WO1995006552A2 - Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance - Google Patents
Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance Download PDFInfo
- Publication number
- WO1995006552A2 WO1995006552A2 PCT/US1994/009740 US9409740W WO9506552A2 WO 1995006552 A2 WO1995006552 A2 WO 1995006552A2 US 9409740 W US9409740 W US 9409740W WO 9506552 A2 WO9506552 A2 WO 9506552A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shed
- mold
- tubular
- radial wall
- molding
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/005—Moulds or cores; Details thereof or accessories therefor characterised by the location of the parting line of the mould parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/30—Mounting, exchanging or centering
- B29C33/301—Modular mould systems [MMS], i.e. moulds built up by stacking mould elements, e.g. plates, blocks, rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/44—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/44—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
- B29C33/442—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with mechanical ejector or drive means therefor
- B29C33/444—Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles with mechanical ejector or drive means therefor for stripping articles from a mould core, e.g. using stripper plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/40—Removing or ejecting moulded articles
- B29C45/44—Removing or ejecting moulded articles for undercut articles
- B29C45/4407—Removing or ejecting moulded articles for undercut articles by flexible movement of undercut portions of the articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/32—Single insulators consisting of two or more dissimilar insulating bodies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B19/00—Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/40—Removing or ejecting moulded articles
- B29C45/42—Removing or ejecting moulded articles using means movable from outside the mould between mould parts, e.g. robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/34—Electrical apparatus, e.g. sparking plugs or parts thereof
- B29L2031/3412—Insulators
Definitions
- This invention relates to improved silicone elastic molding compositions, improved molding methods for high voltage parts, and novel shed designs with improved arcing, flashover, and/or pollution resistance. More specifically, this invention relates to an improved elastomer composition and molding method which removes the vertical (longitudinal) mold line on shedded parts for low, medium, and high voltage insulators, transformer and equipment bushings, cut-out fuse assemblies, power switches, stand-off insulators, and the like.
- Low, medium, and high voltage insulators were conventionally made of porcelain.
- the material was highly insulating in dry environments, but the surface resistance tended to decrease by about four or five orders of magnitude in polluted, wet, or humid environments.
- the material was also heavy and brittle, which limited its design possibilities.
- the surface leakage to clearance ratio of the porcelain insulators is normally limited to 5 to 1, which is often insufficient in highly polluted environments. With this low ratio, collection of pollutants on the porcelain outer surface would result in flashover or arcing and unacceptable high leakage currents from one end of the insulator terminal to the other.
- a molding technique which moves the mold line from the longitudinal axis to the periphery of the sheds would be highly desirable, along with compositions adapted to such techniques.
- the composition should function in the highly polluted environments with good flashover and arcing resistance.
- An embodiment of the invention relates to a molding process which moves the mold line from the longitudinal axis of the part to the periphery of the radial extending sheds.
- An alternative embodiment of the invention relates to optimized shed designs having greater radial wall extensions from the longitudinal axis. The designs are achieved at least in part through the use of elastomer materials rather than porcelain.
- a further embodiment of the invention includes optimized elastomer material compositions useful in any molding process, particularly for making better hybrid insulator shedded parts with greater arcing and flashover resistance in highly polluted environments.
- a tubular polymeric shed comprising a central tubular portion and at least two radial wall fin extensions extending therefrom, the shed being made of a molded polymeric composition and having mold flash lines located peripherally on the edges of the the radial wall fin extensions.
- an improved silicone elastomer composition useful for molding comprising: (a) about 100 parts silicone elastomer containing 0.15 to 0.30 mole % vinyl groups and about 0.15 to about 0.30 mole % silicon hydride groups;
- FIG. 1 is a cross-sectional view of an insulator including the improved shed designs of the present invention.
- the shed designs can be incorporated in or retrofitted on a polymeric or porcelain insulator to enhance flashover and arcing resistance in highly polluted environments.
- Figure 2 illustrates an enlarged cross-section of shed element 150 of Figure 1.
- Figure 3 illustrates a novel shed design of the present invention having multiple concentric bells which optionally is made from the preferred compositions of the present invention.
- Figure 4 illustrates a novel shed design with wet flashover ring extensions.
- Figure 5 illustrates a combination novel shed design like that shown in Figure 3 further including a shed with radial wall ring extensions within the outer bell shaped shed.
- Figure 6 illustrates a mold suitable for practicing the molding process of the present invention, with the mold in the open position.
- Novel shed designs are illustrated in Figures 1 through 5.
- the unique shape and/or dimensions of these shed designs provide enhanced performance of the underlying part such as a ceramic or fiberglass reinforced plastic (FRP) insulating rod or surge arrestor valve elements.
- the ring extensions in Figures 4 and 5 provide enhanced wet flashover performance.
- the use of elastomeric materials permits the creation of the shed parts illustrated in all the figures with larger surface leakage distance to clearance ratios (International Electrotechnical Commission IEC Report-Publication 815 pg. 31, D3 and pg 37 Fig. 3a/b) than is possible with conventional ceramic designs which would either be too heavy or too brittle with such ratios.
- the shedded parts illustrated in Figures 1, 2, 3, 4, and 5 can be manufactured from any suitable material such as silicone rubber, ethylene propylene copolymer, ethylene propylene diene terpolymer, ethylene vinyl acetate copolymer, a blend of polyethylene copolymer and silicone elastomer, and the like.
- any suitable material such as silicone rubber, ethylene propylene copolymer, ethylene propylene diene terpolymer, ethylene vinyl acetate copolymer, a blend of polyethylene copolymer and silicone elastomer, and the like.
- the particularly preferred molding composition and process recited herein are preferred.
- the novel shed designs can be completely molded from a load bearing plastic such as FRP.
- Figure 1 illustrates a hybrid insulator or shed 100 of this invention, having metallic end terminals 110 and 120 and an insulating core material 130 made from ceramic, FRP, composite, plastic, and the like, with polymeric shedded parts 140, 150 and 180 installed thereon.
- shedded parts 150 and 180 may have mold flash lines along the peripheral edge of the radial walled finned sections illustrated as 142, 144, 146, 182, 184 and 186, as opposed to along the longitudinal length of the part. This reduces contamination build-up and subsequent tracking and erosion damage.
- shedded part 140 includes an overshed having a closed end, circumferential tubular, bell-shaped overshed 145 attached to one end of a tubular member 147.
- Overshed 145 has a leakage distance to clearance ratio of more than 5 to 1, preferably greater than 7.5 to 1, and most preferably greater than 10 to 1. This design permits particularly enhanced performance in highly polluted environments such as coastal or industrial areas, oil refineries, or soft coal burning regions.
- Leakage distance to clearance ratio means the ratio of the surface distance ri along the inner portion of the shed 148 to the distance T 2 between the edge of the outer shed 145 and the closer of the body of internal mini-shed 180 or core material 130. Generally, the greater the ratio, the greater the resistance to creepage and arcing.
- Internal mini- shed 180 which constitutes a third tubular shed portion of insulator 100, is located on the interior of shedded part 140, has two or more radial wall fin extension rings (shown here as rings 182, 184, and 186), thereby increasing the surface creepage length to reduce the effective electrical stress and the ingress of airborne contaminates.
- Insulating core material 130 preferably is a central internal porcelain or fiber glass reinforced rod having metal end fittings attached to the ends thereof.
- Figure 2 is an enlarged view of shedded part 150, highlighting its flashless molded multiple radial wall design.
- Part 150 has an internal diameter ID of the tubular portion which surrounds insulator 130, a length L, and a thickness t, as shown in the figure.
- Part 150 can be molded with any material such that the ratio ID/L is from about 0.25 to about 10, t is from about about 0.254 mm (0.01 in) to about 12.7 mm (0.5 in), and the material has, at the molding temperature, a Shore A hardness of about 1 to about 80 and an elongation of about 50 to 1,200 %.
- ratio ID/L is from about 0.75 to 2.5, thickness t is from about 0.762 mm (0.03 in) to about 5.08 mm (0.200 in), and the material has a hardness of about 10 to 60 shore A and an elongation of 300 to 900 %. Most preferably ratio ID/L is from about 1.2 to about 1.8, thickness t is from about 1.91 mm (0.075 in) to about 2.54 mm (0.1 in), and the material has a hardness of about 30 to about 50 shore A and elongation of about 500 to about 800 %. Softer materials and those with greater elongations can have thicker wall sections and lower ratios ID/L because the molded part can more easily collapse through the mold plates, as illustrated in Figure 6 and discussed hereinbelow.
- Overshed 200 has a closed end wall portion 210 and parallel longitudinal radial portions 220 and 230 with an interior longitudinal elastomeric tubular portion 240.
- the closed end tubular portions 220 and 230 can also be characterized as multiple longitudinal concentric bell-shaped memebers interior to the outer bell shape at the closed end or, alternatively, as closed ended nested tubular members.
- Overshed 200 may be used instead of shedded part 180 in Fig. 1.
- the elastomeric material permits fabrication of the sheds having leakage distance to clearance ratios for the most internal concentric or inner most nested closed end tubular member, e.g.
- each of the interior bell- shaped members has a leakage distance to clearance ratio of greater than 5 to 1.
- any surrounding concentric bells or outer closed end tubular members, e.g. 220, will be an approximate ratio. As before, larger ratios are preferred for the previously stated reasons.
- Figure 4 illustrates an optional shed design 300 of Figure 1 further including a ring extension 360 to enhance flashover resistance.
- Ring extension 360 can be placed anywhere along the edge of the outer wall. Multiple ring extensions can be present but the illustrated design is preferred.
- Bell shaped overshed 300 is similar to shed 145 in Figure 1 but includes the ring extension 360 at the shoulder of the bell shaped member 320.
- the ratio of the ring extension (di) to the distance of the shoulder from the longitudinal tube portion of the shed design (d2) is preferably from about 0.1 to about 2.0, and more preferably 0.5 to 2.0 and most preferably 0.75 to 2.0.
- the flashover ring had a ratio of 0.2
- the wet flashover voltage increased by 25 to 35 % when tested according to Section 4.3 of ANSI C29.1 (1988).
- the design can additionally include an internal shedded part in environments where conductive dust tends to collect on the underside of the shed and cause flashover, such as those having in combination natural or manufacturing dust or having high salt content such as found in coastal environments
- Figure 5 illustrates a design with an internal shedded part 500 having horizontal or radial ring members 540a through 540f, as an optional variant of shedded part 180 of Figure 1.
- Members 540a through 540f can be of equal diameter as illustrated, or varied diameter, or increasing or decreasing diameter approaching shoulder 410.
- the outer bell member 400 corresponding to shedded part 140 of Figure 1
- ring extension 460 on member 420 and member 500 which restrains and/or precludes airborne contaminants from entering and/or attaching to the interior of sheds 540a through 540f. Because airborne contaminants are prevented from reaching the interior of the sheds, they will have a higher flashover voltage.
- the shed designs illustrated in Figures 1, 2, 3, 4, and 5 are preferably made with a silicone elastomer of this invention.
- any elastomer having high track resistance, arc resistance, flashover resistance, and flexibility coupled with sufficient structural rigidity to support shed designs having long vertical ribs with leakage distance to clearance ratios of greater than 5 and the ability to form ring extension ratios di to d2 greater than 0.1 is suitable.
- Exemplary suitable elastomers include ethylene propylene copolymer, ethylene propylene diene terpolymer, silicone elastomer rubber, ethylene vinyl acetate copolymer, a blend of polyethylene copolymer and silicone elastomer, and the like.
- the preferred molding composition for a low modulus track resistance silicone comprises about 100 parts of polysiloxane containing about 0.15 to about 0.30 mole % vinyl groups and an equivalent amount (i.e., about 0.15 to about 0.30 mole %) of silicon hydride groups for crosslinking; about 2 to about 25 ppm and preferably about 5 to about 15 ppm platinum catalyst; about 0 to 20 parts per hundred rubber (phr), preferably 0 to 10 phr fumed titanium dioxide; about 2 to about 35 phr, preferably about 5 to about 20 phr of red iron oxide; and about 0 to about 50 phr but preferably about 0 to about 20 phr fumed silica; preferably without any or no more than a trace amount of aluminum trihydrate; and optionally about 0 to about 10 phr preferably about 0 to about 5 phr of silicone or fluorosilicone fluid with a viscosity of less than about 2,000 centistokes.
- the compound is typically crosslinked in a heated mold at about 150 °C or extruded and heated in a furnace at 350 °C.
- the crosslinked compound has a Shore A hardness of about 30 to about 65, preferably between about 30 to about 50, measured according to ASTM D-2240.
- the compound also has an Mioo modulus of less than about 18 kg cm 2 (260 psi), preferably between about 11 kg/cm 2 (150 psi) to about 7 kg/cm 2 (100 psi), measured according to ASTM D-412.
- the particularly preferred composition is a silicone elastomer comprising about 100 parts polysiloxane, about 10 ppm platinum catalyst, about 10 phr fumed titanium dioxide, substantially no aluminum trihydrate or at least not in a level rising above a background impurity level, about 20 phr red iron oxide, and about 30 phr precipitated silica filler (Minusil®), most preferably in the absence of peroxide crosslinking agents.
- the composition showed high resistance to tracking.
- the composition shows consistent tracking erosion time of greater than 240 minutes and the ability to withstand greater than 3.25 kV (tested according to ASTM-D2303, stepwise voltage procedure).
- the standard deviation of tracking and erosion time was reduced typically from ⁇ 115 to ⁇ 50 minutes.
- the failure mode was predominantly by erosion which is very desirable in sheds. This is in contrast to most other silicone compounds which fail by tracking.
- the low modulus of the compound facilitates the demolding of parts and permits their molding with circumferential flash line instead of longitudinal flash lines.
- the composition also reduces cost, since low levels of platinum and low fumed titanium dioxide (generally the most costly ingredients) are used.
- This composition substantially differs from prior art compositions such as Dow Corning Silastic® 29760-V gray materials which contain high concentrations of aluminium trihydrate or platinum and fumed titanium dioxide for flame resistance or platinum and titanium dioxide containing a peroxide catalyzed track resistant compound as previously taught in Penneck, US 4,521,549 (1985).
- the composition is particularly useful as an insulating material for outdoor electrical distribution and transmission devices such as surge arresters, insulators, transformer bushings, cable terminations and cut out fuses assemblies.
- the composition has a low room temperature modulus (shore A between about 65 to about 30) which makes it easy to expand and easy to shrink during the manufacturing or application of the elastomer part.
- the prior art's utilization of very high levels of aluminium trihydrate increased tracking resistance but made the material very rigid.
- High levels of platinum or fumed titanium dioxide significantly increases the compound cost.
- Inclusion of high levels of aluminum trihydrate reduces the hydrophobicity of the material which increases water wetting of the outer shed when used on an insulators or a surge arrester. This increases the likelihood of arcing or tracking.
- a particularly preferred use of the composition is in a molding process to make tubular molded parts with multiple radial wall extensions like element 150 in Figure 1.
- the molding process uses the elastomeric properties of the material to permit the use mold plates which join substantially perpendicular to the longitudinal axis of the part.
- This molding process permits the creation of parts where the mold line flash material is along the periphery of the extremities of the sheds, reducing the need for buffing and cycle time while leading to increased tracking resistance.
- compositional variations of the composition at the mold line on the extremities have little or no effect on shed performance.
- the molding process is based on the highly unexpected discovery that the use of an elastomeric molding material permits the molded multiply radially walled part to pop through the molding plates especially upon the application of a vacuum to the internal structure of the tubular molded part during extraction from the mold.
- the preferred embodiments are illustrated in Figure 6 where the mold comprises plates 1, 2, 3, 4, 5, and 6 and a tubular forming insert 50 emanating from plate 6.
- the sheds or at least provisions for the sheds of the molded part are illustrated in elements 10, 20, 30 and 40 of Figure 6 while the tubular nature is derived from the insert 50.
- the mold lines or flash points for the material instead of being along the longitudinal axis of the part occurs between 11 and 21, 23 and 31, 33 and 41, 43 and 51, respectively, upon the closing of the mold and injecting of the elastomeric composition.
- plates 1, 2, 3, 4, 5, and 6 are brought together with sufficient pressure, heat, time, and temperature for the injection and curing of the elastomeric material.
- the molding process illustrated in Figure 6 may be carried out with an Engel 165 ton injection molding machine with vertical plattens or like machines.
- the Engel 165 machine was modified for the ejection of the part from a side of the mold as well as the need to move the plates.
- the reason for this modification is that the machine's opening stroke/daylight between the plattens when completely open must provide space for the operator or robots between at least two plates such as plate 2 and plate 3 as well as plate 1 and plate 2 to be able to remove the part from plate 2.
- Other equipment like a shuttle press or a rotary press can be used and is preferred for manufacturing of higher volumes mainly due to the ease of adding more plates to the mold or more radial shed elements or other details and to reduce the ware on mold leader pins.
- the support for the mold would be very simple on a shuttle or rotary table while providing greater ability to open the plates and withdraw the part.
- the molding machine barrel is heated to approximately 49 °C and the barrel temperature can be adjusted up or down depending upon the mold temperature as well as the part size and the gating/venting of the mold from 15 °C.
- a suitable molding time is a 2 minute cycle from clamping to unclamping to re-clamping that is from closing of the mold injecting the material molding the material and opening of the plate, removal of the finished part and re-closing to start a new cycle.
- the cycle time more specifically depends on the barrel temperature, the composition used in the mold, and the mold temperature.
- a suitable molding temperature is about 149 °C to about 204 °C, preferably 160 °C to 193 °C, and most preferably about 182 °C.
- molding plates 3 and 4 open which free the section of the part collapse in a space where the core is removed and pulled through plate 4.
- the mold is further opens between plates 3 and 2 and the part is pulled through plate 3 as in the prior step.
- the mold opening plates continues for plates 1 and 2 with the mold in a completely open position, the part is on the side of the plate facing plate 3 at which point the mold operator or robot is capable of removing the part from between open plates 2 and 3.
- the molding machine can use greater or fewer plates
- the flashing point can be removed to the edge of the bell to provide a drip line to further enhance performance
- the novel shed designs could be cast or machined in structural plastic such as FRP, and the like.
Landscapes
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulators (AREA)
- Insulating Bodies (AREA)
- Organic Insulating Materials (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94927966A EP0715565B1 (en) | 1993-09-03 | 1994-08-30 | Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance |
AT94927966T ATE189990T1 (en) | 1993-09-03 | 1994-08-30 | CASTING PROCESSES, CURRENT-RESISTANT SILICONE-ELASTOMER COMPOSITIONS, AND IMPROVED CASTINGS WITH BETTER RESISTANCE TO FLASHBACK, DOWNLOAD, AND POLLUTION |
BR9407382A BR9407382A (en) | 1993-09-03 | 1994-08-30 | Molding methods silicone elastomeric compositions resistant to the formation of trails and improved molded parts with better resistance to sparking disruptive discharge and pollution |
CA002170868A CA2170868C (en) | 1993-09-03 | 1994-08-30 | Molded parts with better arcing, flashover and pollution resistance |
JP50821595A JP3714480B2 (en) | 1993-09-03 | 1994-08-30 | Polymer shed with good arc resistance, flashover resistance and stain resistance |
DE69423220T DE69423220T2 (en) | 1993-09-03 | 1994-08-30 | MOLDING PROCESS, CURRENT-RESISTANT SILICONE-ELASTOMER COMPOSITIONS, AND IMPROVED CASTING PARTS WITH BETTER RESISTANCE TO ROLLOVER, PUNCH, AND DIRT |
AU77172/94A AU686663B2 (en) | 1993-09-03 | 1994-08-30 | Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance |
HK98112602A HK1011635A1 (en) | 1993-09-03 | 1998-11-30 | Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11726193A | 1993-09-03 | 1993-09-03 | |
US08/117,261 | 1993-09-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1995006552A2 true WO1995006552A2 (en) | 1995-03-09 |
WO1995006552A3 WO1995006552A3 (en) | 1995-06-08 |
Family
ID=22371864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/009740 WO1995006552A2 (en) | 1993-09-03 | 1994-08-30 | Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance |
Country Status (16)
Country | Link |
---|---|
EP (1) | EP0715565B1 (en) |
JP (1) | JP3714480B2 (en) |
CN (1) | CN1062507C (en) |
AT (1) | ATE189990T1 (en) |
AU (1) | AU686663B2 (en) |
BR (1) | BR9407382A (en) |
CA (1) | CA2170868C (en) |
DE (1) | DE69423220T2 (en) |
ES (1) | ES2143554T3 (en) |
HK (1) | HK1011635A1 (en) |
IL (1) | IL110807A (en) |
MY (1) | MY110803A (en) |
PT (1) | PT715565E (en) |
TW (1) | TW365224U (en) |
WO (1) | WO1995006552A2 (en) |
ZA (1) | ZA946712B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641827A (en) * | 1996-03-20 | 1997-06-24 | Raychem Corporation | Tracking and erosion resistant composition |
EP0843322A2 (en) * | 1996-11-14 | 1998-05-20 | Ngk Insulators, Ltd. | Composite insulators |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105209531B (en) | 2013-05-23 | 2018-06-12 | 道康宁东丽株式会社 | heat-resistant silicon rubber composition |
CN106298107A (en) * | 2015-05-29 | 2017-01-04 | 中国石油天然气股份有限公司 | Composite post insulator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833699A (en) * | 1971-10-26 | 1974-09-03 | Norbalt Rubber Corp | Method of forming corrugated tubing using a mandrel having inflatable sleeves adjacent the ends |
FR2231492A1 (en) * | 1973-05-28 | 1974-12-27 | Ciba Geigy Ag | |
EP0314160A2 (en) * | 1987-10-30 | 1989-05-03 | FURUKAWA ELECTRIC Technologiai Intézet Kft. | Casting apparatus for producing cast plastics |
FR2672423A1 (en) * | 1991-02-01 | 1992-08-07 | Pirelli Cavi Spa | Device for manufacturing composite insulators for overhead power lines |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE757659A (en) * | 1969-10-17 | 1971-04-16 | Raychem Corp | HIGH TENSION INSULATION |
-
1993
- 1993-09-08 TW TW085215630U patent/TW365224U/en unknown
-
1994
- 1994-08-29 IL IL11080794A patent/IL110807A/en not_active IP Right Cessation
- 1994-08-30 DE DE69423220T patent/DE69423220T2/en not_active Expired - Fee Related
- 1994-08-30 EP EP94927966A patent/EP0715565B1/en not_active Expired - Lifetime
- 1994-08-30 BR BR9407382A patent/BR9407382A/en not_active IP Right Cessation
- 1994-08-30 PT PT94927966T patent/PT715565E/en unknown
- 1994-08-30 ES ES94927966T patent/ES2143554T3/en not_active Expired - Lifetime
- 1994-08-30 CA CA002170868A patent/CA2170868C/en not_active Expired - Fee Related
- 1994-08-30 AU AU77172/94A patent/AU686663B2/en not_active Ceased
- 1994-08-30 WO PCT/US1994/009740 patent/WO1995006552A2/en active IP Right Grant
- 1994-08-30 JP JP50821595A patent/JP3714480B2/en not_active Expired - Fee Related
- 1994-08-30 AT AT94927966T patent/ATE189990T1/en active
- 1994-08-30 CN CN94193670A patent/CN1062507C/en not_active Expired - Lifetime
- 1994-09-01 ZA ZA946712A patent/ZA946712B/en unknown
- 1994-09-02 MY MYPI94002289A patent/MY110803A/en unknown
-
1998
- 1998-11-30 HK HK98112602A patent/HK1011635A1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3833699A (en) * | 1971-10-26 | 1974-09-03 | Norbalt Rubber Corp | Method of forming corrugated tubing using a mandrel having inflatable sleeves adjacent the ends |
FR2231492A1 (en) * | 1973-05-28 | 1974-12-27 | Ciba Geigy Ag | |
EP0314160A2 (en) * | 1987-10-30 | 1989-05-03 | FURUKAWA ELECTRIC Technologiai Intézet Kft. | Casting apparatus for producing cast plastics |
FR2672423A1 (en) * | 1991-02-01 | 1992-08-07 | Pirelli Cavi Spa | Device for manufacturing composite insulators for overhead power lines |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641827A (en) * | 1996-03-20 | 1997-06-24 | Raychem Corporation | Tracking and erosion resistant composition |
EP0843322A2 (en) * | 1996-11-14 | 1998-05-20 | Ngk Insulators, Ltd. | Composite insulators |
EP0843322A3 (en) * | 1996-11-14 | 1998-12-23 | Ngk Insulators, Ltd. | Composite insulators |
Also Published As
Publication number | Publication date |
---|---|
DE69423220D1 (en) | 2000-04-06 |
TW365224U (en) | 1999-07-21 |
CN1132487A (en) | 1996-10-02 |
CA2170868C (en) | 2006-06-06 |
BR9407382A (en) | 1996-10-29 |
CA2170868A1 (en) | 1995-03-09 |
JPH09502299A (en) | 1997-03-04 |
PT715565E (en) | 2000-06-30 |
IL110807A (en) | 1999-10-28 |
ATE189990T1 (en) | 2000-03-15 |
IL110807A0 (en) | 1994-11-11 |
WO1995006552A3 (en) | 1995-06-08 |
HK1011635A1 (en) | 1999-07-16 |
ES2143554T3 (en) | 2000-05-16 |
MY110803A (en) | 1999-04-30 |
DE69423220T2 (en) | 2000-11-30 |
AU686663B2 (en) | 1998-02-12 |
ZA946712B (en) | 1995-04-18 |
JP3714480B2 (en) | 2005-11-09 |
AU7717294A (en) | 1995-03-22 |
EP0715565A1 (en) | 1996-06-12 |
EP0715565B1 (en) | 2000-03-01 |
CN1062507C (en) | 2001-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5830405A (en) | Molding methods, track resistant silicone elastomer compositions and improved molded parts with better arcing, flashover and pollution resistance | |
US4045604A (en) | Recoverable article with outwardly extending hollow heat flanges; kit including such article and a cylindrical substrate; and method of making such article | |
CA1118856A (en) | Composite electrical insulator | |
US4724284A (en) | High voltage composite insulator and method of making same | |
JP4347909B2 (en) | Stress control at the end of high voltage cables | |
JPH0475604B2 (en) | ||
CA2097704C (en) | Cap and pin insulator and method for making thereof | |
US6051796A (en) | Electric insulator made from silicone rubber for high-voltage applications | |
AU2013200270A1 (en) | Removable shed sleeve for switch | |
AU730405B2 (en) | Two-layered elastic tubular covering for electric components,in particular terminations for electric cables and related manufacturing method and mounting | |
EP0883882B1 (en) | Polymeric weathershed surge arrester | |
CA2170868C (en) | Molded parts with better arcing, flashover and pollution resistance | |
CN101506909A (en) | Electrical power cable adaptor and method of use | |
US3192312A (en) | Ceramic suspension insulator with an elastomeric boot | |
EP0446404A1 (en) | High voltage outdoor electrical bushing assembly | |
WO1997009763A1 (en) | Stress control for termination of a high voltage cable | |
KR20190124532A (en) | Insulators containing polycrystalline silicon insulators | |
KR102060324B1 (en) | Polycrystalline silicon insulator, method of manufacturing the same, and insulator, power device, and bushing including the same | |
KR102061478B1 (en) | Polycrystalline silicon molded article and manufacturing method thereof | |
CN115762857A (en) | Cable and preparation method thereof | |
Chang et al. | Optimization of tracking resistance, erosion resistance and hydrophobicity for outdoor insulation materials | |
RU96107249A (en) | INSULATOR POLYMER SKIRT, ELASTOMER PARTS FORMATION PROCESS AND ELASTOMER COMPOUND | |
GB2170360A (en) | High voltage resistant members and method for producing same | |
JPH04206117A (en) | Method for installation of polymer cover on internal element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 94193670.8 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU BR CA CN JP KR NO RU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU BR CA CN JP KR NO RU |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994927966 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2170868 Country of ref document: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1994927966 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1994927966 Country of ref document: EP |