WO1995016568A1 - Method of and apparatus for driving ink jet head - Google Patents

Method of and apparatus for driving ink jet head Download PDF

Info

Publication number
WO1995016568A1
WO1995016568A1 PCT/JP1994/002105 JP9402105W WO9516568A1 WO 1995016568 A1 WO1995016568 A1 WO 1995016568A1 JP 9402105 W JP9402105 W JP 9402105W WO 9516568 A1 WO9516568 A1 WO 9516568A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
pressure chamber
driving
jet head
piezoelectric element
Prior art date
Application number
PCT/JP1994/002105
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhisa Fujii
Hisayoshi Fujimoto
Nobuhisa Ishida
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Publication of WO1995016568A1 publication Critical patent/WO1995016568A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform

Definitions

  • the present invention relates to a driving method and a driving device for an ink jet head using a vibration plate that sucks and ejects ink by changing the volume of a pressure chamber by being deformed by a piezoelectric element.
  • the inkjet head is a device that transmits the deformation of the piezoelectric element to the diaphragm, reduces the volume of the pressure chamber, raises the pressure, and ejects ink droplets from the nozzles.
  • the deformation of the piezoelectric element is realized by changing the drive voltage applied to the piezoelectric element.
  • the piezoelectric element is deformed and becomes a driving state when the applied driving voltage is increased. Therefore, the drive voltage is controlled by switching between two voltage levels, the highest drive voltage and the lowest drive voltage.
  • FIG. 9a to 9e show the steps of the ink ejection method using the pressing method.
  • the drive voltage applied to the piezoelectric element 40 is the minimum drive voltage
  • the piezoelectric element 40 and the diaphragm 41 are not deformed
  • the ink The meniscus 42 advances to the tip of the nozzle 43.
  • the meniscus 42 refers to the liquid level at the tip of the ink in the nozzle 43.
  • the highest drive voltage is applied to the piezoelectric element 40, and the diaphragm 41 is bent inside the pressure chamber 44 by the deformation of the piezoelectric element 40, so that the pressure chamber is deformed.
  • the piezoelectric element 40 and the vibrating plate 41 bulge further outward due to inertia, and the meniscus 42 in the nozzle 43 recedes in the direction of the pressure chamber 44. Thereafter, for a certain period of time, the piezoelectric element 40 and the vibrating plate 41 perform so-called damped vibration. Thereafter, as shown in FIG. 9e, the piezoelectric element 40 and the diaphragm 41 return to the standby state, that is, a state where there is no deformation again, and the meniscus 42 gradually moves to the tip of the nozzle 43 by capillary action. Go back.
  • FIG. 10a to FIG. 10e show the steps of the ink ejection method by the drawing method.
  • the highest drive voltage is applied to the piezoelectric element 40 in the standby state. In this state, the piezoelectric element 40 is deformed, and the vibration plate 41 is radiused inside the pressure chamber 44. The meniscus 42 of the ink has advanced to the tip of the nozzle 43.
  • the drive voltage of the piezoelectric element 40 is reduced to the minimum drive voltage, the radius of the diaphragm 41 is eliminated, and the volume of the pressure chamber 44 is increased.
  • the meniscus 42 retreats in the direction of the pressure chamber 44, and ink is supplied to the pressure chamber 44 from the ink supply path 46 side.
  • the highest drive voltage is again applied to the piezoelectric element 40, deforming the piezoelectric element 40, and bending the diaphragm 41 inside the nozzle 43.
  • the ink droplet 45 is ejected from the nozzle 43 by reducing the volume of the nozzle 43.
  • the piezoelectric element 40 and the vibrating plate 41 go too far due to inertia as shown by an arrow 47, and then return as shown by an arrow 48 in FIG.
  • the pressure inside becomes negative pressure, and ink droplets 45 are separated.
  • the piezoelectric element 40 and the vibration plate 41 perform so-called damped vibration for a certain time.
  • the piezoelectric element 40 and the diaphragm 41 return to the standby state, that is, the state resting radially inside the pressure chamber 44, and the meniscus 4 2 Also gradually returns to the tip of nozzle 43 due to capillary action.
  • the above-described pushing and pulling methods are realized by controlling the driving voltage applied to the piezoelectric element 40 to a predetermined waveform.
  • FIG. 11a and FIG. 1lb show waveforms of the driving voltage used in the pushing method.
  • the vertical axis in FIGS. 11a and 11b represents the voltage, that is, the magnitude of the driving voltage, and the horizontal axis represents time.
  • FIG. 11a shows an exponential curve wave
  • FIG. 11b shows a triangular wave.
  • the types of these waves can be appropriately selected depending on the characteristics of the device.
  • the time T5 during which the minimum drive voltage is applied to the piezoelectric element 40 is in the standby state. Then, at time T6 when the drive voltage rises from the lowest drive voltage to the highest drive voltage, ink droplets 45 are ejected. Subsequently, at time T7 when the drive voltage decreases from the highest drive voltage to the lowest drive voltage, separation of the ink droplets 45 and supply of ink to the pressure chambers 44 are performed.
  • FIG. 12a and FIG. 12b show the waveforms of the driving voltage used in the drawing method.
  • the vertical axis in FIGS. 12a and 12b represents the voltage, that is, the magnitude of the driving voltage, and the horizontal axis represents time.
  • Fig. 12a shows an exponential curve wave
  • Fig. 12b shows a triangular wave.
  • the types of these waves can be appropriately selected depending on the characteristics of the device.
  • the time T8 during which the maximum drive voltage is applied to the piezoelectric element 40 is a standby state.
  • ink is supplied to the pressure chambers 44.
  • the ink droplet 45 is ejected.
  • a pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, A piezoelectric element that draws and ejects ink in the pressure chamber by deforming the vibration plate, and a method of driving an ink jet head that is equipped with a piezoelectric element.
  • a suction step in which the lowest drive voltage is applied from the standby state where the drive voltage is applied to suck the ink into the pressure chamber, and an injection step in which the highest drive voltage is applied to the piezoelectric element immediately after the suction step to eject ink in the pressure chamber.
  • the return step is performed within a time of 300 s or less. More preferably, the return step is performed within a time of not less than 200 us and not more than 200 as.
  • a voltage of 0 volt or more is used as the minimum drive voltage.
  • any one of an exponential curve wave, a triangular wave, and a trapezoidal wave is used as the waveform of the drive voltage applied to the piezoelectric element. .
  • a pressure chamber having an inlet for introducing an ink and a nozzle for ejecting ink, a diaphragm for changing the volume of the pressure chamber, and a driving voltage applied according to an applied driving voltage
  • a pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for changing the volume of the pressure chamber, and a driving voltage applied in accordance with the applied driving voltage
  • the radius of the diaphragm is set to a medium value, the ink of the nozzle is piled up to its surface tension, pulled back to the pressure chamber side, and returned to the standby state.
  • Inkjet head features To provide a dynamic way.
  • a pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for changing the volume of the pressure chamber, and a driving voltage applied in accordance with the applied driving voltage
  • a piezoelectric element for sucking and ejecting the ink in the pressure chamber by deforming the vibration plate, and a driving device of the ink jet head for driving the ink jet head comprising: A control circuit for controlling the drive voltage applied to the piezoelectric element to bend the diaphragm, and this control circuit minimizes the amount of flexure from a standby state in which the radius of the diaphragm is set to a medium value, A suction step of sucking ink into the chamber, an injection step of maximizing the radius of the diaphragm immediately after the suction step to eject ink in the pressure chamber, and a medium deflection of the diaphragm immediately after the ejection step.
  • a pressure chamber having an inlet into which an ink is introduced and a nozzle for ejecting the ink, a diaphragm for changing the volume of the pressure chamber, A piezoelectric element for sucking and ejecting ink in the pressure chamber by deforming the vibration plate, and a driving device for the ink jet head for driving an ink jet head having a piezoelectric element.
  • a control circuit for controlling the drive voltage applied to the piezoelectric element to vary the volume of the pressure chamber by bending the vibration plate, and the control circuit is configured to operate from a standby state in which the volume of the pressure chamber is medium.
  • Ink to pressure chamber with maximum volume A pressure chamber with a minimum volume immediately after the inhalation process, and an injection process in which the pressure chamber ink is ejected with the pressure chamber volume minimized immediately after the inhalation process.
  • the present invention provides a drive device for an ink jet head, wherein the ink jet head is pulled back to the pressure chamber side against the surface tension thereof and returns to a standby state.
  • FIG. 1 is a block diagram of a control circuit provided in an inkjet head driving device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of an output circuit constituting a part of a control circuit provided in the ink jet head driving device according to one embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a clock input circuit constituting a part of a control circuit provided in the ink jet head driving device according to one embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a serial data output circuit constituting a part of a control circuit provided in the inkjet head driving device according to one embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a latch pulse input circuit constituting a part of a control circuit provided in the inkjet head driving device according to one embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a strobe signal input circuit constituting a part of a control circuit provided in the inkjet head driving device according to one embodiment of the present invention.
  • 7a to 7c are waveform diagrams showing examples of the waveform of the drive voltage used in the inkjet head drive device according to one embodiment of the present invention.
  • 8a to 8e are explanatory views of an ink ejection procedure by the ink jet head driving device according to one embodiment of the present invention.
  • 9a to 9e are explanatory diagrams of the ink ejection procedure by the conventional pressing method.
  • FIG. 103 to FIG. 1 Oe are explanatory views of an ink ejection procedure by a conventional drawing method.
  • FIG. 1 la and FIG. 1 lb are waveform diagrams showing waveforms of the drive voltage used in the conventional pushing method.
  • FIG. 12a and FIG. 12b are waveform diagrams showing waveforms of the driving voltage used in the conventional drawing method.
  • FIG. 1 shows one block of a control circuit provided in an inkjet head drive device according to an embodiment of the present invention.
  • the control circuit is configured by arranging a predetermined number of the blocks in parallel.
  • This control circuit block consists of a shift register 1 consisting of many D flip-flops, a latch circuit 2 consisting of many D flip-flops, a large number of AND circuits 3, a large number of output circuits 4, and a large number of output circuits 4. It is equipped with a five-day event.
  • the number of D flip-flops constituting the shift register 1, the D flip-flops constituting the latch circuit 2, the AND circuit 3, the output circuit 4, and the inverter 5 are determined by the length of the ink jet head.
  • the control circuit further includes a clock input circuit 6, a serial data input circuit 7, a serial data output circuit 8, a latch pulse input circuit 9, a strobe signal input circuit 10, a clock signal input terminal 11, and a serial data input terminal.
  • the number of the output terminals 20 is equal to the number of the output circuits 4.
  • the output circuit 4 has a first control signal input terminal 21 connected to the output terminal of the AND circuit 3 and a second control signal input terminal 22 connected to the output terminal of the inverter 5. ing.
  • the first control signal input terminal 21 is grounded via the resistor R3 and the transistor Tr1.
  • the base of transistor Tr1 is the collector of transistor Tr1 and the base of transistor Tr2. It is connected to the base, and the emitter of transistor Tr2 is grounded.
  • the collector of the transistor Tr2 is connected to the bases of the transistor Tr3 and the transistor Tr5.
  • the emitter of the transistor Tr3 is connected to the drive voltage input terminal 16 and the collector of the transistor Tr4 and the cathode of the diode D3. And connected to.
  • the collector of the transistor Tr3 is connected to the base of the transistor Tr4, and the resistor R4 is connected in parallel between the base and the emitter of the transistor Tr4.
  • the emitter of the transistor Tr 4 is connected to the diode D 1, and the diode D 1 has a power source connected to the diode D 2 cathode, the output terminal 20 and the transistor Tr 5 emitter.
  • the collector of transistor Tr6 One end of a piezoelectric element 23 for ejecting ink is connected to the output terminal 20, and the other end of the piezoelectric element 23 is grounded. The details of the piezoelectric element 23 will be described later.
  • the collector of the transistor Tr5 is connected to the base of the transistor r6, and a resistor R5 is connected in parallel between the base and the emitter of the transistor Tr6.
  • the emitter of the transistor Tr6 is connected to the anode of the diode D3, and the anode of the diode D2 is connected to the emitter of the transistor Tr8.
  • the collector of the transistor Tr8 is connected to the intermediate voltage input terminal 17 and the emitter of the transistor Tr7, and the collector of the transistor Tr7 is connected to the base of the transistor Tr8.
  • the base of the transistor Tr7 is connected to the collector of the transistor Tr10, and the emitter of the transistor Tr10 is grounded.
  • the base of the transistor Tr10 is connected to the base and the collector of the transistor Tr9, and the emitter of the transistor Tr9 is grounded.
  • the second control signal input terminal 22 is connected to the collector of the transistor Tr9 via the resistor R6.
  • an analog switch or the like can be used in addition to such a circuit.
  • FIG. 3 shows the clock input circuit 6.
  • One end of the resistor R7 is connected to the clock signal input terminal 11 and the other end of the resistor R7 is connected to the anode of the diode D4, the cathode of the diode D5, and the field effect transistors FET1 and FET2. Connected to the gate.
  • the force source of diode D4 is connected to the diode D5 via field effect transistors FET1 and FET2.
  • the serial data input circuit 7 has the same circuit configuration as the clock input circuit 6.
  • FIG. 4 shows a serial data output circuit 8.
  • the field effect transistors F ET3 and FET4 are connected to the serial data output terminal 13.
  • FIG. 5 shows the latch pulse input circuit 9.
  • One end of the resistor R 8 is connected to the latch pulse input terminal 14, and the other end of the resistor R 8 is connected to the anode of the diode D 6, the cathode of the diode D 7, and the field effect transistors FET 5 and FET 6. Connected to the gate.
  • the force sword of diode D 6 is connected to the node of diode D 7 via field effect transistors F ET 5 and F ET 6, and a resistor R 9 is connected in parallel to diode D 6. ing.
  • FIG. 6 shows the strobe signal input circuit 10.
  • One end of the resistor R10 is connected to the strobe signal input terminal 15 and the other end of the resistor R10 is connected to the diode D8 anode and the diode D9 cuff and the electric field. It is connected to the gates of the effect transistors FET7 and FET8.
  • the power source of the diode D8 is connected to the diode D9 via a field effect transistor FET7 and FET8, and a resistor R11 is connected in parallel to the diode D9. It is connected.
  • FIG. 7a shows the waveform of the drive voltage supplied from the output circuit 4 to the piezoelectric element 23 via the output terminal 20.
  • the vertical axis represents the drive voltage
  • the horizontal axis represents time.
  • the waveform of the drive voltage is an exponential curve wave.
  • a triangular wave as shown in FIG. 7b or a trapezoidal wave as shown in FIG. 7c may be used.
  • the types of these waves can be appropriately selected depending on the characteristics of the device.
  • a number of pressure chambers 28 for sucking and ejecting the ink 27 are formed by covering a number of recesses with the vibration plate 26, respectively. I have.
  • the head body 25 has an inlet 2 9 for supplying the ink 27 to the pressure chamber 28.
  • a nozzle 30 for ejecting the ink 27 from the pressure chamber 28, and the inlet 29 is in communication with the ink supply path 31.
  • a piezoelectric element 23 is fixed to each of the vibration plates 26. The deformation of the piezoelectric element 23 deforms the vibration plate 26, and the volume of the pressure chamber 28 changes.
  • a clock signal is input to the clock signal input terminal 11 in FIG. 1 from, for example, a control unit of a printing device (not shown) provided with an ink jet head.
  • This clock signal is input via the clock input circuit 6 to the timing signal input terminal of the D flip-flop constituting the shift register 1.
  • print data is serially input to the serial data input terminal 12 from the control unit.
  • This print data is serially input to the data input terminal of the D flip-flop constituting the shift register 1 in synchronization with the clock signal supplied to the timing signal input terminal via the serial data input circuit 7. Then, the print data of 64 bits is temporarily stored in the shift register 1.
  • the latch pulse is transmitted via the latch pulse input circuit 9 to the latch circuit of the D flip-flop constituting the latch circuit 2. Input to the input terminal.
  • the print data from the data output terminal of the D flip-flop constituting the shift register 1 is input in parallel to the data input terminal of the D flip-flop constituting the latch circuit 2, and the print data is inputted.
  • the print data is latched by the latch circuit 2 and output from the data output terminal of the D flip-flop constituting the latch circuit 2 to one input terminal of the AND circuit 3.
  • the next print data is temporarily stored in the shift register 1, and at that time, the previous print data is output from the serial data output terminal 13 through the serial data output circuit 8. Is done.
  • a strobe signal is input from the control unit to the strobe signal input terminal 15, this strobe signal is input to the other input terminal of the AND circuit 3 via the strobe signal input circuit 10.
  • the latch pulse is at the high level, and the bit corresponding to the dot that requires printing is at the high level during printing, so the logical product circuit 3 responds to the dot that requires printing.
  • a high-level signal is output to prevent dots that do not need to be printed.
  • the corresponding AND circuit 3 outputs a low-level signal.
  • the dot means one of many points that can be printed by the ink jet head, and one of the many nozzles 30 of the ink jet head. Each corresponds to one dot.
  • the output of the AND circuit 3 is input to the first control signal input terminal 21 of the output circuit 4, and is inverted by the inverter 5 and input to the second control signal input terminal 22 of the output circuit 4. You.
  • a high-level signal from the AND circuit 3 is input to the first control signal input terminal 21 in FIG.
  • the transistors Trl and Tr2 are turned on, the transistors Tr3 and Tr4 are turned on, and the drive voltage input to the drive voltage input terminal 16 changes from the transistor Tr4 to the diode. It is output from the output terminal 20 via D 1 and applied to the piezoelectric element 23.
  • the high-level signal from the AND circuit 3 is inverted by the inverter 5 and is supplied to the second control signal input terminal 22 as an input-level signal, so that the transistors Tr 9 and T 9 r 10 is not turned on, and the intermediate voltage input to the intermediate voltage input terminal 17 is not applied to the piezoelectric element 23.
  • the drive voltage applied to the piezoelectric elements 23 is a repetitive waveform having the same fixed period as the waveform shown in FIG. 7a, and the strobe signal input to the strobe signal input terminal 15 is applied to the drive voltage input terminal 1
  • the drive voltage is synchronized with the drive voltage input to 6, and one cycle of the drive voltage is applied to the piezoelectric element 23.
  • the intermediate drive voltage V M is lower than the highest drive voltage V H and higher than the lowest drive voltage V L. These V H, V M, and V L are appropriately determined according to various design conditions. In the present embodiment, the minimum drive voltage V L is 0 volt.
  • the piezoelectric element 23 has the largest bending amount when the highest driving voltage VH is applied, and has the smallest bending amount when the lowest driving voltage VL is applied.
  • the intermediate drive voltage VM When the intermediate drive voltage VM is applied, the amount of deflection is intermediate.
  • the minimum drive voltage VL is 0 volt, when the minimum drive voltage VL is applied, the radius of the piezoelectric element 23 is zero, and the flatness is maintained.
  • the one-level signal from the AND circuit 3 is inverted by the inverter 5, and the second control signal is input as a high-level signal. Input to input terminal 22.
  • the transistors Tr9 and Tr10 are turned on, the transistors Tr7 and Tr8 are turned on, and the intermediate voltage input to the intermediate voltage input terminal 17 is applied to the transistor Tr8 and the diode D
  • the signal is output from the output terminal 20 via the terminal 2 and is applied to the piezoelectric element 23.
  • the transistors Tr 1 and Tr 2 do not turn on, but are input to the drive voltage input terminal 16.
  • the applied driving voltage is not applied to the piezoelectric element 23.
  • the intermediate voltage applied to the piezoelectric element 23 has the same magnitude as the intermediate drive voltage VM. That is, the piezoelectric element 23 corresponding to a dot that does not require printing is bent by the same amount of radius as when the intermediate drive voltage VM is applied.
  • the electric charge charged in the piezoelectric element 23 is discharged by a discharge circuit including the transistors Tr5 and Tr6, the resistor R5, the diode D3, and the like.
  • a discharge circuit including the transistors Tr5 and Tr6, the resistor R5, the diode D3, and the like.
  • an intermediate drive voltage VM is applied to the piezoelectric element 23 during a time T1 shown in FIG. 7a.
  • the piezoelectric element 23 bends by a predetermined amount in accordance with the drive voltage, the diaphragm 26 similarly bends, and the volume of the pressure chamber 28 becomes a predetermined amount. This state is a standby state.
  • the amount of deflection of the piezoelectric element 23 decreases in accordance with the drive voltage, and as shown in FIG.
  • the deformation of the diaphragm 26 is eliminated, and the volume of the pressure chamber 28 is maximized.
  • the pressure chamber 28 has a negative pressure
  • the meniscus 32 which is the liquid level at the tip of the ink 27 in the nozzle 30, retreats in the direction of the pressure chamber 28.
  • the ink 27 is supplied to the pressure chamber 28 from the ink supply path 31, and the pressure chamber 28 is filled with the ink 27 corresponding to the volume.
  • the radius of the piezoelectric element 23 increases in accordance with the drive voltage.
  • the piezoelectric element 23 is deformed to the maximum, and the diaphragm 26 is largely bent inside the pressure chamber 28.
  • the maximum driving voltage VH is higher than the intermediate driving voltage VM, and the deformation of the piezoelectric element 23 is increased. Accordingly, the radius of the diaphragm 26 is larger than in the standby state, and the volume of the pressure chamber 28 is also minimized. Therefore, the pressure chamber 28 becomes positive pressure and the nozzle 30 Ink drops 3 3 are ejected from ⁇
  • the drive voltage of the piezoelectric element 23 is immediately reduced from the maximum drive voltage VH to the intermediate drive voltage VM.
  • T4 as shown in Fig. 8d, the piezoelectric element 23 is in a standby state, the deformation of the piezoelectric element 23 is relaxed, and the deflection of the diaphragm 26 to the pressure chamber 28 is reduced. .
  • the pressure in the pressure chamber 28 becomes negative pressure, the ink droplets 33 are separated, and the ink 27 in the nozzle 30 is pulled back to the pressure chamber 28 against the ink 27 force and surface tension.
  • the meniscus 32 retracts inward from the tip of the nozzle 30.
  • a part of the ink 27 is sucked into the pressure chamber 28 from the ink supply path 31, and the pressure chamber 28 accommodates a smaller amount of ink than its maximum volume.
  • the piezoelectric element 23 and the vibration plate 26 are dampingly vibrating as indicated by arrows 34 and 35.
  • the driving voltage has dropped from the maximum driving voltage VH to the intermediate driving voltage VM, so that the meniscus 32 force ⁇ has receded in the direction of the pressure chamber 28 compared to the conventional drawing method. Therefore, as shown in FIG. 8e, even when the piezoelectric element 23 and the vibration plate 26 move in the direction of the arrow 35 due to the damped vibration, the meniscus 32 does not protrude outside the nozzle 30. That is, the ink 27 in the nozzle 30 is forced to move to the tip side of the nozzle 30 by the surface tension.
  • the drive voltage applied to the piezoelectric element 23 is rapidly increased to the maximum drive voltage VH in a short time T4. Since the driving voltage is lowered to the intermediate drive voltage VM, the meniscus 32 is forcibly moved inward by the negative pressure of the pressure chamber 28, and the vibration is caused by the damping vibration of the piezoelectric element 23 and the diaphragm 26. The ink 27 does not overflow from the tip of the nozzle 30. Enough of this effect
  • the time T4 is preferably set to 300 s or less, more preferably from 200 s to 200 s.
  • the apparatus returns to the standby state shown in FIG. 8e.
  • the intermediate drive voltage VM is set between the highest drive voltage VH and the lowest drive voltage VL, and the piezoelectric elements 23 and 23 are placed in a standby state of the inkjet head.
  • the intermediate drive voltage VM is applied. This makes it possible to lower the position of the meniscus 32 by lowering the drive voltage from the intermediate drive voltage VM to the minimum drive voltage VL before ink ejection. Therefore, even when ink is continuously ejected, it is possible to sufficiently suppress the difference in the size of the ink droplet 33 between the first ejection and the second and subsequent ejections. .
  • the position of the meniscus 32 can be retracted in the direction of the pressure chamber 28, so that the piezoelectric element 23 Even if the diaphragm 26 has damped vibration, the meniscus 32 does not protrude from the tip of the nozzle 30 and does not stain the nozzle surface.
  • the minimum drive voltage VL is set to 0 volt or more as in the present embodiment, no negative voltage is applied to the piezoelectric element 23, so that the polarization of the piezoelectric element 23 is deteriorated due to the alternate application of the bipolar voltage. And a negative power supply is not required.
  • the method and apparatus for driving an ink jet head of the present invention can be used for any type of ink jet head that ejects ink by utilizing deformation of a piezoelectric element.

Abstract

A method of driving an ink jet head provided with a pressure chamber having an inlet into which ink is introduced, and an ink ejection nozzle; a diaphragm adapted to vary the volume of the pressure chamber; and a piezoelectric element adapted to deform the diaphragm in accordance with a driving voltage applied thereto and carry out the suction and ejection of ink into and from the pressure chamber, which method comprises the steps of sucking ink into the pressure chamber by applying a minimum driving voltage to the piezoelectric element on standby, i.e., in an intermediate driving voltage-applied state; ejecting the ink from the pressure chamber by applying a maximum driving voltage immediately after the completion of the suction step; and switching the ejection step to the standby state by applying an intermediate driving voltage to the piezoelectric element immediately after the completion of the ejection step and thereby drawing the ink from the nozzle back to the pressure chamber against the surface tension thereof.

Description

明糸田 » 発明の名称  Meitoda »Title of the invention
インクジ ッ トへッ ドの駆動方法および駆動装置 技術分野  Driving method and driving device for ink jet head
本発明は、 圧電素子によって変形させられて圧力室の容積を変化させることに よりインクを吸引及び射出する振動板を用いた、 インクジェッ トへッ ドの駆動方 法および駆動装置に関する。 背景技術  The present invention relates to a driving method and a driving device for an ink jet head using a vibration plate that sucks and ejects ink by changing the volume of a pressure chamber by being deformed by a piezoelectric element. Background art
インクジェッ トへッ ドは、 圧電素子の変形を振動板に伝え、 圧力室の容積を減 少させてその圧力を上昇させ、 ノズルからインク滴を射出する装置である。  The inkjet head is a device that transmits the deformation of the piezoelectric element to the diaphragm, reduces the volume of the pressure chamber, raises the pressure, and ejects ink droplets from the nozzles.
圧電素子の変形は、 圧電素子に印加される駆動電圧を変化させることにより実 現される。 一般に、 圧電素子は、 印加される駆動電圧が高くなると変形して駆動 状態となり、 低くなると変形がなくなり待機状態となる。 従って、 駆動電圧は、 最高駆動電圧と最低駆動電圧との 2つの電圧レベルを切り換えることにより制御 される。  The deformation of the piezoelectric element is realized by changing the drive voltage applied to the piezoelectric element. In general, the piezoelectric element is deformed and becomes a driving state when the applied driving voltage is increased. Therefore, the drive voltage is controlled by switching between two voltage levels, the highest drive voltage and the lowest drive voltage.
従来、 特にガイザー型のインクジヱッ トへッ ドにおけるインク滴の射出方法に は、 押し打ち法と引き打ち法との 2種類があった。  Conventionally, there have been two methods of ejecting ink droplets, particularly in a Geyser-type ink jet head, a push driving method and a pull driving method.
第 9 a図〜第 9 e図に、 押し打ち法によるインク射出方法の工程を示す。 第 9 a図のように、 待機状態では、 圧電素子 4 0に印加される駆動電圧が最低駆動電 圧となっており、 圧電素子 4 0及び振動板 4 1は変形しておらず、 インクのメニ' スカス 4 2はノズル 4 3の先端まで進んでいる。 ここでメニスカス 4 2とは、 ノ ズル 4 3内のインクの先端液面をいう。 この状態から、 第 9 b図のように、 圧電 素子 4 0に最高駆動電圧を印加して、 圧電素子 4 0の変形により振動板 4 1を圧 力室 4 4の内側に撓ませて圧力室 4 4の容積を減少させ、 ノズル 4 3からィンク 滴 4 5を射出する。 次に、 第 9 c図のように、 圧電素子 4 0に印加した駆動電圧 を最低駆動電圧まで低下させ、 再び待機状態とし、 振動板 4 1の橈みをなく して 圧力室 4 4の容積を最大値に戻す。 これにより、 圧力室 4 4内の圧力が負圧にな り、 インク滴 4 5の分離が行われる。 また、 圧力室 4 4には、 インク供給路 4 6 側からインクが供給される。 このとき、 第 9 d図のように、 圧電素子 4 0及び振 動板 4 1は、 慣性によりさらに外側にふくらみ、 ノズル 4 3内のメニスカス 4 2 は、 圧力室 4 4の方向に後退する。 この後一定時間、 圧電素子 4 0及び振動板 4 1はいわゆる減衰振動をしている。 その後、 第 9 e図のように、 圧電素子 4 0及 び振動板 4 1は、 再び待機状態、 すなわち変形がない状態に復帰し、 メニスカス 4 2も毛細管現象により徐々にノズル 4 3の先端に戻ってゆく。 9a to 9e show the steps of the ink ejection method using the pressing method. As shown in FIG. 9a, in the standby state, the drive voltage applied to the piezoelectric element 40 is the minimum drive voltage, the piezoelectric element 40 and the diaphragm 41 are not deformed, and the ink The meniscus 42 advances to the tip of the nozzle 43. Here, the meniscus 42 refers to the liquid level at the tip of the ink in the nozzle 43. From this state, as shown in FIG. 9b, the highest drive voltage is applied to the piezoelectric element 40, and the diaphragm 41 is bent inside the pressure chamber 44 by the deformation of the piezoelectric element 40, so that the pressure chamber is deformed. 4 Reduce the volume of 4 and eject the ink droplet 4 5 from nozzle 4 3. Next, as shown in Fig. 9c, the drive voltage applied to the piezoelectric element 40 Is reduced to the minimum drive voltage, the standby state is set again, the radius of the diaphragm 41 is eliminated, and the volume of the pressure chamber 44 is returned to the maximum value. As a result, the pressure in the pressure chamber 44 becomes a negative pressure, and the ink droplets 45 are separated. Further, ink is supplied to the pressure chamber 44 from the ink supply path 46 side. At this time, as shown in FIG. 9d, the piezoelectric element 40 and the vibrating plate 41 bulge further outward due to inertia, and the meniscus 42 in the nozzle 43 recedes in the direction of the pressure chamber 44. Thereafter, for a certain period of time, the piezoelectric element 40 and the vibrating plate 41 perform so-called damped vibration. Thereafter, as shown in FIG. 9e, the piezoelectric element 40 and the diaphragm 41 return to the standby state, that is, a state where there is no deformation again, and the meniscus 42 gradually moves to the tip of the nozzle 43 by capillary action. Go back.
したがって、 メニスカス 4 2が完全にノズル 4 3の先端の位置まで戻ってから 次のィンク射出を行えば、 繰り返してインク射出を実現することができる。  Therefore, if the next ink ejection is performed after the meniscus 42 completely returns to the position of the tip of the nozzle 43, the ink ejection can be realized repeatedly.
第 1 0 a図〜第 1 0 e図に、 引き打ち法によるインク射出方法の工程を示す。 第 1 0 a図に示すように、 待機状態では、 圧電素子 4 0に最高駆動電圧が印加さ れている。 この状態では、 圧電素子 4 0が変形されており、 振動板 4 1は圧力室 4 4の内側に橈んでいる。 また、 インクのメニスカス 4 2は、 ノズル 4 3の先端 まで進んでいる。 次に、 第 1 O b図のように、 圧電素子 4 0の駆動電圧を最低駆 動電圧まで低下させ、 振動板 4 1の橈みをなく して圧力室 4 4の容積を増大させ る。 これにより、 メニスカス 4 2が圧力室 4 4の方向に後退し、 また圧力室 4 4 には、 インク供給路 4 6側からインクが供給される。 この状態から、 第 1 O c図 のように、 圧電素子 4 0に再び最高駆動電圧を印加して、 圧電素子 4 0を変形さ せて振動板 4 1をノズル 4 3の内側に橈ませ、 ノズル 4 3の容積を減少させてノ ズル 4 3からインク滴 4 5を射出する。 このとき、 圧電素子 4 0及び振動板 4 1 は慣性によって矢印 4 7のように行きすぎ、 次に第 1 0 d図のように、 矢印 4 8 のように反動で戻るときに圧力室 4 4内の圧力が負圧となり、 インク滴 4 5の分 離が行われる。 この後、 圧電素子 4 0及び振動板 4 1は、 一定時間いわゆる減衰 振動をしている。 この減衰振動がなくなると、 第 1 0 e図のように、 圧電素子 4 0及.び振動板 4 1は待機状態、 すなわち圧力室 4 4の内側に橈んで静止した状態 に戻り、 メニスカス 4 2も毛細管現象により徐々にノズル 4 3の先端に戻ってゆ < c FIG. 10a to FIG. 10e show the steps of the ink ejection method by the drawing method. As shown in FIG. 10a, the highest drive voltage is applied to the piezoelectric element 40 in the standby state. In this state, the piezoelectric element 40 is deformed, and the vibration plate 41 is radiused inside the pressure chamber 44. The meniscus 42 of the ink has advanced to the tip of the nozzle 43. Next, as shown in FIG. 1 Ob, the drive voltage of the piezoelectric element 40 is reduced to the minimum drive voltage, the radius of the diaphragm 41 is eliminated, and the volume of the pressure chamber 44 is increased. As a result, the meniscus 42 retreats in the direction of the pressure chamber 44, and ink is supplied to the pressure chamber 44 from the ink supply path 46 side. From this state, as shown in Fig. 1 Oc, the highest drive voltage is again applied to the piezoelectric element 40, deforming the piezoelectric element 40, and bending the diaphragm 41 inside the nozzle 43. The ink droplet 45 is ejected from the nozzle 43 by reducing the volume of the nozzle 43. At this time, the piezoelectric element 40 and the vibrating plate 41 go too far due to inertia as shown by an arrow 47, and then return as shown by an arrow 48 in FIG. The pressure inside becomes negative pressure, and ink droplets 45 are separated. Thereafter, the piezoelectric element 40 and the vibration plate 41 perform so-called damped vibration for a certain time. When this damped vibration disappears, as shown in Fig. 10e, the piezoelectric element 40 and the diaphragm 41 return to the standby state, that is, the state resting radially inside the pressure chamber 44, and the meniscus 4 2 Also gradually returns to the tip of nozzle 43 due to capillary action. <c
上述の押し打ち法及び引き打ち法は、 圧電素子 4 0に印加する駆動電圧を所定 の波形に制御することにより実現される。  The above-described pushing and pulling methods are realized by controlling the driving voltage applied to the piezoelectric element 40 to a predetermined waveform.
第 1 1 a図及び第 1 l b図に、 押し打ち法に使用される駆動電圧の波形を示す 。 第 1 1 a図及び第 1 1 b図の縦軸は電圧すなわち駆動電圧の大きさを表し、 横 軸は時間を表す。 ここで、 第 1 1 a図はェクスポ一ネンシャルカーブ波を表して おり、 第 1 1 b図は三角波を表している。 これらの波の種類は、 装置の特性等に より適宜選択することができる。  FIG. 11a and FIG. 1lb show waveforms of the driving voltage used in the pushing method. The vertical axis in FIGS. 11a and 11b represents the voltage, that is, the magnitude of the driving voltage, and the horizontal axis represents time. Here, FIG. 11a shows an exponential curve wave, and FIG. 11b shows a triangular wave. The types of these waves can be appropriately selected depending on the characteristics of the device.
押し打ち法においては、 上記の説明のように、 圧電素子 4 0に最低駆動電圧が 印加されている時間 T 5が待機状態である。 そして、 駆動電圧が最低駆動電圧か ら最高駆動電圧に上昇する時間 T 6で、 インク滴 4 5を射出する。 続いて、 駆動 電圧が最高駆動電圧から最低駆動電圧に低下する時間 T 7で、 インク滴 4 5の分 離と圧力室 4 4へのインクの供給が行われる。  In the pushing method, as described above, the time T5 during which the minimum drive voltage is applied to the piezoelectric element 40 is in the standby state. Then, at time T6 when the drive voltage rises from the lowest drive voltage to the highest drive voltage, ink droplets 45 are ejected. Subsequently, at time T7 when the drive voltage decreases from the highest drive voltage to the lowest drive voltage, separation of the ink droplets 45 and supply of ink to the pressure chambers 44 are performed.
第 1 2 a図及び第 1 2 b図に、 引き打ち法に使用される駆動電圧の波形を示す 。 第 1 2 a図及び第 1 2 b図の縦軸は電圧すなわち駆動電圧の大きさを表し、 横 軸は時間を表す。 ここで、 第 1 2 a図はェクスポーネンシャルカーブ波を表して おり、 第 1 2 b図は三角波を表している。 これらの波の種類は、 装置の特性等に より適宜選択することができる。  FIG. 12a and FIG. 12b show the waveforms of the driving voltage used in the drawing method. The vertical axis in FIGS. 12a and 12b represents the voltage, that is, the magnitude of the driving voltage, and the horizontal axis represents time. Here, Fig. 12a shows an exponential curve wave, and Fig. 12b shows a triangular wave. The types of these waves can be appropriately selected depending on the characteristics of the device.
引き打ち法においては、 上記の説明のように、 圧電素子 4 0に最高駆動電圧が 印加されている時間 T 8が待機状態である。 次に、 駆動電圧が最高駆動電圧から 最低駆動電圧に低下する時間 T 9で、 圧力室 4 4へのインクの供給が行われる。 続いて、 駆動電圧が最低駆動電圧から最高駆動電圧に上昇する時間 T 1 0で、 ィ ンク滴 4 5を射出する。  In the pulling method, as described above, the time T8 during which the maximum drive voltage is applied to the piezoelectric element 40 is a standby state. Next, at time T9 when the drive voltage decreases from the highest drive voltage to the lowest drive voltage, ink is supplied to the pressure chambers 44. Subsequently, at a time T10 when the drive voltage rises from the lowest drive voltage to the highest drive voltage, the ink droplet 45 is ejected.
し力、し、 上述の押し打ち法においては、 1発目のインク滴 4 5の射出から 2発 目のインク滴 4 5の射出までの時間が短いと、 メニスカス 4 2が完全にノズル 4 3の先端に戻る前に 2発目を射出することになる。 このため、 1発目と 2発目以 後で、 インク滴 4 5の大きさに差ができ、 特に、 印字速度を上げた場合に、 印字 品質の劣化を招いていた。 一方、 上述の引き打ち法では、 ィンク射出前に 1度メニスカス 4 2を後退させ ておいてからインク射出を行うため、 1発目と 2発目以後で、 インク滴 4 5の大 きさの差を小さくすることができる。 In the above-described pressing method, if the time between the ejection of the first ink droplet 45 and the ejection of the second ink droplet 45 is short, the meniscus 42 completely becomes the nozzle 43 The second shot will be fired before returning to the tip. For this reason, the size of the ink droplets 45 was different between the first and second shots, and the print quality was degraded, especially when the printing speed was increased. On the other hand, in the above-described pulling method, since the meniscus 42 is retracted once before the ink is ejected, and then the ink is ejected, the size of the ink droplet 45 is reduced after the first and second shots. The difference can be reduced.
しかし、 待機状態において、 圧電素子 4 0に最高駆動電圧が印加されているの で、 インク射出後のメニスカス 4 2の位置が、 押し打ち法に比べて、 よりノズル 4 3の先端に近づいている。 このため、 第 1 0 e図に示すように、 圧電素子 4 0 及び振動板 4 1が減衰振動をしているときであって矢印 4 9の方向に動いたとき に、 メニスカス 4 2がノズル 4 3の外側まではみ出て、 ノズル面を汚し、 以後の インクの吐出方向が一定にならない等のために印字品質の劣化を引き起こすこと があった。 発明の開示  However, in the standby state, since the highest drive voltage is applied to the piezoelectric element 40, the position of the meniscus 42 after ink ejection is closer to the tip of the nozzle 43 than in the push-in method. . Therefore, as shown in FIG. 10e, when the piezoelectric element 40 and the vibration plate 41 are damping and moving in the direction of the arrow 49, the meniscus 42 becomes the nozzle 4 In some cases, the ink protruded to the outside of No. 3 and stained the nozzle surface, causing the ink ejection direction to become inconsistent, which could cause deterioration in print quality. Disclosure of the invention
そこで、 本発明の目的は、 インクジヱッ トヘッ ドのノズル面がインクで汚れる ことがなく、 高い印字速度でも印字品質を向上できる、 インクジエツ トへッ ドの 駆動方法および駆動装置を提供することにある。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a method and a device for driving an ink jet head in which the nozzle surface of the ink jet head is not stained with ink, and the print quality can be improved even at a high print speed.
本発明の第 1の側面によれば、 インクが導入される導入口とインクを射出する ノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加され る駆動電圧に応じて振動板を変形させて圧力室のインクの吸入及び射出を行う圧 電素子と、 を備えたィンクジエツ トへッ ドを駆動するィンクジヱッ トへッ ドの駆 動方法であつて、 圧電素子に中間駆動電圧を印加した待機状態から最低駆動電圧 を印加して圧力室にィンクを吸入する吸入工程と、 吸入工程の直後に圧電素子に 最高駆動電圧を印加して圧力室のインクを射出する射出工程と、 射出工程の直後 に圧電素子に中間駆動電圧を印加して、 ノズルのィンクをその表面張力に抗して 圧力室側に引き戻し、 待機状態に戻る戻り工程と、 を実行することを特徴とする インクジエツ トへッ ドの駆動方法を提供する。  According to the first aspect of the present invention, a pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, A piezoelectric element that draws and ejects ink in the pressure chamber by deforming the vibration plate, and a method of driving an ink jet head that is equipped with a piezoelectric element. A suction step in which the lowest drive voltage is applied from the standby state where the drive voltage is applied to suck the ink into the pressure chamber, and an injection step in which the highest drive voltage is applied to the piezoelectric element immediately after the suction step to eject ink in the pressure chamber. Immediately after the injection step, an intermediate drive voltage is applied to the piezoelectric element, the ink of the nozzle is pulled back to the pressure chamber side against its surface tension, and the return step returns to the standby state. To ink A method for driving a jet head is provided.
以上の構成を有するインクジ ッ トへッ ドの駆動方法による作用と効果につい ては、 後述する実施例に則して詳細かつ具体的に説明する。  The operation and effect of the method for driving the ink jet head having the above configuration will be described in detail and concretely in accordance with embodiments described later.
本発明の好適な実施例によれば、 戻り工程を、 3 0 0 s以下の時間内に行う 。 さらに好ましくは、 戻り工程を、 2 0 u s以上かつ 2 0 0 a s以下の時間内に 行う。 According to a preferred embodiment of the present invention, the return step is performed within a time of 300 s or less. . More preferably, the return step is performed within a time of not less than 200 us and not more than 200 as.
本発明の他の好適な実施例によれば、 最低駆動電圧として、 0ボルト以上の電 圧を用いる。  According to another preferred embodiment of the present invention, a voltage of 0 volt or more is used as the minimum drive voltage.
本発明の他の好適な実施例によれば、 圧電素子に印加する駆動電圧の波形とし て、 ェクスポーネンシャルカーブ波と三角波と台形波とのうちのいずれか 1つを 用レ、る。  According to another preferred embodiment of the present invention, any one of an exponential curve wave, a triangular wave, and a trapezoidal wave is used as the waveform of the drive voltage applied to the piezoelectric element. .
本発明の第 2の側面によれば、 ィンクが導入される導入口とインクを射出する ノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加され る駆動電圧に応じて振動板を変形させて圧力室のインクの吸入及び射出を行う圧 電素子と、 を備えたインクジヱッ トへッ ドを駆動するインクジヱッ トへッ ドの駆 動装置であって、 この駆動装置は、 圧電素子に印加される駆動電圧を制御する制 御回路を備え、 この制御回路は、 圧電素子に中間駆動電圧を印加した待機状態か ら最低駆動電圧を印加して圧力室にインクを吸入する吸入工程と、 吸入工程の直 後に圧電素子に最高駆動電圧を印加して圧力室のィンクを射出する射出工程と、 射出工程の直後に圧電素子に中間駆動電圧を印加して、 ノズルのィンクをその表 面張力に杭して圧力室側に引き戻し、 待機状態に戻る戻り工程と、 を実行させる ことを特徴とするインクジ ッ トへッ ドの駆動装置を提供する。  According to the second aspect of the present invention, a pressure chamber having an inlet for introducing an ink and a nozzle for ejecting ink, a diaphragm for changing the volume of the pressure chamber, and a driving voltage applied according to an applied driving voltage A piezoelectric element for sucking and ejecting the ink in the pressure chamber by deforming the vibration plate, and a driving device of the ink jet head for driving the ink jet head, comprising: A control circuit for controlling a drive voltage applied to the piezoelectric element, wherein the control circuit applies a minimum drive voltage from a standby state in which an intermediate drive voltage is applied to the piezoelectric element and sucks ink into the pressure chambers A suction step, an injection step in which the highest drive voltage is applied to the piezoelectric element immediately after the suction step to eject the ink in the pressure chamber, and an intermediate drive voltage is applied to the piezoelectric element immediately after the injection step to cause the nozzle to ink. Its surface tension And a return step of returning to a standby state after being piled up at a pressure chamber side.
本発明の第 3の側面によれば、 インクが導入される導入口とインクを射出する ノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加され る駆動電圧に応じて振動板を変形させて圧力室のインクの吸入及び射出を行う圧 電素子と、 を備えたインクジェッ トへッ ドを駆動するィンクジエツ トへッ ドの駆 動方法であつて、 振動板の橈み量を中程度にした待機状態から撓み量を最小にし て圧力室にインクを吸入する吸入工程と、 吸入工程の直後に振動板の撓み量を最 大にして圧力室のインクを射出する射出工程と、 射出工程の直後に振動板の橈み 量を中程度にして、 ノズルのインクをその表面張力に杭して圧力室側に引き戻し 、 待機状態に戻る戻り工程と、 を実行することを特徴とするインクジェッ トへッ ドの駆動方法を提供する。 本発明の第 4の側面によれば、 インクが導入される導入口とインクを射出する ノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加され る駆動電圧に応じて振動板を変形させて圧力室のインクの吸入及び射出を行う圧 電素子と、 を備えたインクジヱッ トへッ ドを駆動するインクジヱッ トへッ ドの駆 動装置であって、 この駆動装置は、 圧電素子に印加される駆動電圧を制御して振 動板を撓ませる制御回路を備え、 この制御回路は、 振動板の橈み量を中程度にし た待機状態から撓み量を最小にして圧力室にインクを吸入する吸入工程と、 吸入 工程の直後に振動板の橈み量を最大にして圧力室のインクを射出する射出工程と 、 射出工程の直後に振動板の撓み量を中程度にして、 ノズルのインクをその表面 張力に抗して圧力室側に引き戻し、 待機状態に戻る戻り工程と、 を実行させるこ とを特徴とするインクジ ッ トへッ ドの駆動装置を提供する。 According to the third aspect of the present invention, a pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for changing the volume of the pressure chamber, and a driving voltage applied in accordance with the applied driving voltage A piezoelectric element for sucking and ejecting ink from the pressure chamber by deforming the vibration plate, and a method for driving an ink jet head for driving an ink jet head provided with the piezoelectric element. A suction process in which ink is sucked into the pressure chamber while minimizing the amount of deflection from a standby state in which the amount of deformation is medium, and an ejection in which ink is ejected from the pressure chamber by maximizing the deflection of the diaphragm immediately after the suction process. Immediately after the injection step, the radius of the diaphragm is set to a medium value, the ink of the nozzle is piled up to its surface tension, pulled back to the pressure chamber side, and returned to the standby state. Inkjet head features To provide a dynamic way. According to the fourth aspect of the present invention, a pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for changing the volume of the pressure chamber, and a driving voltage applied in accordance with the applied driving voltage A piezoelectric element for sucking and ejecting the ink in the pressure chamber by deforming the vibration plate, and a driving device of the ink jet head for driving the ink jet head, comprising: A control circuit for controlling the drive voltage applied to the piezoelectric element to bend the diaphragm, and this control circuit minimizes the amount of flexure from a standby state in which the radius of the diaphragm is set to a medium value, A suction step of sucking ink into the chamber, an injection step of maximizing the radius of the diaphragm immediately after the suction step to eject ink in the pressure chamber, and a medium deflection of the diaphragm immediately after the ejection step. The surface tension of the nozzle ink Retraction to the pressure chamber side and anti, to provide a driving device of Inkuji Tsu Toe' de characterized that you to execute a return stroke back to the standby state.
本発明の第 5の側面によれば、 ィンクが導入される導入口とインクを射出する ノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加され る駆動電圧に応じて振動板を変形させて圧力室のインクの吸入及び射出を行う圧 電素子と、 を備えたィンクジヱッ トへッ ドを駆動するィンクジヱッ トへッ ドの駆 動方法であって、 圧力室の容積が中程度の待機状態から容積を最大にして圧力室 にインクを吸入する吸入工程と、 吸入工程の直後に圧力室の容積を最小にして圧 力室のインクを射出する射出工程と、 射出工程の直後に圧力室の容積を中程度に して、 ノズルのインクをその表面張力に杭して圧力室側に引き戻し、 待機状態に 戻る戻り工程と、 を実行することを特徴とする、 インクジェッ トヘッ ドの駆動方 法を提供する。  According to the fifth aspect of the present invention, a pressure chamber having an inlet for introducing an ink and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, And a piezoelectric element for sucking and ejecting ink in the pressure chamber by deforming the vibration plate, and a method for driving an ink jet head having the piezoelectric element, the method comprising: A suction step in which the volume is maximized from the medium standby state to suck the ink into the pressure chambers; an injection step in which the volume of the pressure chambers is minimized immediately after the suction step to eject the ink in the pressure chambers; Immediately after the step, the volume of the pressure chamber is set to a medium level, the ink of the nozzle is piled up to its surface tension, pulled back to the pressure chamber side, and returned to a standby state. Drive method provide.
本発明の第 6の側面によれば、 ィンクが導入される導入口とィンクを射出する ノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加され る駆動電圧に応じて振動板を変形させて圧力室のインクの吸入及び射出を行う圧 電素子と、 を備えたィンクジヱッ トへッ ドを駆動するインクジヱッ トへッ ドの駆 動装置であって、 この駆動回路は、 圧電素子に印加される駆動電圧を制御して振 動板を撓ませることにより圧力室の容積を可変させる制御回路を備え、 この制御 回路は、' 圧力室の容積が中程度の待機状態から容積を最大にして圧力室にィンク を吸入する吸入工程と、 吸入工程の直後に圧力室の容積を最小にして圧力室のィ ンクを射出する射出工程と、 射出工程の直後に圧力室の容積を中程度にして、 ノ ズルのインクをその表面張力に抗して圧力室側に引き戻し、 待機状態に戻る戻り 工程と、 を実行させることを特徴とするインクジ ッ トへッ ドの駆動装置を提供 する。 本発明の種々な特徴及び利点は、 以下に添付図面に基づいて説明する実 施例より明らかになるであろう。 図面の簡単な説明 According to the sixth aspect of the present invention, a pressure chamber having an inlet into which an ink is introduced and a nozzle for ejecting the ink, a diaphragm for changing the volume of the pressure chamber, A piezoelectric element for sucking and ejecting ink in the pressure chamber by deforming the vibration plate, and a driving device for the ink jet head for driving an ink jet head having a piezoelectric element. A control circuit for controlling the drive voltage applied to the piezoelectric element to vary the volume of the pressure chamber by bending the vibration plate, and the control circuit is configured to operate from a standby state in which the volume of the pressure chamber is medium. Ink to pressure chamber with maximum volume A pressure chamber with a minimum volume immediately after the inhalation process, and an injection process in which the pressure chamber ink is ejected with the pressure chamber volume minimized immediately after the inhalation process. The present invention provides a drive device for an ink jet head, wherein the ink jet head is pulled back to the pressure chamber side against the surface tension thereof and returns to a standby state. Various features and advantages of the present invention will become apparent from embodiments described below with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施例に係るインクジ ッ トへッ ドの駆動装置に備えら れた制御回路のプロック図である。  FIG. 1 is a block diagram of a control circuit provided in an inkjet head driving device according to an embodiment of the present invention.
第 2図は、 本発明の一実施例に係るインクジエツ トへッ ドの駆動装置に備えら れた制御回路の一部を構成する出力回路の回路図である。  FIG. 2 is a circuit diagram of an output circuit constituting a part of a control circuit provided in the ink jet head driving device according to one embodiment of the present invention.
第 3図は、 本発明の一実施例に係るインクジエツ トへッ ドの駆動装置に備えら れた制御回路の一部を構成するクロック入力回路の回路図である。  FIG. 3 is a circuit diagram of a clock input circuit constituting a part of a control circuit provided in the ink jet head driving device according to one embodiment of the present invention.
第 4図は、 本発明の一実施例に係るインクジェットヘッ ドの駆動装置に備えら れた制御回路の一部を構成するシルアルデータ出力回路の回路図である。  FIG. 4 is a circuit diagram of a serial data output circuit constituting a part of a control circuit provided in the inkjet head driving device according to one embodiment of the present invention.
第 5図は、 本発明の一実施例に係るインクジエツ トへッ ドの駆動装置に備えら れた制御回路の一部を構成するラッチパルス入力回路の回路図である。  FIG. 5 is a circuit diagram of a latch pulse input circuit constituting a part of a control circuit provided in the inkjet head driving device according to one embodiment of the present invention.
第 6図は、 本発明の一実施例に係るインクジエツ トへッ ドの駆動装置に備えら れた制御回路の一部を構成するストローブ信号入力回路の回路図である。  FIG. 6 is a circuit diagram of a strobe signal input circuit constituting a part of a control circuit provided in the inkjet head driving device according to one embodiment of the present invention.
第 7 a図〜第 7 c図は、 本発明の一実施例に係るインクジ ッ トへッ ドの駆動 装置に使用される駆動電圧の波形の例を示す波形図である。  7a to 7c are waveform diagrams showing examples of the waveform of the drive voltage used in the inkjet head drive device according to one embodiment of the present invention.
第 8 a図〜第 8 e図は、 本発明の一実施例に係るインクジエツ トへッ ドの駆動 装置によるインク射出手順の説明図である。  8a to 8e are explanatory views of an ink ejection procedure by the ink jet head driving device according to one embodiment of the present invention.
第 9 a図〜第 9 e図は、 従来の押し打ち法によるインク射出手順の説明図であ o  9a to 9e are explanatory diagrams of the ink ejection procedure by the conventional pressing method.
第 1 0 3図〜第 1 O e図は、 従来の引き打ち法によるインク射出手順の説明図 である。 第 1 l a図および第 1 l b図は、 従来の押し打ち法に使用される駆動電圧の波 形を示す波形図である。 FIG. 103 to FIG. 1 Oe are explanatory views of an ink ejection procedure by a conventional drawing method. FIG. 1 la and FIG. 1 lb are waveform diagrams showing waveforms of the drive voltage used in the conventional pushing method.
第 1 2 a図および第 1 2 b図は、 従来の引き打ち法に使用される駆動電圧の波 形を示す波形図である。 発明を実施するための最良の形態  FIG. 12a and FIG. 12b are waveform diagrams showing waveforms of the driving voltage used in the conventional drawing method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を第 1図〜第 8 e図に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8e.
第 1図は、 本発明の一実施例に係るインクジヱッ トへッ ドの駆動装置に備えら れた制御回路の 1つのプロックを示している。 制御回路は、 このプロックが所定 数並設されて構成される。 この制御回路のブロックは、 多数の Dフリップフロッ プからなるシフトレジス夕 1 と、 多数の Dフリップフ口ップからなるラッチ回路 2と、 多数の論理積回路 3と、 多数の出力回路 4と、 多数のィンバ一夕 5とを備 えている。 これらシフトレジスタ 1を構成する Dフリップフロップや、 ラッチ回 路 2を構成する Dフリップフロップや、 論理積回路 3や、 出力回路 4や、 インバ 一夕 5の数は、 インクジエツ トへッ ドの長手方向に一列に並ぶノズルの数に等し く、 例えば 6 4個である。 制御回路は、 さらに、 クロック入力回路 6と、 シリア ルデータ入力回路 7と、 シリアルデータ出力回路 8と、 ラッチパルス入力回路 9 と、 ストローブ信号入力回路 1 0と、 クロック信号入力端子 1 1 と、 シリアルデ —夕入力端子 1 2と、 シリアルデ一夕出力端子 1 3と、 ラッチパルス入力端子 1 4と、 ストローブ信号入力端子 1 5と、 駆動電圧入力端子 1 6と、 中間電圧入力 端子 1 7と、 電源入力端子 1 8と、 接地端子 1 9と、 多数の出力端子 2 0と、 抵 抗器 R l, R 2とを備えている。 出力端子 2 0の数は、 出力回路 4の数に等しい 第 2図は、 出力回路 4を示している。 この出力回路 4は、 論理積回路 3の出力 端に接続される第 1の制御信号入力端子 2 1 と、 インバー夕 5の出力端に接続さ れる第 2の制御信号入力端子 2 2とを備えている。 第 1の制御信号入力端子 2 1 は、 抵抗器 R 3とトランジスタ T r 1 とを介して接地されている。 トランジスタ T r 1のベースは、 トランジスタ T r 1のコレクタおよびトランジスタ T r 2の ベースに接続されており、 トランジスタ Tr 2のエミ ッ夕は、 接地されている。 トランジスタ Tr 2のコレクタは、 トランジスタ Tr 3およびトランジスタ Tr 5のベースに接続されており、 トランジスタ T r 3のエミ ッ夕は、 駆動電圧入力 端子 1 6とトランジスタ Tr 4のコレクタとダイオード D 3のカソードとに接続 されている。 トランジスタ T r 3のコレクタは、 トランジスタ T r 4のベースに 接続されており、 トランジスタ Tr 4のベース ·エミ ッ夕間には抵抗器 R 4が並 列に接続されている。 トランジスタ Tr 4のェミ ツ夕は、 ダイオード D 1のァノ ードに接続されており、 ダイオード D 1の力ソードは、 ダイオード D 2のカソー ドと出力端子 20とトランジスタ Tr 5のェミ ツ夕とトランジスタ Tr 6のコレ クタとに接続されている。 出力端子 20には、 インクを射出するための圧電素子 23の一端が接続され、 圧電素子 23の他端は接地される。 この圧電素子 23に ついての詳細は、 後述する。 トランジスタ Tr 5のコレクタは、 トランジスタ r 6のベースに接続されており、 トランジス夕 T r 6のベース ·ェミ ツタ間には 、 抵抗器 R 5が並列に接続されている。 トランジスタ Tr 6のェミ ッタは、 ダイ オード D 3のアノードに接続されており、 ダイオード D 2のアノードは、 トラン ジス夕 T r 8のェミ ッ夕に接続されている。 トランジスタ Tr 8のコレクタは、 中間電圧入力端子 1 7とトランジスタ Tr 7のエミ ッ夕とに接続されており、 ト ランジス夕 Tr 7のコレクタは、 トランジスタ Tr 8のベースに接続されている 。 トランジスタ T r 7のベースは、 トランジスタ T r 1 0のコレクタに接続され ており、 トランジスタ Tr 1 0のェミ ッタは、 接地されている。 トランジスタ T r 1 0のベースは、 トランジスタ Tr 9のベースおよびコレクタに接続されてお り、 トランジスタ Tr 9のェミ ッタは、 接地されている。 第 2の制御信号入力端 子 22は、 抵抗器 R 6を介してトランジスタ T r 9のコレクタに接続されている 。 なお、 出力回路 4としては、 このような回路の他に、 アナログスィッチなどを 用いることができる。 FIG. 1 shows one block of a control circuit provided in an inkjet head drive device according to an embodiment of the present invention. The control circuit is configured by arranging a predetermined number of the blocks in parallel. This control circuit block consists of a shift register 1 consisting of many D flip-flops, a latch circuit 2 consisting of many D flip-flops, a large number of AND circuits 3, a large number of output circuits 4, and a large number of output circuits 4. It is equipped with a five-day event. The number of D flip-flops constituting the shift register 1, the D flip-flops constituting the latch circuit 2, the AND circuit 3, the output circuit 4, and the inverter 5 are determined by the length of the ink jet head. This is equal to the number of nozzles aligned in one direction, for example, 64 nozzles. The control circuit further includes a clock input circuit 6, a serial data input circuit 7, a serial data output circuit 8, a latch pulse input circuit 9, a strobe signal input circuit 10, a clock signal input terminal 11, and a serial data input terminal. —Evening input terminals 12, serial data output terminal 13, latch pulse input terminal 14, strobe signal input terminal 15, drive voltage input terminal 16, intermediate voltage input terminal 17, power supply It has an input terminal 18, a ground terminal 19, a number of output terminals 20, and resistors Rl and R2. The number of the output terminals 20 is equal to the number of the output circuits 4. FIG. The output circuit 4 has a first control signal input terminal 21 connected to the output terminal of the AND circuit 3 and a second control signal input terminal 22 connected to the output terminal of the inverter 5. ing. The first control signal input terminal 21 is grounded via the resistor R3 and the transistor Tr1. The base of transistor Tr1 is the collector of transistor Tr1 and the base of transistor Tr2. It is connected to the base, and the emitter of transistor Tr2 is grounded. The collector of the transistor Tr2 is connected to the bases of the transistor Tr3 and the transistor Tr5.The emitter of the transistor Tr3 is connected to the drive voltage input terminal 16 and the collector of the transistor Tr4 and the cathode of the diode D3. And connected to. The collector of the transistor Tr3 is connected to the base of the transistor Tr4, and the resistor R4 is connected in parallel between the base and the emitter of the transistor Tr4. The emitter of the transistor Tr 4 is connected to the diode D 1, and the diode D 1 has a power source connected to the diode D 2 cathode, the output terminal 20 and the transistor Tr 5 emitter. And the collector of transistor Tr6. One end of a piezoelectric element 23 for ejecting ink is connected to the output terminal 20, and the other end of the piezoelectric element 23 is grounded. The details of the piezoelectric element 23 will be described later. The collector of the transistor Tr5 is connected to the base of the transistor r6, and a resistor R5 is connected in parallel between the base and the emitter of the transistor Tr6. The emitter of the transistor Tr6 is connected to the anode of the diode D3, and the anode of the diode D2 is connected to the emitter of the transistor Tr8. The collector of the transistor Tr8 is connected to the intermediate voltage input terminal 17 and the emitter of the transistor Tr7, and the collector of the transistor Tr7 is connected to the base of the transistor Tr8. The base of the transistor Tr7 is connected to the collector of the transistor Tr10, and the emitter of the transistor Tr10 is grounded. The base of the transistor Tr10 is connected to the base and the collector of the transistor Tr9, and the emitter of the transistor Tr9 is grounded. The second control signal input terminal 22 is connected to the collector of the transistor Tr9 via the resistor R6. As the output circuit 4, an analog switch or the like can be used in addition to such a circuit.
第 3図は、 クロック入力回路 6を示している。 抵抗器 R 7の一端は、 クロック 信号入力端子 1 1に接続されており、 抵抗器 R 7の他端は、 ダイオード D 4のァ ノードとダイオード D 5のカソードと電界効果トランジスタ FET 1, FET2 のゲートとに接続されている。 ダイオード D 4の力ソードは、 電界効果トランジ スタ F ET 1 , F ET 2を介してダイオード D 5のァノ一ドに接続されている。 なお、 シリアルデータ入力回路 7もクロック入力回路 6と同様の回路構成である σ FIG. 3 shows the clock input circuit 6. One end of the resistor R7 is connected to the clock signal input terminal 11 and the other end of the resistor R7 is connected to the anode of the diode D4, the cathode of the diode D5, and the field effect transistors FET1 and FET2. Connected to the gate. The force source of diode D4 is connected to the diode D5 via field effect transistors FET1 and FET2. The serial data input circuit 7 has the same circuit configuration as the clock input circuit 6.
第 4図は、 シリアルデ一夕出力回路 8を示している。 電界効果トランジスタ F ET 3, FET4は、 シリアルデータ出力端子 1 3に接続される。  FIG. 4 shows a serial data output circuit 8. The field effect transistors F ET3 and FET4 are connected to the serial data output terminal 13.
第 5図は、 ラッチパルス入力回路 9を示している。 抵抗器 R 8の一端は、 ラッ チパルス入力端子 1 4に接続されており、 抵抗器 R 8の他端は、 ダイオード D 6 のァノードとダイォード D 7のカソードと電界効果トランジスタ FET 5, FE T 6のゲートとに接続されている。 ダイオード D 6の力ソードは、 電界効果トラ ンジス夕 F ET 5, F ET 6を介してダイォード D 7のァノードに接続されてお り、 ダイオード D 6には、 抵抗器 R 9が並列に接続されている。  FIG. 5 shows the latch pulse input circuit 9. One end of the resistor R 8 is connected to the latch pulse input terminal 14, and the other end of the resistor R 8 is connected to the anode of the diode D 6, the cathode of the diode D 7, and the field effect transistors FET 5 and FET 6. Connected to the gate. The force sword of diode D 6 is connected to the node of diode D 7 via field effect transistors F ET 5 and F ET 6, and a resistor R 9 is connected in parallel to diode D 6. ing.
第 6図は、 ストローブ信号入力回路 1 0を示している。 抵抗器 R 1 0の一端は 、 ストローブ信号入力端子 1 5に接続されており、 抵抗器 R 1 0の他端は、 ダイ ォード D 8のァノ一ドとダイォード D 9のカフ一ドと電界効果トランジスタ FE T 7, F ET 8のゲートとに接続されている。 ダイオード D 8の力ソードは、 電 界効果トランジスタ F ET 7, FET 8を介してダイオード D 9のァノ一ドに接 続されており、 ダイオード D 9には、 抵抗器 R 1 1が並列に接続されている。 第 7 a図は、 出力回路 4から出力端子 20を介して圧電素子 23に供給される 駆動電圧の波形を示している。 縦軸が駆動電圧を表し、 横軸が時間を表す。 この 駆動電圧の波形は、 ェクスポーネンシャルカーブ波である。 駆動電圧の波形とし ては、 第 7 b図に示すような三角波を用いてもよいし、 第 7 c図に示すような台 形波を用いてもよい。 これらの波の種類は、 装置の特性等により適宜選択するこ とができる。  FIG. 6 shows the strobe signal input circuit 10. One end of the resistor R10 is connected to the strobe signal input terminal 15 and the other end of the resistor R10 is connected to the diode D8 anode and the diode D9 cuff and the electric field. It is connected to the gates of the effect transistors FET7 and FET8. The power source of the diode D8 is connected to the diode D9 via a field effect transistor FET7 and FET8, and a resistor R11 is connected in parallel to the diode D9. It is connected. FIG. 7a shows the waveform of the drive voltage supplied from the output circuit 4 to the piezoelectric element 23 via the output terminal 20. The vertical axis represents the drive voltage, and the horizontal axis represents time. The waveform of the drive voltage is an exponential curve wave. As the waveform of the drive voltage, a triangular wave as shown in FIG. 7b or a trapezoidal wave as shown in FIG. 7c may be used. The types of these waves can be appropriately selected depending on the characteristics of the device.
第 8 a図〜第 8 e図は、 インク射出の手順を示している。 インクジエツ トへッ ドのへッ ド本体 2 5には、 多数の凹部を各々振動板 2 6で覆われることにより、 インク 27の吸引および射出を行うための多数の圧力室 2 8が形成されている。 またへッ ド本体 25には、 圧力室 2 8にインク 27を供給するための導入口 2 9 と、 圧力室 2 8からインク 2 7を射出するためのノズル 3 0とが形成されており 、 導入口 2 9はィンク供給路 3 1に連通している。 振動板 2 6には、 各々圧電素 子 2 3が固着されており、 圧電素子 2 3の変形により振動板 2 6が変形して、 圧 力室 2 8の容積が変化する。 8a to 8e show the procedure of ink ejection. In the head body 25 of the ink jet head, a number of pressure chambers 28 for sucking and ejecting the ink 27 are formed by covering a number of recesses with the vibration plate 26, respectively. I have. Also, the head body 25 has an inlet 2 9 for supplying the ink 27 to the pressure chamber 28. And a nozzle 30 for ejecting the ink 27 from the pressure chamber 28, and the inlet 29 is in communication with the ink supply path 31. A piezoelectric element 23 is fixed to each of the vibration plates 26. The deformation of the piezoelectric element 23 deforms the vibration plate 26, and the volume of the pressure chamber 28 changes.
次に動作を説明する。 第 1図のクロック信号入力端子 1 1には、 例えばインク ジエツ トへッ ドが備えられた図外の印字装置の制御部から、 クロック信号が入力 される。 このクロック信号は、 クロック入力回路 6を介して、 シフトレジスタ 1 を構成する Dフリップフロップのタイミング信号入力端に入力される。 また、 シ リアルデ一夕入力端子 1 2には、 上記制御部から、 印字データがシリアル入力さ れる。 この印字データは、 シリアルデ一夕入力回路 7を介して、 タイミング信号 入力端に供給されるクロック信号と同期して、 シフトレジスタ 1を構成する Dフ リップフ口ップのデータ入力端に順次シリアル入力され、 6 4ビッ 卜の印字デー 夕がシフトレジスタ 1に一時記憶される。 次に、 上記制御部からラッチパルス入 力端子 1 4にラッチパルスが入力されると、 このラッチパルスは、 ラッチパルス 入力回路 9を介して、 ラツチ回路 2を構成する Dフリップフ口ップのラツチパル ス入力端に入力される。 そして、 このタイミングで、 ラッチ回路 2を構成する D フリップフ口ップのデータ入力端に、 シフトレジスタ 1を構成する Dフリップフ 口ップのデータ出力端からの印字データがパラレル入力され、 印字データがラッ チ回路 2にラッチされて、 ラッチ回路 2を構成する Dフリップフロップのデ一夕 出力端から論理積回路 3の一方の入力端に印字データが出力される。 一方、 上記 と同様の動作により、 シフ トレジスタ 1には次の印字データが一時記憶され、 そ のとき、 前の印字データは、 シリアルデータ出力回路 8を介してシリアルデ一夕 出力端子 1 3から出力される。 次に、 上記制御部からストローブ信号入力端子 1 5にストローブ信号が入力されると、 このストローブ信号は、 ストローブ信号入 力回路 1 0を介して論理積回路 3の他方の入力端に人力される。 ここで、 ラッチ パルスはハイレベルであり、 印字デ一夕は印字の必要なドッ 卜に対応するビッ ト がハイレベルであるので、 論理積回路 3からは、 印字の必要なドッ トに対応する 論理積回路 3についてはハイレベルの信号が出力され、 印字の不要なドッ トに対 応する論理積回路 3についてはローレベルの信号が出力される。 なお、 ここでい う ドッ トとは、 インクジェッ トへッ ドにより印字可能な多数個の点のうちの 1個 を意味しており、 インクジエツ トへッ ドの多数のノズル 3 0のうちの 1個が 1個 のドッ トに対応している。 論理積回路 3の出力は、 出力回路 4の第 1の制御信号 入力端子 2 1に入力されると共に、 インバー夕 5により反転されて出力回路 4の 第 2の制御信号入力端子 2 2に入力される。 Next, the operation will be described. A clock signal is input to the clock signal input terminal 11 in FIG. 1 from, for example, a control unit of a printing device (not shown) provided with an ink jet head. This clock signal is input via the clock input circuit 6 to the timing signal input terminal of the D flip-flop constituting the shift register 1. Further, print data is serially input to the serial data input terminal 12 from the control unit. This print data is serially input to the data input terminal of the D flip-flop constituting the shift register 1 in synchronization with the clock signal supplied to the timing signal input terminal via the serial data input circuit 7. Then, the print data of 64 bits is temporarily stored in the shift register 1. Next, when a latch pulse is input from the control unit to the latch pulse input terminal 14, the latch pulse is transmitted via the latch pulse input circuit 9 to the latch circuit of the D flip-flop constituting the latch circuit 2. Input to the input terminal. At this timing, the print data from the data output terminal of the D flip-flop constituting the shift register 1 is input in parallel to the data input terminal of the D flip-flop constituting the latch circuit 2, and the print data is inputted. The print data is latched by the latch circuit 2 and output from the data output terminal of the D flip-flop constituting the latch circuit 2 to one input terminal of the AND circuit 3. On the other hand, by the same operation as above, the next print data is temporarily stored in the shift register 1, and at that time, the previous print data is output from the serial data output terminal 13 through the serial data output circuit 8. Is done. Next, when a strobe signal is input from the control unit to the strobe signal input terminal 15, this strobe signal is input to the other input terminal of the AND circuit 3 via the strobe signal input circuit 10. . Here, the latch pulse is at the high level, and the bit corresponding to the dot that requires printing is at the high level during printing, so the logical product circuit 3 responds to the dot that requires printing. For the AND circuit 3, a high-level signal is output to prevent dots that do not need to be printed. The corresponding AND circuit 3 outputs a low-level signal. Here, the dot means one of many points that can be printed by the ink jet head, and one of the many nozzles 30 of the ink jet head. Each corresponds to one dot. The output of the AND circuit 3 is input to the first control signal input terminal 21 of the output circuit 4, and is inverted by the inverter 5 and input to the second control signal input terminal 22 of the output circuit 4. You.
すなわち、 印字が必要なドッ 卜に関しては、 論理積回路 3からのハイレベルの 信号が、 第 2図の第 1の制御信号入力端子 2 1に入力される。 これにより トラン ジス夕 T r l , T r 2がオンし、 トランジスタ T r 3, T r 4がオンして、 駆動 電圧入力端子 1 6に入力されている駆動電圧が、 トランジスタ T r 4とダイォー ド D 1 とを介して出力端子 2 0から出力され、 圧電素子 2 3に印加される。 この とき、 論理積回路 3からのハイレベルの信号がィンバ一夕 5により反転されて口 —レベルの信号として第 2の制御信号入力端子 2 2に供給されるので、 トランジ スタ T r 9, T r 1 0はオンせず、 中間電圧入力端子 1 7に入力されている中間 電圧が圧電素子 2 3に印加されることはない。 圧電素子 2 3に印加される駆動電 圧は、 第 7 a図に示す波形と同一の一定周期の繰り返し波形であり、 ストローブ 信号入力端子 1 5に入力されるストローブ信号は、 駆動電圧入力端子 1 6に入力 される駆動電圧に同期しており、 駆動電圧の 1周期分が圧電素子 2 3に印加され る。 中間駆動電圧 V Mは、 最高駆動電圧 V Hよりも小さく、 最低駆動電圧 V Lよ りも大きい。 これら V H, V M, V Lは、 各種設計条件に応じて適宜決定される 力 \ 本実施例では、 最低駆動電圧 V Lが 0ボルトである。 圧電素子 2 3は、 最高 駆動電圧 V Hが印加された場合に撓み量が最も大きく、 最低駆動電圧 V Lが印加 された場合に撓み量が最も小さい。 中間駆動電圧 VMが印加された場合は、 その 中間の撓み量である。 本実施例では、 最低駆動電圧 V Lが 0ボルトであるので、 最低駆動電圧 V Lが印加された場合、 圧電素子 2 3の橈み量はゼロであり、 フラ ッ 卜 よままである。  In other words, for dots requiring printing, a high-level signal from the AND circuit 3 is input to the first control signal input terminal 21 in FIG. As a result, the transistors Trl and Tr2 are turned on, the transistors Tr3 and Tr4 are turned on, and the drive voltage input to the drive voltage input terminal 16 changes from the transistor Tr4 to the diode. It is output from the output terminal 20 via D 1 and applied to the piezoelectric element 23. At this time, the high-level signal from the AND circuit 3 is inverted by the inverter 5 and is supplied to the second control signal input terminal 22 as an input-level signal, so that the transistors Tr 9 and T 9 r 10 is not turned on, and the intermediate voltage input to the intermediate voltage input terminal 17 is not applied to the piezoelectric element 23. The drive voltage applied to the piezoelectric elements 23 is a repetitive waveform having the same fixed period as the waveform shown in FIG. 7a, and the strobe signal input to the strobe signal input terminal 15 is applied to the drive voltage input terminal 1 The drive voltage is synchronized with the drive voltage input to 6, and one cycle of the drive voltage is applied to the piezoelectric element 23. The intermediate drive voltage V M is lower than the highest drive voltage V H and higher than the lowest drive voltage V L. These V H, V M, and V L are appropriately determined according to various design conditions. In the present embodiment, the minimum drive voltage V L is 0 volt. The piezoelectric element 23 has the largest bending amount when the highest driving voltage VH is applied, and has the smallest bending amount when the lowest driving voltage VL is applied. When the intermediate drive voltage VM is applied, the amount of deflection is intermediate. In the present embodiment, since the minimum drive voltage VL is 0 volt, when the minimum drive voltage VL is applied, the radius of the piezoelectric element 23 is zero, and the flatness is maintained.
一方、 印字が不要なドッ トに関しては、 論理積回路 3からの口一レベルの信号 、 インバー夕 5により反転されて、 ハイレベルの信号として第 2の制御信号入 力端子 2 2に入力される。 これにより トランジスタ T r 9, T r 1 0がオンし、 トランジスタ T r 7, T r 8がオンして、 中間電圧入力端子 1 7に入力されてい る中間電圧が、 トランジスタ T r 8とダイオード D 2とを介して出力端子 2 0か ら出力され、 圧電素子 2 3に印加される。 このとき、 論理積回路 3からのローレ ベルの信号が第 1の制御信号入力端子 2 1に供給されるので、 トランジスタ T r 1 , T r 2はオンせず、 駆動電圧入力端子 1 6に入力されている駆動電圧が圧電 素子 2 3に印加されることはない。 圧電素子 2 3に印加される中間電圧は、 中間 駆動電圧 V Mと同じ大きさである。 すなわち、 印字が不要なドッ 卜に対応する圧 電素子 2 3は、 中間駆動電圧 V Mが印加された場合と同様の橈み量で橈むことに なる。 On the other hand, for dots that do not need to be printed, the one-level signal from the AND circuit 3 is inverted by the inverter 5, and the second control signal is input as a high-level signal. Input to input terminal 22. As a result, the transistors Tr9 and Tr10 are turned on, the transistors Tr7 and Tr8 are turned on, and the intermediate voltage input to the intermediate voltage input terminal 17 is applied to the transistor Tr8 and the diode D The signal is output from the output terminal 20 via the terminal 2 and is applied to the piezoelectric element 23. At this time, since the low-level signal from the AND circuit 3 is supplied to the first control signal input terminal 21, the transistors Tr 1 and Tr 2 do not turn on, but are input to the drive voltage input terminal 16. The applied driving voltage is not applied to the piezoelectric element 23. The intermediate voltage applied to the piezoelectric element 23 has the same magnitude as the intermediate drive voltage VM. That is, the piezoelectric element 23 corresponding to a dot that does not require printing is bent by the same amount of radius as when the intermediate drive voltage VM is applied.
したがって、 同一ドッ トを時間的に連続して印字する場合は、 圧電素子 2 3に は第 7 a図に実線で示すような連続した駆動電圧が印加されるが、 そのドッ トを 印字しない場合は、 第 7 a図に仮想線で示すように、 中間駆動電圧 VIV [と同じ大 きさの電圧が圧電素子 2 3に印加される。 このことは、 第 7 b図あるいは第 7 c 図に示すような波形を駆動電圧として印加する場合も同様である。  Therefore, when the same dot is printed successively in time, a continuous drive voltage is applied to the piezoelectric element 23 as shown by the solid line in FIG. 7a, but the dot is not printed. As shown by a virtual line in FIG. 7A, a voltage having the same magnitude as the intermediate drive voltage VIV [is applied to the piezoelectric element 23. The same applies to the case where a waveform as shown in FIG. 7b or FIG. 7c is applied as the drive voltage.
なお、 圧電素子 2 3に充電された電荷は、 トランジスタ T r 5 , T r 6や抵抗 器 R 5やダイォ一ド D 3などにより構成される放電回路により放電される。 印字が必要なドッ トの場合、 先ず第 7 a図に示す時間 T 1の間、 圧電素子 2 3 には中間駆動電圧 V Mが印加される。 これにより、 第 8 a図に示すように、 圧電 素子 2 3が駆動電圧に応じて所定量撓み、 振動板 2 6が同様に橈んで、 圧力室 2 8の容積が所定量になる。 この状態が待機状態である。  The electric charge charged in the piezoelectric element 23 is discharged by a discharge circuit including the transistors Tr5 and Tr6, the resistor R5, the diode D3, and the like. In the case of a dot requiring printing, first, an intermediate drive voltage VM is applied to the piezoelectric element 23 during a time T1 shown in FIG. 7a. As a result, as shown in FIG. 8a, the piezoelectric element 23 bends by a predetermined amount in accordance with the drive voltage, the diaphragm 26 similarly bends, and the volume of the pressure chamber 28 becomes a predetermined amount. This state is a standby state.
この待機状態から駆動電圧を最低駆動電圧 V Lまで低下させる時間 T 2で、 圧 電素子 2 3の撓み量が駆動電圧に応じて小さくなり、 第 8 b図に示すように、 圧 電素子 2 3及び振動板 2 6の変形がなくなって、 圧力室 2 8の容積が最大になる 。 このとき、 圧力室 2 8が負圧になるので、 ノズル 3 0内のインク 2 7の先端液 面であるメニスカス 3 2は、 圧力室 2 8の方向に後退する。 また同時に、 圧力室 2 8に、 ィンク供給路 3 1からインク 2 7の供給が行われ、 圧力室 2 8には、 そ の容積分のィンク 2 7が満たされる。 次に、 圧電素子 2 3の駆動電圧を最低駆動電圧 V Lから最高駆動電圧 V Hまで 上昇させる時間 T 3で、 圧電素子 2 3の橈み量が駆動電圧に応じて大きくなり、 第 8 c図に示すように、 圧電素子 2 3が最大に変形して振動板 2 6が圧力室 2 8 の内側に大きく橈ませられる。 最高駆動電圧 V Hは、 中間駆動電圧 V Mよりも電 圧が高く、 圧電素子 2 3の変形も大きくなつている。 従って、 振動板 2 6の橈み の程度も待機状態の場合よりも大きくなつており、 圧力室 2 8の容積も最小にな るので、 圧力室 2 8が正圧になって、 ノズル 3 0からインク滴 3 3が射出される ο At time T2 when the drive voltage is reduced from the standby state to the minimum drive voltage VL, the amount of deflection of the piezoelectric element 23 decreases in accordance with the drive voltage, and as shown in FIG. The deformation of the diaphragm 26 is eliminated, and the volume of the pressure chamber 28 is maximized. At this time, since the pressure chamber 28 has a negative pressure, the meniscus 32, which is the liquid level at the tip of the ink 27 in the nozzle 30, retreats in the direction of the pressure chamber 28. At the same time, the ink 27 is supplied to the pressure chamber 28 from the ink supply path 31, and the pressure chamber 28 is filled with the ink 27 corresponding to the volume. Next, at time T3 when the drive voltage of the piezoelectric element 23 is increased from the minimum drive voltage VL to the maximum drive voltage VH, the radius of the piezoelectric element 23 increases in accordance with the drive voltage. As shown, the piezoelectric element 23 is deformed to the maximum, and the diaphragm 26 is largely bent inside the pressure chamber 28. The maximum driving voltage VH is higher than the intermediate driving voltage VM, and the deformation of the piezoelectric element 23 is increased. Accordingly, the radius of the diaphragm 26 is larger than in the standby state, and the volume of the pressure chamber 28 is also minimized. Therefore, the pressure chamber 28 becomes positive pressure and the nozzle 30 Ink drops 3 3 are ejected from ο
続いて、 圧電素子 2 3の駆動電圧が最高駆動電圧 V Hから中間駆動電圧 V Mま で直ちに低下させられる。 この時間 T 4で、 第 8 d図に示すように、 圧電素子 2 3が待機状態となり、 圧電素子 2 3の変形も緩和されて、 振動板 2 6の圧力室 2 8への撓みも少なくなる。 このとき、 圧力室 2 8の圧力が負圧となり、 インク滴 3 3の分離が行われると共に、 ノズル 3 0内のインク 2 7力、 表面張力に抗して 圧力室 2 8側に引き戻され、 メニスカス 3 2がノズル 3 0の先端よりも内側に後 退する。 また同時に、 圧力室 2 8へはインク供給路 3 1からインク 2 7の一部吸 入が行われ、 圧力室 2 8は、 その最大容積より少ない量のインクを収容すること になる。  Subsequently, the drive voltage of the piezoelectric element 23 is immediately reduced from the maximum drive voltage VH to the intermediate drive voltage VM. At this time T4, as shown in Fig. 8d, the piezoelectric element 23 is in a standby state, the deformation of the piezoelectric element 23 is relaxed, and the deflection of the diaphragm 26 to the pressure chamber 28 is reduced. . At this time, the pressure in the pressure chamber 28 becomes negative pressure, the ink droplets 33 are separated, and the ink 27 in the nozzle 30 is pulled back to the pressure chamber 28 against the ink 27 force and surface tension. The meniscus 32 retracts inward from the tip of the nozzle 30. At the same time, a part of the ink 27 is sucked into the pressure chamber 28 from the ink supply path 31, and the pressure chamber 28 accommodates a smaller amount of ink than its maximum volume.
またこのときに、 圧電素子 2 3及び振動板 2 6は、 矢印 3 4 , 3 5で示すよう な減衰振動をしている。 しかし、 インク射出の後に、 駆動電圧が最高駆動電圧 V Hから中間駆動電圧 V Mまで低下しているので、 メニスカス 3 2力 \ 従来の引き 打ち法に比べて圧力室 2 8の方向に後退しているため、 第 8 e図に示すように、 減衰振動により圧電素子 2 3及び振動板 2 6が矢印 3 5方向に移動しても、 メニ スカス 3 2がノズル 3 0の外側まではみ出ることがない。 すなわち、 ノズル 3 0 内のインク 2 7は、 表面張力によりノズル 3 0の先端側へ移動しょうとする力 \ 圧電素子 2 3に印加する駆動電圧を、 短い時間 T 4で急激に最高駆動電圧 V Hか ら中間駆動電圧 V Mに低下させているので、 圧力室 2 8の負圧により強制的にメ ニスカス 3 2が内側へ移動することから、 圧電素子 2 3及び振動板 2 6の減衰振 動によりインク 2 7がノズル 3 0の先端から溢れることはない。 この効果を十分 に得るためには、 時間 T 4は、 3 0 0 s以下にするのが好ましく、 2 0〃 s〜 2 0 0〃 sにするのがさらに好ましい。 Further, at this time, the piezoelectric element 23 and the vibration plate 26 are dampingly vibrating as indicated by arrows 34 and 35. However, after the ink ejection, the driving voltage has dropped from the maximum driving voltage VH to the intermediate driving voltage VM, so that the meniscus 32 force \ has receded in the direction of the pressure chamber 28 compared to the conventional drawing method. Therefore, as shown in FIG. 8e, even when the piezoelectric element 23 and the vibration plate 26 move in the direction of the arrow 35 due to the damped vibration, the meniscus 32 does not protrude outside the nozzle 30. That is, the ink 27 in the nozzle 30 is forced to move to the tip side of the nozzle 30 by the surface tension. \ The drive voltage applied to the piezoelectric element 23 is rapidly increased to the maximum drive voltage VH in a short time T4. Since the driving voltage is lowered to the intermediate drive voltage VM, the meniscus 32 is forcibly moved inward by the negative pressure of the pressure chamber 28, and the vibration is caused by the damping vibration of the piezoelectric element 23 and the diaphragm 26. The ink 27 does not overflow from the tip of the nozzle 30. Enough of this effect In order to obtain the above, the time T4 is preferably set to 300 s or less, more preferably from 200 s to 200 s.
この後、 上記の減衰振動がなくなると、 第 8 e図に示す待機状態に戻る。 本実施例において特徴的なことは、 最高駆動電圧 V Hと最低駆動電圧 V Lとの 間に中間駆動電圧 V Mを設定し、 インクジェッ トへッ ドの待機状態のときに、 圧 電素子 2 3に、 この中間駆動電圧 V Mを印加する点にある。 これにより、 インク 射出前には駆動電圧を中間駆動電圧 V Mから最低駆動電圧 V Lまで下げて、 メニ スカス 3 2の位置を後退させることが可能となる。 従って、 連続してインクを射 出する場合にも、 1発目の射出と 2発目以後の射出との間でインク滴 3 3の大き さに差がでるのを十分良好に抑えることができる。 また、 インク射出後に駆動電 圧を最高駆動電圧 V Hから中間駆動電圧 VMまで急に下げることにより、 メニス カス 3 2の位置を圧力室 2 8の方向に後退させることができるので、 圧電素子 2 3及び振動板 2 6に減衰振動があっても、 ノズル 3 0の先端からメニスカス 3 2 がはみ出してノズル面を汚すことがない。 なお、 本実施例のように、 最低駆動電 圧 V Lを 0ボルト以上にすれば、 圧電素子 2 3に負電圧が印加されないので、 両 極性の電圧の交互印加による圧電素子 2 3の分極の劣化を生じることがないと共 に、 負電源が不要である。  Thereafter, when the above-mentioned damped vibration disappears, the apparatus returns to the standby state shown in FIG. 8e. What is characteristic in this embodiment is that the intermediate drive voltage VM is set between the highest drive voltage VH and the lowest drive voltage VL, and the piezoelectric elements 23 and 23 are placed in a standby state of the inkjet head. The point is that the intermediate drive voltage VM is applied. This makes it possible to lower the position of the meniscus 32 by lowering the drive voltage from the intermediate drive voltage VM to the minimum drive voltage VL before ink ejection. Therefore, even when ink is continuously ejected, it is possible to sufficiently suppress the difference in the size of the ink droplet 33 between the first ejection and the second and subsequent ejections. . Also, by rapidly lowering the driving voltage from the maximum driving voltage VH to the intermediate driving voltage VM after the ink is ejected, the position of the meniscus 32 can be retracted in the direction of the pressure chamber 28, so that the piezoelectric element 23 Even if the diaphragm 26 has damped vibration, the meniscus 32 does not protrude from the tip of the nozzle 30 and does not stain the nozzle surface. If the minimum drive voltage VL is set to 0 volt or more as in the present embodiment, no negative voltage is applied to the piezoelectric element 23, so that the polarization of the piezoelectric element 23 is deteriorated due to the alternate application of the bipolar voltage. And a negative power supply is not required.
このように、 本実施例によれば、 インクジェッ トヘッ ドの駆動方法として従来 から採用されてきた押し打ち法及び引き打ち法におけるそれぞれの欠点を同時に 解消することができ、 この結果、 高速で印字しても十分良好な印字品質を得るこ とができる。 産業上の利用性  As described above, according to the present embodiment, it is possible to simultaneously solve the respective drawbacks in the push driving method and the pull driving method conventionally used as the driving method of the ink jet head. However, a sufficiently good print quality can be obtained. Industrial applicability
本発明のインクジ ッ トへッ ドの駆動方法および駆動装置は、 圧電素子の変形 を利用してインクを射出するタイプの、 あらゆるインクジエツ トへッ ドに用いる ことができる。  The method and apparatus for driving an ink jet head of the present invention can be used for any type of ink jet head that ejects ink by utilizing deformation of a piezoelectric element.

Claims

言青求の範囲 . インクが導入される導入口とインクを射出するノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加される駆動電圧に応じて前記振 動板を変形させて前記圧力室のインクの吸入及び射出を行う圧電素子と、 を備 えたインクジヱッ トへッ ドを駆動するインクジヱッ トへッ ドの駝動方法であつ て、 前記圧電素子に中間駆動電圧を印加した待機状態から最低駆動電圧を印加し て前記圧力室にインクを吸入する吸入工程と、 前記吸入工程の直後に前記圧電素子に最高駆動電圧を印加して前記圧力室の インクを射出する射出工程と、 前記射出工程の直後に前記圧電素子に中間駆動電圧を印加して、 前記ノズル のインクをその表面張力に抗して前記圧力室側に引き戻し、 前記待機状態に戻 る戻り工程と、 を実行することを特徴とする、 インクジ ッ トへッ ドの駆動方法。 . 戻り工程を、 3 0 0 s以下の時間内に行うことを特徴とする、 請求項 1に 記載のィンクジエツ トへッ ドの駆動方法。 . 戻り工程を、 2 0 s以上かつ 2 0 0〃 s以下の時間内に行うことを特徴と する、 請求項 1に記載のインクジヱッ トへッ ドの駆動方法。 . 最低駆動電圧として、 0ボルト以上の電圧を用いることを特徴とする、 請求 項 1に記載のインクジヱッ トへッ ドの駆動方法。 . 圧電素子に印加する駆動電圧の波形として、 ェクスポ一ネンシャルカーブ波 と三角波と台形波とのうちのいずれか 1つを用いることを特徴とする、 請求項 1に記載のインクジヱッ トへッ ドの駆動方法。 . インクが導入される導入口とインクを射出するノズルとを有する圧力室と、 この圧力室の容積を可変させる振動板と、 印加される駆動電圧に応じて前記振 動板を変形させて前記圧力室のインクの吸入及び射出を行う圧電素子と、 を備 えたインクジ ッ トへッ ドを駆動するインクジエツ トへッ ドの駆動装置であつ て、 この駆動装置は、 前記圧電素子に印加される駆動電圧を制御する制御回路 を備え、 この制御回路は、 前記圧電素子に中間駆動電圧を印加した待機状態から最低駆動電圧を印加し て前記圧力室にインクを吸入する吸入工程と、 前記吸入工程の直後に前記圧電素子に最高駆動電圧を印加して前記圧力室の インクを射出する射出工程と、 前記射出工程の直後に前記圧電素子に中間駆動電圧を印加して、 前記ノズル のインクをその表面張力に杭して前記圧力室側に引き戻し、 前記待機状態に戻 る戻り工程と、 を実行させることを特徴とする、 インクジェッ トへッ ドの駆動装置。 . 戻り工程を、 3 0 0 s以下の時間内に行わせることを特徴とする、 請求項 6に記載のインクジヱッ トへッ ドの駆動装置。 . 戻り工程を、 2 0 s以上かつ 2 0 0 s以下の時間内に行わせることを特 徴とする、 請求項 6に記載のインクジ ッ トへッ ドの駆動装置。 . 最低駆動電圧として、 0ボルト以上の電圧を用いることを特徴とする、 請求 項 6に記載のィンクジヱッ トへッ ドの駆動装置。 0 . 圧電素子に印加する駆動電圧の波形として、 ェクスポーネンシャルカーブ 波と三角波と台形波とのうちのいずれか 1つを用いることを特徴とする、 請求 項 6に記載のインクジヱッ トへッ ドの駆動装置。 A pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, and the diaphragm in accordance with an applied driving voltage A piezoelectric element for sucking and ejecting ink in the pressure chamber by deforming the piezoelectric element, and an ink jet head driving method for driving the ink jet head, the method comprising: Applying the lowest drive voltage from the standby state to which the pressure is applied to suck the ink into the pressure chamber, and immediately after the suction step, applying the highest drive voltage to the piezoelectric element to eject the ink in the pressure chamber. An ejection step; immediately after the ejection step, an intermediate drive voltage is applied to the piezoelectric element, and the ink of the nozzle is pulled back to the pressure chamber side against the surface tension thereof, and a return step of returning to the standby state. , A method for driving an ink jet head. The method according to claim 1, wherein the return step is performed within a time period of 300 s or less. 2. The method for driving an ink jet head according to claim 1, wherein the return step is performed within a time period of not less than 200 s and not more than 200 s. The method for driving an ink jet head according to claim 1, wherein a voltage of 0 volt or more is used as the minimum drive voltage. 2. The ink jet head according to claim 1, wherein one of an exponential curve wave, a triangular wave, and a trapezoidal wave is used as a waveform of the drive voltage applied to the piezoelectric element. Drive method. A pressure chamber having an inlet into which ink is introduced and a nozzle for ejecting ink; a diaphragm for varying the volume of the pressure chamber; and a diaphragm for deforming the diaphragm in accordance with an applied drive voltage. A driving device for an ink jet head for driving an ink jet head comprising: a piezoelectric element for sucking and ejecting ink from the pressure chamber; and the driving device is applied to the piezoelectric element. A control circuit for controlling a drive voltage, the control circuit comprising: a suction step of applying a minimum drive voltage from a standby state in which an intermediate drive voltage is applied to the piezoelectric element to suck ink into the pressure chamber; Immediately after the injection step, the highest drive voltage is applied to the piezoelectric element to eject the ink in the pressure chamber. Immediately after the ejection step, an intermediate drive voltage is applied to the piezoelectric element, and the The in pile pull back to the pressure chamber side surface tension, a return process that returns to the standby state, characterized in that for the execution, inkjet Toe' de drive. 7. The ink jet head driving device according to claim 6, wherein the return step is performed within a time of 300 s or less. 7. The inkjet head drive device according to claim 6, wherein the return step is performed within a time period of not less than 200 s and not more than 200 s. 7. The drive device for an ink jet head according to claim 6, wherein a voltage of 0 volt or more is used as the minimum drive voltage. 7. The ink jet according to claim 6, wherein any one of an exponential curve wave, a triangular wave, and a trapezoidal wave is used as the waveform of the drive voltage applied to the piezoelectric element. Head drive.
1 . インクが導入される導入口とインクを射出するノズルとを有する圧力室と1. A pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink.
、 この圧力室の容積を可変させる振動板と、 印加される駆動電圧に応じて前記 振動板を変形させて前記圧力室のインクの吸入及び射出を行う圧電素子と、 を 備えたインクジヱッ トへッ ドを駆動するインクジヱッ トへッ ドの駆動方法であ つて、 An ink jet head comprising: a vibration plate that changes the volume of the pressure chamber; and a piezoelectric element that deforms the vibration plate according to an applied drive voltage to suck and eject ink in the pressure chamber. A method of driving an ink jet head for driving a head,
前記振動板の撓み量を中程度にした待機伏態から撓み量を最小にして前記圧 力室にインクを吸入する吸入工程と、  A suction step of sucking ink into the pressure chamber while minimizing the amount of deflection from a standby state in which the amount of deflection of the diaphragm is set to a medium level;
前記吸入工程の直後に前記振動板の橈み量を最大にして前記圧力室のィンク を射出する射出工程と、  Immediately after the inhalation step, an injection step of injecting the ink in the pressure chamber by maximizing the radius of the diaphragm,
前記射出工程の直後に前記振動板の橈み量を中程度にして、 前記ノズルのィ ンクをその表面張力に抗して前記圧力室側に引き戻し、 前記待機状態に戻る戻 り工程と、  Immediately after the injection step, the radius of the diaphragm is set to a medium amount, the ink of the nozzle is pulled back toward the pressure chamber against its surface tension, and the step returns to the standby state.
を実行することを特徴とする、 インクジエツ トへッ ドの駆動方法。  A method for driving an ink jet head.
2 . 戻り工程を、 3 0 0 s以下の時間内に行うことを特徴とする、 請求項 1 1に記載のィンクジヱッ トへッ ドの駆動方法。 2. The method for driving an ink jet head according to claim 11, wherein the return step is performed within a time period of 300 s or less.
3 . 戻り工程を、 2 0〃 s以上かつ 2 0 0〃 s以下の時間内に行うことを特徴 とする、 請求項 1 1に記載のインクジェッ トヘッ ドの駆動方法。 3. The method for driving an inkjet head according to claim 11, wherein the return step is performed within a time period of not less than 200〃s and not more than 200〃s.
4 . インクが導入される導入口とインクを射出するノズルとを有する圧力室と 、 この圧力室の容積を可変させる振動板と、 印加される駆動電圧に応じて前記 振動板を変形させて前記圧力室のィンクの吸入及び射出を行う圧電素子と、 を 備えたインクジエツ トへッ ドを駆動するインクジヱッ トへッ ドの駆動装置であ つて、 この駆動装置は、 4. A pressure chamber having an inlet into which ink is introduced and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, and the diaphragm being deformed in accordance with an applied drive voltage. A piezoelectric element for sucking and ejecting the ink in the pressure chamber; and a driving device for the ink jet head for driving the ink jet head comprising the piezoelectric device.
前記圧電素子に印加される駆動電圧を制御して前記振動板を撓ませる制御回 路を備え、 この制御回路は、  A control circuit for controlling the drive voltage applied to the piezoelectric element to bend the diaphragm, and the control circuit comprises:
前記振動板の撓み量を中程度にした待機状態から撓み量を最小にして前記圧 力室にインクを吸入する吸入工程と、 From the standby state in which the amount of deflection of the diaphragm is set to a medium level, the amount of deflection is minimized and the pressure A suction step of sucking ink into the power chamber,
前記吸入工程の直後に前記振動板の橈み量を最大にして前記圧力室のィンク を射出する射出工程と、  Immediately after the inhalation step, an injection step of injecting the ink in the pressure chamber by maximizing the radius of the diaphragm,
前記射出工程の直後に前記振動板の撓み量を中程度にして、 前記ノズルのィ ンクをその表面張力に杭して前記圧力室側に引き戻し、 前記待機状態に戻る戻 り工程と、  Immediately after the injection step, the deflection amount of the diaphragm is set to a medium level, the ink of the nozzle is piled up to its surface tension, pulled back to the pressure chamber side, and returned to the standby state.
を実行させることを特徴とする、 インクジエツ トへッ ドの駆動装置。  A driving device for an ink jet head.
5 . 戻り工程を、 3 0 0 s以下の時間内に行なわせることを特徴とする、 請 求項 1 4に記載のインクジエツ トへッ ドの駆動装置。 5. The ink jet head driving device according to claim 14, wherein the return step is performed within a time period of 300 s or less.
6 . 戻り工程を、 2 0 s以上かつ 2 0 0 ;z s以下の時間内に行わせることを 徴とする、 請求項 1 4に記載のインクジヱッ トへッ ドの駆動装置。 6. The ink jet head driving device according to claim 14, wherein the return step is performed within a time of not less than 20 s and not more than 200; zs.
7 . インクが導入される導入口とインクを射出するノズルとを有する圧力室と 、 この圧力室の容積を可変させる振動板と、 印加される駆動電圧に応じて前記 振動板を変形させて前記圧力室のインクの吸入及び射出を行う圧電素子と、 を 備えたィンクジヱッ トへッ ドを駆動するィンクジヱッ トへッ ドの駆動方法であ つて、 7. A pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, and deforming the diaphragm in accordance with an applied drive voltage. A piezoelectric element for sucking and ejecting ink in the pressure chamber, and a method for driving an ink jet head for driving an ink jet head including the piezoelectric element;
前記圧力室の容積が中程度の待機伏態から容積を最大にして前記圧力室にィ ンクを吸入する吸入工程と、  A suction step in which the volume of the pressure chamber is increased from a medium standby state to a maximum volume to suck ink into the pressure chamber;
前記吸入工程の直後に前記圧力室の容積を最小にして前記圧力室のィンクを 射出する射出工程と、  An injection step of injecting the ink of the pressure chamber by minimizing the volume of the pressure chamber immediately after the suction step;
前記射出工程の直後に前記圧力室の容積を中程度にして、 前記ノズルのィン クをその表面張力に抗して前記圧力室側に引き戻し、 前記待機状態に戻る戻り 工程と、  Immediately after the injection step, the volume of the pressure chamber is set to a medium volume, the ink of the nozzle is pulled back to the pressure chamber side against its surface tension, and a return step returns to the standby state.
を実行することを特徵とする、 インクジェッ トへッ ドの駆動方法。 A method for driving an inkjet head, characterized in that the method comprises:
8 . 戻り工程を、 3 0 0 // s以下の時間内に行うことを特徴とする、 請求項 1 7に記載のィンクジヱッ トへッ ドの駆動方法。 8. The method for driving an ink jet head according to claim 17, wherein the return step is performed within a time of 300 // s or less.
9 . 戻り工程を、 2 0 s以上かつ 2 0 0 u s以下の時間内に行うことを特徴 とする、 請求項 1 7に記載のインクジヱッ トへッ ドの駆動方法。 0 . インクが導入される導入口とインクを射出するノズルとを有する圧力室と 、 この圧力室の容積を可変させる振動板と、 印加される駆動電圧に応じて前記 振動板を変形させて前記圧力室のインクの吸入及び射出を行う圧電素子と、 を 備えたインクジエツ トへッ ドを駆動するインクジエツ トへッ ドの駆動装置であ つて、 この駆動回路は、 前記圧電素子に印加される駆動電圧を制御して前記振 動板を撓ませることにより前記圧力室の容積を可変させる制御回路を備え、 こ の制御回路は、 9. The method for driving an ink jet head according to claim 17, wherein the return step is performed within a time period of not less than 200 s and not more than 200 us. 0. A pressure chamber having an inlet for introducing ink and a nozzle for ejecting ink, a diaphragm for varying the volume of the pressure chamber, and the diaphragm being deformed according to an applied drive voltage A driving device for driving an ink jet head, comprising: a piezoelectric element for sucking and ejecting ink in the pressure chamber; and a driving circuit for driving the ink jet head, the driving circuit comprising: A control circuit for controlling the voltage to bend the vibrating plate to vary the volume of the pressure chamber; and the control circuit includes:
前記圧力室の容積が中程度の待機状態から容積を最大にして前記圧力室にィ ンクを吸入する吸入工程と、  A suction step of sucking an ink into the pressure chamber by maximizing the volume from a standby state in which the pressure chamber has a medium capacity;
前記吸入工程の直後に前記圧力室の容積を最小にして前記圧力室のィンクを 射出する射出工程と、  An injection step of injecting the ink of the pressure chamber by minimizing the volume of the pressure chamber immediately after the suction step;
前記射出工程の直後に前記圧力室の容積を中程度にして、 前記ノズルのィン クをその表面張力に抗して前記圧力室側に引き戻し、 前記待機状態に戻る戻り 工程と、  Immediately after the injection step, the volume of the pressure chamber is set to a medium volume, the ink of the nozzle is pulled back to the pressure chamber side against its surface tension, and a return step returns to the standby state.
を実行させることを特徴とする、 インクジェッ トへッ ドの駆動装置。  A driving device for an ink jet head.
PCT/JP1994/002105 1993-12-15 1994-12-14 Method of and apparatus for driving ink jet head WO1995016568A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/314847 1993-12-15
JP31484793 1993-12-15

Publications (1)

Publication Number Publication Date
WO1995016568A1 true WO1995016568A1 (en) 1995-06-22

Family

ID=18058328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002105 WO1995016568A1 (en) 1993-12-15 1994-12-14 Method of and apparatus for driving ink jet head

Country Status (1)

Country Link
WO (1) WO1995016568A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5894242A (en) * 1995-10-23 1999-04-13 Rohm Co., Ltd. Drive IC for piezoelectric elements of ink jet printer
US6092886A (en) * 1996-07-05 2000-07-25 Seiko Epson Corporation Ink jet recording apparatus
US6217159B1 (en) 1995-04-21 2001-04-17 Seiko Epson Corporation Ink jet printing device
US8850477B2 (en) 1995-10-02 2014-09-30 Starsight Telecast, Inc. Systems and methods for linking television viewers with advertisers and broadcasters
US8863170B2 (en) 2000-03-31 2014-10-14 United Video Properties, Inc. System and method for metadata-linked advertisements
US8869204B2 (en) 1996-05-03 2014-10-21 Starsight Telecast, Inc. Method and system for displaying advertisements in an electronic program guide
US8904441B2 (en) 2003-11-06 2014-12-02 United Video Properties, Inc. Systems and methods for providing program suggestions in an interactive television program guide
US8918807B2 (en) 1997-07-21 2014-12-23 Gemstar Development Corporation System and method for modifying advertisement responsive to EPG information
US8931008B2 (en) 1999-06-29 2015-01-06 United Video Properties, Inc. Promotional philosophy for a video-on-demand-related interactive display within an interactive television application
US9015750B2 (en) 1998-05-15 2015-04-21 Rovi Guides, Inc. Interactive television program guide system for determining user values for demographic categories
US9021538B2 (en) 1998-07-14 2015-04-28 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9071872B2 (en) 2003-01-30 2015-06-30 Rovi Guides, Inc. Interactive television systems with digital video recording and adjustable reminders
US9075861B2 (en) 2006-03-06 2015-07-07 Veveo, Inc. Methods and systems for segmenting relative user preferences into fine-grain and coarse-grain collections
US9113207B2 (en) 1995-10-02 2015-08-18 Rovi Guides, Inc. Systems and methods for contextually linking television program information
US9113107B2 (en) 2005-11-08 2015-08-18 Rovi Guides, Inc. Interactive advertising and program promotion in an interactive television system
US9125169B2 (en) 2011-12-23 2015-09-01 Rovi Guides, Inc. Methods and systems for performing actions based on location-based rules
US9147198B2 (en) 2013-01-10 2015-09-29 Rovi Technologies Corporation Systems and methods for providing an interface for data driven media placement
US9166714B2 (en) 2009-09-11 2015-10-20 Veveo, Inc. Method of and system for presenting enriched video viewing analytics
US9172987B2 (en) 1998-07-07 2015-10-27 Rovi Guides, Inc. Methods and systems for updating functionality of a set-top box using markup language
US9177081B2 (en) 2005-08-26 2015-11-03 Veveo, Inc. Method and system for processing ambiguous, multi-term search queries
US9294799B2 (en) 2000-10-11 2016-03-22 Rovi Guides, Inc. Systems and methods for providing storage of data on servers in an on-demand media delivery system
US9319735B2 (en) 1995-06-07 2016-04-19 Rovi Guides, Inc. Electronic television program guide schedule system and method with data feed access
US9326025B2 (en) 2007-03-09 2016-04-26 Rovi Technologies Corporation Media content search results ranked by popularity
US9426509B2 (en) 1998-08-21 2016-08-23 Rovi Guides, Inc. Client-server electronic program guide
WO2017094610A1 (en) * 2015-11-30 2017-06-08 Seiko Epson Corporation Liquid ejecting device and ejection selection signal generation circuit
US9736524B2 (en) 2011-01-06 2017-08-15 Veveo, Inc. Methods of and systems for content search based on environment sampling
US9749693B2 (en) 2006-03-24 2017-08-29 Rovi Guides, Inc. Interactive media guidance application with intelligent navigation and display features
US9848276B2 (en) 2013-03-11 2017-12-19 Rovi Guides, Inc. Systems and methods for auto-configuring a user equipment device with content consumption material
US10063934B2 (en) 2008-11-25 2018-08-28 Rovi Technologies Corporation Reducing unicast session duration with restart TV

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542809A (en) * 1978-09-22 1980-03-26 Hitachi Ltd Ink jet recorder
JPS5962158A (en) * 1982-09-30 1984-04-09 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Drop on-demand type ink jet printer
JPH01297257A (en) * 1988-05-25 1989-11-30 Canon Inc Ink jet recording method
JPH0477258A (en) * 1990-07-18 1992-03-11 Seiko Epson Corp Drive of ink jet-type printing head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542809A (en) * 1978-09-22 1980-03-26 Hitachi Ltd Ink jet recorder
JPS5962158A (en) * 1982-09-30 1984-04-09 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Drop on-demand type ink jet printer
JPH01297257A (en) * 1988-05-25 1989-11-30 Canon Inc Ink jet recording method
JPH0477258A (en) * 1990-07-18 1992-03-11 Seiko Epson Corp Drive of ink jet-type printing head

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217159B1 (en) 1995-04-21 2001-04-17 Seiko Epson Corporation Ink jet printing device
US6382754B1 (en) 1995-04-21 2002-05-07 Seiko Epson Corporation Ink jet printing device
US9319735B2 (en) 1995-06-07 2016-04-19 Rovi Guides, Inc. Electronic television program guide schedule system and method with data feed access
US8850477B2 (en) 1995-10-02 2014-09-30 Starsight Telecast, Inc. Systems and methods for linking television viewers with advertisers and broadcasters
US9124932B2 (en) 1995-10-02 2015-09-01 Rovi Guides, Inc. Systems and methods for contextually linking television program information
US9113207B2 (en) 1995-10-02 2015-08-18 Rovi Guides, Inc. Systems and methods for contextually linking television program information
US5894242A (en) * 1995-10-23 1999-04-13 Rohm Co., Ltd. Drive IC for piezoelectric elements of ink jet printer
US8869204B2 (en) 1996-05-03 2014-10-21 Starsight Telecast, Inc. Method and system for displaying advertisements in an electronic program guide
US6092886A (en) * 1996-07-05 2000-07-25 Seiko Epson Corporation Ink jet recording apparatus
US9015749B2 (en) 1997-07-21 2015-04-21 Rovi Guides, Inc. System and method for modifying advertisement responsive to EPG information
US8918807B2 (en) 1997-07-21 2014-12-23 Gemstar Development Corporation System and method for modifying advertisement responsive to EPG information
US9015750B2 (en) 1998-05-15 2015-04-21 Rovi Guides, Inc. Interactive television program guide system for determining user values for demographic categories
US9635406B2 (en) 1998-05-15 2017-04-25 Rovi Guides, Inc. Interactive television program guide system for determining user values for demographic categories
US9172987B2 (en) 1998-07-07 2015-10-27 Rovi Guides, Inc. Methods and systems for updating functionality of a set-top box using markup language
US9154843B2 (en) 1998-07-14 2015-10-06 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9021538B2 (en) 1998-07-14 2015-04-28 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9055318B2 (en) 1998-07-14 2015-06-09 Rovi Guides, Inc. Client-server based interactive guide with server storage
US9055319B2 (en) 1998-07-14 2015-06-09 Rovi Guides, Inc. Interactive guide with recording
US9232254B2 (en) 1998-07-14 2016-01-05 Rovi Guides, Inc. Client-server based interactive television guide with server recording
US9226006B2 (en) 1998-07-14 2015-12-29 Rovi Guides, Inc. Client-server based interactive guide with server recording
US9118948B2 (en) 1998-07-14 2015-08-25 Rovi Guides, Inc. Client-server based interactive guide with server recording
US10075746B2 (en) 1998-07-14 2018-09-11 Rovi Guides, Inc. Client-server based interactive television guide with server recording
US9426509B2 (en) 1998-08-21 2016-08-23 Rovi Guides, Inc. Client-server electronic program guide
US8931008B2 (en) 1999-06-29 2015-01-06 United Video Properties, Inc. Promotional philosophy for a video-on-demand-related interactive display within an interactive television application
US8863170B2 (en) 2000-03-31 2014-10-14 United Video Properties, Inc. System and method for metadata-linked advertisements
US10015562B2 (en) 2000-03-31 2018-07-03 Rovi Guides, Inc. System and method for metadata-linked advertisements
US9294799B2 (en) 2000-10-11 2016-03-22 Rovi Guides, Inc. Systems and methods for providing storage of data on servers in an on-demand media delivery system
US9369741B2 (en) 2003-01-30 2016-06-14 Rovi Guides, Inc. Interactive television systems with digital video recording and adjustable reminders
US9071872B2 (en) 2003-01-30 2015-06-30 Rovi Guides, Inc. Interactive television systems with digital video recording and adjustable reminders
US10986407B2 (en) 2003-11-06 2021-04-20 Rovi Guides, Inc. Systems and methods for providing program suggestions in an interactive television program guide
US10880607B2 (en) 2003-11-06 2020-12-29 Rovi Guides, Inc. Systems and methods for providing program suggestions in an interactive television program guide
US9191719B2 (en) 2003-11-06 2015-11-17 Rovi Guides, Inc. Systems and methods for providing program suggestions in an interactive television program guide
US8904441B2 (en) 2003-11-06 2014-12-02 United Video Properties, Inc. Systems and methods for providing program suggestions in an interactive television program guide
US9177081B2 (en) 2005-08-26 2015-11-03 Veveo, Inc. Method and system for processing ambiguous, multi-term search queries
US9113107B2 (en) 2005-11-08 2015-08-18 Rovi Guides, Inc. Interactive advertising and program promotion in an interactive television system
US9092503B2 (en) 2006-03-06 2015-07-28 Veveo, Inc. Methods and systems for selecting and presenting content based on dynamically identifying microgenres associated with the content
US9075861B2 (en) 2006-03-06 2015-07-07 Veveo, Inc. Methods and systems for segmenting relative user preferences into fine-grain and coarse-grain collections
US10984037B2 (en) 2006-03-06 2021-04-20 Veveo, Inc. Methods and systems for selecting and presenting content on a first system based on user preferences learned on a second system
US9128987B2 (en) 2006-03-06 2015-09-08 Veveo, Inc. Methods and systems for selecting and presenting content based on a comparison of preference signatures from multiple users
US9749693B2 (en) 2006-03-24 2017-08-29 Rovi Guides, Inc. Interactive media guidance application with intelligent navigation and display features
US10694256B2 (en) 2007-03-09 2020-06-23 Rovi Technologies Corporation Media content search results ranked by popularity
US9326025B2 (en) 2007-03-09 2016-04-26 Rovi Technologies Corporation Media content search results ranked by popularity
US10063934B2 (en) 2008-11-25 2018-08-28 Rovi Technologies Corporation Reducing unicast session duration with restart TV
US9166714B2 (en) 2009-09-11 2015-10-20 Veveo, Inc. Method of and system for presenting enriched video viewing analytics
US9736524B2 (en) 2011-01-06 2017-08-15 Veveo, Inc. Methods of and systems for content search based on environment sampling
US9125169B2 (en) 2011-12-23 2015-09-01 Rovi Guides, Inc. Methods and systems for performing actions based on location-based rules
US9147198B2 (en) 2013-01-10 2015-09-29 Rovi Technologies Corporation Systems and methods for providing an interface for data driven media placement
US9848276B2 (en) 2013-03-11 2017-12-19 Rovi Guides, Inc. Systems and methods for auto-configuring a user equipment device with content consumption material
CN108290412A (en) * 2015-11-30 2018-07-17 精工爱普生株式会社 Liquid injection apparatus and injection generation circuit of selective signal
TWI641501B (en) * 2015-11-30 2018-11-21 精工愛普生股份有限公司 Liquid ejecting device and ejection selection signal generation circuit
WO2017094610A1 (en) * 2015-11-30 2017-06-08 Seiko Epson Corporation Liquid ejecting device and ejection selection signal generation circuit

Similar Documents

Publication Publication Date Title
WO1995016568A1 (en) Method of and apparatus for driving ink jet head
EP0816081B1 (en) Ink jet recording apparatus and method of driving the same
US6106092A (en) Driving method of an ink-jet head
US6824238B2 (en) Liquid jetting apparatus and method of driving the same
US5453767A (en) Method for forming ink droplets in ink-jet type printer and ink-jet type recording device
US6450603B1 (en) Driver for ink jet recording head
US6106091A (en) Method of driving ink-jet head by selective voltage application
US6464315B1 (en) Driving method for ink jet recording head and ink jet recording apparatus incorporating the same
US6598950B1 (en) Ink jet recording apparatus and method of driving ink jet recording head incorporated in the same
WO2000044564A1 (en) Ink jet recording head driving method and ink jet recording device
JP2000318153A (en) Driver and driving method for inkjet recording head
CN101665022A (en) Liquid discharging apparatus and method of controlling liquid discharging apparatus
US7494199B2 (en) Head control device and image recording apparatus
US6478395B2 (en) Liquid jetting apparatus
US6273538B1 (en) Method of driving ink-jet head
JPH0957960A (en) Driving method for ink jetting device
US7073878B2 (en) Liquid ejecting apparatus and controlling unit of liquid ejecting apparatus
JP3596599B2 (en) Droplet ejecting method and droplet ejecting apparatus
US7862135B2 (en) Method of driving liquid ejecting head and liquid ejecting apparatus
JP3525616B2 (en) INK JET RECORDING APPARATUS AND CONTROL METHOD THEREOF
JP3248208B2 (en) Inkjet head driving method
JP3663999B2 (en) Ink-jet printhead drive method
JP3546929B2 (en) Driving method of ink jet recording head and ink jet recording apparatus
JP3346075B2 (en) Driving method of inkjet head
JPH05318731A (en) Driving method of ink jet type recording head and its device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 505207

Date of ref document: 19950814

Kind code of ref document: A

Format of ref document f/p: F