WO1994028826A1 - Prosthesis with highly convoluted surface - Google Patents
Prosthesis with highly convoluted surface Download PDFInfo
- Publication number
- WO1994028826A1 WO1994028826A1 PCT/US1994/005533 US9405533W WO9428826A1 WO 1994028826 A1 WO1994028826 A1 WO 1994028826A1 US 9405533 W US9405533 W US 9405533W WO 9428826 A1 WO9428826 A1 WO 9428826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metallic
- set forth
- approximately
- implant
- aspherical
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/08—Coating starting from inorganic powder by application of heat or pressure and heat
- C23C24/082—Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
- C23C24/085—Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
- C23C24/087—Coating with metal alloys or metal elements only
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3662—Femoral shafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2002/30929—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2002/30968—Sintering
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/32—Joints for the hip
- A61F2/36—Femoral heads ; Femoral endoprostheses
- A61F2/3609—Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
- A61F2002/3625—Necks
- A61F2002/3631—Necks with an integral complete or partial peripheral collar or bearing shoulder at its base
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00407—Coating made of titanium or of Ti-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00395—Coating or prosthesis-covering structure made of metals or of alloys
- A61F2310/00413—Coating made of cobalt or of Co-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00592—Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
Definitions
- the present invention relates to a technique for producing a highly convoluted surface on a prosthetic device.
- a plastic cement such as polymethyl methacrylate is often used to affix the implant to the bone as well as to improve the fit between the implant and the bone.
- prosthetic devices have been provided with porous coatings which fittingly mate with the bone and invite bone ingrowth such that, after a period of time, the prosthesis becomes integrated into the bone structure.
- porous coatings are the disclosures in U.S. Patents, Nos. 3,855,638 and 4,206,516 to Pilliar, No. 4,156,943 to Collier, and 4,612,160 to Donlevy et al.
- Ceramic coatings have also been used to good effect and are particularly desirable because of the affinity between the bone and ceramic materials such as alumina (Al 0 ) .
- alumina Al 0
- Typical of the prior art in this regard are U.S. Patent Nos. 4,145,764 to Suzuki et al and 4,483,678 to Nishio et al which are particularly concerned with dental implants and 4,309,488 to Heide et al and 4,846,837 to Kurze et al which more broadly disclose implantable bone replacement material for use throughout the body as appropriate.
- the present invention relates to a technique for producing a highly convoluted surface on a prosthetic device which is achieved by applying a coating of aspherical metallic powder on the surface of the device.
- the metallic powder which may be the same as or different from the material of the device, is applied in a approximate thickness of up to approximately 200 microns and has a size range of approximately -80 to +635 mesh so as to result in a desirable surface roughness defined by a peak to valley variation up to approximately 200 microns as measured by laser profilo etry.
- a resulting device has an enhanced surface which provides, alternatively, an improved press fit into a receiving bone, or improved cement fixation, or improved reception of a ceramic coating.
- the invention was intended to dramatically improve the interface bond strength of a ceramic coating to the prosthetic device itself.
- a highly convoluted surface is formed on the prosthetic device to which the ceramic coating can be applied, by whatever means.
- the highly convoluted surface can be produced, for example, by the sintering of a fine non-spherical powder on the surface of the implant.
- the fine powder yields a surface which is relatively non-porous but very highly convoluted.
- the convoluted surface provides greatly increased surface area for the chemical and mechanical interlock bonding of the ceramic to the implant substrate.
- the convoluted nature of the coating provides sites which protect the ceramic material from shear and tensile forces, thereby improving the bond strength.
- Ceramic coatings are currently being applied to the surface of a prosthetic device in numerous ways which are cataloged, for example, in the patents noted above. Thus, application may be by way of sintering, hot-pressing, flame-spraying, plasma-spraying, sputtering, or other surface deposition techniques.
- the surface of the implant in these instances, may or may not have any special treatments to enhance attachment of the coating.
- a typical surface treatment is to grit blast the surface of the device with an alumina abrasive to roughen the surface. The roughened surface provides an increase in surface area for improved bond strength as compared to a smooth surface and, to a certain extent, improves the shear strength of the interface bond between the ceramic and the implant. It is also known to apply the ceramic coatings to porous coatings intended for biological ingrowth for enhanced fixation.
- the current method of grit blasting the surface only slightly increases the roughness of the surface of the implant.
- the surface roughness after grit blasting is 50 microns R. which, offers only a minimal increase in surface area and mechanical interlocking of the ceramic to the implant.
- the present invention provides a surface roughness up to approximately 200 microns R..
- the present invention goes beyond the point of a simple roughened surface to the point of utilizing a convoluted surface created specifically for ceramic attachment.
- the convoluted surface of the invention yields far greater shear strength of the coating to the substrate as compared to conventionally roughened surface coatings.
- the invention was originally conceived to improve the interface bond strength of a ceramic coating to the prosthetic device itself, it has been found to render superior results when applied to prosthetic devices utilizing different implanting techniques. Specifically, the resulting convoluted surface provided by the invention results in significantly greater friction between implant and bone when the implant is press fitted into the bone. Stronger bonding between cement and implant results also when cement is used for implant fixation.
- Yet another object of the invention is to apply to the surface of a prosthetic device a layer of aspherical metallic powder composed of the same material as that of the surface.
- Still another object of the invention is to apply to the surface of a prosthetic device a layer of aspherical metallic powder composed of a material different from that of the surface.
- Yet a further object of the invention is to develop a surface of a prosthetic device which is formed from a powder coating of up to 200 microns in thickness and resulting in convolutions having a peak to valley variation of up to approximately 200 microns.
- Still a further object of the invention is to provide a prosthetic device with such a convoluted surface as recited above which results in significantly increased shear strength with bone cement.
- Fig. 1 is a perspective view of a femoral component for a hip prosthesis which has been modified in accordance with the present invention
- Fig. 2A is a scanning electron microscope (SEM) photomicrograph, magnification 100X, illustrating a typical surface of an implant which has been roughened by the conventional grit blast method
- Fig. 2B is an SEM photomicrograph, magnification 100X, of the surface of an implant which has been modified in accordance with the invention
- Figs. 3A and 3B are SEM photomicrographs, similar to Figs. 2A and 2B, but with magnification 500X;
- Figs. 4A and 4B are SEM photomicrographs, similar to Figs. 2A and 2B, with magnification 1000X.
- Fig. 1 illustrates a typical prosthetic implant 20 which has been modified in accordance with the invention.
- the prosthetic implant 20 is a femoral component which includes a stem 22 intended for reception in the intra edullary cavity of a femur.
- the stem 22 is a mounting member for firmly attaching the implant to the bone.
- the implant 20 may be composed of any of the biocompatible metals and alloys commonly used for prosthetic purposes, including titanium, cobalt chromium, and stainless steel.
- the main thrust of the present invention is to produce a highly convoluted surface on the mounting member 22.
- This highly convoluted surface offers superior characteristics in resisting shear between the surface of the mounting member and any structure or coating which is intimate with that surface.
- the mounting member may be provided with a ceramic coating of the type commonly used in combination with a prosthetic implant.
- the mounting member in its roughened state, may be fittingly engaged with the bone as, for example, the stem 22 being fittingly received in the intramedullary canal of an associated femur.
- bone cement may be employed for fixing the mounting member to an underlying bone and, in that instance, improved bond strength between the mounting member and the cement, then with the bone, is achieved.
- Ceramic coatings may be applied to the surface of a mounting member in a variety of ways including the plasma spray technique, sputtering, electro-phoresis and other surface deposition techniques.
- the surface of the implant may or may not have any special treatments to enhance attachment of the coating.
- a typical surface treatment is to grit blast the surface of the device with an alumina oxide abrasive to roughen the surface.
- the roughened surface provides an increase in surface area for improved bond strength as compared to a smooth surface, improving the shear strength of the interface bond between the ceramic and the implant.
- the current method of grit blasting the surface only slightly increases the surface roughness of the implant, typically, to about 50 microns R..
- the roughened surface thereby provided by grit blasting offers only a minimal increase in surface area and mechanical interlocking of the ceramic to the implant.
- the present invention goes beyond the point of a simple roughened surface to the point of utilizing a highly convoluted surface which is vastly more tortuous than that produced by the grit blast method.
- the convoluted surface of the invention yields significantly greater shear strength of the coating to the substrate as compared to roughened surface coatings.
- a layer of non-spherical or aspherical material powder is suitably deposited onto the outer surface of the mounting member.
- the thickness of the coating may be up to approximately 200 microns.
- the implant is then subjected to a suitable heat treatment which may be by sintering according to any known process.
- the powder utilized for this purpose is of a biocompatible metal or metal alloy of the types normally employed for prosthetic implants, including titanium, cobalt chromium and stainless steel. However, the powder used need not be the same as its underlying substrate. Powders acceptable for purposes of the invention may be of a range of sizes between -80 mesh and +635 mesh, the larger the mesh size of the asymmetrical powder, the greater the surface roughness achieved.
- Optimum surface roughness achieved by the invention is a peak to valley variation of up to approximately 200 microns.
- Powders suitable for purposes of the invention may be made using a variety of techniques including atomization, hydrogenization, and grinding, and are available from Cerac, Inc. of Milwaukee, WI under Product No. T-1146.
- aspherical powders of both the -200 and -325 mesh size produce a more textured surface than any of the spherical powders of the same size.
- Titanium rods 5/8" in diameter were either polished to a typical polished implant finish, grit blasted with a 20 grit alumina oxide media (typical roughening process utilized) , or a -200 or -325 mesh powder convoluted coating was applied. No ceramic material was applied to these specimens. What was being evaluated was the difference in shear strength provided by the different surface preparation techniques. A one inch length of the coated end of each bar was potted in Armstrong A-12 epoxy. The specimens were pulled apart in an Instron test machine. The resulting shear strengths of the various coating techniques are indicated in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Mechanical Engineering (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Ceramic Engineering (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94916800A EP0702536B1 (en) | 1993-06-10 | 1994-05-17 | Prosthesis with highly convoluted surface |
JP50180195A JP3600620B2 (en) | 1993-06-10 | 1994-05-17 | High convolution surface prosthesis |
DE69422919T DE69422919T2 (en) | 1993-06-10 | 1994-05-17 | PROSTHESIS WITH A HIGHLY BULKED SURFACE |
AU68357/94A AU6835794A (en) | 1993-06-10 | 1994-05-17 | Prosthesis with highly convoluted surface |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/074,388 US5368881A (en) | 1993-06-10 | 1993-06-10 | Prosthesis with highly convoluted surface |
US08/074,388 | 1993-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994028826A1 true WO1994028826A1 (en) | 1994-12-22 |
Family
ID=22119287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/005533 WO1994028826A1 (en) | 1993-06-10 | 1994-05-17 | Prosthesis with highly convoluted surface |
Country Status (6)
Country | Link |
---|---|
US (2) | US5368881A (en) |
EP (1) | EP0702536B1 (en) |
JP (1) | JP3600620B2 (en) |
AU (1) | AU6835794A (en) |
DE (1) | DE69422919T2 (en) |
WO (1) | WO1994028826A1 (en) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2142636C (en) * | 1994-02-18 | 2005-09-20 | Salvatore Caldarise | Implantable articles with as-cast macrotextured surface regions and method of manufacturing the same |
BR9509934A (en) * | 1994-11-30 | 1998-01-27 | Implant Innovations Inc | Preparation of implant surface |
US6214049B1 (en) | 1999-01-14 | 2001-04-10 | Comfort Biomedical, Inc. | Method and apparatus for augmentating osteointegration of prosthetic implant devices |
AU1831999A (en) * | 1997-12-18 | 1999-07-05 | Comfort Biomedical, Inc. | Bone augmentation for prosthetic implants and the like |
US5980973A (en) * | 1998-03-13 | 1999-11-09 | Medtronic, Inc. | Implantable medical device with biocompatible surface and method for its manufacture |
US7713297B2 (en) | 1998-04-11 | 2010-05-11 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US6827742B2 (en) * | 1998-05-14 | 2004-12-07 | Daniel E. E. Hayes, Jr. | Bimetal acetabular component construct for hip joint prosthesis |
US6261322B1 (en) * | 1998-05-14 | 2001-07-17 | Hayes Medical, Inc. | Implant with composite coating |
US6319286B1 (en) * | 2000-03-13 | 2001-11-20 | Exactech, Inc | Modular hip prosthesis |
WO2002007651A1 (en) * | 2000-07-20 | 2002-01-31 | Hayes Medical, Inc. | Bimetal tibial component construct for knee joint prosthesis |
DE10036986A1 (en) * | 2000-07-29 | 2002-02-07 | Klaus Draenert | Femoral neck-preserving prosthesis |
DE10036985A1 (en) * | 2000-07-29 | 2002-02-07 | Klaus Draenert | Femur component of artificial hip joint for cement-free implantation comprises prosthesis whose shaft has no bearing collar and whose constructional axis coincides with the femur channel axis |
DE10036984A1 (en) * | 2000-07-29 | 2002-02-07 | Klaus Draenert | Modular revision prosthesis |
US6558426B1 (en) | 2000-11-28 | 2003-05-06 | Medidea, Llc | Multiple-cam, posterior-stabilized knee prosthesis |
US6652591B2 (en) | 2000-12-14 | 2003-11-25 | Depuy Orthopaedics, Inc. | Prosthesis with feature aligned to trabeculae |
GB0119652D0 (en) * | 2001-08-11 | 2001-10-03 | Stanmore Implants Worldwide | Surgical implant |
US7312274B2 (en) * | 2003-11-24 | 2007-12-25 | General Electric Company | Composition and method for use with ceramic matrix composite T-sections |
US20070224235A1 (en) | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
CA2655793A1 (en) | 2006-06-29 | 2008-01-03 | Boston Scientific Limited | Medical devices with selective coating |
WO2008033711A2 (en) | 2006-09-14 | 2008-03-20 | Boston Scientific Limited | Medical devices with drug-eluting coating |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US8066770B2 (en) * | 2007-05-31 | 2011-11-29 | Depuy Products, Inc. | Sintered coatings for implantable prostheses |
US20090008365A1 (en) * | 2007-07-06 | 2009-01-08 | Depuy Products, Inc. | Microtextured Implants and Methods of Making Same |
EP2022447A1 (en) * | 2007-07-09 | 2009-02-11 | Astra Tech AB | Nanosurface |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
EP2187988B1 (en) | 2007-07-19 | 2013-08-21 | Boston Scientific Limited | Endoprosthesis having a non-fouling surface |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
WO2009018340A2 (en) | 2007-07-31 | 2009-02-05 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
EP2185103B1 (en) | 2007-08-03 | 2014-02-12 | Boston Scientific Scimed, Inc. | Coating for medical device having increased surface area |
US8128703B2 (en) * | 2007-09-28 | 2012-03-06 | Depuy Products, Inc. | Fixed-bearing knee prosthesis having interchangeable components |
US8715359B2 (en) | 2009-10-30 | 2014-05-06 | Depuy (Ireland) | Prosthesis for cemented fixation and method for making the prosthesis |
US8632600B2 (en) | 2007-09-25 | 2014-01-21 | Depuy (Ireland) | Prosthesis with modular extensions |
US9204967B2 (en) | 2007-09-28 | 2015-12-08 | Depuy (Ireland) | Fixed-bearing knee prosthesis having interchangeable components |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8029554B2 (en) * | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US20090164012A1 (en) * | 2007-12-21 | 2009-06-25 | Howmedica Osteonics Corp. | Medical implant component and method for fabricating same |
EP2271380B1 (en) | 2008-04-22 | 2013-03-20 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
US8932346B2 (en) | 2008-04-24 | 2015-01-13 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US8871142B2 (en) | 2008-05-22 | 2014-10-28 | DePuy Synthes Products, LLC | Implants with roughened surfaces |
EP2303350A2 (en) | 2008-06-18 | 2011-04-06 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US9119723B2 (en) | 2008-06-30 | 2015-09-01 | Depuy (Ireland) | Posterior stabilized orthopaedic prosthesis assembly |
US20090326674A1 (en) | 2008-06-30 | 2009-12-31 | Depuy Products, Inc. | Open Celled Metal Implants With Roughened Surfaces and Method for Roughening Open Celled Metal Implants |
US8236061B2 (en) | 2008-06-30 | 2012-08-07 | Depuy Products, Inc. | Orthopaedic knee prosthesis having controlled condylar curvature |
US8206451B2 (en) | 2008-06-30 | 2012-06-26 | Depuy Products, Inc. | Posterior stabilized orthopaedic prosthesis |
US8192498B2 (en) | 2008-06-30 | 2012-06-05 | Depuy Products, Inc. | Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature |
US8828086B2 (en) | 2008-06-30 | 2014-09-09 | Depuy (Ireland) | Orthopaedic femoral component having controlled condylar curvature |
US8187335B2 (en) | 2008-06-30 | 2012-05-29 | Depuy Products, Inc. | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US9168145B2 (en) | 2008-06-30 | 2015-10-27 | Depuy (Ireland) | Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature |
US8268383B2 (en) * | 2008-09-22 | 2012-09-18 | Depuy Products, Inc. | Medical implant and production thereof |
JP2012507359A (en) * | 2008-10-29 | 2012-03-29 | スミス アンド ネフュー インコーポレーテッド | Porous surface layer with increased surface roughness and implant incorporating the same |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
US8383187B2 (en) | 2009-02-19 | 2013-02-26 | Depuy Products, Inc. | Rough porous constructs |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US20100268227A1 (en) * | 2009-04-15 | 2010-10-21 | Depuy Products, Inc. | Methods and Devices for Bone Attachment |
AU2010201402C1 (en) | 2009-04-15 | 2014-10-16 | Depuy Products, Inc. | Nanotextured cobalt-chromium alloy articles having high wettability and method of producing same |
US8696759B2 (en) * | 2009-04-15 | 2014-04-15 | DePuy Synthes Products, LLC | Methods and devices for implants with calcium phosphate |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US11213397B2 (en) | 2009-05-21 | 2022-01-04 | Depuy Ireland Unlimited Company | Prosthesis with surfaces having different textures and method of making the prosthesis |
US9101476B2 (en) * | 2009-05-21 | 2015-08-11 | Depuy (Ireland) | Prosthesis with surfaces having different textures and method of making the prosthesis |
US9011547B2 (en) | 2010-01-21 | 2015-04-21 | Depuy (Ireland) | Knee prosthesis system |
US8475536B2 (en) * | 2010-01-29 | 2013-07-02 | DePuy Synthes Products, LLC | Methods and devices for implants with improved cement adhesion |
US8388887B2 (en) * | 2010-04-12 | 2013-03-05 | Biomet Manufacturing Corp. | Methods for making textured ceramic implants |
US9204693B2 (en) | 2012-08-20 | 2015-12-08 | Forever Mount, LLC | Brazed joint for attachment of gemstones to each other and/or a metallic mount |
CN106510904B (en) * | 2016-12-12 | 2018-06-01 | 吴栋 | A kind of femoral stem component of artificial hip joint and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855638A (en) * | 1970-06-04 | 1974-12-24 | Ontario Research Foundation | Surgical prosthetic device with porous metal coating |
US4156943A (en) * | 1977-08-24 | 1979-06-05 | Collier John P | High-strength porous prosthetic device and process for making the same |
US4206516A (en) * | 1976-12-15 | 1980-06-10 | Ontario Research Foundation | Surgical prosthetic device or implant having pure metal porous coating |
DE3027473A1 (en) * | 1980-07-19 | 1982-02-25 | Degussa Ag, 6000 Frankfurt | GOLD-BASED PREPARATION FOR COVERING METAL PARTS |
US4542539A (en) * | 1982-03-12 | 1985-09-24 | Artech Corp. | Surgical implant having a graded porous coating |
US4846837A (en) * | 1986-02-12 | 1989-07-11 | Technische Universitaet Karl-Marx-Stradt | Ceramic-coated metal implants |
US4855101A (en) * | 1987-07-17 | 1989-08-08 | Fried. Krupp Gmbh | Process for coating prostheses of titanium and titanium alloys |
US5263986A (en) * | 1992-02-19 | 1993-11-23 | Joint Medical Products Corporation | Sintered coatings for implantable prostheses |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2356513A (en) * | 1939-05-27 | 1944-08-22 | Gonon Paul Jean Jacques | Process for increasing the retention capacity of the sealing surface of artificial porcelain teeth |
JPS5214095A (en) * | 1975-07-23 | 1977-02-02 | Sumitomo Chemical Co | Implant in bone |
DE2546824C2 (en) * | 1975-10-18 | 1986-05-07 | Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar | Coated endoprosthesis and process for their manufacture |
DE2827529C2 (en) * | 1978-06-23 | 1982-09-30 | Battelle-Institut E.V., 6000 Frankfurt | Implantable bone replacement material consisting of a metal core and bioactive, sintered calcium phosphate ceramic particles and a process for its production |
US4434211A (en) * | 1979-03-08 | 1984-02-28 | Itzhak Shoher | Method for bonding ceramic to noble based metals and product |
CA1148035A (en) * | 1979-05-25 | 1983-06-14 | Larry N. Moskowitz | Fusable, self-fluxing alloy powders |
US4348433A (en) * | 1981-04-06 | 1982-09-07 | Eutectic Corporation | Flame spray powder |
JPS5911843A (en) * | 1982-07-12 | 1984-01-21 | 日本特殊陶業株式会社 | Dental implant for mounting denture |
US4793968A (en) * | 1982-12-29 | 1988-12-27 | Sermatech International, Inc. | Surface modified powder metal parts and methods for making same |
US4911720A (en) * | 1983-03-10 | 1990-03-27 | Collier John P | Particular surface replacement prosthesis |
US4612160A (en) * | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
JPS6131163A (en) * | 1984-07-23 | 1986-02-13 | 京セラ株式会社 | Ceramic living body prosthetic material and its production |
DE3447583A1 (en) * | 1984-12-28 | 1986-07-10 | Battelle-Institut E.V., 6000 Frankfurt | METHOD FOR PRODUCING IMPLANTABLE BONE REPLACEMENT MATERIALS |
DE3532331A1 (en) * | 1985-09-11 | 1987-03-19 | Degussa | METHOD FOR PRODUCING A METAL DENTAL REPLACEMENT |
JPS62120403A (en) * | 1985-11-20 | 1987-06-01 | Permelec Electrode Ltd | Titanium composite body having porous surface and its manufacture |
JPS62127489A (en) * | 1985-11-27 | 1987-06-09 | Permelec Electrode Ltd | Composite titanium body having coil-shaped surface skeleton structure and its production |
US4822369A (en) * | 1986-06-10 | 1989-04-18 | Gerard Oueveau | Bone joint prosthesis |
US4865603A (en) * | 1988-02-04 | 1989-09-12 | Joint Medical Products Corporation | Metallic prosthetic devices having micro-textured outer surfaces |
US4813965A (en) * | 1988-02-29 | 1989-03-21 | Nuclear Metals, Inc. | Brazed porous coating and improved method of joining metal with silver material |
WO1992014422A1 (en) * | 1991-02-20 | 1992-09-03 | Tdk Corporation | Composite bio-implant and production method therefor |
US5258030A (en) * | 1991-07-08 | 1993-11-02 | The Trustees Of The University Of Pennsylvania | Porous coated implants |
US5405389A (en) * | 1992-02-19 | 1995-04-11 | Joint Medical Products Corporation | Sintered coatings for implantable prostheses |
-
1993
- 1993-06-10 US US08/074,388 patent/US5368881A/en not_active Expired - Lifetime
-
1994
- 1994-05-17 WO PCT/US1994/005533 patent/WO1994028826A1/en active IP Right Grant
- 1994-05-17 EP EP94916800A patent/EP0702536B1/en not_active Expired - Lifetime
- 1994-05-17 DE DE69422919T patent/DE69422919T2/en not_active Expired - Lifetime
- 1994-05-17 AU AU68357/94A patent/AU6835794A/en not_active Abandoned
- 1994-05-17 JP JP50180195A patent/JP3600620B2/en not_active Expired - Lifetime
-
1996
- 1996-05-09 US US08/647,146 patent/US5658333A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3855638A (en) * | 1970-06-04 | 1974-12-24 | Ontario Research Foundation | Surgical prosthetic device with porous metal coating |
US4206516A (en) * | 1976-12-15 | 1980-06-10 | Ontario Research Foundation | Surgical prosthetic device or implant having pure metal porous coating |
US4156943A (en) * | 1977-08-24 | 1979-06-05 | Collier John P | High-strength porous prosthetic device and process for making the same |
DE3027473A1 (en) * | 1980-07-19 | 1982-02-25 | Degussa Ag, 6000 Frankfurt | GOLD-BASED PREPARATION FOR COVERING METAL PARTS |
US4542539A (en) * | 1982-03-12 | 1985-09-24 | Artech Corp. | Surgical implant having a graded porous coating |
US4846837A (en) * | 1986-02-12 | 1989-07-11 | Technische Universitaet Karl-Marx-Stradt | Ceramic-coated metal implants |
US4855101A (en) * | 1987-07-17 | 1989-08-08 | Fried. Krupp Gmbh | Process for coating prostheses of titanium and titanium alloys |
US5263986A (en) * | 1992-02-19 | 1993-11-23 | Joint Medical Products Corporation | Sintered coatings for implantable prostheses |
Non-Patent Citations (1)
Title |
---|
See also references of EP0702536A4 * |
Also Published As
Publication number | Publication date |
---|---|
AU6835794A (en) | 1995-01-03 |
EP0702536A4 (en) | 1996-11-27 |
DE69422919T2 (en) | 2000-05-18 |
US5368881A (en) | 1994-11-29 |
EP0702536B1 (en) | 2000-02-02 |
JPH08511442A (en) | 1996-12-03 |
US5658333A (en) | 1997-08-19 |
JP3600620B2 (en) | 2004-12-15 |
DE69422919D1 (en) | 2000-03-09 |
EP0702536A1 (en) | 1996-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5368881A (en) | Prosthesis with highly convoluted surface | |
EP1997524B1 (en) | Sintered coatings for implantable prosthesis | |
US4542539A (en) | Surgical implant having a graded porous coating | |
US9764061B2 (en) | Method of providing a zirconium surface and resulting product | |
US6447550B1 (en) | Method of surface oxidizing zirconium alloys and resulting product | |
US5593452A (en) | Coated femoral stem prosthesis | |
Lacefield | Materials characteristics of uncoated/ceramic-coated implant materials | |
Chern Lin et al. | Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6Al4V | |
Hadipour et al. | Preparation and characterization of plasma-sprayed nanostructured-merwinite coating on Ti-6Al-4V | |
KR101063468B1 (en) | Biological material and its manufacturing method | |
Lin et al. | Plasma‐Sprayed Hydroxyapatite‐Bioactive Glass Composites on Ti6A14V |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994916800 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1994916800 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWG | Wipo information: grant in national office |
Ref document number: 1994916800 Country of ref document: EP |