WO1994025268A1 - Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same - Google Patents

Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same Download PDF

Info

Publication number
WO1994025268A1
WO1994025268A1 PCT/US1994/004879 US9404879W WO9425268A1 WO 1994025268 A1 WO1994025268 A1 WO 1994025268A1 US 9404879 W US9404879 W US 9404879W WO 9425268 A1 WO9425268 A1 WO 9425268A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrils
assemblage
dimensional
multiplicity
carbon
Prior art date
Application number
PCT/US1994/004879
Other languages
French (fr)
Inventor
Howard Tennent
Robert W. Hausslein
Nicholas Leventis
David Moy
Original Assignee
Hyperion Catalysis International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyperion Catalysis International, Inc. filed Critical Hyperion Catalysis International, Inc.
Priority to DE69433561T priority Critical patent/DE69433561T2/en
Priority to AU69435/94A priority patent/AU693792B2/en
Priority to KR1019950704918A priority patent/KR100326546B1/en
Priority to JP52463894A priority patent/JP3516957B2/en
Priority to RU95122288A priority patent/RU2135363C1/en
Priority to EP94917909A priority patent/EP0703858B1/en
Priority to AT94917909T priority patent/ATE259894T1/en
Priority to CA002162054A priority patent/CA2162054C/en
Priority to BR9406393A priority patent/BR9406393A/en
Publication of WO1994025268A1 publication Critical patent/WO1994025268A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/46Pouring or allowing the fluid to flow in a continuous stream on to the surface, the entire stream being carried away by the paper
    • D21H23/48Curtain coaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/80Paper comprising more than one coating
    • D21H19/82Paper comprising more than one coating superposed
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/30Pretreatment of the paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates generally to assemblages of carbon fibrils. More specifically, the invention relates to three dimensional, macroscopic, assemblages of randomly oriented carbon fibrils having a bulk density of from 0.001 to 0.50 gm/cc and to methods for preparing such assemblages. Even more specifically, the invention relates to such assemblages for use as catalyst supports, electrodes, chromatographic media, etc. and to composite structures comprising the assemblage and a second material contained within the assemblage. Background of the Invention
  • Carbon fibrils are vermicular carbon deposits having diameters less than 500 nanometers. They exist in a variety of forms, and have been prepared through the catalytic decomposition of various carbon-containing gases at metal surfaces.
  • Tennent, U.S. 4,663,230 describes carbon fibrils that are free of a continuous thermal carbon overcoat and have multiple graphitic outer layers that are substantially parallel to the fibril axis. As such they may be characterized as having their c-axes, the axes which are perpendicular to the tangents of the curved layers of graphite, substantially perpendicular to their cylindrical axes. They generally have diameters no greater than 0.1 micron and length to diameter ratios of at least 5. Desirably they are substantially free of a continuous thermal carbon overcoat, i.e., pyrolytically deposited carbon resulting from thermal cracking of the gas feed used to prepare them.
  • Tubular fibrils having graphitic layers that are substantially parallel to the microfiber axis and diameters between 3.5 and 75 nanometers are described in Tennent et al., U.S.S.N. 871,676 filed June 6, 1986 ("Novel Carbon Fibrils, Method for Producing Same and Compositions Containing Same"), Tenant et al., U.S.S.N. 871,675 filed June 6, 1986 ("Novel Carbon Fibrils, Method for Producing Same and Encapsulated Catalyst”) , Snyder et al., U.S.S.N. 149,573 filed January 28, 1988 (“Carbon Fibrils”), Mandeville et al., U.S.S.N.
  • Fibrils are useful in a variety of applications. For example, they can be used as reinforcements in fiber-reinforced composite structures or hybrid composite structures (i.e. composites containing reinforcements such as continuous fibers in addition to fibrils) .
  • the composites may further contain fillers such as a carbon black and silica, alone or in combination with each other.
  • reinforceable matrix materials include inorganic and organic polymers, ceramics (e.g., lead or copper).
  • the matrix is an organic polymer, it may be a thermoset resin such as epoxy, bismaleimide, polyamide, or polyester resin; a thermoplastic resin; or a reaction injection molded resin.
  • It is another object of the invention to provide a composition of matter comprising a three- dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils having a low bulk density to which can be added one or more functional second materials in the nature of active catalysts, electroactive species, etc. so as to form composites having novel industrial properties.
  • assemblage refers to any configuration of a mass of individual fibrils and embraces intertwined as well as discrete fibril embodiments.
  • Macroscopic means that the assemblages may be of any suitable size to achieve an industrial or scientific purpose.
  • the term "physical property" means an inherent, measurable property of the assemblage, e.g. resistivity.
  • isotropic means that all measurements of a physical property within a plane or volume of the assemblage, independent of the direction of the measurement, are of a constant value. It is understood that measurements of such non-solid compositions must be taken on a representative sample of the assemblage so that the average value of the void spaces is taken into account.
  • relatively means that ninety-five percent of the values of the physical property when measured along an axis of, or within a plane of or within a volume of the assemblage, as the case may be, will be within plus or minus fifty percent of a mean value.
  • substantially means that ninety-five percent of the values of the physical property when measured along an axis of, or within a plane of or within a volume of the assemblage, as the case may be, will be within plus or minus ten percent of a mean value.
  • the invention is broadly in a composition of matter consisting essentially of a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc.
  • the assemblages described above can be used to great advantage as three-dimensional matrixes for a number of industrial purposes.
  • the assemblages can be used as filter media, as catalyst supports, as electroactive materials for use, e.g. in electrodes in fuel cells and batteries, and as chromatography media. It has been found that the assemblages are useful in the formation of composites which comprise the assemblage together with either a particulate solid, an electroactive component or a catalytically active metal or metal-containing compound, as well as in composites with polymers.
  • compositions prepared according to the methods of the invention have uniform physical properties along at least one dimensional axis and have relatively isotropic physical properties in at least one plane of the assemblage and most desirably are isotropic throughout the entire three-dimensional structure.
  • compositions can be prepared by dispersing fibrils in aqueous or organic solid media and then filtering the fibrils.
  • Low density compositions are advantageously prepared by forming a gel or paste of carbon fibrils in a fluid, e.g. an organic solvent such as propane and then heating that gel or paste to above the critical temperature of the medium, removing supercritical fluid and finally removing a low-density porous mat or plug from the vessel in which the process has been carried out.
  • Fig. 1 is a photomicrograph of a three dimensional assemblage of randomly oriented carbon fibrils prepared by the method of EXAMPLE 1.
  • Production of Carbon Fibrils Fibrils are prepared by contacting a carbon- containing gas with a metal catalyst in a reactor for an appropriate period of time, at a suitable pressure, and at a temperature sufficient to produce fibrils with the above-described morphology. Reaction temperatures are generally 400-850°C, more preferably 600-750°C. Fibrils are advantageously prepared continuously by bringing the reactor to the reaction temperature, adding metal catalyst particles, and then continuously contacting the catalyst with a carbon-containing gas.
  • Fibrils may be prepared such that at least a portion of the fibrils are in the form of aggregates.
  • an aggregate is defined as two or more entangled fibrils.
  • Fibril aggregates typically have macroscopic morphologies, as determined by scanning electron microscopy, in which they are randomly entangled with each other to form entangled balls of fibrils resembling a bird's nest ("BN") ; or as aggregates consisting of bundles of straight to slightly bent or kinked carbon fibrils having substantially the same relative orientation, and having the appearance of combed yarn (“CY”) e.g., the longitudinal axis of each fibril, despite individual bends or kinks, extends in the same direction as that of the surrounding fibrils in the bundles; or, as aggregates consisting of straight to slightly bent or kinked fibrils which are loosely entangled with each other to form an "open net” (“ON”) structure.
  • ON open net
  • fibrils may be prepared having different macromorphologies, such as the so-called fishbone ("FB") morphology described in published European Patent Application No. 198,558 to J.W. Geus (published October 22, 1986).
  • FB fishbone
  • Fibrils of the so- called fishbone morphology may be characterized as having their c-axes (as defined above) at some angle less than perpendicular to the cylindrical axes of the fibrils.
  • the invention relates to such fishbone fibrils as well as to those described in Tennent, U.S. Patent No. 4,663,230.
  • Carbon Fibrils are described in Tennent, U.S. Patent No. 4,663,230.
  • the carbon fibrils preferably comprise a combination of discrete fibrils and fibril aggregates.
  • the fibrils may all be in the form of aggregates.
  • the aggregates, when present, are generally of the bird's nest, combed yarn or open net morphologies. The more "entangled" the aggregates are, the more processing will be required to achieve a suitable composition. This means that the selection of combed yarn or open net aggregates is most preferable for the majority of applications. However, bird's nest aggregates will generally suffice.
  • the invention is in a composition of matter consisting essentially of a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc.
  • the assemblage has relatively or substantially uniform physical properties along at least one dimensional axis and desirably have relatively or substantially uniform physical properties in one or more planes within the assemblage, i.e. they have isotropic physical properties in that plane.
  • the entire assemblage is relatively or substantially isotropic with respect to one or more of its physical properties.
  • the physical properties which can be easily measured and by which uniformity or isotrophy are determined include resistivity and optical density.
  • Composites Containing the Assemblages Broadly, the fibril assemblages may be used for any purpose for which porous media are known to be useful. These include filtration, electrodes, catalyst supports, chromatography media, etc.
  • the assemblages are a convenient bulk form of carbon fibrils and may thus be used for any known applications including especially EMI shielding, polymer composites, active electrodes, etc.
  • unmodified fibril assemblages can be used.
  • the fibril assemblages are a component of a more complex material, i.e. they are part of a composite.
  • Such composites are polymer molding compounds, chromatography media, electrodes for fuel cells and batteries, fibril supported catalyst and ceramic composites, including bioceramics like artificial bone.
  • non-fibril components fill - or substantially fill - the porosity of the fibril assemblage.
  • their usefulness depends on the composite retaining at least some of the porosity of the fibril assemblage.
  • Mats with a thickness between 0.02 and 0.50 millimeters have a density of typically 0.20 g/cc corresponding to a pore volume fraction of 0.90.
  • Their electrical resistivity in the plane of the mat is typically 0.02 ohm/cm; resistivity perpendicular to the mat is typically 1.0 ohm/cm.
  • Solid ingredients can be incorporated within the fibril mat by mixing them with the fibril dispersion prior to mat formation.
  • the content of other solids in the dry mat may be made as high as fifty parts solids per part of fibrils.
  • Fibrils from the synthesis reactor are dispersed at high shear in a high-shear mixer, e.g. a Waring Blender.
  • the dispersion may contain broadly from 0.01 to 10% fibrils in water, ethanol, mineral spirits, etc.. This procedure adequately opens fibril bundles, i.e. tightly wound bundles, of fibrils and disperses fibrils to form self-supporting mats after filtration and drying.
  • the application of high shear mixing may take up to several hours. Mats prepared by this method are not free of aggregates.
  • dispersion is improved. Dilution to 0.1% or less aids ultrasonication. Thus, 200 cc of 0.1% fibrils may be sonified by a Bronson Sonifier Probe (450, watt power supply) for 5 minutes or more to further improve the dispersion.
  • Bronson Sonifier Probe 450, watt power supply
  • dispersion i.e. a dispersion which is free or virtually free of fibril aggregates
  • sonication must take place either at very low concentration in a compatible liquid, e.g. at 0.001% to 0.01% concentration in ethanol or at higher concentration e.g. 0.1% in water to which a surfactant, e.g. Triton X-100 has been added in a concentration of about 0.5%.
  • the mat which is subsequently formed may be rinsed free or substantially free of surfactant by sequential additions of water followed by vacuum filtration.
  • Particulate solids such as Mn0 2 (for batteries) and A1 2 0 3 (for high temperature gaskets) may be added to the fibril dispersion prior to mat formation at up to 50 parts added solids per part of fibrils.
  • Reinforcing webs and scrims may be incorporated on or in the mats during formation.
  • Examples are polypropylene mesh and expanded nickel screen.
  • EXAMPLE I Preparation of a Porous Fibril Mat A dilute dispersion of fibrils is used to prepare porous mats or sheets. A suspension of fibrils is prepared containing 0.5% fibrils in water using a Waring Blender. After subsequent dilution to 0.1%, the fibrils are further dispersed with a probe type sonifier. The dispersion is then vacuum filtered to form a mat, which is then oven dried.
  • the mat has a thickness of about 0.20 mm and a density of about 0.20 gm/cc corresponding to a pore volume of 0.90.
  • the electrical resistivity in the plane of the mat is about 0.02 ohm/cm.
  • the resistivity in the direction perpendicular to the mat is about 1.0 ohm/cm.
  • a suspension of fibrils is prepared containing 0.5% fibrils in ethanol using a Waring Blendor. After subsequent dilution to 0.1%, the fibrils are further dispersed with a probe type sonifier. The ethanol is then allowed to evaporate and a mat is formed. The mat has the same physical properties and characteristics as the mat prepared in EXAMPLE I.
  • the resultant solid plug of Fibrils which has the shape of the vessel interior, has a density of 0.005 g/cc, corresponding to a pore volume fraction of 0.997%.
  • the resistivity is isotropic and about 20 ohm/cm.
  • a fibril mat prepared by the method of EXAMPLE I is used as an electrode in an electrochemiluminescence cell such as is described in PCT U.S. 85/02153 (WO 86/02734) and U.S. Patents Nos. 5,147,806 and 5,068,088.
  • electrochemiluminescence is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Civil Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paper (AREA)
  • Materials For Medical Uses (AREA)
  • Nonwoven Fabrics (AREA)
  • Ceramic Products (AREA)
  • Filtering Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

It has now been found that highly advantageous three-dimensional, macroscopic assemblages of randomly oriented carbon fibrils can be prepared which have relatively uniform physical properties along one, preferably two and most desirably three-dimensional axis of the three-dimensional assemblage. Preferred compositions prepared according to the methods of the invention have uniform physical properties along at least one dimensional axis and have relatively isotropic physical properties in at least one plane of the assemblage and most desirably are isotropic throughout the entire three-dimensional structure.

Description

THREE DIMENSIONAL MACROSCOPIC ASSEMBLAGES OF RANDOMLY ORIENTED CARBON FIBRILS AND COMPOSITES CONTAINING SAME Field of the Invention The invention relates generally to assemblages of carbon fibrils. More specifically, the invention relates to three dimensional, macroscopic, assemblages of randomly oriented carbon fibrils having a bulk density of from 0.001 to 0.50 gm/cc and to methods for preparing such assemblages. Even more specifically, the invention relates to such assemblages for use as catalyst supports, electrodes, chromatographic media, etc. and to composite structures comprising the assemblage and a second material contained within the assemblage. Background of the Invention
Carbon fibrils are vermicular carbon deposits having diameters less than 500 nanometers. They exist in a variety of forms, and have been prepared through the catalytic decomposition of various carbon-containing gases at metal surfaces.
Tennent, U.S. 4,663,230, describes carbon fibrils that are free of a continuous thermal carbon overcoat and have multiple graphitic outer layers that are substantially parallel to the fibril axis. As such they may be characterized as having their c-axes, the axes which are perpendicular to the tangents of the curved layers of graphite, substantially perpendicular to their cylindrical axes. They generally have diameters no greater than 0.1 micron and length to diameter ratios of at least 5. Desirably they are substantially free of a continuous thermal carbon overcoat, i.e., pyrolytically deposited carbon resulting from thermal cracking of the gas feed used to prepare them.
Tubular fibrils having graphitic layers that are substantially parallel to the microfiber axis and diameters between 3.5 and 75 nanometers, are described in Tennent et al., U.S.S.N. 871,676 filed June 6, 1986 ("Novel Carbon Fibrils, Method for Producing Same and Compositions Containing Same"), Tenant et al., U.S.S.N. 871,675 filed June 6, 1986 ("Novel Carbon Fibrils, Method for Producing Same and Encapsulated Catalyst") , Snyder et al., U.S.S.N. 149,573 filed January 28, 1988 ("Carbon Fibrils"), Mandeville et al., U.S.S.N. 285,817 filed December 16, 1988 ("Fibrils"), and McCarthy et al ., U.S.S.N. 351,967 filed May 15, 1989 ("Surface Treatment of Carbon Microfibers") , all of which are assigned to the same assignee as the present application and are hereby incorporated by reference.
Fibrils are useful in a variety of applications. For example, they can be used as reinforcements in fiber-reinforced composite structures or hybrid composite structures (i.e. composites containing reinforcements such as continuous fibers in addition to fibrils) . The composites may further contain fillers such as a carbon black and silica, alone or in combination with each other. Examples of reinforceable matrix materials include inorganic and organic polymers, ceramics (e.g., lead or copper). When the matrix is an organic polymer, it may be a thermoset resin such as epoxy, bismaleimide, polyamide, or polyester resin; a thermoplastic resin; or a reaction injection molded resin.
Objects of the Invention
It is an object of the invention to provide a composition of matter which comprises carbon fibrils and more specifically an assemblage of randomly oriented carbon fibrils which has a low bulk density and which can be used as a substrate or medium for various industrial and scientific purposes.
It is another object of the invention to provide a composition of matter comprising a three- dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils having a low bulk density to which can be added one or more functional second materials in the nature of active catalysts, electroactive species, etc. so as to form composites having novel industrial properties.
It is yet another object of the invention to provide three-dimensional, macroscopic assemblages of a multiplicity of randomly oriented carbon fibrils which have isotropic physical properties so that such compositions can be used reliably and interchangeably for multiple industrial purposes. It is a further object of the invention to provide processes for the preparation of such three- dimensional microscopic assemblages of carbon fibrils which are efficient and convenient to use in the preparation of low-density compositions. It is a still further object of the invention to provide improved catalyst supports, filter media, chromato- graphic media, EMI shielding and other compositions of industrial value based on three- dimensional assemblages of carbon fibrils. SUMMARY OF THE INVENTION
Definitions
The term "assemblage" refers to any configuration of a mass of individual fibrils and embraces intertwined as well as discrete fibril embodiments.
The term "macroscopic" means that the assemblages may be of any suitable size to achieve an industrial or scientific purpose.
The term "physical property" means an inherent, measurable property of the assemblage, e.g. resistivity.
The term "isotropic" means that all measurements of a physical property within a plane or volume of the assemblage, independent of the direction of the measurement, are of a constant value. It is understood that measurements of such non-solid compositions must be taken on a representative sample of the assemblage so that the average value of the void spaces is taken into account.
The term "relatively" means that ninety-five percent of the values of the physical property when measured along an axis of, or within a plane of or within a volume of the assemblage, as the case may be, will be within plus or minus fifty percent of a mean value.
The term "substantially" means that ninety-five percent of the values of the physical property when measured along an axis of, or within a plane of or within a volume of the assemblage, as the case may be, will be within plus or minus ten percent of a mean value.
The terms" relatively isotropic" and "substantially isotropic" correspond to the ranges of variability in the values of a physical property set forth above. The Invention
The invention is broadly in a composition of matter consisting essentially of a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc.
The assemblages described above can be used to great advantage as three-dimensional matrixes for a number of industrial purposes. For example, the assemblages can be used as filter media, as catalyst supports, as electroactive materials for use, e.g. in electrodes in fuel cells and batteries, and as chromatography media. It has been found that the assemblages are useful in the formation of composites which comprise the assemblage together with either a particulate solid, an electroactive component or a catalytically active metal or metal-containing compound, as well as in composites with polymers.
It has now been found that highly advantageous three-dimensional, macroscopic assemblages of randomly oriented carbon fibrils can be prepared which have relatively uniform physical properties along one, preferably two and most desirably three-dimensional axis of the three-dimensional assemblage. Preferred compositions prepared according to the methods of the invention have uniform physical properties along at least one dimensional axis and have relatively isotropic physical properties in at least one plane of the assemblage and most desirably are isotropic throughout the entire three-dimensional structure.
These advantageous compositions can be prepared by dispersing fibrils in aqueous or organic solid media and then filtering the fibrils. Low density compositions are advantageously prepared by forming a gel or paste of carbon fibrils in a fluid, e.g. an organic solvent such as propane and then heating that gel or paste to above the critical temperature of the medium, removing supercritical fluid and finally removing a low-density porous mat or plug from the vessel in which the process has been carried out.
DETAILED DESCRIPTION In the Drawings
Fig. 1 is a photomicrograph of a three dimensional assemblage of randomly oriented carbon fibrils prepared by the method of EXAMPLE 1. Production of Carbon Fibrils Fibrils are prepared by contacting a carbon- containing gas with a metal catalyst in a reactor for an appropriate period of time, at a suitable pressure, and at a temperature sufficient to produce fibrils with the above-described morphology. Reaction temperatures are generally 400-850°C, more preferably 600-750°C. Fibrils are advantageously prepared continuously by bringing the reactor to the reaction temperature, adding metal catalyst particles, and then continuously contacting the catalyst with a carbon-containing gas.
Examples of suitable feed gases, catalysts and reaction conditions are given in the several patent applications referenced above as well as in Moy et al., U.S. Patent Applications Ser. Nos. 887,307 and 887,314 filed May 22, 1992 which are hereby incorporated by reference.
Fibrils may be prepared such that at least a portion of the fibrils are in the form of aggregates. As used herein, an aggregate is defined as two or more entangled fibrils. Fibril aggregates typically have macroscopic morphologies, as determined by scanning electron microscopy, in which they are randomly entangled with each other to form entangled balls of fibrils resembling a bird's nest ("BN") ; or as aggregates consisting of bundles of straight to slightly bent or kinked carbon fibrils having substantially the same relative orientation, and having the appearance of combed yarn ("CY") e.g., the longitudinal axis of each fibril, despite individual bends or kinks, extends in the same direction as that of the surrounding fibrils in the bundles; or, as aggregates consisting of straight to slightly bent or kinked fibrils which are loosely entangled with each other to form an "open net" ("ON") structure. In open het structures the degree of fibril entanglement is greater than observed in the combed yarn aggregates (in which the individual fibrils have substantially the same relative orientation) but less than that of bird's nest.
In addition to fibrils such as are described in Tennent, U.S. Patent No. 4,663,230, fibrils may be prepared having different macromorphologies, such as the so-called fishbone ("FB") morphology described in published European Patent Application No. 198,558 to J.W. Geus (published October 22, 1986). Fibrils of the so- called fishbone morphology may be characterized as having their c-axes (as defined above) at some angle less than perpendicular to the cylindrical axes of the fibrils. The invention relates to such fishbone fibrils as well as to those described in Tennent, U.S. Patent No. 4,663,230. Carbon Fibrils
The carbon fibrils preferably comprise a combination of discrete fibrils and fibril aggregates. However, the fibrils may all be in the form of aggregates. The aggregates, when present, are generally of the bird's nest, combed yarn or open net morphologies. The more "entangled" the aggregates are, the more processing will be required to achieve a suitable composition. This means that the selection of combed yarn or open net aggregates is most preferable for the majority of applications. However, bird's nest aggregates will generally suffice. The Assemblages
Broadly, the invention is in a composition of matter consisting essentially of a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc. Preferably the assemblage has relatively or substantially uniform physical properties along at least one dimensional axis and desirably have relatively or substantially uniform physical properties in one or more planes within the assemblage, i.e. they have isotropic physical properties in that plane. In other embodiments, the entire assemblage is relatively or substantially isotropic with respect to one or more of its physical properties. The physical properties which can be easily measured and by which uniformity or isotrophy are determined include resistivity and optical density. Composites Containing the Assemblages Broadly, the fibril assemblages may be used for any purpose for which porous media are known to be useful. These include filtration, electrodes, catalyst supports, chromatography media, etc. In addition, the assemblages are a convenient bulk form of carbon fibrils and may thus be used for any known applications including especially EMI shielding, polymer composites, active electrodes, etc.
For some applications like EMI shielding, filtration and current collection, unmodified fibril assemblages can be used. For other applications, the fibril assemblages are a component of a more complex material, i.e. they are part of a composite. Examples of such composites are polymer molding compounds, chromatography media, electrodes for fuel cells and batteries, fibril supported catalyst and ceramic composites, including bioceramics like artificial bone.
In some of these composites, like molding compound and artificial bone, it is desirable that the non-fibril components fill - or substantially fill - the porosity of the fibril assemblage. For others, like electrodes, catalysts, and chromatography media, their usefulness depends on the composite retaining at least some of the porosity of the fibril assemblage. Methods of Preparing Fibril Assemblages While fibrils of any morphology may be used to prepare the assemblages of the invention by using the methods of the invention, it is preferred to use fibrils having a parallel type morphology such as CC , DD or CY. Methods for the preparation of fibrils having these morphologies are described in Moy et al., U.S. Patent Application Ser. Nos. 887,307 and 887,314 filed May 22, 1992. Mats with a thickness between 0.02 and 0.50 millimeters have a density of typically 0.20 g/cc corresponding to a pore volume fraction of 0.90. Their electrical resistivity in the plane of the mat is typically 0.02 ohm/cm; resistivity perpendicular to the mat is typically 1.0 ohm/cm.
Solid ingredients can be incorporated within the fibril mat by mixing them with the fibril dispersion prior to mat formation. The content of other solids in the dry mat may be made as high as fifty parts solids per part of fibrils.
Fibrils from the synthesis reactor are dispersed at high shear in a high-shear mixer, e.g. a Waring Blender. The dispersion may contain broadly from 0.01 to 10% fibrils in water, ethanol, mineral spirits, etc.. This procedure adequately opens fibril bundles, i.e. tightly wound bundles, of fibrils and disperses fibrils to form self-supporting mats after filtration and drying. The application of high shear mixing may take up to several hours. Mats prepared by this method are not free of aggregates.
If the high shear procedure is followed by ultrasonication, dispersion is improved. Dilution to 0.1% or less aids ultrasonication. Thus, 200 cc of 0.1% fibrils may be sonified by a Bronson Sonifier Probe (450, watt power supply) for 5 minutes or more to further improve the dispersion.
To achieve the highest degrees of dispersion, i.e. a dispersion which is free or virtually free of fibril aggregates, sonication must take place either at very low concentration in a compatible liquid, e.g. at 0.001% to 0.01% concentration in ethanol or at higher concentration e.g. 0.1% in water to which a surfactant, e.g. Triton X-100 has been added in a concentration of about 0.5%. The mat which is subsequently formed may be rinsed free or substantially free of surfactant by sequential additions of water followed by vacuum filtration.
Particulate solids such as Mn02 (for batteries) and A1203 (for high temperature gaskets) may be added to the fibril dispersion prior to mat formation at up to 50 parts added solids per part of fibrils.
Reinforcing webs and scrims may be incorporated on or in the mats during formation. Examples are polypropylene mesh and expanded nickel screen.
Methods of Improving the Stability of Assemblages In order to increase the stability of the fibril assemblages, it is possible to deposit polymer at the intersections of the assemblage. This may be infiltrating the assemblage with a dilute solution of polymer cement and allowing the solvent to evaporate. Capillary forces will concentrate the polymer at fibril intersections. It is understood that in order to substantially improve the stiffness and integrity of the assemblage, only a small fraction of the fibril intersections need be cemented. EXAMPLES
The invention is further described in the following examples.
EXAMPLE I Preparation of a Porous Fibril Mat A dilute dispersion of fibrils is used to prepare porous mats or sheets. A suspension of fibrils is prepared containing 0.5% fibrils in water using a Waring Blender. After subsequent dilution to 0.1%, the fibrils are further dispersed with a probe type sonifier. The dispersion is then vacuum filtered to form a mat, which is then oven dried.
The mat has a thickness of about 0.20 mm and a density of about 0.20 gm/cc corresponding to a pore volume of 0.90. The electrical resistivity in the plane of the mat is about 0.02 ohm/cm. The resistivity in the direction perpendicular to the mat is about 1.0 ohm/cm. EXAMPLE II Preparation of a Porous Fibril Mat
A suspension of fibrils is prepared containing 0.5% fibrils in ethanol using a Waring Blendor. After subsequent dilution to 0.1%, the fibrils are further dispersed with a probe type sonifier. The ethanol is then allowed to evaporate and a mat is formed. The mat has the same physical properties and characteristics as the mat prepared in EXAMPLE I.
EXAMPLE III Preparation of a Low-Density Porous Fibril Plug Supercritical fluid removal from a well dispersed-fibril paste is used to prepare low density shapes. 50 cc of a 0.5% dispersion in n-pentane is charged to a pressure vessel of slightly larger capacity which is equipped with a needle valve to enable slow release of pressure. After the vessel is heated above the critical temperature of pentane (Tc = 196.6°), the needle valve is cracked open slightly to bleed the supercritical pentane over a period of about an hour.
The resultant solid plug of Fibrils, which has the shape of the vessel interior, has a density of 0.005 g/cc, corresponding to a pore volume fraction of 0.997%. The resistivity is isotropic and about 20 ohm/cm.
EXAMPLE IV
Preparation of EMI Shielding A fibril paper is prepared according to the procedures of EXAMPLE I. Table I below sets forth the attenuation achieved at several paper thickness.
TABLE I FIBRIL PAPER EMI SHIELDING ATTENUATION 30 MHz TO 1 GHz THICKNESS. INCHES (MM) WEIGHT ATTENUATION 0.002 (0.5) 12 G/M2 27 Db
0.005 (.125) 30 37Db
0.017 (.425) 120 48Db
EXAMPLE V
A fibril mat prepared by the method of EXAMPLE I is used as an electrode in an electrochemiluminescence cell such as is described in PCT U.S. 85/02153 (WO 86/02734) and U.S. Patents Nos. 5,147,806 and 5,068,088. When the voltage is pulsed in the presence of ruthenium trisbipyridyl, electrochemiluminescence is observed.

Claims

WHAT IS CLAIMED IS:
1. A composition of matter consisting essentially of a three-dimensional, macroscopic assemblage of a multiplicity of a randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc.
2. A composite material comprising:
(a) a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc; and
(b) a second component comprising (i) particulate solids, or (ii) an electroactive material; or (iii) a catalytically active metal or metal- containing compound, in an amount up to fifty parts per part of fibrils.
3. A composite material as recited in claim 2 wherein said electroactive component is lead or a lead compound or manganese or a manganese compound.
4. A composite material as recited in claim 2 wherein said particulate material is an aluminum oxide, silicon dioxide or silicon carbide.
5. A composite material as recited in claim 2 wherein said particulate material is a catalyst.
6. A three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having relatively uniform physical properties along at least one dimensional axis thereof and a bulk density of from 0.001 to 0.50 gm/cc.
7. A three-dimensional assemblage as recited in claim 6 having substantially uniform physical properties along said one dimensional axis.
8. A composite material comprising (a) an assemblage of fibrils as recited in claim 6, and (b) a second material at least partially contained within said assemblage.
9. A three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having relatively isotropic physical properties in at least one plane thereof and a bulk density of from 0.001 to 0.50 gm/cc.
10. A three-dimensional assemblage as recited in claim 9 having substantially isotropic physical properties in said plane.
11. A composite material comprising (a) an assemblage of fibrils as recited in claim 9 and (b) a second material at least partially contained within said assemblage.
12. A three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having relatively isotropic physical properties and a bulk density of from 0.001 to 0.50 gm/cc.
13. A three-dimensional assemblage as recited in claim 12 having substantially isotropic physical properties.
14. A composite material comprising (a) an assemblage of fibrils as recited in claim 12, and (b) a second material at least partially contained within said assemblage.
15. A method of preparing a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc, comprising the steps of:
(a) dispersing a multiplicity of said fibrils in a medium; and (b) separating said assemblage from said medium.
16. A method as recited in claim 15 for the formation of a porous mat or sheet of said carbon fibrils, said mat or sheet having a bulk density of from 0.05 to 0.50 gm/cc comprising the steps of: (a) vigorously dispersing a multiplicity of said fibrils in water or an organic solvent and thereby forming a dispersion, said dispersion containing less than 10.0 percent by weight of fibrils; and
(b) filtering the dispersion to form said porous mat or sheet.
17. A method as recited in claim 15 for the formation of a porous mat or sheet of said carbon fibrils, said mat or sheet having a bulk density of from 0.05 to 0.50 gm/cc comprising the steps of:
(a) vigorously dispersing a multiplicity of said fibrils in water or an organic solvent and thereby forming a dispersion, said dispersion containing less than 10.0 percent by weight of fibrils; and
(b) permitting the water or organic solvent to evaporate from said dispersion thereby leaving said porous mat or sheet.
18. A method as recited in claim 15 for the formation of a low-density porous plug of said carbon fibrils, said plug having a bulk density of from 0.001 to 0.05 gm/cc comprising the steps of: (a) forming a gel or paste comprising a multiplicity of carbon fibrils in a fluid, said gel or paste comprising less than 10.0 percent by weight of fibrils; (b) heating said gel or paste in a pressure vessel to a temperature above the critical temperature of said fluid;
(c) removing supercritical fluid from said pressure vessel; and
(d) removing said porous plug from said pressure vessel.
19. A method of preparing a composite of (a) a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc, and (b) a second material, comprising the steps of:
(a) dispersing a multiplicity of said fibrils and a second material in a medium; and
(b) separating said composite from said medium.
20. A three-dimensional, macroscopic assemblage of randomly oriented carbon fibrils prepared by a method of claim 15.
21. A composite prepared by a method of claim 19.
22. A composite material comprising:
(a) a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes less than substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc; and
(b) a second component comprising (i) particulate solids, or (ii) an electroactive material; or (iii) a catalytically active metal or metal- containing compound, in an amount up to fifty parts per part of fibrils.
23. A three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes less than substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having relatively uniform physical properties along at least one dimensional axis thereof and a bulk density of _from 0.001 to 0.50 gm/cc.
24. A three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes less than substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having relatively isotropic physical properties and a bulk density of from 0.001 to 0.50 gm/cc.
25. A method of preparing a three-dimensional, macroscopic assemblage of a multiplicity of randomly oriented carbon fibrils, said fibrils being substantially cylindrical with a substantially constant diameter, having c-axes less than substantially perpendicular to their cylindrical axis, being substantially free of pyrolytically deposited carbon and having a diameter between about 3.5 and 70 nanometers, said assemblage having a bulk density of from 0.001 to 0.50 gm/cc, comprising the steps of:
(a) dispersing a multiplicity of said fibrils in a medium; and
(b) separating said assemblage from said medium.
PCT/US1994/004879 1993-05-05 1994-05-03 Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same WO1994025268A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE69433561T DE69433561T2 (en) 1993-05-05 1994-05-03 THREE-DIMENSIONAL MACROSCOPIC ARRANGEMENT OF RANDOM-ORIENTED CARBON FIBRILLES AND COMPOSITES THEREOF
AU69435/94A AU693792B2 (en) 1993-05-05 1994-05-03 Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same
KR1019950704918A KR100326546B1 (en) 1993-05-05 1994-05-03 Three dimensional macroscupic assemblages of randomly oriented carbon fibrils and composites containing same
JP52463894A JP3516957B2 (en) 1993-05-05 1994-05-03 Three-dimensional macroscopic assemblies of randomly oriented carbon fibrils and composites containing them
RU95122288A RU2135363C1 (en) 1993-05-05 1994-05-03 Three-dimensional microscopic assemblies of randomly oriented carbon elementary filaments and composites containing such assemblies
EP94917909A EP0703858B1 (en) 1993-05-05 1994-05-03 Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same
AT94917909T ATE259894T1 (en) 1993-05-05 1994-05-03 THREE-DIMENSIONAL MACROSCOPIC ARRANGEMENT OF RANDOMIZED CARBON GLASSES AND COMPOSITE MATERIALS CONTAINING SAME
CA002162054A CA2162054C (en) 1993-05-05 1994-05-03 Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same
BR9406393A BR9406393A (en) 1993-05-05 1994-05-03 Three-dimensional macroscopic sets of randomly oriented carbon fibrils and composite materials that contain them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5732893A 1993-05-05 1993-05-05
US057,328 1993-05-05

Publications (1)

Publication Number Publication Date
WO1994025268A1 true WO1994025268A1 (en) 1994-11-10

Family

ID=22009916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/004879 WO1994025268A1 (en) 1993-05-05 1994-05-03 Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same

Country Status (14)

Country Link
US (2) US5691054A (en)
EP (2) EP1416072B1 (en)
JP (2) JP3516957B2 (en)
KR (1) KR100326546B1 (en)
AT (2) ATE259894T1 (en)
AU (1) AU693792B2 (en)
BR (1) BR9406393A (en)
CA (1) CA2162054C (en)
DE (2) DE69434928T2 (en)
ES (2) ES2282742T3 (en)
IL (1) IL109497A (en)
RU (1) RU2135363C1 (en)
WO (1) WO1994025268A1 (en)
ZA (1) ZA943088B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316802A (en) * 1996-08-27 1998-03-04 Univ New York State Res Found Gas diffusion electrodes based on polyethersulfone Carbon blends
GB2316801A (en) * 1996-08-27 1998-03-04 Univ New York State Res Found Gas diffusion electrodes based on poly(vinylidene fluoride)carbon blends
EP0904195A1 (en) * 1996-05-15 1999-03-31 Hyperion Catalysis International, Inc. Rigid porous carbon structures, methods of making, methods of using and products containing same
JP2000511245A (en) * 1996-05-31 2000-08-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Method for untangling hollow carbon microfibers, electrically conductive transparent carbon microfiber agglomeration film, and coating composition for forming such a film
JP2008205487A (en) * 1996-05-15 2008-09-04 Hyperion Catalysis Internatl Inc Graphitic nanofibers in electrochemical capacitors
US7504153B2 (en) 2003-05-13 2009-03-17 Showa Denko K.K. Porous body, production method thereof and composite material using the porous body
US8883308B2 (en) 2010-03-02 2014-11-11 King Abdullah University Of Science And Technology High surface area fibrous silica nanoparticles

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159892A (en) * 1992-05-22 2000-12-12 Hyperion Catalysis International, Inc. Catalyst supports, supported catalysts and methods of making and using the same
JP3502490B2 (en) * 1995-11-01 2004-03-02 昭和電工株式会社 Carbon fiber material and method for producing the same
KR20010013300A (en) 1997-06-02 2001-02-26 히트코 카본 컴포지츠 인코포레이티드 High performance filters
US6390304B1 (en) 1997-06-02 2002-05-21 Hitco Carbon Composites, Inc. High performance filters comprising inorganic fibers having inorganic fiber whiskers grown thereon
JP4036970B2 (en) * 1997-06-06 2008-01-23 株式会社クレハ Carbon fiber ball and manufacturing method thereof
US6113819A (en) * 1997-11-03 2000-09-05 Hyperion Catalysis International, Inc. Three dimensional interpenetrating networks of macroscopic assemblages of oriented carbon fibrils and organic polymers
US5968650A (en) * 1997-11-03 1999-10-19 Hyperion Catalysis International, Inc. Three dimensional interpenetrating networks of macroscopic assemblages of randomly oriented carbon fibrils and organic polymers
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
EP1920837A3 (en) 1999-01-12 2008-11-19 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions and nanorods
US6155432A (en) 1999-02-05 2000-12-05 Hitco Carbon Composites, Inc. High performance filters based on inorganic fibers and inorganic fiber whiskers
MXPA02000576A (en) 1999-07-21 2002-08-30 Hyperion Catalysis Int Methods of oxidizing multiwalled carbon nanotubes.
US6583075B1 (en) * 1999-12-08 2003-06-24 Fiber Innovation Technology, Inc. Dissociable multicomponent fibers containing a polyacrylonitrile polymer component
EP1275165A1 (en) * 2000-04-17 2003-01-15 Johnson Matthey Public Limited Company Gas diffusion substrate
US20020009589A1 (en) * 2000-05-13 2002-01-24 Jung-Sik Bang Carbon fibrils and method for producing same
US6890986B2 (en) * 2000-08-29 2005-05-10 Hitco Carbon Composites, Inc. Substantially pure bulk pyrocarbon and methods of preparation
US7189472B2 (en) * 2001-03-28 2007-03-13 Kabushiki Kaisha Toshiba Fuel cell, electrode for fuel cell and a method of manufacturing the same
EP1451844A4 (en) * 2001-06-14 2008-03-12 Hyperion Catalysis Int Field emission devices using modified carbon nanotubes
US7341498B2 (en) * 2001-06-14 2008-03-11 Hyperion Catalysis International, Inc. Method of irradiating field emission cathode having nanotubes
US6911767B2 (en) * 2001-06-14 2005-06-28 Hyperion Catalysis International, Inc. Field emission devices using ion bombarded carbon nanotubes
US6783702B2 (en) * 2001-07-11 2004-08-31 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
MXPA04003996A (en) * 2001-10-29 2004-07-23 Hyperion Catalysis Int Polymer containing functionalized carbon nanotubes.
JP2005530313A (en) 2002-06-14 2005-10-06 ハイピリオン カタリシス インターナショナル インコーポレイテッド Conductive carbon fibril ink and paint
US20040159609A1 (en) * 2003-02-19 2004-08-19 Chase George G. Nanofibers in cake filtration
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
US7211320B1 (en) 2003-03-07 2007-05-01 Seldon Technologies, Llc Purification of fluids with nanomaterials
US20100098877A1 (en) * 2003-03-07 2010-04-22 Cooper Christopher H Large scale manufacturing of nanostructured material
JP2007500771A (en) * 2003-07-29 2007-01-18 ザ ユニバーシティ オブ アクロン Conductive polymer, method for producing conductive polymer, and method for controlling conductivity of polymer
JP4945888B2 (en) * 2003-10-09 2012-06-06 富士ゼロックス株式会社 Composite and production method thereof
US7093351B2 (en) * 2003-12-30 2006-08-22 Lockheed Martin Corporation System, for matching harnesses of conductors with apertures in connectors
FR2867600B1 (en) * 2004-03-09 2006-06-23 Arkema METHOD OF MANUFACTURING ELECTRODE, ELECTRODE OBTAINED AND SUPERCONDENSOR COMPRISING SAME
JP4805820B2 (en) * 2004-05-13 2011-11-02 国立大学法人北海道大学 Fine carbon dispersion
US20080031802A1 (en) * 2004-10-22 2008-02-07 Hyperion Catalysis International, Inc. Ozonolysis of carbon nanotubes
US7732496B1 (en) 2004-11-03 2010-06-08 Ohio Aerospace Institute Highly porous and mechanically strong ceramic oxide aerogels
US7923403B2 (en) * 2004-11-16 2011-04-12 Hyperion Catalysis International, Inc. Method for preparing catalysts supported on carbon nanotubes networks
WO2006055670A2 (en) * 2004-11-16 2006-05-26 Hyperion Catalysis International, Inc. Methods for preparing catalysts supported on carbon nanotube networks
EP1827681A4 (en) * 2004-11-17 2011-05-11 Hyperion Catalysis Int Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
US7252884B2 (en) * 2005-07-25 2007-08-07 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube reinforced porous carbon having three-dimensionally ordered porosity and method of fabricating same
US20100308279A1 (en) * 2005-09-16 2010-12-09 Chaohui Zhou Conductive Silicone and Methods for Preparing Same
JP2009515812A (en) * 2005-11-16 2009-04-16 ハイピリオン カタリシス インターナショナル インコーポレイテッド Mixed structure of single- and multi-walled carbon nanotubes
JP4847106B2 (en) * 2005-11-18 2011-12-28 保土谷化学工業株式会社 Carbon fiber structure
JP5209490B2 (en) * 2005-12-08 2013-06-12 ウオーターズ・テクノロジーズ・コーポレイシヨン Apparatus and method for preparing peptide and protein samples from solution
US20070237706A1 (en) * 2006-04-10 2007-10-11 International Business Machines Corporation Embedded nanoparticle films and method for their formation in selective areas on a surface
US7935745B2 (en) * 2007-03-27 2011-05-03 Case Western Reserve University Self-assembled nanofiber templates; versatile approaches for polymer nanocomposites
CN101409338A (en) * 2007-10-10 2009-04-15 清华大学 Lithium ion battery cathode, preparation method thereof and lithium ion battery applying the same
US8314201B2 (en) 2007-11-30 2012-11-20 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
US8258251B2 (en) * 2007-11-30 2012-09-04 The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
WO2009094543A1 (en) * 2008-01-25 2009-07-30 Hyperion Catalysis International, Inc. Processes for the recovery of catalytic metal and carbon nanotubes
JP5303235B2 (en) * 2008-03-31 2013-10-02 日本ケミコン株式会社 Electrode for electric double layer capacitor and method for manufacturing the same
US8058191B2 (en) * 2008-09-04 2011-11-15 Siemens Energy, Inc. Multilayered ceramic matrix composite structure having increased structural strength
WO2010030900A1 (en) * 2008-09-11 2010-03-18 The Ohio State University Research Foundation Electro-spun fibers and applications therefor
JP5304153B2 (en) * 2008-09-30 2013-10-02 日本ケミコン株式会社 Electrode for electric double layer capacitor and method for manufacturing the same
CN101939256B (en) * 2009-03-05 2013-02-13 昭和电工株式会社 Carbon fiber agglomerates and process for production of same
SG175115A1 (en) * 2009-04-17 2011-11-28 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
US9475699B2 (en) 2012-04-16 2016-10-25 Seerstone Llc. Methods for treating an offgas containing carbon oxides
CN104302576B (en) 2012-04-16 2017-03-08 赛尔斯通股份有限公司 For catching and sealing up for safekeeping carbon and the method and system for reducing the quality of oxycarbide in waste gas stream
CN104302575B (en) 2012-04-16 2017-03-22 赛尔斯通股份有限公司 Method for producing solid carbon by reducing carbon dioxide
JP6328611B2 (en) 2012-04-16 2018-05-23 シーアストーン リミテッド ライアビリティ カンパニー Method and structure for reducing carbon oxides with non-ferrous catalysts
NO2749379T3 (en) 2012-04-16 2018-07-28
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
JP6284934B2 (en) 2012-07-12 2018-02-28 シーアストーン リミテッド ライアビリティ カンパニー Solid carbon product containing carbon nanotubes and method of forming the same
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
MX2015000580A (en) 2012-07-13 2015-08-20 Seerstone Llc Methods and systems for forming ammonia and solid carbon products.
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
CN104936893A (en) 2012-11-29 2015-09-23 赛尔斯通股份有限公司 Reactors and methods for producing solid carbon materials
EP3113880A4 (en) 2013-03-15 2018-05-16 Seerstone LLC Carbon oxide reduction with intermetallic and carbide catalysts
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
EP3129135A4 (en) 2013-03-15 2017-10-25 Seerstone LLC Reactors, systems, and methods for forming solid products
WO2014151898A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
WO2017043992A1 (en) * 2015-09-07 2017-03-16 Андрей Николаевич ЕЛШИН Lead-carbon metal composite material for electrodes of lead-acid batteries and method of synthesizing same
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
TW202103917A (en) * 2019-05-31 2021-02-01 美商美國琳得科股份有限公司 Nanofiber pellicles and protective nanofiber release liners

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003455A1 (en) * 1984-12-06 1986-06-19 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same, and compositions containing same
WO1989007163A1 (en) * 1988-01-28 1989-08-10 Hyperion Catalysis International Carbon fibrils
WO1990007023A1 (en) * 1988-12-16 1990-06-28 Hyperion Catalysis International Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
WO1991001219A1 (en) * 1989-07-21 1991-02-07 Hyperion Catalysis International, Inc. Electro-conductive sheets
WO1991005089A1 (en) * 1989-09-28 1991-04-18 Hyperion Catalysis International, Inc. Battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE142313C (en) *
US2484012A (en) * 1946-07-01 1949-10-11 American Viscose Corp Manufacture of fibers
EP0223008B1 (en) * 1983-04-19 1990-11-14 Yoshiaki Hattori Gypsum powder materials for making models and molds, and a method for producing them
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
JPS63309403A (en) * 1987-06-12 1988-12-16 Nkk Corp Mold for casting and molding of slurry
US4818448A (en) * 1987-06-17 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Method for fabricating light weight carbon-bonded carbon fiber composites
FR2664889B1 (en) * 1990-07-17 1992-09-25 Lorraine Carbone POROUS CARBON-CARBON COMPOSITE FILTERING MEMBRANE SUPPORT WITH CARBON FIBER SUBSTRATE AND MANUFACTURING METHOD THEREOF.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003455A1 (en) * 1984-12-06 1986-06-19 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same, and compositions containing same
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
WO1989007163A1 (en) * 1988-01-28 1989-08-10 Hyperion Catalysis International Carbon fibrils
WO1990007023A1 (en) * 1988-12-16 1990-06-28 Hyperion Catalysis International Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
WO1991001219A1 (en) * 1989-07-21 1991-02-07 Hyperion Catalysis International, Inc. Electro-conductive sheets
WO1991005089A1 (en) * 1989-09-28 1991-04-18 Hyperion Catalysis International, Inc. Battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0904195A1 (en) * 1996-05-15 1999-03-31 Hyperion Catalysis International, Inc. Rigid porous carbon structures, methods of making, methods of using and products containing same
EP0904195A4 (en) * 1996-05-15 2000-10-18 Hyperion Catalysis Int Rigid porous carbon structures, methods of making, methods of using and products containing same
JP2008205487A (en) * 1996-05-15 2008-09-04 Hyperion Catalysis Internatl Inc Graphitic nanofibers in electrochemical capacitors
JP2000511245A (en) * 1996-05-31 2000-08-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Method for untangling hollow carbon microfibers, electrically conductive transparent carbon microfiber agglomeration film, and coating composition for forming such a film
GB2316802A (en) * 1996-08-27 1998-03-04 Univ New York State Res Found Gas diffusion electrodes based on polyethersulfone Carbon blends
GB2316801A (en) * 1996-08-27 1998-03-04 Univ New York State Res Found Gas diffusion electrodes based on poly(vinylidene fluoride)carbon blends
GB2316801B (en) * 1996-08-27 1999-07-14 Univ New York State Res Found Gas diffusion electrodes based on poly(vinylidene fluoride)carbon blends
GB2316802B (en) * 1996-08-27 1999-07-14 Univ New York State Res Found Gas diffusion electrodes based on polyethersulfone carbon blends
US7504153B2 (en) 2003-05-13 2009-03-17 Showa Denko K.K. Porous body, production method thereof and composite material using the porous body
EP2264088A2 (en) 2003-05-13 2010-12-22 Showa Denko K.K. Porous body, production method thereof and composite material using the porous body
US8883308B2 (en) 2010-03-02 2014-11-11 King Abdullah University Of Science And Technology High surface area fibrous silica nanoparticles

Also Published As

Publication number Publication date
AU693792B2 (en) 1998-07-09
CA2162054A1 (en) 1994-11-10
JP3516957B2 (en) 2004-04-05
AU6943594A (en) 1994-11-21
EP1416072A2 (en) 2004-05-06
EP1416072A3 (en) 2004-12-29
ES2219648T3 (en) 2004-12-01
IL109497A0 (en) 1994-08-26
JP2004137663A (en) 2004-05-13
CA2162054C (en) 2007-07-31
ATE259894T1 (en) 2004-03-15
ES2282742T3 (en) 2007-10-16
DE69433561D1 (en) 2004-03-25
KR100326546B1 (en) 2002-11-25
US5691054A (en) 1997-11-25
BR9406393A (en) 1996-01-16
DE69434928T2 (en) 2007-11-15
EP0703858A1 (en) 1996-04-03
EP0703858A4 (en) 1998-04-29
DE69433561T2 (en) 2004-12-23
ZA943088B (en) 1995-01-13
EP1416072B1 (en) 2007-02-21
US5846658A (en) 1998-12-08
ATE354690T1 (en) 2007-03-15
DE69434928D1 (en) 2007-04-05
KR960702382A (en) 1996-04-27
EP0703858B1 (en) 2004-02-18
IL109497A (en) 1998-02-22
RU2135363C1 (en) 1999-08-27
JPH08509788A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
CA2162054C (en) Three dimensional macroscopic assemblages of randomly oriented carbon fibrils and composites containing same
US5985112A (en) Nanofiber packed beds having enhanced fluid flow characteristics
EP0904195B1 (en) Rigid porous carbon structures, methods of making, methods of using and products containing same
US8580436B2 (en) Methods of oxidizing multiwalled carbon nanotubes
JP3962691B2 (en) Modification of carbon nanotubes by oxidation with peroxygen compounds
US5071631A (en) Porous carbon-carbon composite and process for producing the same
AU2008203288A1 (en) Methods of oxidizing multiwalled carbon nanotubes
EP2406430B1 (en) Networks of carbon nano materials and process for their manufacture
JPH0859360A (en) Production of porous carbon material
MXPA98007160A (en) Bags packaged with nanofibers that have improved flu flow characteristics
AU2005200722A1 (en) Methods of oxidizing multiwalled carbon nanotubes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA JP KR NZ RU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2162054

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1019950704918

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1994917909

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994917909

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994917909

Country of ref document: EP