | |
EP0868413B1 (en) | Masonry treatment composition | |
US5120811A (en) | Polymer/glass hybrid coating | |
US5026813A (en) | Polysilsequioxane and polymethyl-N-hexylsilsesquioxane coating compositions | |
US5102967A (en) | Process for making polysilsequioxane and polymethyl-n-hexylsilsesquioxane coating compositions and coating compositions formed thereby | |
US5599893A (en) | Water repellent composition | |
EP0759457B2 (en) | Weather and soiling-resistant silicone-containing coating composition | |
US4444973A (en) | Coatings for thermoplastics | |
JP2006225629A (en) | Organosilicone resin emulsion composition and article having formed film of the same composition | |
US5902847A (en) | Coating composition | |
US4168332A (en) | Non-glare glass coating | |
KR100463926B1 (en) | Multi Functional Silicon-polymer Composite for Coating | |
WO1995002462A1 (en) | Method of treating surface of outdoor article | |
JPH0939161A (en) | Manufacture of laminated film | |
JP3245522B2 (en) | Paint composition | |
JP3245521B2 (en) | Paint composition | |
JPH08209118A (en) | Water repellency agent | |
JP3245520B2 (en) | Paint composition | |
JP3245519B2 (en) | Paint composition | |
Mayer | The chemistry and properties of silicone resins: network formers (in paints and renders) | |
JP2002029783A (en) | Surface modified glass and method for manufacturing the same | |
JP2945949B2 (en) | Room-temperature-curable coating sol composition and method for producing fluorocopolymer / silica glass hybrid using the same | |
JPH0867856A (en) | Varnish composition of copolymer containing fluorine and formation of coated film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2180137 Country of ref document: CA Ref document number: 962657 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019960703519 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 278534 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995905435 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995905435 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995905435 Country of ref document: EP |