WO1994013141A1 - Polyphenol-based insecticide compositions - Google Patents

Polyphenol-based insecticide compositions Download PDF

Info

Publication number
WO1994013141A1
WO1994013141A1 PCT/FR1993/001226 FR9301226W WO9413141A1 WO 1994013141 A1 WO1994013141 A1 WO 1994013141A1 FR 9301226 W FR9301226 W FR 9301226W WO 9413141 A1 WO9413141 A1 WO 9413141A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenol
composition according
eugenol
naringin
insects
Prior art date
Application number
PCT/FR1993/001226
Other languages
French (fr)
Inventor
Catherine Regnault-Roger
Aimé Menassa
Original Assignee
Elf Atochem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem S.A. filed Critical Elf Atochem S.A.
Priority to AU56538/94A priority Critical patent/AU5653894A/en
Publication of WO1994013141A1 publication Critical patent/WO1994013141A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom

Definitions

  • the present invention relates to insecticide compositions.
  • an insecticidal composition comprising an insecticidal substance other than a polyphenol is much more active when it is added with a polyphenol.
  • a polyphenol not only has a delayed or delayed insecticidal activity, but also a nocdown or insect immobilization type effect and above all an attractive effect, so that the composition comprising, at the same time, an insecticidal substance other than a polyphenol and a polyphenol has a synergistic effect, the polyphenol attracting insects and immobilizing them near the other fast-acting insecticide.
  • the attractive effect makes it possible to mask the repellent effect of other insecticidal substances.
  • R 1 R 2 and R 3 which are the same or different, are a hydrogen atom, hydroxy or lower alkoxy. at least two of R 1 # R 2 and R 3 being other than a hydrogen atom. is a hydrogen atom. is a hydrogen atom, a hydroxyl, an alkoxy or a glycoside or
  • R 4 and R 5 together form an additional valence bond between the carbon atoms which carry them
  • R 6 is a hydrogen atom
  • R 7 is hydroxyl, lower alkyl or phenyl, optionally mono-, di- or trisubstituted by lower alkyl, lower alkoxy or hydroxyl radicals, or
  • alkyl or lower alkoxy is meant linear or branched radicals having from 1 to 6 carbon atoms and, preferably, from 1 to 4 carbon atoms.
  • polyphenols there may be mentioned in particular catechins, flavanones, flavones, flavanonols, flavonols and other flavonoids of monomeric forms or associated in dimers or polymers. Mention may in particular be made of caffeic acid, ferulic acid, gallic acid and other phenol acids derived from cinnaic acid or benzoic acid, catechin, quercetin, rutin, naringin. Rutin, caffeic acid and naringin are very attractive and cause a strong inhibition of the natural motor skills of insects and that is why they are particularly preferred. The attractive effect of polyphenols is such that they increase the consumption by insects of the toxic mixture, allowing the effective concentrations of each of the insecticidal compounds to be reduced.
  • polyphenols are natural substances of vegetable origin which are found in the daily diet and which are, by definition, in effective doses on insects which are non-toxic to mammals and biodegradable. Polyphenols therefore make it possible, combined with another insecticidal substance which is also biodegradable and non-toxic and preferably natural, to constitute an insecticidal composition which does not harm the environment. This is why, according to a preferred embodiment of the composition according to the invention, the insecticidal substance other than a polyphenol is a terpene. Terpenes are hydrocarbons of the aliphatic and cyclanic series, the constitution of which is expressed by formulas obtained by assembly of isoprenic links.
  • terpenes mention may be made of menthane, li onene, cyene, terpinenes, eugenol, pinene, sabinene, carina.
  • Terpenes can carry an alcohol function, such as linalool, menthol, terpineol, a ketone function, such as enthone, carvone, thujone, camphor, an aldehyde function such as safranal, geranial, cynamaldehyde, cuminaldehyde or a phenol function such as thymol, carvacrol, possibly methoxylated such as anethole, eugenol, estragol, borneol.
  • alcohol function such as linalool, menthol, terpineol
  • a ketone function such as enthone, carvone, thujone, camphor
  • an aldehyde function such as safranal, geranial, cynamaldehyde, cuminaldehyde or a phenol function
  • a phenol function such as thymol, carvacrol, possibly methoxy
  • eugenol terpineol and carvacrol and, to a lesser degree, thymol, linalool, anethol, arminaldehyde, cynamaldehyde and cymene.
  • polyphenol with a conventional insecticidal substance, such as fatty acids and derivatives which are carboxylic acids whose aliphatic chain is long enough to give them a lipophilic character, this chain generally consisting of 10 to 20 carbon atoms. and be saturated or mono- or poly-unsaturated.
  • the fatty acids can be used in the free form, in the salified form, the cation possibly being an alkali metal or an alkaline earth metal, in esterified form, generally with an aliphatic alcohol, or in the form of a glyceride such as 'a mono-, di- or triglyceride.
  • polyphenol as an insecticidal substance, a carba ate, a pyrethroid, an organophosphorus compound or an organochlorine compound.
  • another insecticide is combined with the polyphenol and terpene couple.
  • the weight ratio between the insecticide substance (s) other than polyphenol and polyphenol is between 1/1000 and 1/10.
  • the composition is obtained by mixing the constituents.
  • the insecticide composition according to the invention makes it possible to fight not only against the insects themselves, but more generally relates to the whole sub-reign of the metazoans and, in particular, the branching of the arthropods, among which are the arachnids, for example, Tetranycus urticae, family Trombididae, mite order.
  • the preferred target class is that of insects among which appear (classification according to BALACHOWSKY) 1962 the order of Blattidae, in particular: - genus Blatella species B. germanica, B. orientalis (cockroaches), genus Ectobius species E. lapponicus (cockroach forest).
  • Hymenoptera in particular - * family Formicidae (ants), genus Camponotus, species C. femoratus, C. lignaperda
  • Drosophilidae genus Drosophila (example: species D. melanogaster, vinegar fly, D. auraria), - family Muscidae, genus Musca, species M. domestica
  • Bostrychoidea including the family of Bostrychidae
  • Superfamily Scarabaeoidae for example family Scarabaeidae, subfamily Rutelinae, genus Popillia japonica (Japanese chafer),
  • Superfamily Phytophagoidea of which: family Bruchidae, subfamily Bruchinae, * genus Acanthoscelides, species A, obtectus (bean weed)
  • Noctuoidea for example: family Noctuidae group Trifides - subfamily Amphipyrinae genus Sesamia species Sesamia nonagrioides Lef. (corn sesame) genus Spodoptera species: Spodoptera litura Fab. Spodoptera littoralis Bois du Val (fruit and vegetable pest) subfamily Melicleptriinae genus Helicoverpa (or Heliothis) species H. zea Hb.
  • Noctuidae group Trifides - subfamily Amphipyrinae genus Sesamia species Sesamia nonagrioides Lef. (corn sesame) genus Spodoptera species: Spodoptera litura Fab. Spodoptera littoralis Bois du Val (fruit and vegetable pest) subfamily Melicleptriinae genus Helicoverpa (or Heliothis) species H. zea Hb.
  • Tineoidea superfamily for example: Gelichiidae family of which: genus Sitotroga species Sitotroga cerealla OL. (cereal alucite).
  • the weight ratio between the insecticide substance (s) other than polyphenol and polyphenol is between 1/1000 and 1/10.
  • the composition is obtained by mixing the constituents.
  • the composition according to the invention can be used to protect crops in the open field.
  • the composition according to the invention is applied at a rate of 100 to 1000 grams per hectare.
  • compositions can also be formulated for household use, an example of which is given below: an atomizer of 650 ml of total volume, filled to 500 ml useful, has a net weight of 300 grams and contains:
  • this composition is prepared in the following manner: a 50% by weight hydroalcoholic solution is produced in which the active-tensions are dissolved (ethoxylate 10 EO of undecylenic acid and ethoxylate 10 EO of ricinoleic acid), then polyphenols, terpenes and perfume; the mixture is emulsified, we then add an aqueous viscosifying gum solution.
  • the atomizers are filled with 50 grams of this emulsion to which 250 g of butane or another propellant are added.
  • OE ethylene oxide
  • Two separate compartments with a volume of 465 cm 3 each are connected to each other by a glass tube with a section of 1.5 cm and a length of 10 cm (volume: 12 cm 3 ).
  • the first compartment we place the product whose activity we want to test, in the second, insects whose sensitivity we want to experience. The circulation of insects and gases is ensured by the glass tube described above.
  • 0.5 g of naringin (ie a mass of 8.6 10 ⁇ 4 M) contained in a small box is placed in the first compartment.
  • the second compartment evolves a population of 20 adult individuals of Rhizoperta dominica. After three hours, 7 insects are counted in compartment 1, 11 after 5 hours, 17 after 24 hours.
  • naringin a Whatmann paper impregnated with 1 ⁇ l of eugenol (ie 0.6 10 "* 6 M or 1.07 mg) was deposited, no insect is counted in compartment 1 at after three hours and only one after 24 hours.
  • the naringine exerts a certain attractive effect, with the opposite of the effect shown by eugenol.
  • the insects (18/20) took refuge, agglutinated, at the place furthest from the eugenol deposit.
  • insects in each experiment are deposited in the upper part of a two-stage apparatus. To reach the lower compartment, insects must thread their way through small holes perforating a glass tube connecting the two compartments. In the lower compartment is contained 0.5 g of a tested polyphenol. After two hours, 35% of the insects have migrated into the lower compartment in the presence of caffeic acid, 60% in the presence of rutin and 85% in the presence of naringin. After twenty hours, the percentage rises for the three compounds to 90 and 100%, while it remains only 50% for paracoumaric acid. The attractiveness of the three compounds, caffeine acid, rutin and naringin, is therefore very highly significant.
  • the inhibition of reproduction is studied by the following experiment.
  • a population of 20 adult insects and bean seeds (Phaseolus vul ⁇ aris L.) are brought together for the control batch.
  • the terpenes are added to the medium, deposited (1.6 10 ⁇ 6 M and 6.5 10 ⁇ 6 M) on hatmann paper incorporated in a small box so that no contact takes place with the insect. Every day, there are the dead and the eggs laid over a period of ten days. At the end of this period, note the number of larvae that have entered the seeds, then the emerging number, the number of imagos, after about forty days.
  • Carvacrol very strongly inhibits the reproduction of A. obtectus
  • both by an activity on fertility and by a larvicidal activity only 23% of the larvae enter the seeds and 60% of the adults emerge from them, while the rates are respectively 81% and 91% for the witness.
  • the same inhibitory activity is observed for eugenol, terpineol and, to lesser but nevertheless significant degrees, for other monoterpene terpenes.
  • 5th experiment impairment of the natural motor skills of Sitotroga cerealella (cereal alucitis) by the eugenol / naringin association (knock-down effect) and toxicity of the polyphenols / terpenes association.
  • a second series of experiments is carried out in the presence of a combination of polyphenolic compounds (caffeic acid, naringin and rutin: 0.5 g of each of the compounds, or respectively masses of 2 10 "" 3M, 8.6 10 ⁇ 4 M and 7.5 10 ⁇ 4 M), after 20 hours, 10 alucites (50%) are dead, the surviving insects having good motor skills. If, on the other hand, the preceding compounds are combined with 20 ⁇ l of a mixture of terpineol and eugenol (v: v), the insects die in less than four hours. 6th experiment: attractive effect and inhibition of the motor activity of naringin on Ceratitis capitata (Mediterranean fruit and vegetable fly) and toxicity of the polyphenol / terpene association.
  • polyphenolic compounds caffeic acid, naringin and rutin: 0.5 g of each of the compounds, or respectively masses of 2 10 "" 3M, 8.6 10 ⁇ 4 M and 7.5 10
  • naringin a population of 64 ceratites, after 20 hours 28 ceratites , or 43%, are found in compartment 1 and, after 24 hours, 39, or 60% who are, moreover, deprived of natural motor skills. None of the insects died. If we associate with the same amount of naringin 1 ⁇ l, or 1.07 mg of eugenol, there are, for the same duration, 42% of dead insects, this percentage increasing to 69% if we put 5 ⁇ l (5 , 35 mg) of eugenol with naringin.
  • Caffeic acid thus manifests a significant toxic activity for ceratitis and its effectiveness is all the greater when it is integrated into the usual diet of the fly and consumed regularly. An anti-nutritional effect is also noted with rutin.
  • ⁇ th experiment toxicity of the polyphenols / terpenes association on Ostrinia nubilalis (European corn borer) at the last larval stage.
  • a first batch contains an insecticide whose toxicity is examined (1 ⁇ l for malathion, 100 ⁇ l for pyrethroids), a second the same quantity of insecticide in the presence of one gram (17 10 M) of naringin, a third batch contains the same amount of insecticide, but this time in the presence of 5 ⁇ l (5.35 mg) of eugenol and a fourth batch contains both insecticide, eugenol and naringin.
  • the second case which supports the previous observations, differs from the previous one, however. Indeed, we note that naringin - which has no immediate effect in the presence of a dose which is itself inactive of pyrethroids - enhances the low toxicity of malathion and causes a 20% increase in the lethal effect.
  • the combination of the three compounds causes total mortality of the insect population, while each of the compounds, taken separately or in binary association (insecticide / polyphenol or terpene), have a much lower efficacy.
  • This result demonstrates the potentiation of the insecticidal activities of the different compounds by the synergistic effect resulting from the association of various insecticidal molecules, especially d polyphenols / terpenes couple.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Insecticide composition comprising an insecticide substance other than a polyphenol, characterized in that it includes a polyphenol. The polyphenols include catechines, flavanones, flavones, flavanonols, flavonols and other flavonoids with monomer forms or combined to form dimers of polymers. In a preferred embodiment of the composition according to the invention, the insecticide substance other than a polyphenol is a terpene.

Description

Compositions insecticides à base de polyphenolPolyphenol-based insecticide compositions
La présente invention se rapporte aux compositions insecticides.The present invention relates to insecticide compositions.
On sait déjà que certains polyphénols ont une action insecticide. Or, on a maintenant trouvé qu'une composition insecticide comprenant une substance insecticide autre qu'un polyphenol est bien plus active lorsqu'elle est additionnée d'un polyphenol.We already know that certain polyphenols have an insecticidal action. Now, it has now been found that an insecticidal composition comprising an insecticidal substance other than a polyphenol is much more active when it is added with a polyphenol.
On a en effet trouvé qu'un polyphenol a non seulement une activité insecticide différée ou de type retard, mais également un effet de type noc -down ou d'immobilisation des insectes et surtout un effet attractif, en sorte que la composition comprenant, à la fois, une substance insecticide autre qu'un polyphenol et un polyphenol présente un effet de synergie, le polyphenol attirant les insectes et les immobilisant à proximité de l'autre insecticide à action rapide. L'effet attractif permet de masquer l'effet répulsif des autres substances insecticides. A cette activité insecticide directe (toxicité sur l'adulte) s'ajoute une activité antinutrionnelle, ainsi qu'une inhibition de la reproduction par diminution de la fécondité, effet ovicide et larvicide limitant le renouvellement des générations, l'ensemble des effets se conjuguant pour amoindrir le flux des insectes et améliorer leur contrôle. Comme polyphénols, on utilise avantageusement ceux de formule
Figure imgf000004_0001
dans laquelle
It has in fact been found that a polyphenol not only has a delayed or delayed insecticidal activity, but also a nocdown or insect immobilization type effect and above all an attractive effect, so that the composition comprising, at the same time, an insecticidal substance other than a polyphenol and a polyphenol has a synergistic effect, the polyphenol attracting insects and immobilizing them near the other fast-acting insecticide. The attractive effect makes it possible to mask the repellent effect of other insecticidal substances. To this direct insecticidal activity (toxicity on adults) is added an anti-nutritional activity, as well as an inhibition of reproduction by reduction of fertility, ovicidal and larvicidal effect limiting the renewal of generations, all the effects combining to reduce the flow of insects and improve their control. As polyphenols, advantageously those of formula
Figure imgf000004_0001
in which
R1 R2 et R3, qui sont identiques ou différents, sont un atome d'hydrogène, un hydroxy ou un alcoxy inférieur. deux au moins de R1# R2 et R3 étant autre qu'un atome d'hydrogène. est un atome d'hydrogène. est un atome d'hydrogène, un hydroxyle, un alcoxy ou un glycoside ouR 1 R 2 and R 3 , which are the same or different, are a hydrogen atom, hydroxy or lower alkoxy. at least two of R 1 # R 2 and R 3 being other than a hydrogen atom. is a hydrogen atom. is a hydrogen atom, a hydroxyl, an alkoxy or a glycoside or
R4 et R5 forment ensemble une liaison de valence supplémentaire entre les atomes de carbone qui les portent,R 4 and R 5 together form an additional valence bond between the carbon atoms which carry them,
R6 est un atome d'hydrogène,R 6 is a hydrogen atom,
R7 est hydroxyle, alcoyle inférieur ou phényle, éventuellement mono-, di- ou trisubstitué par des radicaux alcoyle inférieurs, alcoxy inférieurs ou hydroxyle, ouR 7 is hydroxyl, lower alkyl or phenyl, optionally mono-, di- or trisubstituted by lower alkyl, lower alkoxy or hydroxyl radicals, or
R6 et R7 forment ensemble un radical bivalent de formuleR 6 and R 7 together form a bivalent radical of formula
Figure imgf000004_0002
Figure imgf000004_0002
relié par l'atome d'oxygène à l'atome de carbone portant R4. Par alcoyle ou alcoxy inférieur, on entend des radicaux linéaires ou ramifiés ayant de 1 à 6 atomes de carbone et, de préférence, de 1 à 4 atomes de carbone.linked by the oxygen atom to the carbon atom carrying R 4 . By alkyl or lower alkoxy is meant linear or branched radicals having from 1 to 6 carbon atoms and, preferably, from 1 to 4 carbon atoms.
Parmi ces polyphénols, on peut citer notamment des catechines, des flavanones, des flavones, des flavanonols, des flavonols et autres flavonoïdes de formes monomères ou associées en dimères ou polymères. On peut citer notamment l'acide caféique, l'acide férulique, l'acide gallique, et autres acides phénols dérivés de l'acide cinna ique ou άe l'acide benzoïque, la catêchine, la quercétine, la rutine, la naringine. La rutine, l'acide caféique et la naringine sont très attractifs et provoquent une forte inhibition de la motricité naturelle des insectes et c'est pourquoi ils sont tout particulièrement préféré. L'effet attractif des polyphénols est tel qu'ils augmentent la consommation par les insectes du mélange toxique, en permettant de diminuer les concentrations efficaces de chacun des composés insecticides.Among these polyphenols, there may be mentioned in particular catechins, flavanones, flavones, flavanonols, flavonols and other flavonoids of monomeric forms or associated in dimers or polymers. Mention may in particular be made of caffeic acid, ferulic acid, gallic acid and other phenol acids derived from cinnaic acid or benzoic acid, catechin, quercetin, rutin, naringin. Rutin, caffeic acid and naringin are very attractive and cause a strong inhibition of the natural motor skills of insects and that is why they are particularly preferred. The attractive effect of polyphenols is such that they increase the consumption by insects of the toxic mixture, allowing the effective concentrations of each of the insecticidal compounds to be reduced.
Ces polyphénols sont des substances naturelles d'origine végétale que l'on trouve dans l'alimentation quotidienne et qui sont, par définition, aux doses efficaces sur les insectes atoxiques pour les mammifères et biodégradables. Les polyphénols permettent donc, associés à une autre substance insecticide elle aussi biodégradable et atoxique et de préférence naturelle, de constituer une composition insecticide ne portant pas atteinte à l'environnement. C'est pourquoi, suivant un mode de réalisation préféré de la composition suivant l'invention, la substance insecticide autre qu'un polyphenol est un terpène. Les terpènes sont des hydrocarbures des séries aliphatiques et cyclaniques dont la constitution s'exprime par des formules obtenues par assemblage de chaînons isopréniques. On peut utiliser des hydrocarbures terpéniques acycliques en C10 H16 possédant la structure du diméthyl-2,6-octane, des hydrocarbures terpéniques vrais en cιoHl6 et des hydrocarbures sesquiterpéniques en ci5H24* 0n préfère notamment les terpènes monocycliques et les terpènes bicycliques. Parmi les terpènes, on peut citer le menthane, le li onène, le cy ène, les terpinènes, l'eugénol, le pinène, le sabinène, le carène. Les terpènes peuvent porter une fonction alcool, comme le linalool, le menthol, le terpinéol, une fonction cétone, comme la enthone, la carvone, la thuyone, le camphre, une fonction aldéhyde comme le safranal, le géranial, le cynamaldéhyde, le cuminaldéhyde ou une fonction phénol comme le thymol, le carvacrol, éventuellement méthoxylée comme l'anéthol, l'eugénol, l'estragol, le bornéol. On préfère tout particulièrement l'eugénol, le terpinéol et le carvacrol et, à un moindre degré, le thymol, le linalool, l'anéthol, l'arminaldéhyde, le cynamaldéhyde et le cymène.These polyphenols are natural substances of vegetable origin which are found in the daily diet and which are, by definition, in effective doses on insects which are non-toxic to mammals and biodegradable. Polyphenols therefore make it possible, combined with another insecticidal substance which is also biodegradable and non-toxic and preferably natural, to constitute an insecticidal composition which does not harm the environment. This is why, according to a preferred embodiment of the composition according to the invention, the insecticidal substance other than a polyphenol is a terpene. Terpenes are hydrocarbons of the aliphatic and cyclanic series, the constitution of which is expressed by formulas obtained by assembly of isoprenic links. One can use acyclic terpene hydrocarbons in C 1 0 H 16 having the structure of 2,6-dimethyl-octane, true terpene hydrocarbons in C ιo H l 6 and sesquiterpene hydrocarbons c i5 H 24 * 0n particularly preferred monocyclic terpenes and bicyclic terpenes. Among the terpenes, mention may be made of menthane, li onene, cyene, terpinenes, eugenol, pinene, sabinene, carina. Terpenes can carry an alcohol function, such as linalool, menthol, terpineol, a ketone function, such as enthone, carvone, thujone, camphor, an aldehyde function such as safranal, geranial, cynamaldehyde, cuminaldehyde or a phenol function such as thymol, carvacrol, possibly methoxylated such as anethole, eugenol, estragol, borneol. Particularly preferred are eugenol, terpineol and carvacrol and, to a lesser degree, thymol, linalool, anethol, arminaldehyde, cynamaldehyde and cymene.
Mais on peut également associer au polyphenol une substance insecticide classique, comme des acides gras et dérivés qui sont des acides carboxyliques dont la chaîne aliphatique est suffisamment longue pour leur conférer un caractère lipophile, cette chaîne étant en général constituée de 10 à 20 atomes de carbone et être saturée ou mono- ou poly-insaturée. Les acides gras peuvent être utilisés sous la forme libre, sous la forme salifiée, le cation pouvant être un métal alcalin ou un métal alcalino-terreux, sous forme estérifiée, généralement avec un alcool aliphatique, ou sous la forme d'un glycéride tel qu'un mono-, un di- ou un triglycéride. On peut également associer au polyphenol, à titre de substance insecticide, un carba ate, un pyréthrinoïde, un composé organophosphoré ou un composé organochloré. De préférence, on associe un autre insecticide au couple polyphenol et terpène.However, it is also possible to combine polyphenol with a conventional insecticidal substance, such as fatty acids and derivatives which are carboxylic acids whose aliphatic chain is long enough to give them a lipophilic character, this chain generally consisting of 10 to 20 carbon atoms. and be saturated or mono- or poly-unsaturated. The fatty acids can be used in the free form, in the salified form, the cation possibly being an alkali metal or an alkaline earth metal, in esterified form, generally with an aliphatic alcohol, or in the form of a glyceride such as 'a mono-, di- or triglyceride. It is also possible to combine with polyphenol, as an insecticidal substance, a carba ate, a pyrethroid, an organophosphorus compound or an organochlorine compound. Preferably, another insecticide is combined with the polyphenol and terpene couple.
De préférence, le rapport pondéral entre la (ou les) substance(s) insecticide(s) autre(s) que le polyphenol et le polyphenol est compris entre 1/1000 et 1/10. On obtient la composition en mélangeant les constituants. La composition insecticide suivant l'invention permet de lutter non seulement contre les insectes proprement dits, mais concerne plus généralement tout le sous-règne des métazoaires et, en particulier, l'embranchement des arthropodes, parmi lesquels figurent les arachnides, par exemple, Tetranycus urticae, famille Trombididae, ordre acarien. Mais la classe-cible préférée est celle des insectes parmi laquelle figurent (classification selon BALACHOWSKY) 1962 l'ordre des Blattidés, notamment: - genre Blatella espèce B. germanica, B. orientalis (blattes) , genre Ectobius espèce E. lapponicus (blatte forestière) .Preferably, the weight ratio between the insecticide substance (s) other than polyphenol and polyphenol is between 1/1000 and 1/10. The composition is obtained by mixing the constituents. The insecticide composition according to the invention makes it possible to fight not only against the insects themselves, but more generally relates to the whole sub-reign of the metazoans and, in particular, the branching of the arthropods, among which are the arachnids, for example, Tetranycus urticae, family Trombididae, mite order. But the preferred target class is that of insects among which appear (classification according to BALACHOWSKY) 1962 the order of Blattidae, in particular: - genus Blatella species B. germanica, B. orientalis (cockroaches), genus Ectobius species E. lapponicus (cockroach forest).
L'ordre des Hyménoptères, notamment - * famille Formicidae (fourmis), genre Camponotus, espèces C. femoratus, C. lignaperdaThe order of Hymenoptera, in particular - * family Formicidae (ants), genus Camponotus, species C. femoratus, C. lignaperda
(fourmi charpentière) , genre Formica, espèce F. polyctena (fourmi rousse) , F. fusca, * famille Myrcidae, genre Myrmica, espèce M. rubra (fourmi rouge) , genre Monomorium, espèce M. pharaonis (fourmi des pharaons) .(carpenter ant), genus Formica, species F. polyctena (red ant), F. fusca, * family Myrcidae, genus Myrmica, species M. rubra (red ant), genus Monomorium, species M. pharaonis (pharaoh ant).
Mais surtoutBut above all
* l'ordre des Diptères, avec les familles des* the order of Diptera, with the families of
Drosophilidae, genre Drosophila (exemple : espèces D. melanogaster, mouche du vinaigre, D. auraria) , - famille des Muscidae, genre Musca, espèce M. domesticaDrosophilidae, genus Drosophila (example: species D. melanogaster, vinegar fly, D. auraria), - family Muscidae, genus Musca, species M. domestica
(mouche domestique) , famille des Trypetidae, genre Ceratitis, espèce C. capitata (mouche méditerranéenne des fruits et légumes) famille Culicidae, genre Culex, C. pipiens (moustique) ou autres moustiques exemple: Aedes aegypti vecteurs de la fièvre jaune.(housefly), family Trypetidae, genus Ceratitis, species C. capitata (Mediterranean fruit and vegetable fly) family Culicidae, genus Culex, C. pipiens (mosquito) or other mosquitoes example: Aedes aegypti vectors of the yellow fever.
* l'ordre des Coléoptères, sous-ordre Polyphaga, avec les super-familles. - Cucujoidea dont les familles de Coccinellidae, sous famille des Epilachninae (larves phytophages des fruits et légumes) , espèces E. chrysomelina, E. varivestis, E. similis,* the order of Beetles, sub-order Polyphaga, with the super-families. - Cucujoidea including the families of Coccinellidae, under the family of Epilachninae (phytophagous larvae of fruits and vegetables), species E. chrysomelina, E. varivestis, E. similis,
- famille des Mordellidae, genre Mordellistena, M. parvula (ravageur du tournesol, chanvre) , famille Tenebrionidae, genre Tribolium, espèce Tribolium castaneum, T. confusum (ravageurs des grains et farine type blé, orge) , genre Tenebrio, espèces T. molitor, T. obscurus F (vers de la farine)- family of Mordellidae, genus Mordellistena, M. parvula (sunflower pest, hemp), family Tenebrionidae, genus Tribolium, species Tribolium castaneum, T. confusum (grain and flour pests such as wheat, barley), genus Tenebrio, species T. molitor, T. obscurus F (mealworms)
- Super-famille Bostrychoidea dont la famille des Bostrychidae,- Superfamily Bostrychoidea including the family of Bostrychidae,
(genre Rhizoperta, R. dominica (capucin des grains) ,(genus Rhizoperta, R. dominica (grain capuchin),
Super-famille Scarabaeoidae, par exemple famille Scarabaeidae, sous-famille Rutelinae, genre Popillia japonica (hanneton japonais) ,Superfamily Scarabaeoidae, for example family Scarabaeidae, subfamily Rutelinae, genus Popillia japonica (Japanese chafer),
Super-famille Phytophagoidea, dont: famille Bruchidae, sous-famille Bruchinae, * genre Acanthoscelides, espèce A, obtectus (bruche du haricot)Superfamily Phytophagoidea, of which: family Bruchidae, subfamily Bruchinae, * genus Acanthoscelides, species A, obtectus (bean weed)
* genre Bruchus, espèce Bruchus lentis (bruche des lentilles) ,* genus Bruchus, species Bruchus lentis (lentil bruch),
* genre Callosobruchus, espèce C. maculatus (bruche à 4 taches) , C. chinensis (bruche chinoise) , sous-famille Amblycerinae* genus Callosobruchus, species C. maculatus (4-spotted beetle), C. chinensis (Chinese beetle), subfamily Amblycerinae
* genre Zabrotes, espèce Z. fasciatus (bruche légumineuses), famille Chrysomelidae sous-famille Crysomelidae, genre Leptinotarsa, espèce L. decemlineata (doryphore de la pomme de terre) , famille Curculonidae, sous-famille Tanymecinae, genre Tanymecus, espèce T. palliatus (charançon polyphage) , sous-famille Curculioninae, tribu Trichiini, genre Tychius, espèce T. quinquepunctatuβ* genus Zabrotes, species Z. fasciatus (leguminous weed), family Chrysomelidae subfamily Crysomelidae, genus Leptinotarsa, species L. decemlineata (Colorado potato beetle), family Curculonidae, subfamily Tanymecinae, genus Tanymecus, species T. palliatus (polyphagous weevil), subfamily Curculioninae, tribe Trichiini, genus Tychius, species T. quinquepunctatuβ
(trichie des légumineuses), T. Fasciatus, tribu des Calandini, genre Sitophilus, espèces S. granarius, S. oryzae, S. zeamais (charançon des blés, riz et maïs) .(legume cheat), T. Fasciatus, Calandini tribe, genus Sitophilus, species S. granarius, S. oryzae, S. zeamais (wheat weevil, rice and corn).
Ordre des Lépidoptères : Sous-ordre des HeteroneuraLepidoptera Order: Heteroneura Suborder
- sous-division Heterocera- Heterocera sub-division
*** dont super-famille : Pyraloidea par exemple: famille Pyralidae*** of which superfamily: Pyraloidea for example: family Pyralidae
- sous-famille Pyraustinae genre Ostrinia espèce : Ostrinia nubilalis Hb (pyrale du maïs) genre Loxostege, espèce L. Sticticalis (pyrale de la betterave) genre Evergestis fru entalis (pyrale du chou)- subfamily Pyraustinae genus Ostrinia species: Ostrinia nubilalis Hb (corn borer) genus Loxostege, species L. Sticticalis (beet moth) genus Evergestis fru entalis (cabbage moth)
- sous-famille Galleriinae genre Ephestia espèce E.Cautella, E.kuenhniella (pyrale des fruits desséchés et de la farine)- subfamily Galleriinae genus Ephestia species E.Cautella, E.kuenhniella (borer of dried fruit and flour)
- super-famille (Noctuoidea) par exemple: famille Noctuidae groupe Trifides - sous-famille Amphipyrinae genre Sesamia espèce Sesamia nonagrioides Lef. (sêsamie du maïs) genre Spodoptera espèces : Spodoptera litura Fab. Spodoptera littoralis Bois du Val (ravageur des fruits et légumes) sous-famille Melicleptriinae genre Helicoverpa (ou Heliothis) espèce H. zea Hb.- superfamily (Noctuoidea) for example: family Noctuidae group Trifides - subfamily Amphipyrinae genus Sesamia species Sesamia nonagrioides Lef. (corn sesame) genus Spodoptera species: Spodoptera litura Fab. Spodoptera littoralis Bois du Val (fruit and vegetable pest) subfamily Melicleptriinae genus Helicoverpa (or Heliothis) species H. zea Hb.
Super-famille Tineoidea: par exemple: famille Gelichiidae dont: genre Sitotroga espèce Sitotroga cerealla OL. (alucite des céréales) .Tineoidea superfamily: for example: Gelichiidae family of which: genus Sitotroga species Sitotroga cerealla OL. (cereal alucite).
De préférence, le rapport pondéral entre la (ou les) substance(s) insecticide(s) autre(s) que le polyphenol et le polyphenol est compris entre 1/1000 et 1/10. On obtient la composition en en mélangeant les constituants. On peut utiliser la composition suivant l'invention pour protéger les cultures en plein champ. On applique la composition suivant l'invention à raison de 100 à 1000 grammes par hectare.Preferably, the weight ratio between the insecticide substance (s) other than polyphenol and polyphenol is between 1/1000 and 1/10. The composition is obtained by mixing the constituents. The composition according to the invention can be used to protect crops in the open field. The composition according to the invention is applied at a rate of 100 to 1000 grams per hectare.
On peut formuler également les compositions pour un usage domestique dont on donne un exemple ci-dessous: un atomiseur de 650 ml de volume total, rempli à 500 ml utiles, a un poids net de 300 grammes et contient:The compositions can also be formulated for household use, an example of which is given below: an atomizer of 650 ml of total volume, filled to 500 ml useful, has a net weight of 300 grams and contains:
- propulseur (butane) 250 grammes- propellant (butane) 250 grams
- polyphenol 0,9 gramme - terpènes 0,1 gramme- polyphenol 0.9 gram - terpenes 0.1 gram
- parfum 0,5 gramme- 0.5 gram scent
- agent tensio-actif 1,5 grammes- surfactant 1.5 grams
- agent viscosifiant 0,025 gramme- viscosifying agent 0.025 gram
- alcool éthylique à 50%: 47 grammes on prépare cette composition de la manière suivante: on réalise une solution hydroalcoolique à 50% en poids dans laquelle on solubilise les tensions-actifs (éthoxylat 10 OE d'acide undécylènique et éthoxylat 10 OE d'acide ricinoléique) , puis ensuite les polyphénols, les terpènes et le parfum; le mélange est émulsionné, on lui ajoute ensuite une solution aqueuse de gomme viscosifiante.- 50% ethyl alcohol: 47 grams, this composition is prepared in the following manner: a 50% by weight hydroalcoholic solution is produced in which the active-tensions are dissolved (ethoxylate 10 EO of undecylenic acid and ethoxylate 10 EO of ricinoleic acid), then polyphenols, terpenes and perfume; the mixture is emulsified, we then add an aqueous viscosifying gum solution.
Les atomiseurs sont remplis à raison de 50 grammes de cette émulsion à laquelle on ajoute 250 g de butane ou d'un autre gaz propulseur. (OE signifie oxyde d'éthylène). On peut utiliser également les compositions pour les revêtements protecteurs externes ou internes (tous domaines par exemple: électricité, construction légère à usage terrestre ou aquatique) et les emballages tous domaines, notamment alimentaires à destination des aliments mais aussi agronomiques: encapsulation des biopesticides, godets pour plants végétaux, films de polymères biodégradables à destinations multiples.The atomizers are filled with 50 grams of this emulsion to which 250 g of butane or another propellant are added. (OE stands for ethylene oxide). One can also use the compositions for the external or internal protective coatings (all fields for example: electricity, light construction for terrestrial or aquatic use) and the packaging all fields, in particular food intended for food but also agronomic: encapsulation of biopesticides, buckets for plant plants, films of biodegradable polymers with multiple destinations.
Les expérimentations suivantes illustrent l'invention.The following experiments illustrate the invention.
1ère expérimentation : pouvoir attractif de la naringine sur R. dominica. (capucin des grains)1st experiment: attractive power of naringin on R. dominica. (grain capuchin)
Deux compartiments distincts de volume 465 cm3 chacun sont reliés entre eux par un tube de verre de section 1,5 cm et d'une longueur de 10 cm (volume : 12 cm3). Dans le premier compartiment, on dépose le produit dont on veut tester l'activité, dans le deuxième, les insectes dont on veut éprouver la sensibilité. La circulation des insectes et des gaz est assurée par le tube de verre ci-dessus décrit. Dans une première expérience, on dépose dans le premier compartiment 0,5 g de naringine (soit une masse de 8,6 10~4 M) contenu dans une petite boite. Dans le deuxième compartiment évolue une population de 20 individus adultes de Rhizoperta dominica. Au bout de trois heures, 7 insectes sont dénombrés dans le compartiment 1, 11 au bout de 5 heures, 17 au bout de 24 heures. Si, à la place de la naringine, on a déposé un papier Whatmann imprégné de 1 μl d'eugénol (soit 0,6 10"*6 M ou 1,07 mg) , aucun insecte n'est dénombré dans le compartiment 1 au bout de trois heures et un seul au bout de 24 heures. La naringine exerce un effet attractif certain, à l'opposé de l'effet manifesté par l'eugénol. On remarque, par ailleurs, que les insectes (18/20) se sont réfugiés, agglutinés, à l'endroit le plus éloigné du dépôt d'eugénol. L'association de l'eugénol et de la naringine, en mêmes quantités, permet d'attirer R. dominica de manière plus significative que l'eugénol seul, puisqu'au bout de vingt- quatre heures 10 insectes se retrouvent dans le compartiment avec les produits. Quatre insectes seulement restent éloignés des produits associés. A une concentration non léthale pour R. dominic , l'association polyphenol/terpène exerce un pouvoir attractif très significatif sur l'insecte et masque l'effet répulsif exercé par le terpène. 2ème expérimentation : comparaison du pouvoir attractif de différents polyphénols et d'une association polyphénols/terpènes sur Acanthoscelides obtectus, bruche du haricot.Two separate compartments with a volume of 465 cm 3 each are connected to each other by a glass tube with a section of 1.5 cm and a length of 10 cm (volume: 12 cm 3 ). In the first compartment, we place the product whose activity we want to test, in the second, insects whose sensitivity we want to experience. The circulation of insects and gases is ensured by the glass tube described above. In a first experiment, 0.5 g of naringin (ie a mass of 8.6 10 ~ 4 M) contained in a small box is placed in the first compartment. In the second compartment evolves a population of 20 adult individuals of Rhizoperta dominica. After three hours, 7 insects are counted in compartment 1, 11 after 5 hours, 17 after 24 hours. If, instead of naringin, a Whatmann paper impregnated with 1 μl of eugenol (ie 0.6 10 "* 6 M or 1.07 mg) was deposited, no insect is counted in compartment 1 at after three hours and only one after 24 hours. The naringine exerts a certain attractive effect, with the opposite of the effect shown by eugenol. We note, moreover, that the insects (18/20) took refuge, agglutinated, at the place furthest from the eugenol deposit. The combination of eugenol and naringin, in the same quantities, makes it possible to attract R. dominica more significantly than eugenol alone, since after twenty-four hours 10 insects are found in the compartment with products. Only four insects stay away from associated products. At a non-lethal concentration for R. dominic, the polyphenol / terpene association exerts a very significant attractive power on the insect and masks the repellent effect exerted by the terpene. 2nd experiment: comparison of the attractiveness of different polyphenols and of a polyphenol / terpene association on Acanthoscelides obtectus, bean weevil.
Des populations de 20 insectes à chaque expérimentation sont déposées dans la partie supérieure d'un appareil à deux étages. Les insectes doivent, pour se rendre dans le compartiment inférieur, se faufiler dans de petits orifices perforant un tube de verre reliant les deux compartiments. Dans le compartiment inférieur sont contenus 0,5 g d'un polyphenol testé. Au bout de deux heures, 35 % des insectes ont migré dans le compartiment inférieur en présence d'acide caféique, 60 % en présence de rutine et 85 % en présence de naringine. Au bout de vingt heures, le pourcentage s'élève pour les trois composés à 90 et 100 %, alors qu'il ne demeure que de 50 % pour l'acide paracoumarique. Le pouvoir attractif des trois composés, acide caféine, rutine et naringine, est donc très hautement significatif. Si on réalise l'expérience avec 1 μl d'eugénol (1,07 mg) , on constate que les insectes restent dans le compartiment du haut, alors que certains insectes (10 %) gagnent le compartiment inférieur dans l'expérience-témoin (sans produit dans le compartiment inférieur). L'eugénol confirme son pouvoir répulsif. En revanche, si on met en présence de la naringine et de l'eugénol, 65 % des insectes se retrouvent dans le compartiment inférieur au bout de vingt heures. L'association de la naringine & l'eugénol a permis d'inhiber de façon significative le pouvoir répulsif de l'eugénol.Populations of 20 insects in each experiment are deposited in the upper part of a two-stage apparatus. To reach the lower compartment, insects must thread their way through small holes perforating a glass tube connecting the two compartments. In the lower compartment is contained 0.5 g of a tested polyphenol. After two hours, 35% of the insects have migrated into the lower compartment in the presence of caffeic acid, 60% in the presence of rutin and 85% in the presence of naringin. After twenty hours, the percentage rises for the three compounds to 90 and 100%, while it remains only 50% for paracoumaric acid. The attractiveness of the three compounds, caffeine acid, rutin and naringin, is therefore very highly significant. If the experiment is carried out with 1 μl of eugenol (1.07 mg), it is noted that the insects remain in the upper compartment, while certain insects (10%) gain the lower compartment in the control experiment (without product in the lower compartment). Eugenol confirms its repellency. On the other hand, if we put in the presence of naringin and eugenol, 65% of insects are found in the lower compartment after twenty hours. The combination of naringin & eugenol has made it possible to significantly inhibit the repellency of eugenol.
3ème expérimentation : inhibition de la motricité naturelle par les polyphénols et leur toxicité sur Acanthoscelides obtectus, bruche du haricot.3rd experiment: inhibition of natural motor skills by polyphenols and their toxicity on Acanthoscelides obtectus, bean weevil.
Des lots expérimentaux de 10 adultes sont placés dans des chambres expérimentales d'un volume de 106 cm3 en présence de 0,5 g de polyphenol. En présence de naringine, rutine et acide caféique, on note une diminution très significative de la motricité naturelle au bout du sixième jour (par exemple pour l'acide caféique, sur un effectif de 30 adultes, on note le sixième jour 50 % d'insectes knock down, les autres étant morts) et une mortalité de 96 % au bout de huit jours. D'autres polyphénols (acide férulique, vanillique, flavone, quercétine, etc.) présentent des activités de même type, mais à des degrés divers, bien qu'étant toutes significativement différentes du lot-témoin (P ≈ O) . En atmosphère confinée, les polyphénols manifestent donc une toxicité de type "retard" qui s'exprime d'abord par un fort pouvoir attractif, un effet knock down suivi de la mort de l'insecte.Experimental batches of 10 adults are placed in experimental chambers with a volume of 106 cm 3 in the presence of 0.5 g of polyphenol. In the presence of naringin, rutin and caffeic acid, there is a very significant decrease in natural motor skills after the sixth day (for example for caffeic acid, on a workforce of 30 adults, the sixth day is noted 50% of insects knock down, the others being dead) and a mortality of 96% after eight days. Other polyphenols (ferulic acid, vanillic, flavone, quercetin, etc.) exhibit activities of the same type, but to varying degrees, although they are all significantly different from the control batch (P ≈ O). In a confined atmosphere, polyphenols therefore manifest a "delay" type toxicity which is expressed firstly by a strong attractive power, a knock down effect followed by the death of the insect.
4ème expérimentation : toxicité de différentes molécules terpéniques sur Acanthoscelides obtectus Say et inhibition de la reproduction. On met des lots expérimentaux de 20 insectes dans des chambres expérimentales d'un volume de 106 cm3 en atmoshère confinée en présence de quantités croissantes (1 μl, 2,5 μl, 5 μl, 7,5 μl, 10 μl de solution 6,5 M) de terpènes déposés sur du papier Whatmann contenu dans une petite boîte munie d'une gaze empêchant le contact entre l'insecte et le produit. La toxicité observée est donc de type inhalatoire. Au bout de 24 et 48 heures, on dénombre les morts : pour l'eugénol, on dénombre ainsi, au bout de 24 heures, 13 % de morts pour une quantité de 6,5 10~6 M, 72 % pour 3,25 10"5 M, 84 % pour 4,9 10"5 M. L'effet léthal total (100 % de morts) est atteint pour une concentration de 8,56 mg/dm3 d'air et la CL50, calculée par la méthode des probits est de 3,5 mg/dm3 pour ce produit. De même, l'effet léthal 100 % du carvacrol s'évalue à 9,8 mg/dm3 et du terpinéol à 9,3 mg/dm3.4th experiment: toxicity of different terpene molecules on Acanthoscelides obtectus Say and inhibition of reproduction. Experimental batches of 20 insects are placed in experimental chambers with a volume of 106 cm 3 in a confined atmosphere in the presence of increasing quantities (1 μl, 2.5 μl, 5 μl, 7.5 μl, 10 μl of solution 6 , 5 M) of terpenes deposited on Whatmann paper contained in a small box provided with a gauze preventing contact between the insect and the product. The toxicity observed is therefore of inhalation type. After 24 and 48 hours, the dead are counted: for eugenol, there are thus, after 24 hours, 13% of dead for a quantity of 6.5 10 ~ 6 M, 72% for 3.25 10 "5 M, 84% for 4.9 10 " 5 M. The total lethal effect (100% of deaths) is reached at a concentration of 8.56 mg / dm 3 of air and the LC 50 , calculated by the probits method is 3.5 mg / dm 3 for this product. Similarly, the 100% lethal effect of carvacrol is evaluated at 9.8 mg / dm 3 and terpineol at 9.3 mg / dm 3 .
L'inhibition de la reproduction est étudiée par l'expérimentation suivante. Dans la chambre expérimentale décrite précédemment, on met en présence une population de 20 insectes adultes et des graines de haricots (Phaseolus vulσaris L.) pour le lot-témoin. Les terpènes sont ajoutés au milieu, déposés (1,6 10~6 M et 6,5 10~6 M) sur du papier hatmann incorporé dans une petite boîte de manière qu'aucun contact n'ait lieu avec l'insecte. Chaque jour, on dénombre les morts et les oeufs pondus sur une période de dix jours. A la fin de cette période, on note le nombre de larves ayant pénétré dans les graines, puis le nombre émergeant, soit le nombre d'imagos, au bout de quarante jours environ. On constate par exemple que, en présence de 1,6 10~6 M de carvacrol, 14 adultes sont morts, 43 oeufs sont pondus au bout de 10 jours (2 morts pour le témoin et 259 oeufs pondus pour le témoin) , 10 larves seulement ont pénétré dans les graines et 6 adultes ont émergé (au lieu de 210 et 192 pour le témoin). En présence de 6,5 10~6 M de carvacrol, tous les insectes meurent au bout de 2 jours et aucun oeuf n'est pondu.The inhibition of reproduction is studied by the following experiment. In the experimental chamber described above, a population of 20 adult insects and bean seeds (Phaseolus vulσaris L.) are brought together for the control batch. The terpenes are added to the medium, deposited (1.6 10 ~ 6 M and 6.5 10 ~ 6 M) on hatmann paper incorporated in a small box so that no contact takes place with the insect. Every day, there are the dead and the eggs laid over a period of ten days. At the end of this period, note the number of larvae that have entered the seeds, then the emerging number, the number of imagos, after about forty days. We note for example that, in the presence of 1.6 10 ~ 6 M of carvacrol, 14 adults died, 43 eggs are laid after 10 days (2 dead for the control and 259 eggs laid for the control), 10 larvae only entered the seeds and 6 adults emerged (instead of 210 and 192 for the control). In the presence of 6.5 10 ~ 6 M carvacrol, all insects die after 2 days and no eggs are laid.
Le carvacrol inhibe très fortement la reproduction de A. obtectus Say, tant par une activité sur la fécondité que par une activité larvicide : seuls 23 % des larves pénètrent dans les graines et 60 % des adultes en émergent, alors que les taux sont respectivement de 81 % et 91 % pour le témoin. La même activité inhibitrice est constatée pour l'eugénol, le terpinéol et, à des degrés moindres mais néanmoins significatifs, pour d'autres terpènes monoterpéniques. 5ème expérimentation : atteinte de la motricité naturelle de Sitotroga cerealella (alucite des céréales) par l'association eugénol/naringine (effet knock-down) et toxicité de 1'association polyphénols/terpènes.Carvacrol very strongly inhibits the reproduction of A. obtectus Say, both by an activity on fertility and by a larvicidal activity: only 23% of the larvae enter the seeds and 60% of the adults emerge from them, while the rates are respectively 81% and 91% for the witness. The same inhibitory activity is observed for eugenol, terpineol and, to lesser but nevertheless significant degrees, for other monoterpene terpenes. 5th experiment: impairment of the natural motor skills of Sitotroga cerealella (cereal alucitis) by the eugenol / naringin association (knock-down effect) and toxicity of the polyphenols / terpenes association.
Dans le dispositif expérimental décrit précédemment (expérimentation 1) , on réalise les manipulations suivantes.In the experimental device described above (experiment 1), the following manipulations are carried out.
Une première expérience, réalisée avec 1 μl d'eugénol (6,5 10"6 M), dénombre au bout de 20 heures une alucite morte, dans le compartiment 1 et trois alucites mortes dans le compartiment 2 sur une population initiale de 18 alucites (soit une mortalité de 22 %) , les autres virevoltant tout à fait normalement. Dans les mêmes conditions, 1 μl de terpinéol (soit 0,93 mg) provoque la mort de 20 % d'insectes. Si la même expérimentation est conduite en présence de la naringine (masse de 1,7 10~3 M), on note la présence de 3 alucites mortes dans le compartiment 1, 7 alucites mortes dans le compartiment 2, les autres alucites n'ayant plus aucune motricité naturelle (effet knock-down) . L'association des composés a provoqué la mortalité de 55 % de la population et a inhibé la motricité naturelle des survivantes.A first experiment, carried out with 1 μl of eugenol (6.5 10 "6 M), counts after 20 hours a dead alucite in compartment 1 and three dead alucites in compartment 2 on an initial population of 18 alucites (ie a mortality of 22%), the other twirls quite normally. Under the same conditions, 1 μl of terpineol (ie 0.93 mg) causes the death of 20% of insects. If the same experiment is carried out presence of naringin (mass of 1.7 10 ~ 3 M), note the presence of 3 dead alucites in compartment 1, 7 dead alucites in compartment 2, the other alucites no longer having any natural motor skills (knock effect The combination of the compounds caused the death of 55% of the population and inhibited the natural motor skills of the survivors.
Une deuxième série d'expériences est réalisée en présence d'une association de composés polyphenoliques (acide caféique, naringine et rutine : 0,5 g de chacun des composés, soit respectivement des masses de 2 10""3 M, 8,6 10~4 M et 7,5 10~4 M) , au bout de 20 heures, 10 alucites (50 %) sont mortes, les insectes survivants présentant une bonne motricité. Si, en revanche, on associe aux composés précédente 20 μl d'un mélange de terpinéol et eugénol (v:v) , les insectes meurent en moins de quatre heures. 6ème expérimentation : effet attractif et inhibition de l'activité motrice de la naringine sur Ceratitis capitata (mouche méditerrannéenne des fruits et légumes) et toxicité de l'association polyphénol/terpène.A second series of experiments is carried out in the presence of a combination of polyphenolic compounds (caffeic acid, naringin and rutin: 0.5 g of each of the compounds, or respectively masses of 2 10 "" 3M, 8.6 10 ~ 4 M and 7.5 10 ~ 4 M), after 20 hours, 10 alucites (50%) are dead, the surviving insects having good motor skills. If, on the other hand, the preceding compounds are combined with 20 μl of a mixture of terpineol and eugenol (v: v), the insects die in less than four hours. 6th experiment: attractive effect and inhibition of the motor activity of naringin on Ceratitis capitata (Mediterranean fruit and vegetable fly) and toxicity of the polyphenol / terpene association.
Si, dans l'appareil à deux compartiments décrit précédemment (volume total 950 cm3 environ) on met dans le compartiment 1,1 g de naringine et, dans le compartiment 2, une population de 64 cératites, au bout de 20 heures 28 cératites, soit 43 %, se retrouvent dans le compartiment 1 et, au bout de.24 heures, 39, soit 60 % qui sont, de plue, privées de motricité naturelle. Aucun des insectes n'est mort. Si on associe à la même quantité de naringine 1 μl, soit 1,07 mg d'eugénol, on dénombre, pour la même durée, 42 % d'insectes morts, ce pourcentage augmentant à 69 % si on a mis 5 μl (5,35 mg) d'eugénol avec la naringine. Au bout de 28 heures, 80 % des insectes ont été attirés par la naringine, 10 % sont morts et 65 % n'ont plus de motricité normale, 85 % sont morts en présence de l'association naringine/eugénol (1 μl) et 83 % en présence de l'association naringine/eugénol (5 μl). On remarque donc que, si la naringine attire et prive les insectes de leur motricité naturelle, l'association avec l'eugénol laisse apparaître l'expression d'une toxicité plus rapide. L'augmentation de la concentration d'eugénol permet d'obtenir une élévation sensible du pourcentage de mortalité observé pour une durée comprise entre 20 heures et 26 heures uniquement.If, in the device with two compartments described above (total volume approximately 950 cm 3 ), 1.1 g of naringin are placed in the compartment and, in compartment 2, a population of 64 ceratites, after 20 hours 28 ceratites , or 43%, are found in compartment 1 and, after 24 hours, 39, or 60% who are, moreover, deprived of natural motor skills. None of the insects died. If we associate with the same amount of naringin 1 μl, or 1.07 mg of eugenol, there are, for the same duration, 42% of dead insects, this percentage increasing to 69% if we put 5 μl (5 , 35 mg) of eugenol with naringin. After 28 hours, 80% of the insects were attracted to naringin, 10% died and 65% no longer have normal motor skills, 85% died in the presence of the naringin / eugenol combination (1 μl) and 83% in the presence of the naringin / eugenol combination (5 μl). It is therefore noted that, if the naringine attracts and deprives insects of their natural motor skills, the association with eugenol lets appear the expression of a more rapid toxicity. The increase in the concentration of eugenol makes it possible to obtain a significant increase in the percentage of mortality observed for a period of between 20 hours and 26 hours only.
7ème expérimentation : toxicité de l'acide caféique incorporé dans le régime de Ceratitis capitata. (mouche méditerranéenne des fruits et légumes) Soit une population de 60 cératites, dans un milieu semi-aéré, nourrie avec de la chair de pomme écrasée. On réalise trois lots expérimentaux : un lot-témoin, un lot comprenant, dans deux boîtes séparées, de la pomme et 0,5 g d'acide caféique et un troisième lot, pour lequel l'acide caféique est mélangé à la pomme. On constate, au bout de quatre jours, que 20 % des insectes sont morts dans le premier lot, 42 % dans le deuxième lot et 59 % dans le troisième lot. Au bout de huit jours, les pourcentages sont, respectivement, 32 %, 60 % et 92 %. L*acide caféique manifeste ainsi une activité toxique significative pour la cératite et son efficacité est d'autant plus grande qu'il est intégré dans le régime alimentaire habituel de la mouche et consommé régulièrement. Un effet antinutrionel est également noté avec la rutine. δème expérimentation : toxicité de l'association polyphénols/terpènes sur Ostrinia nubilalis (pyrale du maïs) au dernier stade larvaire.7th experiment: toxicity of caffeic acid incorporated into the Ceratitis capitata diet. (Mediterranean fruit and vegetable fly) Or a population of 60 ceratites, in a semi-aerated environment, fed with crushed apple flesh. Three experimental batches are carried out: a control batch, a batch comprising, in two separate boxes, apple and 0.5 g of caffeic acid and a third batch, for which the caffeic acid is mixed with the apple. We note, after four days, that 20% of the insects died in the first batch, 42% in the second batch and 59% in the third batch. After eight days, the percentages are 32%, 60% and 92%, respectively. Caffeic acid thus manifests a significant toxic activity for ceratitis and its effectiveness is all the greater when it is integrated into the usual diet of the fly and consumed regularly. An anti-nutritional effect is also noted with rutin. δth experiment: toxicity of the polyphenols / terpenes association on Ostrinia nubilalis (European corn borer) at the last larval stage.
Soient des lots expérimentaux comprenant chacun cinq larves de pyrale en milieu confiné (volume 106 cm3) . On dépose dans la chambre expérimentale différentes masses de polyphenol (rutine ou naringine) ou (/et) terpènes (terpinéol et eugénol) . Les observations sont effectuées sur 7 jours. En présence du polyphenol seul, les larves voient une diminution de leur réactivité après excitation mais, bien qu'ayant consommé le produit, restent vivantes. En présence d'un mélange eugénol-terpinéol (5 μl et 10 μl) hors de tout contact, on dénombre 20 % de morts. Si, en revanche, on met la même quantité de terpènes en présence de 0,5 g de naringine, 100 % de larves meurent. De même, l'association acide caféique (0,5 g)-eugénol (5 μl, soit 5,35 mg) provoque la mort de la totalité des larves en 72 heures.Are experimental batches each comprising five larvae of borer in a confined environment (volume 106 cm 3 ). Various masses of polyphenol (rutin or naringin) or (/ and) terpenes (terpineol and eugenol) are deposited in the experimental chamber. Observations are made over 7 days. In the presence of polyphenol alone, the larvae see a decrease in their reactivity after excitation but, although having consumed the product, remain alive. In the presence of a eugenol-terpineol mixture (5 μl and 10 μl) out of contact, there are 20% of deaths. If, on the other hand, the same quantity of terpenes is placed in the presence of 0.5 g of naringin, 100% of larvae die. Similarly, the association of caffeic acid (0.5 g) and eugenol (5 μl, or 5.35 mg) causes the death of all the larvae in 72 hours.
9ème expérimentation : effet d'une association polyphénols/terpènes sur Sesamia nonagroides (Sésamie) au dernier stade larvaire. Le dispositif expérimental est celui décrit dans l'expérimentation 6. On constate, en premier lieu, une très forte consommation du polyphenol par les sésamies. En présence de 0,5 g de naringine, au bout de quatre jours, 20 % sont mortes, les autres ayant une forte diminution de leur volume corporel. Parallèlement on observe, en présence d'un mélange de terpinéol et d'eugénol (10 μl, v:v, soit 6,5 10"*5 M), la même mortalité. Si on met un mélange rutine-naringine (0,2 g pour chacun) et terpinéol-eugénol (40 μl, v:v, soit 2,6 6,5 10""4 M)), on constate que, dans un premier temps, les larves de sésamies sont très excitées par l'association des composés: elles manifestent une activité frénétique, se tordant dans tous les sens, rampant dans les récipients contenant les polyphénols, s'y vautrant et les consommant, alors qu'elles se tiennent éloignées de l'endroit où sont les terpènes. A la fin des quatre jours, on dénombre 60 % des larves mortes et le reste étant knock-down, le volume de leur poids corporel ayant fortement régressé. lOème expérimentation : potentialisation de l'activité d'insecticides classiques du commerce (principes actifs : malathion et pyréthrinoïdes) par l'association polyphénols/terpènes sur Acanthoscelides obtectus.9th experiment: effect of a polyphenols / terpenes association on Sesamia nonagroides (Sesamia) at the last larval stage. The experimental device is that described in Experiment 6. Firstly, there is a very high consumption of polyphenol by sesamies. In the presence of 0.5 g of naringin, after four days, 20% died, the others having a sharp decrease in their body volume. At the same time we observe, in the presence of a mixture of terpineol and eugenol (10 μl, v: v, or 6.5 10 "* 5 M), the same mortality. If we put a mixture of rutin-naringin (0.2 g for each) and terpineol-eugenol (40 μl, v: v, ie 2.6 6.5 10 "" 4 M)), it can be seen that, initially, the sesame larvae are very excited by the combination of the compounds: they exhibit activity frantic, twisting in all directions, crawling in the containers containing the polyphenols, wallowing in and consuming them, while they stay away from where the terpenes are. At the end of the four days, there are 60% of the dead larvae and the rest being knock-down, the volume of their body weight having sharply decreased. 10th experiment: potentiation of the activity of conventional commercial insecticides (active ingredients: malathion and pyrethroids) by the polyphenols association / terpenes on Acanthoscelides obtectus.
Deux séries d'expérimentations différentes sont effectuées dans des chambres expérimentales de 900 cm3 (milieu confiné) , la première avec du malathion en solution de 250 g/1, la deuxième en présence d'un insecticide contenant 0,1 g de pyréthrinoïdes, 0,2 g de roténone et 1,5 g de butylate de pipéronyle comme synergisant.Two different series of experiments are carried out in 900 cm 3 experimental chambers (confined medium), the first with malathion in solution of 250 g / 1, the second in the presence of an insecticide containing 0.1 g of pyrethroids, 0.2 g of rotenone and 1.5 g of piperonyl butoxide as a synergist.
Différents lots expérimentaux sont réalisés : outre le lot-témoin contenant uniquement une population de 20 bruches, un premier lot contient un insecticide dont on examine la toxicité (1 μl pour le malathion, 100 μl pour les pyréthrinoïdes), un deuxième la même quantité d'insecticide en présence d'un gramme (17 10 M) de naringine, un troisième lot contient la même quantité d'insecticide, mais en présence cette fois de 5 μl (5,35 mg) d'eugénol et un quatrième lot contient à la fois l'insecticide, l'eugénol et la naringine.Different experimental batches are carried out: in addition to the control batch containing only a population of 20 weevils, a first batch contains an insecticide whose toxicity is examined (1 μl for malathion, 100 μl for pyrethroids), a second the same quantity of insecticide in the presence of one gram (17 10 M) of naringin, a third batch contains the same amount of insecticide, but this time in the presence of 5 μl (5.35 mg) of eugenol and a fourth batch contains both insecticide, eugenol and naringin.
Les insecticides du commerce sont expérimentés à des doses inférieures aux DL50 afin de noter les éventuelles synergies entre composés. On a au préalable déterminé que la naringine seule n'a pas d'effet léthal au bout de 24 heures et on choisit une concentration moyenne d'eugénol.Commercial insecticides are tested at doses lower than LD 50 in order to note any synergies between compounds. We previously determined that the Naringin alone does not have a lethal effect after 24 hours and an average concentration of eugenol is chosen.
Au bout de 24 heures, on dénombre les insectes mort dans les lots expérimentaux, le lot-témoin présentant des insectes vivants ayant une motricité normale.At the end of 24 hours, there are dead insects in the experimental batches, the control batch having live insects having normal motor skills.
En présence de pyréthrinoïdes, on constate que le premier lot (insecticide seul) n'est pas affecté à la dose expérimentée; le deuxième lot non plus. En revanche, le troisième lot présente 25 % de morts et le quatrième lot 40 % de morts. En présence de malathion seul, un insecte (5 %) seulement est mort. Le pourcentage s'élève à 25 % en présence de l'association malathion-naringine (lot 2), à 70 % en présence de l'association malathion-eugénol (lot 3) et à 100 % quand l'association regroupe insecticide, naringine et eugénol (lot 4) .In the presence of pyrethroids, it can be seen that the first batch (insecticide alone) is not assigned to the dose tested; the second batch either. On the other hand, the third batch presents 25% of deaths and the fourth batch 40% of deaths. In the presence of malathion alone, only one insect (5%) died. The percentage rises to 25% in the presence of the malathion-naringin combination (lot 2), to 70% in the presence of the malathion-eugenol combination (lot 3) and to 100% when the association includes insecticide, naringin and eugenol (lot 4).
On remarque donc, dans le premier cas, qu'il n'y a pas de toxicité de l'insecticide seul, ni en présence du seul polyphenol qui -on l'a établi par ailleurs (troisième expérimentation)- présente un effet léthal de type retard. On constate que, comme il a été montré précédemment (4ème expérimentation) , la toxicité inhalatoire du terpène s'exprime rapidement. L'effet synergique, souligné dans les expérimentations précédentes entre polyphenol et terpène, existe et permet d'augmenter significativement l'effet léthal de 25 à 40 %.It is therefore noted, in the first case, that there is no toxicity of the insecticide alone, nor in the presence of the only polyphenol which - it has been established elsewhere (third experiment) - has a lethal effect of delay type. It is noted that, as it was shown previously (4th experiment), the inhalation toxicity of terpene is expressed quickly. The synergistic effect, underlined in the previous experiments between polyphenol and terpene, exists and allows to significantly increase the lethal effect from 25 to 40%.
Le deuxième cas, qui appuie les observations précédentes, se distingue cependant du précédent. En effet, on remarque que la naringine -qui est sans effet immédiat en présence d'une dose elle-même inactive de pyréthrinoïdes- exalte la faible toxicité du malathion et provoque une augmentation de 20 % de l'effet léthal. L'association des trois composés provoque une mortalité totale de la population d'insectes, alors que chacun des composés, pris séparément ou en association binaire (insecticide/polyphénol ou terpène) , ont une efficacité bien moindre. Ce résultat démontre la potentialisation des activités insecticides des différent composés par l'effet synergique résultant de l'association d diverses molécules insecticides, tout particulièrement d couple polyphénols/terpènes. The second case, which supports the previous observations, differs from the previous one, however. Indeed, we note that naringin - which has no immediate effect in the presence of a dose which is itself inactive of pyrethroids - enhances the low toxicity of malathion and causes a 20% increase in the lethal effect. The combination of the three compounds causes total mortality of the insect population, while each of the compounds, taken separately or in binary association (insecticide / polyphenol or terpene), have a much lower efficacy. This result demonstrates the potentiation of the insecticidal activities of the different compounds by the synergistic effect resulting from the association of various insecticidal molecules, especially d polyphenols / terpenes couple.

Claims

REVENDICATIONS 1. Composition insecticide comprenant une substance insecticide, autre qu'un polyphenol, caractérisée en ce qu'elle comprend un polyphenol. CLAIMS 1. Insecticidal composition comprising an insecticidal substance, other than a polyphenol, characterized in that it comprises a polyphenol.
2. Composition suivant la revendication l,2 caractérisée en ce que le polyphenol répond à la formule2. Composition according to claim l, 2 characterized in that the polyphenol corresponds to the formula
dans laquellein which
Rl' et
Figure imgf000021_0001
qui sont identiques ou différents, sont un atome d'hydrogène, un hydroxy ou un alcoxy inférieur, deux au moins de R-^, R-> et RT étant autres qu'un atome d'hydrogène,
R l and
Figure imgf000021_0001
which are identical or different, are a hydrogen atom, a hydroxy or a lower alkoxy, at least two of R- ^, R- > and R T being other than a hydrogen atom,
R4 est un atome d'hydrogène, R5 est un atome d'hydrogène, un hydroxyle, un alcoxy ou un glycoside, ou R4 et R5 forment ensemble une liaison de valence supplémentaire entre les atomes de carbone qui les porten ,R 4 is a hydrogen atom, R 5 is a hydrogen atom, a hydroxyl, an alkoxy or a glycoside, or R 4 and R 5 together form an additional valence bond between the carbon atoms which carry them,
R6 est un atome d'hydrogène,R 6 is a hydrogen atom,
R7 est un hydroxyle, alcoyle inférieur ou phényle éventuellement mono-, di-, ou trisubstitué par des radicaux alcoyle inférieurs, alcoxy inférieurs ou hydroxyle, ou R6 et R7 forment ensemble un radical bivalent de formuleR 7 is a hydroxyl, lower alkyl or phenyl optionally mono-, di-, or trisubstituted by lower alkyl, lower alkoxy or hydroxyl radicals, or R 6 and R 7 together form a bivalent radical of formula
Figure imgf000021_0002
relié par l'atome d'azote à l'atome de carbone portant
Figure imgf000021_0002
linked by the nitrogen atom to the carbon atom bearing
R4R 4
3. Composition suivant la revendication 2, caractérisée en ce que le biphénol est la naringine, la rutine ou l'acide caféique.3. Composition according to claim 2, characterized in that the biphenol is naringin, rutin or caffeic acid.
4. Composition suivant l'une des revendications précédentes, caractérisée en ce que la substance insecticide, autre qu'un polyphenol, comprend un terpène.4. Composition according to one of the preceding claims, characterized in that the insecticidal substance, other than a polyphenol, comprises a terpene.
5. Composition suivant la revendication 4, caractérisée en ce que le terpène est l'eugénol, le terpinéol, le carvacrol, le thymol, le linalool,1'anéthol, le cuminaldéhyde, le cynamaldéhyde ou le cymène.5. Composition according to claim 4, characterized in that the terpene is eugenol, terpineol, carvacrol, thymol, linalool, anethole, cuminaldehyde, cynamaldehyde or cymene.
6. Composition suivant l'une des revendications 1 à 4, caractérisée en ce que la substance insecticide, autre qu'un polyphenol, comprend un pyréthrinoïde, un carbamate, un composé organique chloré, un composé organique phosphore ou un acide gras.6. Composition according to one of claims 1 to 4, characterized in that the insecticidal substance, other than a polyphenol, comprises a pyrethroid, a carbamate, a chlorinated organic compound, an organic phosphorus compound or a fatty acid.
7. Composition suivant l'une des revendications précédentes, caractérisée en ce que le rapport pondéral de la substance insecticide, autre qu'un polyphenol, au polyphenol, est compris entre 1/10 et 1/1000. 7. Composition according to one of the preceding claims, characterized in that the weight ratio of the insecticidal substance, other than a polyphenol, to polyphenol, is between 1/10 and 1/1000.
PCT/FR1993/001226 1992-12-16 1993-12-10 Polyphenol-based insecticide compositions WO1994013141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU56538/94A AU5653894A (en) 1992-12-16 1993-12-10 Polyphenol-based insecticide compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9215161A FR2699051B1 (en) 1992-12-16 1992-12-16 Polyphenol-based insecticide compositions.
FR92/15161 1992-12-16

Publications (1)

Publication Number Publication Date
WO1994013141A1 true WO1994013141A1 (en) 1994-06-23

Family

ID=9436661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1993/001226 WO1994013141A1 (en) 1992-12-16 1993-12-10 Polyphenol-based insecticide compositions

Country Status (4)

Country Link
CN (1) CN1089774A (en)
AU (1) AU5653894A (en)
FR (1) FR2699051B1 (en)
WO (1) WO1994013141A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695502A1 (en) * 1994-06-14 1996-02-07 Elf Atochem S.A. Insecticidal compositions based on methylundecylenate
WO2009007964A2 (en) * 2007-07-09 2009-01-15 Yeda Research And Development Co. Ltd. Pectin methyl esterase-inhibiting polyphenolic flavonoids and use thereof
WO2021064252A1 (en) * 2019-10-05 2021-04-08 JEUNEN, Carlo Pesticide synergist sx-pyr
CN115784853A (en) * 2022-11-24 2023-03-14 广东省科学院动物研究所 Mosquito repellent, preparation method thereof and application thereof in mosquito repelling
WO2024023050A1 (en) * 2022-07-26 2024-02-01 Fyteko Sa Insecticide enhancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595872B (en) * 2009-07-21 2012-07-18 西华大学 Application of 2-methyl-5-isopropylphenol in Stellera chamaejasme L. in pesticides

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948104A (en) * 1982-08-09 1984-03-19 カナデイアン・パテンツ・アンド・デベロツプメント・リミテツド Method of protecting wood and wooden ware from insect
JPH0249703A (en) * 1988-08-11 1990-02-20 Kinki Univ Composition for controlling minamikiroazamiuma (insect pest of thrips having invaded from southeasten asia) and control
BE1002598A6 (en) * 1988-11-22 1991-04-09 Biolissa S C Pyrethrinoid-based insecticide formulations and use thereof
SU1703018A1 (en) * 1988-09-05 1992-01-07 Ботанический Сад Ан Мсср Insecticide-acaricide
JPH07207473A (en) * 1994-01-19 1995-08-08 Tezuka Kogyo Kk Molding having rust preventing effect

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948104A (en) * 1982-08-09 1984-03-19 カナデイアン・パテンツ・アンド・デベロツプメント・リミテツド Method of protecting wood and wooden ware from insect
JPH0249703A (en) * 1988-08-11 1990-02-20 Kinki Univ Composition for controlling minamikiroazamiuma (insect pest of thrips having invaded from southeasten asia) and control
SU1703018A1 (en) * 1988-09-05 1992-01-07 Ботанический Сад Ан Мсср Insecticide-acaricide
BE1002598A6 (en) * 1988-11-22 1991-04-09 Biolissa S C Pyrethrinoid-based insecticide formulations and use thereof
JPH07207473A (en) * 1994-01-19 1995-08-08 Tezuka Kogyo Kk Molding having rust preventing effect

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CENTRAL PATENTS INDEX, BASIC ABSTRACTS JOURNAL Section Ch Week 7210, Derwent World Patents Index; Class C, AN 16372T *
CENTRAL PATENTS INDEX, BASIC ABSTRACTS JOURNAL Section Ch Week 8423, 1 August 1984 Derwent World Patents Index; Class C, AN 142341 *
CHEMICAL PATENTS INDEX, DOCUMENTATION ABSTRACTS JOURNAL Section Ch Week 9013, 23 May 1990 Derwent World Patents Index; Class C, AN 096543 *
CHEMICAL PATENTS INDEX, DOCUMENTATION ABSTRACTS JOURNAL Section Ch Week 9249, 10 February 1993 Derwent World Patents Index; Class C, AN 406114 *
T.N.SHAVER ET. AL.: "Effect of Flavonoid Pigments and Gossypol on Growth and Development of the Bollworm, Tobacco Budworm and Pink Bollworm", JOURNAL OF ECONOMIC ENTOMOLOGY, vol. 62, no. 3, June 1969 (1969-06-01), COLLEGE PARK, MARYLAND US, pages 643 - 646 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0695502A1 (en) * 1994-06-14 1996-02-07 Elf Atochem S.A. Insecticidal compositions based on methylundecylenate
WO2009007964A2 (en) * 2007-07-09 2009-01-15 Yeda Research And Development Co. Ltd. Pectin methyl esterase-inhibiting polyphenolic flavonoids and use thereof
WO2009007964A3 (en) * 2007-07-09 2010-03-18 Yeda Research And Development Co. Ltd. Pectin methyl esterase-inhibiting polyphenolic flavonoids and use thereof
WO2021064252A1 (en) * 2019-10-05 2021-04-08 JEUNEN, Carlo Pesticide synergist sx-pyr
BE1027622B1 (en) * 2019-10-05 2021-05-04 Denis Mbonimpa SX-PYR PESTICIDE SYNERGIST
WO2024023050A1 (en) * 2022-07-26 2024-02-01 Fyteko Sa Insecticide enhancer
CN115784853A (en) * 2022-11-24 2023-03-14 广东省科学院动物研究所 Mosquito repellent, preparation method thereof and application thereof in mosquito repelling
CN115784853B (en) * 2022-11-24 2023-12-12 广东省科学院动物研究所 Mosquito repellent, preparation method thereof and application thereof in mosquito repellent

Also Published As

Publication number Publication date
CN1089774A (en) 1994-07-27
FR2699051B1 (en) 1995-02-24
AU5653894A (en) 1994-07-04
FR2699051A1 (en) 1994-06-17

Similar Documents

Publication Publication Date Title
Pener et al. An overview of insect growth disruptors; applied aspects
Ascher Nonconventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica
Isman et al. Pesticides based on plant essential oils: from traditional practice to commercialization
Owusu Effect of some Ghanaian plant components on control of two stored-product insect pests of cereals
Isman et al. Natural insecticides from the Annonaceae: a unique example for developing biopesticides
Dimetry Prospects of botanical pesticides for the future in integrated pest management programme (IPM) with special reference to neem uses in Egypt
Singh et al. Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus (Lepidoptera: Pyralidae)
Dekeyser et al. Biochemical and physiological targets for miticides
Lamy et al. Artificially applied plant volatile organic compounds modify the behavior of a pest with no adverse effect on its natural enemies in the field: Improving the push–pull strategy against a major Brassicaceae pest
Satpathy et al. Role of novel insecticides in crop protection and their selectivity to natural enemies: A review
Sampson et al. Laboratory and field assessments of erythritol derivatives on the survival, reproductive rate, and control of Drosophila suzukii (Diptera: Drosophilidae)
Szczepanik et al. Effects of halolactones with strong feeding-deterrent activity on the growth and development of larvae of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae)
Zapata et al. The essential oil of Laurelia sempervirens is toxic to Trialeurodes vaporariorum and Encarsia formosa
Golec Effect of neem (Azadirachta indica A. Juss) insecticides on parasitoids
Waiss et al. Insect growth inhibitors in crop plants
WO1994013141A1 (en) Polyphenol-based insecticide compositions
EP0125155A1 (en) Novel synergistic agricultural insecticidal, pesticidal and acaricidal combinations
EP0266822B1 (en) Use of farnesene in agriculture or horticulture or in the protection of stocks, or for the preparation of products, and also method for controlling insects and acarids by using farnesene
Masih et al. Insect growth regulators for insect pest control
US5676959A (en) Phototoxic insecticidal composition and method for controlling insect populations
EP0695502A1 (en) Insecticidal compositions based on methylundecylenate
Sharma et al. Botanical pesticides: environmental impact
Yahaya et al. Efficacy of selected seed oils against the fecundity of Callosobbruchus maculatus (F.)(Coleoptera: Bruchidae)
Baghouz et al. Biocidal activity of Ziziphora hispanica L and Satureja calamintha Scheele L essential oils against the Callosobruchus maculatus (Fabricius) pest on cowpea seeds during storage
Essa et al. Biochemical Composition, Toxicity and Bioactivities of the Essential Oil extracted from Coffea arabica L. husks against the Cotton Leafworm, Spodoptera littoralis (Boisduval)(Lepidoptera: Noctudiae)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
EX32 Extension under rule 32 effected after completion of technical preparation for international publication

Ref country code: GE

LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)

Ref country code: GE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA