WO1994025849A1 - Device for the measurement of the reflectance at a point on a surface - Google Patents

Device for the measurement of the reflectance at a point on a surface Download PDF

Info

Publication number
WO1994025849A1
WO1994025849A1 PCT/EP1994/001305 EP9401305W WO9425849A1 WO 1994025849 A1 WO1994025849 A1 WO 1994025849A1 EP 9401305 W EP9401305 W EP 9401305W WO 9425849 A1 WO9425849 A1 WO 9425849A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrator
arrangement according
light
surface normal
radiation sources
Prior art date
Application number
PCT/EP1994/001305
Other languages
German (de)
French (fr)
Inventor
Thomas Morgenstern
Jost SCHÜLER
Lutz Papenkordt
Original Assignee
Jenoptik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Gmbh filed Critical Jenoptik Gmbh
Priority to EP94914419A priority Critical patent/EP0648327A1/en
Priority to JP6523869A priority patent/JPH07508590A/en
Publication of WO1994025849A1 publication Critical patent/WO1994025849A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4298Coupling light guides with opto-electronic elements coupling with non-coherent light sources and/or radiation detectors, e.g. lamps, incandescent bulbs, scintillation chambers

Definitions

  • the invention relates to an arrangement for measuring the reflectance of small areas of solid and liquid bodies in several spectral ranges (in the VTS, near and middle IR), whereby the areal distribution of the spectral reflectance and / or the body color is possible.
  • the invention can be used in a wide variety of sectors of industry and manufacturing, in order to ensure that the colors of products are the same, to detect color deviations or to match colors.
  • the latter plays e.g. also play a major role in the manufacture of dentures, where it is important to match the color of the denture as closely as possible to the natural tooth color.
  • a large number of arrangements for determining the spectral reflectance of bodies are known from the prior art, which generally work with a plurality of spectrally selective radiation sources which can be controlled sequentially and a receiver.
  • the optical part of these arrangements differs essentially in the supply of the emitted radiation to the surface to be tested.
  • the surface to be examined is directly irradiated, so that the size of the "punctiform" areas to be measured is determined by the radiation cone of the
  • LED and the necessary distance between the object to be measured and the radiation source is determined and therefore cannot be chosen to be sufficiently small. Due to the divergence of the radiation, very high light intensities are required to obtain accurate measurement results with strongly absorbing surfaces. In addition, the overexposure accuracy of the various LEDs on the surface to be measured is inadequate due to the angular scatter in the radiation characteristics of the LEDs.
  • DE-PS 36 26 373 describes a device in which the radiation from the individual radiation sources is guided via two filter units onto a lens arrangement which focuses the radiation onto the sample to be examined. This beam guidance requires a high adjustment effort and a high mechanical stability. The achievable area resolution is just as in the abovementioned writings the emission characteristics of the LEDs determine and limit. In addition, the radiation intensity is reduced by the filter units and limited by the opening of the imaging system.
  • Optical fiber bundle is directed to the area to be examined. With a small distance between the light exit surface and the surface to be examined and the additional lenticular grinding of this exit surface, it is possible to concentrate the light on a very small measurement spot. The problem with such an arrangement is the coupling of sufficient radiation energy into it
  • the object of the invention is to provide an arrangement for the punctiform measurement of the reflectance in different spectral ranges, in which the radiation of several radiation sources with different radiation characteristics is concentrated with as little means and little loss of radiation energy as possible on a small section of the area to be examined.
  • the object is achieved with an arrangement for the punctiform measurement of the remission of surfaces of solid or liquid bodies in different spectral ranges with at least two radiation sources of different spectral ranges and a receiver which is sensitive at least for the selected different spectral ranges, the angular position being different for incident and reflected light and on the one hand corresponds to the surface normal of the surface and on the other hand to an angle which is substantially different from the surface normal and parallel to the surface, solved in that the radiation sources are followed by a concentrator which has the shape of a
  • the concentrator advantageously consists of any transparent material with a lacquer layer produced by dipping or spraying on as a lower-refractive coating.
  • the concentrator consists of glass, in particular quartz glass, the lower-refractive coating of which is produced by tapping the glass.
  • half the cone angle of the quartz glass concentrator is preferably about one fifth of the numerical aperture of an optical waveguide made of the same material.
  • the concentrator is preferably glued to the window of the LED used, the adhesive layer being the refractive index of window material of the LED and that of the
  • the radiation sources are preferably arranged as separate LEDs around the receiver arranged in the direction of the surface normal at a uniform angular distance from one another and at approximately 45 ° to the surface normal.
  • the light exit surfaces of the concentrators are expediently designed spherically.
  • the radiation sources In order to realize a particularly small measuring head, it is generally favorable to arrange the radiation sources at any point away from the surface and to glue optical fibers to the light exit surface of the concentrators, the ends of the optical fibers being around those in the direction of the surface normal
  • Receivers are arranged at an even angular distance and at approximately 45 ° to the surface normal.
  • the radiation divergence is expediently reduced by spherical design of the light exit surfaces of the optical fibers.
  • a fundamentally different advantageous design of the arrangement according to the invention is achieved by using a three-color LED, in that only a single concentrator follows the LED (as a combination of three radiation sources) and the three-color LED and concentrator are arranged in the direction of the surface normals and a fiber bundle arranged concentrically thereto of fiber optic cables (LWL), which transmits reflected light at an angle of about 45 ° to the receiver, the
  • the colors of the three-color LED can be switched on in series.
  • the fiber optic cables (with the end surface perpendicular to the fiber optic axis) can easily be arranged at an angle of approx. 45 °.
  • the measuring head with its light entry and exit surfaces has a uniform, smooth surface and the fiber optic cables are therefore beveled at their ends.
  • LWL air refractive index ratio
  • Quartz glass results in an angular position of approximately 30 ° to the surface normal for the FO. It is furthermore expedient to rigidly connect the concentrator to the three-color LED by means of an adhesive layer, the adhesive layer in turn adapting the refractive indices of the LED window and the concentrator to one another.
  • the light exit surface of the concentrator is advantageously also spherically shaped.
  • 0745 ° - measurement geometry are known, and adapted and modified according to the special features of the point remission measurement according to the invention. With the arrangements according to the invention, it is possible to align the remission measurements on the smallest areas of a body surface and to utilize the radiation from divergent light sources of low power for precise remission measurements with low radiation losses.
  • the reflectance measurements for color matching can be used particularly advantageously in a wide variety of industrial and commercial sectors.
  • the invention proves to be advantageous and suitable for use in dentistry (manufacture of dentures) and forensic medicine (e.g. determining the age of hematomas), since the critical surfaces are easy to keep sterile.
  • Fig. 1 shows the schematic diagram of an arrangement according to the invention in a
  • FIG. 1 shows the top view of FIG. 1
  • Fig. 3 shows the schematic diagram of a further arrangement according to the invention in
  • the arrangement according to the invention for measuring the reflectance of surfaces 1 of solid and liquid bodies preferably contains in its basic structure a 0745 ° measurement geometry from radiation sources 3 of different spectral ranges, wherein according to the invention a radiation concentrator 2 is arranged downstream of each radiation source 3 to collect its diverging light.
  • the concentrator 2 is made of transparent material and is in the form of a truncated cone, the outer surface of which reflects the radiation totally and at the same time concentrates.
  • FIG. 1 - An arrangement according to the invention - as shown schematically in FIG. 1 - shows the 0745 ° structure typical for reflectance measurements, with the receiver 5 in here
  • Each of the red, green and blue LEDs 3.1 to 3.3 forms together with the concentrator 2 one of the assemblies 4, which in this case are arranged at 120 ° around the receiver 5, as shown in FIG. 2 as a top view.
  • the area 1 to be examined is successively irradiated by the red, green and blue LEDs 3.1, 3.2 and 3.3 at an angle of essentially 45 ° in a pulsed manner.
  • the respective downstream concentrator 2 detects the radiation emitted by the LED and concentrates it on a narrowly limited section of the area to be examined 1.
  • the size of this section does not depend on the different radiation characteristics of the LEDs, but is dependent on parameters of the concentrators 2 ( Cone angle, refractive index ratio between the higher refractive truncated cone and the lower refractive cladding) and the distance between the light exit surface of the concentrator 2 and surface 1.
  • the refractive index ratio of the concentrators 2 is therefore similar to that of conventional optical fibers, with approximately 1.45 and n M being approximately 1.43.
  • the concentrators 2 essentially match the fiber optics from Ensign-Bickford Optics Company (USA). Because of the divergence of the emerging light that also occurs at the light exit of the concentrators 2 and that is somewhat larger than conventional optical fibers, the distance to the surface 1 must be chosen to be small.
  • a conflicting condition is the fact that the distance must always remain so large that the light cones of all radiation sources 3, starting from the light exit of the concentrators 2, illuminate the area 1 detected by the receiver 5 as completely as possible. Since the receiver 5 advantageously receives the remitted light via an optical fiber 6, which is embedded in a metal cannula 7 to avoid the incidence of extraneous light, the distance from the surface 1 can hardly be less than 2 mm. The distance is realized with respect to the metal cannula 7, while the entry surface of the fiber optic cable 6 is slightly shifted back by the
  • the half cone angle is approximately 2.5 °, a length of less than 2 cm.
  • the half cone angle should not be more than 10% larger than a fifth of the numerical aperture. Because of the relatively short length of the concentrators 2 and the advantageous 45 ° position with respect to the surface normal to the surface 1, it is advantageous in the interest of a compact, slim design of the arrangement according to the invention not to arrange the light sources 3 directly in the vicinity of the surface 1, but instead to bring their light to the appropriate position via fiber optics (not shown in this configuration).
  • the light exit surfaces of the concentrators 2 are advantageously glued to the end faces of the optical fiber. Those of the HCG-MO365T-10 type from Ensign-Bickford Optics Company (USA) are expediently used as optical fibers.
  • FIG. 3 shows an arrangement according to the invention which is fundamentally different, which is changed compared to the first example in the position of radiation sources 3 and receiver 5.
  • the radiation sources 3 are arranged in the direction of the surface normal of the surface 1.
  • a three-color LED 8 (for example of the type CMS 124 from ELCOS GmbH Pfaffenhofen, Germany), the color segments in turn being driven in a pulsed, serial manner.
  • the three-color LED 8 is in turn advantageously coupled via an adhesive layer 9 to the concentrator 2, which is designed in the same way as in the first example. The coupling is carried out in such a way that the window material of the three-color LED 8 via the adhesive layer
  • the remitted light is received by means of a receiver 5 via a fiber bundle composed of a plurality of optical fibers 6 which is concentric, even around the radiation sources arranged along the surface normal.
  • Concentrator unit is distributed.
  • step index fibers of the type HCG-M 0200 T-10 (numerical aperture: 0.22, manufacturer: Ensign-Bickford Optics Company, USA) are advantageously used.
  • the FO 6 are advantageously arranged so that they receive the remitted light at an angle of preferably 45 ° with respect to the surface normal. Two constructive solutions are possible for this.
  • the ends of the FO 6 are adjusted under the selected angle setting (e.g. exactly 45 °) and cast in advantageously.
  • the end faces of the FO 6 remain perpendicular to the fiber axis and practically protrude from the composite surface.
  • Fig. 3 illustrates the other variant in which the refractive index of quartz glass and the often advantageous fact that the surface of a sensor should be as smooth as possible are taken into account.
  • the fiber optic cables 6 are adjusted at an angle of 30 ° to the surface normal of surface 1 (e.g. by embedding them in a casting resin).
  • the ends of the LWL 6 have bevels with the same angle of 30 °, so that the sensor has a flat, smooth surface parallel to the surface 1.
  • the angular dimension of 30 ° results from the selection of an optical fiber 6 made of quartz glass and a receiving angle for the reflected light of 45 ° and for this reason does not limit the scope of the teaching according to the invention as a fixed angle. It is important that preferably the light remitted at 45 ° is broken into the fiber optic cable 6 almost parallel to the fiber axis due to the refractive index jump at the slanted light entry surface of the fiber optic cable 6.
  • An additional advantage is that the distance between the sensor and the surface can be reduced from 1 to almost 1 mm, so that with a light exit surface the Concentrator 2 of 1.4 mm a measured area 1 of about 2 mm in diameter is realized.
  • the smooth sensor surface fulfills the requirement of medical technology that it can be kept sterile particularly easily.

Abstract

The invention concerns a device for the measurement of the reflectance of small areas of solid, liquids or gases in several regions of the spectrum (visible, near IR, medium IR), it being possible to determine the surface distribution of the spectral reflectance and/or perceived colour. The invention proposes that special concentrators are disposed behind the individual radiation sources, thus making it possible, without the need for sophisticated design or adjustment measures and with only low radiation losses, to concentrate the radiation on a very small area of the surface under examination.

Description

Beschreibung description
Anordnung zur punktuellen Messung der Remission von FlächenArrangement for the punctual measurement of the reflectance of surfaces
Die Erfindung betrifft eine Anordnung zur Messung der Remission von kleinen Rächen fester und flüssiger Körper in mehreren Spektralbereichen (im VTS, nahen und mittleren IR), wodurch die Erfassung der flächenmäßigen Verteilung des spektralen Remissionsgrades und/oder der Körperfarbe möglich ist.The invention relates to an arrangement for measuring the reflectance of small areas of solid and liquid bodies in several spectral ranges (in the VTS, near and middle IR), whereby the areal distribution of the spectral reflectance and / or the body color is possible.
Anwendbar ist die Erfindung in den verschiedensten Branchen der Industrie und des produzierenden Gewerbes, um die Farbgleichheit von Produkten zu gewährleisten, Farbabweichungen zu erkennen öder Farben aufeinander abzustimmen. Letztgenanntes spielt z.B. auch in der Zahnprothesenherstellung eine große Rolle, wo es darauf ankommt, die Farbe der Zahnprothese möglichst genau der natürlichen Zahnfarbe anzupassen.The invention can be used in a wide variety of sectors of industry and manufacturing, in order to ensure that the colors of products are the same, to detect color deviations or to match colors. The latter plays e.g. also play a major role in the manufacture of dentures, where it is important to match the color of the denture as closely as possible to the natural tooth color.
Aus dem Stand der Technik sind eine Vielzahl von Anordnungen zur Bestimmung des spektralen Remissionsgrades von Körpern bekannt, die in der Regel mit mehreren sequentiell ansteuerbaren- spektral selektiven Strahlungsquellen und einem Empfänger arbeiten. Der optische Teil dieser Anordnungen unterscheidet sich im wesentlichen in der Zuführung der emittierten Strahlung auf die zu prüfende Fläche.A large number of arrangements for determining the spectral reflectance of bodies are known from the prior art, which generally work with a plurality of spectrally selective radiation sources which can be controlled sequentially and a receiver. The optical part of these arrangements differs essentially in the supply of the emitted radiation to the surface to be tested.
In dem in der DE-OS 41 20749 beschriebenen Verfahren und der in der DD-PS 99439 beschriebenen Vorrichtung wird die zu untersuchende Oberfläche direkt bestrahlt, so daß die Größe der zu messenden "punktuellen" Räche durch den Strahlungskegel derIn the method described in DE-OS 41 20749 and the device described in DD-PS 99439, the surface to be examined is directly irradiated, so that the size of the "punctiform" areas to be measured is determined by the radiation cone of the
LED und den notwendigen Abstand zwischen Meßobjekt und Strahlungsquelle bestimmt wird und damit nicht ausreichend klein gewählt werden kann. Auf Grund der Divergenz der Strahlung sind zur Erlangung genauer Meßergebnisse bei stark absorbierenden Oberflächen sehr hohe Lichtintensitäten erforderlich. Außerdem ist die Überstrahlungsgenauigkeit der verschiedenen LED's auf der zu messenden Oberfläche aufgrund der Winkelstreuung in der Abstrahlcharakteristik der LED's nur unzureichend erreichbar.LED and the necessary distance between the object to be measured and the radiation source is determined and therefore cannot be chosen to be sufficiently small. Due to the divergence of the radiation, very high light intensities are required to obtain accurate measurement results with strongly absorbing surfaces. In addition, the overexposure accuracy of the various LEDs on the surface to be measured is inadequate due to the angular scatter in the radiation characteristics of the LEDs.
In der DE-PS 36 26 373 ist eine Vorrichtung beschrieben, bei welcher die Strahlung der einzelnen Strahlungsquellen über zwei Filtereinheiten auf eine Linsenanordnung geführt wird, welche die Strahlung auf die zu untersuchende Probe fokussiert. Diese Strahlführung erfordert einen hohen Justieraufwand und eine hohe mechanische Stabilität. Die erreichbare Rächenauflösung ist ebenso wie in den o.g. Schriften durch die Abstrahlcharakteristik der LED's bestimmt und begrenzt. Außerdem wird die Strahlungsintensität durch die Filtereinheiten reduziert und durch die Öffnung des Abbildungssystems begrenzt.DE-PS 36 26 373 describes a device in which the radiation from the individual radiation sources is guided via two filter units onto a lens arrangement which focuses the radiation onto the sample to be examined. This beam guidance requires a high adjustment effort and a high mechanical stability. The achievable area resolution is just as in the abovementioned writings the emission characteristics of the LEDs determine and limit. In addition, the radiation intensity is reduced by the filter units and limited by the opening of the imaging system.
Aus der DE-OS 30 38 786 ist eine Einrichtung zur Messung der Farbe des Zahnfleisches bekannt, bei welcher das Licht einer Lichtquelle über ein flexiblesFrom DE-OS 30 38 786 a device for measuring the color of the gums is known, in which the light of a light source via a flexible
Lichtleiterbündel zur untersuchenden Fläche geleitet wird. Bei geringem Abstand der Lichtaustrittsfläche zu der zu untersuchenden Fläche und dem zusätzlichen linsenförmigen Anschleifen dieser Austrittsfläche ist es möglich, das Licht auf einen sehr kleinen Meßfleck zu konzentrieren. Das Problem in einer solchen Anordnung besteht in der Einkopplung von ausreichend viel Strahlungsenergie in dasOptical fiber bundle is directed to the area to be examined. With a small distance between the light exit surface and the surface to be examined and the additional lenticular grinding of this exit surface, it is possible to concentrate the light on a very small measurement spot. The problem with such an arrangement is the coupling of sufficient radiation energy into it
Lichtleitbündel.Light guide bundle.
Aufgabe der Erfindung ist es, eine Anordnung zur punktuellen Messung der Remission in verschiedenen Spektralbereichen zu schaffen, bei welcher die Strahlung mehrerer Strahlungsquellen mit unterschiedlicher Abstrahlcharakteristik mit einfachen Mitteln und wenig Verlusten an Strahlungsenergie auf einen möglichst kleinen Ausschnitt der zu untersuchenden Fläche konzentriert wird.The object of the invention is to provide an arrangement for the punctiform measurement of the reflectance in different spectral ranges, in which the radiation of several radiation sources with different radiation characteristics is concentrated with as little means and little loss of radiation energy as possible on a small section of the area to be examined.
Die Aufgabe wird bei einer Anordnung zur punktuellen Messung der Remission von Flächen fester oder flüssiger Körper in verschiedenen Spektralbereichen mit mindestens zwei Strahlungsquellen unterschiedlicher Spektralbereiche und einem Empfanger, der mindestens für die ausgewählten unterschiedlichen Spektralbereiche empfindlich ist, wobei die Winkellage für eingestrahltes und remittiertes Licht unterschiedlich ist und einerseits der Flächennormale der Fläche und andererseits einem Winkel, der wesentlich verschieden ist von Flächennormale und Flächenparallele, entspricht, dadurch gelöst, daß den Strahlungsquellen ein Konzentrator nachgeordnet ist, der die Form einesThe object is achieved with an arrangement for the punctiform measurement of the remission of surfaces of solid or liquid bodies in different spectral ranges with at least two radiation sources of different spectral ranges and a receiver which is sensitive at least for the selected different spectral ranges, the angular position being different for incident and reflected light and on the one hand corresponds to the surface normal of the surface and on the other hand to an angle which is substantially different from the surface normal and parallel to the surface, solved in that the radiation sources are followed by a concentrator which has the shape of a
Kegelstumpfes besitzt und aus einem höher brechenden lichttransparenten Material, ummantelt von einem niedriger brechenden Material, besteht, so daß die Strahlung im wesentlichen durch Totalreflexion auf einen kleinen Ausschnitt der Fläche konzentriert wird.Has truncated cone and consists of a higher refractive light-transparent material, encased by a lower refractive material, so that the radiation is concentrated essentially by total reflection on a small section of the surface.
Vorteilhaft besteht der Konzentrator aus einem beliebigen transparenten Material mit einer durch Tauchen oder Aufsprühen erzeugten Lackschicht als niedriger brechende Ummantelung. In einer weiteren vorteilhaften Gestaltung besteht der Konzentrator aus Glas, insbesondere Quarzglas, dessen niedriger brechende Ummantelung durch Tapern des Glases erzeugt wird. Vorzugsweise beträgt der halbe Kegelwinkel des aus Quarzglas bestehenden Konzentrators bei Einsatz von divergenten LED's etwa ein Fünftel der numerischen Apertur eines aus gleichem Material bestehenden Lichtwellenleiters. Dabei wird der Konzentrator vorzugsweise auf das Fenster der verwendeten LED aufgeklebt, wobei die Kleberschicht dem Brechungsindex von Fenstermaterial der LED und dem desThe concentrator advantageously consists of any transparent material with a lacquer layer produced by dipping or spraying on as a lower-refractive coating. In a further advantageous embodiment, the concentrator consists of glass, in particular quartz glass, the lower-refractive coating of which is produced by tapping the glass. When using divergent LEDs, half the cone angle of the quartz glass concentrator is preferably about one fifth of the numerical aperture of an optical waveguide made of the same material. The concentrator is preferably glued to the window of the LED used, the adhesive layer being the refractive index of window material of the LED and that of the
Konzentrators angepaßt wird. Die Strahlungsquellen sind vorzugsweise als separate LED um den in Richtung der Flächennormalen angeordneten Empfangers in gleichmäßigem Winkelabstand untereinander und unter annähernd 45° zur Flächennormale angeordnet. Zum Ausgleich der Divergenz der Strahlungsquellen in Form von LED's sind zweckmäßig die Lichtaustrittsflächen der Konzentratoren sphärisch gestaltet.Concentrator is adjusted. The radiation sources are preferably arranged as separate LEDs around the receiver arranged in the direction of the surface normal at a uniform angular distance from one another and at approximately 45 ° to the surface normal. To compensate for the divergence of the radiation sources in the form of LEDs, the light exit surfaces of the concentrators are expediently designed spherically.
Um einen besonders kleinen Meßkopf zu realisieren, ist es in der Regel günstig, die Strahlungsquellen an beliebiger Stelle entfernt von der Oberfläche anzuordnen und an die Lichtaustrittsfläche der Konzentratoren Lichtleitfasern aufzukleben, wobei die Enden der Lichtleitfasern um den in Richtung der Flächennormalen befindlichenIn order to realize a particularly small measuring head, it is generally favorable to arrange the radiation sources at any point away from the surface and to glue optical fibers to the light exit surface of the concentrators, the ends of the optical fibers being around those in the direction of the surface normal
Empfänger in gleichmäßigem Winkelabstand und unter annähernd 45° zur Flächennormale angeordnet sind. In diesem Fall ist die Strahlungsdivergenz zweckmäßig durch sphärische Gestaltung der Lichtaustrittsflächen der Lichtleitfasern zu verringern. Eine grundsätzlich andere vorteilhafte Gestaltung der erfindungsgemäßen Anordnung wird durch den Einsatz einer Dreifarb-LED erreicht, indem nur ein einziger Konzentrator der LED (als Vereinigung dreier Strahlungsquellen) folgt und Dreifarb- LED und Konzentrator in Richtung der Flächennormalen angeordnet sind und ein konzentrisch dazu angeordnetes Faserbündel aus Lichtwellenleitern (LWL), das unter einem Winkel von etwa 45° remittierte Licht auf den Empfänger leitet, wobei dieReceivers are arranged at an even angular distance and at approximately 45 ° to the surface normal. In this case, the radiation divergence is expediently reduced by spherical design of the light exit surfaces of the optical fibers. A fundamentally different advantageous design of the arrangement according to the invention is achieved by using a three-color LED, in that only a single concentrator follows the LED (as a combination of three radiation sources) and the three-color LED and concentrator are arranged in the direction of the surface normals and a fiber bundle arranged concentrically thereto of fiber optic cables (LWL), which transmits reflected light at an angle of about 45 ° to the receiver, the
Farben der Dreifarb-LED seriell eingeschaltet werden.The colors of the three-color LED can be switched on in series.
Dabei gibt es zwei vorteilhafte Varianten der Anordnung der LWL zur Aufnahme des Remissionslichtes. Zum einen lassen sich die LWL (mit senkrecht zur LWL-Achse stehender Endfläche) einfach unter einem Winkel von ca. 45° anordnen. Zum anderen ist es jedoch vielfach von Vorteil, wenn der Meßkopf mit seinen Lichtein- und - austrittsflächen eine einheitliche, glatte Oberfläche besitzt und demzufolge die LWL an ihren Enden abgeschrägt sind. Um wiederum das unter einem Winkel um 45° remittierte Licht auf den Empfänger zu leiten, ist auf Basis des Brechzahlverhältnisses LWL Luft (hier für Quarzglas/Luft) der Winkel zwischen den LWL und der Flächennormale der Körperoberfläche zu verringern. Aufgrund der Lichtbrechung beim Übergang Luft-There are two advantageous variants of the arrangement of the optical fibers for receiving the remission light. On the one hand, the fiber optic cables (with the end surface perpendicular to the fiber optic axis) can easily be arranged at an angle of approx. 45 °. On the other hand, however, it is often advantageous if the measuring head with its light entry and exit surfaces has a uniform, smooth surface and the fiber optic cables are therefore beveled at their ends. In order to direct the light remitted at an angle of 45 ° to the receiver, the angle between the optical fiber and the surface normal of the body surface must be reduced based on the refractive index ratio LWL air (here for quartz glass / air). Due to the refraction of light at the transition from air
Quarzglas ergibt sich damit für die LWL eine Winkellage zur Flächennormale von annähernd 30°. Weiterhin zweckmäßig ist es, den Konzentrator über eine Kleberschicht mit der Dreifarb-LED starr zu verbinden, wobei die Kleberschicht wiederum die Brechungsindizes von LED-Fenster und Konzentrator aneinander anpaßt. Die Lichtaustrittsfläche des Konzentrators ist vorteilhaft zusätzlich sphärisch geformt. Die Grundidee liegt in der Überlegung, die divergente Strahlung und unterschiedlicheQuartz glass results in an angular position of approximately 30 ° to the surface normal for the FO. It is furthermore expedient to rigidly connect the concentrator to the three-color LED by means of an adhesive layer, the adhesive layer in turn adapting the refractive indices of the LED window and the concentrator to one another. The light exit surface of the concentrator is advantageously also spherically shaped. The basic idea lies in the consideration, the divergent radiation and different
Abstrahlungscharakteristik mehrerer Strahlungsquellen, insbesondere LED's, mit einfachen, innen totalreflektierenden Kegelstümpfen aus transparentem Material zu konzentrieren, um damit eine ausreichende Strahlungsintensität auf punktuelle Bereiche einer Körperoberfläche für Remissionsmessungen zur Verfugung zu haben. Dabei werden an sich bekannte Prinzipien einer Dunkelfeldbeleuchtung genutzt, die auch alsConcentrate the radiation characteristics of several radiation sources, in particular LEDs, with simple, totally reflective truncated cones made of transparent material in order to have sufficient radiation intensity on specific areas of a body surface for remission measurements. Known principles of dark field lighting are used, which are also known as
0745°- Meßgeometrie bekannt sind, und entsprechend den Besonderheiten der erfindungsgemäßen punktuellen Remissionsmessung angepaßt und modifiziert. Mit den erfindungsgemäßen Anordnungen ist es möglich, die Remissionsmessungen auf kleinsten Flächen einer Körperoberfläche auszurichten und mit geringen Strahlungsverlusten die Strahlung von divergenten Lichtquellen kleiner Leistung für genaue Remissionsmessungen auszunutzen.0745 ° - measurement geometry are known, and adapted and modified according to the special features of the point remission measurement according to the invention. With the arrangements according to the invention, it is possible to align the remission measurements on the smallest areas of a body surface and to utilize the radiation from divergent light sources of low power for precise remission measurements with low radiation losses.
Besonders vorteilhaft lassen sich die Remissionsmessungen für Farbabstimmungen in verschiedensten Branchen von Industrie und Gewerbe anwenden.The reflectance measurements for color matching can be used particularly advantageously in a wide variety of industrial and commercial sectors.
Vor allem die ebenflächige und kompakte Bauform einer speziellen Ausgestaltung derAbove all, the flat and compact design of a special design of the
Erfindung erweist sich als vorteilhaft und geeignet für den Einsatz in der Zahnmedizin (Zahnprothesenherstellung) und Gerichtsmedizin (z.B. Altersbestimmung von Hämatomen), da die kritischen Flächen leicht steril zu halten sind.The invention proves to be advantageous and suitable for use in dentistry (manufacture of dentures) and forensic medicine (e.g. determining the age of hematomas), since the critical surfaces are easy to keep sterile.
Die Erfindung soll nachstehend anhand zweier Ausführungsbeispiele näher erläutert werden. Die Zeichnungen zeigen:The invention will be explained in more detail below using two exemplary embodiments. The drawings show:
Fig. 1 die Prinzipdarstellung einer erfindungsgemäßen Anordnung in einerFig. 1 shows the schematic diagram of an arrangement according to the invention in a
(unvollständigen) Seitenansicht(incomplete) side view
Fig. 2 die Draufsicht zu Fig. 12 shows the top view of FIG. 1
Fig. 3 die Prinzipdarstellung einer weiteren erfindungsgemäßen Anordnung inFig. 3 shows the schematic diagram of a further arrangement according to the invention in
SeitenansichtSide view
Fig. 4 die Draufsicht zu Fig. 3 Die erfindungsgemäße Anordnung zur Messung der Remission von Flächen 1 fester und flüssiger Körper beinhaltet in ihrem Grundaufbau vorzugsweise eine 0745°- Meßgeometrie aus Strahlungsquellen 3 unterschiedlicher Spektralbereiche, wobei gemäß der Erfindung jeder Strahlungsquelle 3 zum Sammeln ihres divergierenden Lichts ein Konzentrator 2 nachgeordnet ist. Der Konzentrator 2 besteht aus transparentem Material und ist in Form eines Kegelstumpfes, dessen Mantelfläche die Strahlung totalreflektiert und gleichzeitig konzentriert, ausgebildet.4 shows the top view of FIG. 3 The arrangement according to the invention for measuring the reflectance of surfaces 1 of solid and liquid bodies preferably contains in its basic structure a 0745 ° measurement geometry from radiation sources 3 of different spectral ranges, wherein according to the invention a radiation concentrator 2 is arranged downstream of each radiation source 3 to collect its diverging light. The concentrator 2 is made of transparent material and is in the form of a truncated cone, the outer surface of which reflects the radiation totally and at the same time concentrates.
Eine erfindungsgemäße Anordnung - wie sie in Fig. 1 schematisch dargestellt ist - zeigt den für Remissionsmessungen typischen 0745°- Aufbau, wobei hier der Empfanger 5 inAn arrangement according to the invention - as shown schematically in FIG. 1 - shows the 0745 ° structure typical for reflectance measurements, with the receiver 5 in here
Richtung der Flächennormale der Fläche 1 und die Strahlungsquellen 3 in 45°-Stellung zur Flächennormalen angeordnet sind. Von den Strahlungsquellen 3, die erweitert durch Konzentratoren 2 Baugruppen 4 bilden, ist in Fig. 1 lediglich eine dargestellt. Solche Baugruppen 4 sind je nach Anzahl der verwendeten Spektralbereiche in gleichmäßigem Winkelabstand um die Flächennormale, auf der der Empfänger 5 angeordnet ist, verteilt.Direction of the surface normal of surface 1 and the radiation sources 3 are arranged in a 45 ° position to the surface normal. Only one of the radiation sources 3, which form modules 4 when expanded by concentrators 2, is shown in FIG. 1. Depending on the number of spectral ranges used, such assemblies 4 are distributed at a uniform angular distance around the surface normal on which the receiver 5 is arranged.
Im Beispiel soll (wie die Draufsicht aus Fig. 2 verdeutlicht) von drei verschiedenfarbigen LED's ausgegangen werden. Dabei werden vorteilhaft eine rote LED 3J (z.B. TLS 181 P mit p = 635 nm von der Firma Toshiba, Japan), eine grüneIn the example (as the top view from FIG. 2 shows) three different colored LEDs are to be assumed. A red LED 3J (for example TLS 181 P with p = 635 nm from Toshiba, Japan) is advantageous, a green one
LED 3.2 (z.B. TLGP 181 P mit λp = 555 nm vom gleichen Hersteller) sowie eine blaue LED 3.3 (z.B. E 470 mit λp = 470 nm von der Firma Optosys, Chiphersteller Cree, USA) eingesetzt. Jede der roten, grünen und blauen LED 3.1 bis 3.3 bildet zusammen mit dem Konzentrator 2 eine der Baugruppen 4, die in diesem Fall um 120° versetzt um den Empfanger 5 angeordnet sind, wie es in Fig. 2 als Draufsicht dargestellt ist.LED 3.2 (e.g. TLGP 181 P with λ p = 555 nm from the same manufacturer) and a blue LED 3.3 (e.g. E 470 with λ p = 470 nm from Optosys, chip manufacturer Cree, USA) are used. Each of the red, green and blue LEDs 3.1 to 3.3 forms together with the concentrator 2 one of the assemblies 4, which in this case are arranged at 120 ° around the receiver 5, as shown in FIG. 2 as a top view.
Die zu untersuchende Fläche 1 wird aufeinanderfolgend von der roten, grünen und blauen LED 3.1, 3.2 und 3.3 unter einem Winkel von im wesentlichen 45° impulsartig bestrahlt. Dabei erfaßt der jeweils nachgeordnete Konzentrator 2 die von der LED emittierte Strahlung und konzentriert diese auf einen eng begrenzten Ausschnitt der zu untersuchenden Fläche 1. Die Größe dieses Ausschnittes ist dabei nicht von der unterschiedlichen Abstrahlcharakteristik der LED's abhängig, sondern wird von Parametern der Konzentratoren 2 (Kegelwinkel, Brechzahlverhältnis zwischen höher brechendem Kegelstumpf und niedriger brechender Ummantelung) sowie dem Abstand der Lichtaustrittsfläche des Konzentrators 2 zur Fläche 1 bestimmt. Für dasThe area 1 to be examined is successively irradiated by the red, green and blue LEDs 3.1, 3.2 and 3.3 at an angle of essentially 45 ° in a pulsed manner. The respective downstream concentrator 2 detects the radiation emitted by the LED and concentrates it on a narrowly limited section of the area to be examined 1. The size of this section does not depend on the different radiation characteristics of the LEDs, but is dependent on parameters of the concentrators 2 ( Cone angle, refractive index ratio between the higher refractive truncated cone and the lower refractive cladding) and the distance between the light exit surface of the concentrator 2 and surface 1. For the
Brechzahlverhältnis gilt die für Lichtwellenleiter (LWL) allgemein bekannte Beziehung bezüglich des halben Aperturwinkels sin u = Ynκ - nM 2 wobei nκ und nM die Brechungsindizes von Kern und Ummantelung sind. Das Brechzahlverhältnis der Konzentratoren 2 ist deshalb dem von herkömmlichen LWL ähnlich, wobei ca. 1,45 und nM etwa 1,43 betragen. Damit stimmen die Konzentratoren 2 materialseitig im wesentlichen mit LWL der Firma Ensign-Bickford Optics Company (USA) überein. Wegen der am Lichtaustritt der Konzentratoren 2 ebenfalls auftretenden Divergenz des austretenden Lichts, die gegenüber herkömmlichen LWL etwas größer ist, ist der Abstand zur Fläche 1 unbedingt klein zu wählen. Eine dem entgegenstehende Bedingung stellt die Tatsache dar, daß der Abstand stets so groß bleiben muß, daß die Lichtkegel aller Strahlungsquellen 3, vom Lichtaustritt der Konzentratoren 2 ausgehend, möglichst sicher die vom Empfanger 5 erfaßte Fläche 1 vollständig ausleuchten. Da der Empfänger 5 günstigerweise das remittierte Licht über einen LWL 6, der zur Vermeidung von Fremdlichteinfall in eine Metallkanüle 7 eingebettet ist, zugeführt bekommt, ist zur Fläche 1 ein Abstand von 2 mm kaum zu unterschreiten. Der Abstand wird dabei bezüglich der Metallkanüle 7 realisiert, während die Eintrittsfläche des LWL 6 etwas zurückverlagert ist, um denRefractive index ratio applies to the generally known relationship for optical waveguides (LWL) with respect to half the aperture angle sin u = Yn κ - n M 2 where n κ and n M are the refractive indices of the core and the cladding. The refractive index ratio of the concentrators 2 is therefore similar to that of conventional optical fibers, with approximately 1.45 and n M being approximately 1.43. In terms of material, the concentrators 2 essentially match the fiber optics from Ensign-Bickford Optics Company (USA). Because of the divergence of the emerging light that also occurs at the light exit of the concentrators 2 and that is somewhat larger than conventional optical fibers, the distance to the surface 1 must be chosen to be small. A conflicting condition is the fact that the distance must always remain so large that the light cones of all radiation sources 3, starting from the light exit of the concentrators 2, illuminate the area 1 detected by the receiver 5 as completely as possible. Since the receiver 5 advantageously receives the remitted light via an optical fiber 6, which is embedded in a metal cannula 7 to avoid the incidence of extraneous light, the distance from the surface 1 can hardly be less than 2 mm. The distance is realized with respect to the metal cannula 7, while the entry surface of the fiber optic cable 6 is slightly shifted back by the
Einfall von nicht an der Fläche 1 remittierter Strahlung zu vermeiden. Für einen Konzentrator 2, der eine LED mit 3 mm Durchmesser auf eine Austrittsfläche von 1,4 mm konzentriert, ergibt sich mit der Maßgabe, daß der halbe Kegelwinkel ca. 2,5° beträgt, eine Länge von weniger als 2 cm. Der halbe Kegelwinkel sollte dabei nicht mehr als 10% größer als ein Fünftel der numerischen Apertur sein. Wegen der relativ kurzen Länge der Konzentratoren 2 und der vorteilhaften 45°-Lage bezüglich der Flächennormale zur Fläche 1 ist es im Interesse einer kompakten, schlanken Bauform der erfindungsgemäßen Anordnung von Vorteil, die Lichtquellen 3 nicht unmittelbar in der Nähe der Fläche 1 anzuordnen, sondern ihr Licht über LWL (in dieser Konfiguration nicht dargestellt) an die entsprechende Position zu bringen. Dabei sind die Lichtaustrittsflächen der Konzentratoren 2 vorteilhaft auf die Stirnflächen der LWL aufgeklebt. Als LWL werden zweckmäßig solche vom Typ HCG-MO365T-10 der Fa. Ensign-Bickford Optics Company (USA) verwendet.Avoid incidence of radiation not remitted on surface 1. For a concentrator 2, which concentrates an LED with a 3 mm diameter on an exit surface of 1.4 mm, the result is that the half cone angle is approximately 2.5 °, a length of less than 2 cm. The half cone angle should not be more than 10% larger than a fifth of the numerical aperture. Because of the relatively short length of the concentrators 2 and the advantageous 45 ° position with respect to the surface normal to the surface 1, it is advantageous in the interest of a compact, slim design of the arrangement according to the invention not to arrange the light sources 3 directly in the vicinity of the surface 1, but instead to bring their light to the appropriate position via fiber optics (not shown in this configuration). The light exit surfaces of the concentrators 2 are advantageously glued to the end faces of the optical fiber. Those of the HCG-MO365T-10 type from Ensign-Bickford Optics Company (USA) are expediently used as optical fibers.
Als Strahlungsquellen 3 können anstelle der im Beispiel verwendeten LED's auch spezielle Halbleiteranordnungen oder Glühlampen-Filter-Anordnungen verwendet werden. Die Konzentratoren 2 sind dann bezüglich ihrer Lichteintrittsfläche und Länge entsprechend anzupassen.Instead of the LEDs used in the example, special semiconductor arrangements or incandescent lamp filter arrangements can also be used as radiation sources 3. The concentrators 2 are then to be adapted accordingly with regard to their light entry surface and length.
Fig. 3 zeigt eine prinzipiell anders aufgebaute erfindungsgemäße Anordnung, die gegenüber dem ersten Beispiel in der Stellung von Strahlungsquellen 3 und Empfänger 5 verändert ist. Hier sind die Strahlungsquellen 3 in Richtung der Flächennormalen der Fläche 1 angeordnet. Vorteilhaft wird dafür eine Dreifarb-LED 8 (z.B. vom Typ CMS 124 der Fa. ELCOS GmbH Pfaffenhofen, Deutschland) eingesetzt, wobei die Farbsegmente wiederum impulsartig, seriell angesteuert werden. Die Dreifarb-LED 8 wird wiederum vorteilhaft über eine Kleberschicht 9 an den Konzentrator 2, der in gleicher Weise wie im ersten Beispiel gestaltet ist, angekoppelt. Die Ankopplung erfolgt in der Art, daß das Fenstermaterial der Dreifarb-LED 8 über die KleberschichtFIG. 3 shows an arrangement according to the invention which is fundamentally different, which is changed compared to the first example in the position of radiation sources 3 and receiver 5. Here the radiation sources 3 are arranged in the direction of the surface normal of the surface 1. A three-color LED 8 (for example of the type CMS 124 from ELCOS GmbH Pfaffenhofen, Germany), the color segments in turn being driven in a pulsed, serial manner. The three-color LED 8 is in turn advantageously coupled via an adhesive layer 9 to the concentrator 2, which is designed in the same way as in the first example. The coupling is carried out in such a way that the window material of the three-color LED 8 via the adhesive layer
9 an das Material des Konzentrators 2 bezüglich ihrer Brechungsindizes angepaßt wird (index matching). Wegen der nach der Lichtaustrittsfläche des Konzentrators 2 auftretenden Divergenz des Lichts ist wie im ersten Beispiel ein geringer Abstand zur Fläche 1 geboten. Infolge der senkrechten Stellung der Dreifarb-LED 8 mit dem vorgelagerten Konzentrator 2 ist eine Distanz von 1 bis 1,6 mm zur Fläche 1 realisierbar, wenn die Aufnahme des Remissionslichtes geeignet organisiert ist. In diesem Beispiel wird - wie Fig. 3 in Verbindung mit Fig. 4 (als Draufsicht) deutlich macht - das remittierte Licht mittels eines Empfangers 5 über ein Faserbündel aus mehreren LWL 6 aufgenommen, das konzentrisch, gleichmäßig um die entlang der Flächennormale angeordnete Strahlungsquellen-Konzentrator-Einheit verteilt ist. Dazu werden vorteilhaft Stufenindexfasern vom Typ HCG-M 0200 T-10 (Numerische Apertur: 0,22, Hersteller: Ensign-Bickford Optics Company, USA) eingesetzt. Die LWL 6 sind dabei vorteilhaft so angeordnet, daß sie das remittierte Licht unter einem Winkel von vorzugsweise 45° bezüglich der Flächennormale aufnehmen. Dazu sind zwei konstruktive Lösungen möglich.9 is adapted to the material of the concentrator 2 with respect to its refractive indices (index matching). Because of the divergence of light occurring after the light exit surface of the concentrator 2, a small distance from the surface 1 is required, as in the first example. As a result of the vertical position of the three-color LED 8 with the upstream concentrator 2, a distance of 1 to 1.6 mm from the surface 1 can be achieved if the reception of the remission light is appropriately organized. In this example - as shown in FIG. 3 in connection with FIG. 4 (as a plan view) - the remitted light is received by means of a receiver 5 via a fiber bundle composed of a plurality of optical fibers 6 which is concentric, even around the radiation sources arranged along the surface normal. Concentrator unit is distributed. For this purpose, step index fibers of the type HCG-M 0200 T-10 (numerical aperture: 0.22, manufacturer: Ensign-Bickford Optics Company, USA) are advantageously used. The FO 6 are advantageously arranged so that they receive the remitted light at an angle of preferably 45 ° with respect to the surface normal. Two constructive solutions are possible for this.
Zum einen werden die Enden der LWL 6 unter der gewählten Winkeleinstellung (z.B. exakt 45°) justiert und vorteilhaft eingegossen. Dabei bleiben die Stirnflächen der LWL 6 senkrecht zur Faserachse und ragen praktisch aus der Verbundoberfläche heraus. Diese Variante ist nicht explizit in der Zeichnung dargestellt. Fig. 3 verdeutlicht die andere Variante, bei der der Brechungsindex von Quarzglas und der häufig vorteilhafte Umstand, daß die Oberfläche eines Meßfühlers möglichst glatt sein sollte, berücksichtigt. Hier sind die LWL 6 unter einem Winkel von 30° zur Flächennormale der Fläche 1 justiert (z.B. durch Einbettung in ein Gießharz). Die Enden der LWL 6 besitzen mit dem gleichen Winkelmaß von 30° angeschrägte Stirnflächen, so daß der Meßfühler eine ebene, glatte Oberfläche parallel zur Fläche 1 aufweist. Das Winkelmaß von 30° resultiert aus der Wahl eines LWL 6 aus Quarzglas und eines Aufhahmewinkels für das remittierte Licht von 45° und beschränkt aus diesem Grund nicht als feste Winkelangabe den Umfang der erfindungsgemäßen Lehre. Wesentlich ist, daß vorzugsweise das unter 45° remittierte Licht auf Grund des Brechzahlsprungs an der abgeschrägten Lichteintrittsfläche des LWL 6 nahezu parallel zur Faserachse in den LWL 6 hineingebrochen wird.On the one hand, the ends of the FO 6 are adjusted under the selected angle setting (e.g. exactly 45 °) and cast in advantageously. The end faces of the FO 6 remain perpendicular to the fiber axis and practically protrude from the composite surface. This variant is not explicitly shown in the drawing. Fig. 3 illustrates the other variant in which the refractive index of quartz glass and the often advantageous fact that the surface of a sensor should be as smooth as possible are taken into account. Here the fiber optic cables 6 are adjusted at an angle of 30 ° to the surface normal of surface 1 (e.g. by embedding them in a casting resin). The ends of the LWL 6 have bevels with the same angle of 30 °, so that the sensor has a flat, smooth surface parallel to the surface 1. The angular dimension of 30 ° results from the selection of an optical fiber 6 made of quartz glass and a receiving angle for the reflected light of 45 ° and for this reason does not limit the scope of the teaching according to the invention as a fixed angle. It is important that preferably the light remitted at 45 ° is broken into the fiber optic cable 6 almost parallel to the fiber axis due to the refractive index jump at the slanted light entry surface of the fiber optic cable 6.
Als Zusatzvorteil ergibt sich damit, daß der Abstand des Meßfühlers zur Fläche 1 bis nahezu auf 1 mm verringert werden kann, so daß bei einer Lichtaustrittsfläche des Konzentrators 2 von 1,4 mm eine ausgemessene Fläche 1 von etwa 2 mm Durchmesser realisiert wird. Außerdem erfüllt die glatte Meßfühleroberfläche die Forderung der Medizintechnik, daß sie besonders leicht steril gehalten werden kann. An additional advantage is that the distance between the sensor and the surface can be reduced from 1 to almost 1 mm, so that with a light exit surface the Concentrator 2 of 1.4 mm a measured area 1 of about 2 mm in diameter is realized. In addition, the smooth sensor surface fulfills the requirement of medical technology that it can be kept sterile particularly easily.

Claims

Patentansprüche Claims
1. Anordnung zur punktuellen Messung der Remission von Flächen (1) fester oder flüssiger Körper in verschiedenen Spektralbereichen mit mindestens zwei Strahlungsquellen (3) unterschiedlicher Spektralbereiche und einem Empfänger (5), der mindestens für die ausgewählten unterschiedlichen Spektralbereiche empfindlich ist, wobei die Winkellage für eingestrahltes und remittiertes Licht unterschiedlich ist und einerseits der Flächennormale der Fläche (1) und andererseits einem Winkel, der wesentlich verschieden ist von Flächennormale und Flächenparallele, entspricht, dadurch gekennzeichnet, daß den Strahlungsquellen (3) ein Konzentrator (2) nachgeordnet ist, der die Form eines Kegelstumpfes besitzt und aus einem höher brechenden lichttransparenten Material, ummantelt von einem niedriger brechenden Material, besteht, so daß die Strahlung im wesentlichen durch Totalreflexion auf einen kleinen Ausschnitt der Fläche (1) konzentriert wird.1. Arrangement for the punctiform measurement of the reflectance of surfaces (1) of solid or liquid bodies in different spectral ranges with at least two radiation sources (3) of different spectral ranges and a receiver (5) which is sensitive at least for the selected different spectral ranges, the angular position for radiated and remitted light is different and corresponds on the one hand to the surface normal of the surface (1) and on the other hand to an angle which is substantially different from the surface normal and surface parallel, characterized in that the radiation sources (3) are followed by a concentrator (2) which adjusts the Has the shape of a truncated cone and consists of a higher refractive light-transparent material, encased by a lower refractive material, so that the radiation is concentrated essentially by total reflection on a small section of the surface (1).
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Konzentrator (2) ein beliebiges transparentes Material ist mit einer durch Tauchen oder Aufsprühen erzeugten Lackschicht als niedriger brechende Ummantelung, wobei das transparente Material eine möglichst wenig größere2. Arrangement according to claim 1, characterized in that the concentrator (2) is any transparent material with a lacquer layer produced by dipping or spraying as a lower-refractive sheathing, the transparent material being as little larger as possible
Brechzahl gegenüber Luft besitzt.Has a refractive index to air.
3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Konzentrator (2) aus Glas, insbesondere Quarzglas besteht, wobei die niedriger brechende Ummantelung durch Tapern des Glases entsteht.3. Arrangement according to claim 1, characterized in that the concentrator (2) consists of glass, in particular quartz glass, the lower refractive coating being produced by tapping the glass.
4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß der Konzentrator (2) bei Verwendung herkömmlichen Quarzlichtleitermaterials und unter Einsatz divergenter Strahlungsquellen (3) in Form von LED einen halben Kegelwinkel von etwa einem Fünftel der numerischen Apertur eines aus gleichem4. Arrangement according to claim 3, characterized in that the concentrator (2) when using conventional quartz light guide material and using divergent radiation sources (3) in the form of LED a half cone angle of about one fifth of the numerical aperture of the same
Material bestehenden Lichtwellenleiters besitzt.Has material of existing optical fiber.
5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Konzentrator (2) auf das Fenster der LED aufgeklebt ist, wobei mittels der Kleberschicht (9) der Brechungsindex von Fenstermaterial der LED und dem des5. Arrangement according to claim 4, characterized in that the concentrator (2) is glued to the window of the LED, the refractive index of window material of the LED and that of the LED by means of the adhesive layer (9)
Konzentrators (2) angepaßt ist. Concentrator (2) is adapted.
6. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Strahlungsquellen (3) als separate LED's (3J, 3.2, 3.3) um den in Richtung der Flächennormalen angeordneten Empfänger (5) in gleichmäßigem Winkelabstand untereinander und unter annähernd 45° zur Flächennormale angeordnet sind.6. Arrangement according to claim 4, characterized in that the radiation sources (3) as separate LEDs (3J, 3.2, 3.3) are arranged around the receiver arranged in the direction of the surface normal (5) at a uniform angular distance from one another and at approximately 45 ° to the surface normal .
7. Anordnung nach Anspruch 6, dadurch gekennzeichnet, daß die Lichtaustrittsflächen der Konzentratoren (2) sphärisch gestaltet sind.7. Arrangement according to claim 6, characterized in that the light exit surfaces of the concentrators (2) are designed spherically.
8. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die Strahlungsquellen (3) an beliebiger Stelle entfernt von der Oberfläche angeordnet sind und an die Lichtaustrittsfläche der Konzentratoren (2) Lichtleitfasern aufgeklebt sind, wobei die Enden der Lichtleitfasern um den in Richtung der Flächennormalen befindlichen Empfanger (5) in gleichmäßigem Winkelabstand und unter annähernd 45° zur Flächennormale angeordnet sind.8. Arrangement according to claim 4, characterized in that the radiation sources (3) are arranged at any point away from the surface and glued to the light exit surface of the concentrators (2) optical fibers, the ends of the optical fibers being located in the direction of the surface normal Receiver (5) are arranged at a uniform angular distance and at approximately 45 ° to the surface normal.
9. Anordnung nach Anspruch 8, dadurch gekennzeichnet, daß die Lichtaustrittsflächen der Lichtleitfasern sphärisch gestaltet sind.9. Arrangement according to claim 8, characterized in that the light exit surfaces of the optical fibers are designed spherically.
10. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß die unterschiedlichen Strahlungsquellen (3) in einer Dreifarb-LED (8) vereinigt sind, der ein einziger Konzentrator (2) nachgeordnet ist, wobei Dreifarb-LED (8) und Konzentrator (2) in Richtung der Flächennormale zur Fläche (1) angeordnet sind, und zur Aufnahme und Zuleitung des remittierten Lichts auf dem Empfänger (5) ein konzentrisch angeordnetes Faserbündel aus Lichtwellenleitern (6) vorgesehen ist, wobei die Farben der Dreifarb-LED (8) seriell einschaltbar sind.10. The arrangement according to claim 4, characterized in that the different radiation sources (3) are combined in a three-color LED (8), which is followed by a single concentrator (2), with three-color LED (8) and concentrator (2) are arranged in the direction of the surface normal to the surface (1), and a concentrically arranged fiber bundle of optical waveguides (6) is provided for receiving and supplying the remitted light on the receiver (5), the colors of the three-color LED (8) being switchable in series are.
11. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß die Enden der Lichtwellenleiter (6) unter einem Winkel von annähernd 45° zur Flächennormale der Fläche (1) angeordnet sind.11. The arrangement according to claim 10, characterized in that the ends of the optical waveguide (6) are arranged at an angle of approximately 45 ° to the surface normal of the surface (1).
12. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß die Enden der Lichtwellenleiter (6) unter einem Winkel von etwa 30° zur Flächennormale der Fläche (1) angeordnet sind und deren Stirnflächen um den gleichen Winkel abgeschrägt sind, wobei die Lichtwellenleiter (6) aus Quarzglas bestehen und deren Stirnflächen in derselben Ebene wie der über den Konzentrator (2) vermittelten12. The arrangement according to claim 10, characterized in that the ends of the optical fibers (6) are arranged at an angle of approximately 30 ° to the surface normal of the surface (1) and the end faces are chamfered by the same angle, the optical fibers (6) consist of quartz glass and their end faces in the same plane as that mediated by the concentrator (2)
Lichtaustritt der Dreifarb-LED (8) parallel zur Fläche (1) liegen. The light emission of the three-color LED (8) is parallel to the surface (1).
13. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß der Konzentrator (2) über eine Kleberschicht (9) mit der Dreifarb-LED (8) verbunden ist, wobei über die Kleberschicht (9) die Brechungsindizes vom Fenster der Dreifarb-LED (8) und vom Konzentrator (2) einander angepaßt sind.13. The arrangement according to claim 10, characterized in that the concentrator (2) via an adhesive layer (9) with the three-color LED (8) is connected, wherein the refractive indices from the window of the three-color LED (8 ) and the concentrator (2) are adapted to one another.
14. Anordnung nach Anspruch 10, dadurch gekennzeichnet, daß die Lichtaustrittsfläche des Konzentrators (2) sphärisch geformt ist. 14. Arrangement according to claim 10, characterized in that the light exit surface of the concentrator (2) is spherically shaped.
PCT/EP1994/001305 1993-04-30 1994-04-26 Device for the measurement of the reflectance at a point on a surface WO1994025849A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP94914419A EP0648327A1 (en) 1993-04-30 1994-04-26 Device for the measurement of the reflectance at a point on a surface
JP6523869A JPH07508590A (en) 1993-04-30 1994-04-26 Configuration for point-like measurement of diffuse reflection on surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934314219 DE4314219A1 (en) 1993-04-30 1993-04-30 Arrangement for selective measurement of remission
DEP4314219.2 1993-04-30

Publications (1)

Publication Number Publication Date
WO1994025849A1 true WO1994025849A1 (en) 1994-11-10

Family

ID=6486793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/001305 WO1994025849A1 (en) 1993-04-30 1994-04-26 Device for the measurement of the reflectance at a point on a surface

Country Status (4)

Country Link
EP (1) EP0648327A1 (en)
JP (1) JPH07508590A (en)
DE (1) DE4314219A1 (en)
WO (1) WO1994025849A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003842A1 (en) * 1996-07-17 1998-01-29 Valtion Teknillinen Tutkimuskeskus Spectrometer
US6018607A (en) * 1996-04-22 2000-01-25 Byk-Gardner, Gmbh Fiber optic light guide for measurement of illumination devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511534C2 (en) * 1995-03-29 1998-01-22 Fraunhofer Ges Forschung Method and device for detecting 3D defects in the automatic inspection of surfaces with the aid of color-capable image evaluation systems
DE19617009C2 (en) * 1996-04-27 1999-05-20 Roland Man Druckmasch Photoelectric measuring device
JP2005172814A (en) * 2003-11-19 2005-06-30 Kansai Paint Co Ltd Reflected ultraviolet ray measuring apparatus
DE102004014541B3 (en) 2004-03-23 2005-05-04 Koenig & Bauer Ag Optical system e.g. for banknote checking device, inspection system or flat bed scanner, providing uniform intensity illumination strip on surface of moving material web
DE102004014532B3 (en) 2004-03-23 2005-03-03 Koenig & Bauer Ag Optical system for generating illuminated shape on moving material has delay time, switch-on duration sum less than exposure duration; material speed-dependent off time follows exposure period until next exposure period

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566119A (en) * 1967-10-06 1971-02-23 California Computer Products Infrared scanning device using a spherical lens
US3846027A (en) * 1972-08-03 1974-11-05 Align O Tron Corp Reflection densitometer
US3910701A (en) * 1973-07-30 1975-10-07 George R Henderson Method and apparatus for measuring light reflectance absorption and or transmission
JPS60205414A (en) * 1984-03-29 1985-10-17 Olympus Optical Co Ltd Lighting optical system for endoscope of high magnification
GB2180367A (en) * 1985-09-09 1987-03-25 Ord Inc Tapered optical fibre for immunoassay
EP0360738A1 (en) * 1988-09-05 1990-03-28 Ciba-Geigy Ag Method and apparatus for calculating paints formulae
EP0367097A2 (en) * 1988-11-04 1990-05-09 Miles Inc. Optical transmission spectrometer
DE4001954A1 (en) * 1990-01-24 1991-07-25 Giese Erhard Distance sensor with light conductor, source and photodetector - has conductor with cross=section reducing towards end surfaces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566119A (en) * 1967-10-06 1971-02-23 California Computer Products Infrared scanning device using a spherical lens
US3846027A (en) * 1972-08-03 1974-11-05 Align O Tron Corp Reflection densitometer
US3910701A (en) * 1973-07-30 1975-10-07 George R Henderson Method and apparatus for measuring light reflectance absorption and or transmission
JPS60205414A (en) * 1984-03-29 1985-10-17 Olympus Optical Co Ltd Lighting optical system for endoscope of high magnification
GB2180367A (en) * 1985-09-09 1987-03-25 Ord Inc Tapered optical fibre for immunoassay
EP0360738A1 (en) * 1988-09-05 1990-03-28 Ciba-Geigy Ag Method and apparatus for calculating paints formulae
EP0367097A2 (en) * 1988-11-04 1990-05-09 Miles Inc. Optical transmission spectrometer
DE4001954A1 (en) * 1990-01-24 1991-07-25 Giese Erhard Distance sensor with light conductor, source and photodetector - has conductor with cross=section reducing towards end surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 64 (P - 436) 14 March 1986 (1986-03-14) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018607A (en) * 1996-04-22 2000-01-25 Byk-Gardner, Gmbh Fiber optic light guide for measurement of illumination devices
DE19615971B4 (en) * 1996-04-22 2008-04-24 Byk Gardner Gmbh Arrangement with a light guide, - and a measuring and lighting system constructed therewith and their manufacturing method
WO1998003842A1 (en) * 1996-07-17 1998-01-29 Valtion Teknillinen Tutkimuskeskus Spectrometer

Also Published As

Publication number Publication date
DE4314219A1 (en) 1994-11-03
EP0648327A1 (en) 1995-04-19
JPH07508590A (en) 1995-09-21

Similar Documents

Publication Publication Date Title
DE3718609C2 (en)
DE3320939C2 (en) Device for checking the surface of a convexly curved body for defects
DE7906381U1 (en) LIGHTING FOR OPERATIONAL AND EXAMINATION AREAS
DE2159327B2 (en) Device for adjusting two optical components
DE3033618A1 (en) SAMPLE CELL FOR OPTICAL ANALYSIS
WO1989005468A1 (en) Device for optically scanning the surface of an object
DE2205996B2 (en) Fiber optic light guide arrangement, in particular a reflection barrier
DE102018209299A1 (en) Confocal displacement sensor
EP1621857A2 (en) Device for the determination of the colour value of transparent objects, in particular teeth
DE3519995C2 (en)
WO2003034046A1 (en) Surface plasmon resonance sensor
DE19509157C2 (en) Optical system with large measuring ranges
WO1994025849A1 (en) Device for the measurement of the reflectance at a point on a surface
DE102015116187A1 (en) Illumination arrangement, beam combination device and method for coupling at least three input light beams into a light guide
DE2709364B2 (en) Single-lens reflex optics for an endoscope
DE3532047C2 (en)
EP0065343A2 (en) Device for coupling light in a row of magneto-optical light switches, in particular for optical printers
DE2554779A1 (en) HAND-HELD SCANNER FOR OPTICALLY READABLE SYMBOLS
EP0359167A2 (en) Refractometer with an index-dependent aperture division
DE3705408C1 (en) Device for optically coupling an element which emits light to an element which receives light
DE10021379A1 (en) Optical measuring arrangement, in particular for measuring the layer thickness
DE3317093A1 (en) DEVICE FOR COUPLING A LIGHT BEAM GENERATOR TO A LIGHT GUIDE
DE19615971B4 (en) Arrangement with a light guide, - and a measuring and lighting system constructed therewith and their manufacturing method
DE19840935B4 (en) End piece for optical fibers
EP0387413B1 (en) Fiber optic beam splitter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994914419

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 362421

Date of ref document: 19941229

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994914419

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994914419

Country of ref document: EP