WO1994009144A1 - Novel plants and processes for obtaining them - Google Patents
Novel plants and processes for obtaining them Download PDFInfo
- Publication number
- WO1994009144A1 WO1994009144A1 PCT/GB1992/001881 GB9201881W WO9409144A1 WO 1994009144 A1 WO1994009144 A1 WO 1994009144A1 GB 9201881 W GB9201881 W GB 9201881W WO 9409144 A1 WO9409144 A1 WO 9409144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- starch
- donor
- enzyme
- zea
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
Definitions
- This invention relates to novel plants having an improved ability to produce starch including an improved ability to produce structurally-altered starch. Such novel plants are capable of producing higher yields than known plants, and/or are capable of producing starch of altered quality.
- the invention further relates to processes for obtaining such plants.
- Temperature is one of the most important ecological factors governing the natural distribution of plants and their satisfactory growth and yield potential in agricultural cultivation.
- a crop will give its highest yields, and lowest risk of failure, when it is cultivated as close as possible to the specific temperature optima for each of its development stages in the course of the growing season.
- temperature is not a stable factor for crops with extended growth periods and the plants may suffer stress because of temperatures which are too high or too low, or both, in different intensities and over short or long time intervals.
- Many of the world's food crops are cultivated in regions where their yield is constrained by what we have called "thermal thresholds" for optimal growth (Keeling and Greaves, 1990).
- the actual optimum temperature for maximal yield differs amongst different crops: for example, it is well known that certain cereal plants (such as wheat, barley and maize) give a maximum grain yield at around 25° to 30°C. This optimum temperature is the basis for the calculation of Heat Units (HU) which are used to calculate Growing Degree Units (GDU). GDU is a measure of the HUs a plant requires within a particular temperature range to reach a maximum yield. "Grain filling" is dry matter accumulation in the grain, and occurs over the period during which the grain increases in weight. Published information on crops such as wheat, barley, maize, rice and sorghum, shows that as the growth temperature increases the duration of grain filling declines.
- HU Heat Units
- GDU Growing Degree Units
- Arrhenius equation defines a chemical mechanism for the generalisation of a factor "Q ⁇ 0 " where the rate will double or treble for a 10°C rise in temperature.
- Enzymes which determine the velocity of any chemical reaction in living organisms, act by lowering the free energy of activation values of the chemical reactions to the extent that the thermal energy which is present in the organism is sufficient to activate the reactants.
- the Q 10 values associated with enzyme catalysed reactions are therefore a physical characteristic of the energy of activation achieved by that enzyme.
- Q- n values will therefore remain fixed provided (i) the catalytic site of the enzyme-protein remains functional and (ii) the substrate itself is not affected significantly by changed temperature. It is a well known fact that at temperatures which exceed the ther odynamic stability of proteins
- An object of the present invention is to provide novel plants having an increased capacity to produce starch and a capacity to produce starch with an altered fine structure.
- a method of producing a plant with altered ⁇ tarch ⁇ ynthe ⁇ i ⁇ ing ability compri ⁇ ing stably incorporating into the genome of a recipient plant one or more than one donor gene specifying an enzyme involved in a ⁇ tarch or glycogen bio ⁇ ynthetic pathway.
- the above method is generally applicable to all plants producing or storing starch.
- the recipient plant may be: a cereal such as maize (corn), wheat, rice, sorghum or barley; a fruit-producing species ⁇ uch as banana, apple, tomato or pear; a root crop such as cassava, potato, yam or turnip; an oilseed crop ⁇ uch a ⁇ rapeseed, sunflower, oil palm, coconut, linseed or groundnut; a meal crop such as soya, bean or pea; or any other suitable species.
- the recipient plant is of the family Gramineae and most preferably of the species Zea mays.
- the method according to the invention may also be used to produce a plant having the ability to synthesise starch with an altered fine ⁇ tructure.
- Thi ⁇ may be due to a shift in the temperature optimum of starch synthesis or due to other her reasons (such as a change in the overall balance of the different enzymes in the biosynthetic pathway).
- the fine structure of the starch affects it ⁇ quality. It is thus possible to generate crops producing starch which is better adapted or targetted to the crops' end-use (such as starch with improved processing properties, improved digestibility, etc).
- the method and resulting alterations in starch ⁇ ynthe ⁇ ising ability are particularly advantageous for maize.
- the temperature optimum of starch synthesis pathway enzyme activity may be matched more closely to the higher temperature range ⁇ encountered in the typical maize growing regions of the world.
- the fine structure of the starch may be changed so that novel starches are made in the recipient plant.
- the glycogen synthase enzyme has al ⁇ o been studied (see (3) below).
- Grain has been sampled from maize plants grown at 20, 25 and 30°C and SSS and BE activity ha ⁇ been mea ⁇ ured over several temperatures. The temperature at which the grain are growing was found to have no effect on the temperature optima for activity of these two enzymes. Temperature activity curves for these two enzyme ⁇ from the endo ⁇ perms of several commercial U.S. maize hybrids show the same temperature optima. As shown in Figure 8, Q 1Q value ⁇ for in vivo rate ⁇ and SSS and BE activities show remarkable similarities. This is in contrast to, for example, ADP-glucose pyrophosphorylase where Q 1Q is fixed across different temperatures as predicted by the Arrheniu ⁇ equation.
- the bacterial (ADPGlucose: 1,4- ⁇ -D-glucan-4- ⁇ -D-gluco ⁇ yl- tran ⁇ fera ⁇ e (EC 2.4.1.21)) and animal (UDPGlucose: glycogen 4- ⁇ -D-glucosyltra ⁇ fera ⁇ e (EC 2.4.1.11)) sequences are NOT homologous. Furthermore the bacterial forms are not phosphorylated and also are not allosterically affected by glucose 6-phosphate. Finally, the bacterial enzyme use ⁇ ADPG (ie, like plants) and only the animal forms u ⁇ e UDPG. Thi ⁇ makes the bacterial enzyme the ideal choice for using on plants.
- This invention increases the temperature optimum for the grain filling rate above 25°C by relieving the limitations imposed by the reaction properties of SSS, BE or both.
- the enzyme glycogen synthase has a radically different response to temperature and i ⁇ an ideal source of enzyme for increasing starch synthesis at temperatures that exceed the temperature optima of SSS and or BE.
- Changing the temperature optimum for starch synthesis in plants increases plant yield as well a ⁇ changing other important propertie ⁇ ⁇ uch as fruit texture and sweetne ⁇ .
- the alteration ⁇ in expression levels of SSS and BE using both sense and antisense constructs result ⁇ in an alterations in the fine- ⁇ trucure of the ⁇ tarch produced in the recipient plant ⁇ .
- effecting this change in ratio ⁇ of enzyme expre ⁇ sion using temperature stable enzymes results in a more stable and 2 8 rt l
- a gene encoding a glycogen syntha ⁇ e (GS) enzyme may be extracted from bacteria or animal ⁇ and introduced into a donor plant by tran ⁇ formation.
- the temperature ⁇ en ⁇ itivity of ⁇ tarch ⁇ ynthe ⁇ i ⁇ may be improved by transforming plant genomes with a gene encoding glycogen synthase.
- the activity of the glycogen synthase enzyme continues to increase with temperature at least to around 40°C, well in excess of the temperature maxima of the other plant enzymes, soluble starch synthase and branching enzyme, associated with starch synthe ⁇ i ⁇ .
- This data confirms the ⁇ tatus of glycogen synthase as an enzyme with high Q10. It is also mentioned that the glycogen synthase temperature stability is better than any of the corn-derived enzymes from even the best of the germplasm which ha ⁇ been ⁇ creened for thi ⁇ property.
- glycogen syntha ⁇ e notably from bacteria [ADPglucose: 1,4-a-D-glucan 4- ⁇ -D-glucosyl- tran ⁇ fera ⁇ e (E.C. 2.4.1.21)] and animal ⁇ [UDP-gluco ⁇ e: glycogen 4- ⁇ -D-gluco ⁇ yltran ⁇ fera ⁇ e (E.C. 2.4.1.11)].
- ADPglucose 1,4-a-D-glucan 4- ⁇ -D-glucosyl- tran ⁇ fera ⁇ e
- UDP-gluco ⁇ e glycogen 4- ⁇ -D-gluco ⁇ yltran ⁇ fera ⁇ e
- Glycogen synthase from E.coli has a codon usage profile much in common with maize genes but it is preferred to alter, by known procedures, the sequence at the translation start point to be more compatible with a plant con ⁇ ensus sequence: glgA G A T A A T G C A G cons A A C A A T G G C T
- Con ⁇ en ⁇ us sequence of the transit peptide of small subunit RUBISCO from many genotypes has the sequence:
- MASSMLSSAAV—ATRTNPAQAS MVAPFTGLKSAAFPVSRK QNLDITSIA SNGGRVQC and the corn ⁇ mall subunit RUBISCO has the sequence:
- the transit peptide of leaf glyceraldehyde-3P- dehydrogenase from corn has the sequence:
- KKVAHSAKFR VMAVNSENGT The putative tran ⁇ it peptide from ADPG pyropho ⁇ phoryla ⁇ e from wheat has the sequence: RASPPSESRA PLRAPQRSAT RQHQARQGPR RMC
- Po ⁇ ible promoter ⁇ for u ⁇ e in the invention include the promoter ⁇ of the ⁇ tarch synthase gene, ADPG pyrophosphoryla ⁇ e gene, and the ⁇ ucrose ⁇ yntha ⁇ e gene.
- 6- ⁇ -D-(1,4- ⁇ -D-glucano) tran ⁇ fera ⁇ e converts a ylose to amylopectin, (a ⁇ egment of a 1,4- ⁇ -D-glucan chain i ⁇ tran ⁇ ferred to a primary hydroxyl group in a ⁇ imilar glucan chain) ⁇ ometime ⁇ called Q-enzyme.
- thi ⁇ reaction al ⁇ o ha ⁇ temperature-dependent propertie ⁇ in plants, presumably because of the same molecular mechanisms of helix-to-chain transition ⁇ . It is reasonable to believe that the bacterial BE enzyme will behave ⁇ imilarly.
- the most favoured sources of the branching enzyme gene for use in this invention are bacterial although plant enzymes can also be used (rice endosperm, Nakamura etal., Physiologia Plantarum
- the BE gene construct may require the presence of an amyloplast transit peptide to ensure its correct localisation in the amyloplast, as discussed previously for the glycogen ⁇ yntha ⁇ e gene construct.
- ADPG pyrophosphoryla ⁇ e gene and the sucrose synthase gene.
- the fine branching structure of starch is determined by the overall activitie ⁇ of the various isoform ⁇ of the SSS and BE enzyme ⁇ being expressed during ⁇ tarch deposition in the developing endosperm.
- Altering the ratios of these isoform ⁇ may be achieved by tran ⁇ formation technique ⁇ in which ⁇ ome of the natural enzyme activitie ⁇ are repre ⁇ ed whilst others are over-expressed in a manner analogous to the changes reported herein for the starch mutants of corn.
- Improved starch deposition also leads to alteration of the texture of crop ⁇ such as tomatoes because increased amounts of starch in the fruit would increase the total solids content.
- the quality of paste produced from processed tomatoes is in part related to the visco ⁇ ity of the product which i ⁇ u ⁇ ually determined by the Bostwick flow rate, reduced flow rate being de ⁇ irable.
- the factors that interact to give a thicker product with reduced flow rate are complex, involving interactions between insoluble and ⁇ oluble components. It is important to note that the characteristics of components in whole fruit will change during processing because of enzyme action and chemical changes brought about by heating which is involved in tomato proces ⁇ ing by the ⁇ o-called "hot-break" method.
- the con ⁇ istency of hot break paste is likely to be improved by increasing the level of insoluble solid ⁇ in the whole fruit u ⁇ ed in processing.
- Soluble solid ⁇ are the solutes in the tomato PC17GB92/01881
- Paste is normally sold on the basis of its natural tomato soluble solids (NTSS) content. Because the sugars are the major contributors to NTSS, a higher sugar content contributes to a higher yield of paste per tonne of tomatoes.
- NTSS tomato soluble solids
- TS total solid ⁇
- High NTSS levels in ripe fruit may be an indirect measure of the starch component of the insoluble ⁇ olids during fruit development.
- Sugar content is a critical component of the flavour of tomatoes.
- IS Insoluble solid ⁇
- WIS water-insoluble solid ⁇
- AIS alcohol-insoluble ⁇ olid ⁇
- the increased amounts of starch may very well accumulate in plastid granules and are, therefore, unlikely to contribute much to improved consistency.
- the heating involved in the hot break proces ⁇ and in the concentration ⁇ tep of hot and cold break product ⁇ is likely to burst the granules and partially solubili ⁇ e the ⁇ tarch, re ⁇ ulting in increa ⁇ ed vi ⁇ co ⁇ ity.
- Enhanced starch ⁇ ynthe ⁇ is is also likely to elevate the import of carbohydrate into the fruit which may also result in enhanced levels of soluble solids in the ripe fruit. This may also be con ⁇ idered a ⁇ advantageou ⁇ in fruit intended for the fre ⁇ h fruit market.
- Our invention is thus applicable to plants whose value is due to the texture and/or sweetness and/or taste of the fruit.
- fruits such a ⁇ tomato, melon, peach, pear, etc where the accumulation of starch is an early event in fruit development but is later degraded during fruit ripening releasing sugars.
- the desirable trait is extra starch deposition which is useful in providing enhanced fruit texture and sweetnes ⁇ a ⁇ well a ⁇ increa ⁇ ed thickening quality during cooking (eg, during ketchup/catsup manufacture from tomato).
- Starch deposition in the developing pollen grain ⁇ of cereal ⁇ is an es ⁇ ential prerequi ⁇ ite for pollen viability. If starch synthe ⁇ i ⁇ is impaired by high temperatures in the developing pollen cells, reduced pollen viability will result.
- the insertion, according to the invention, of thermally stable variants of the SSS and/or BE and/or GS enzyme genes into cereal pollen increases pollen viability and seed set is les ⁇ impaired by exposure to high temperatures.
- Starch synthesi ⁇ in leaf chloroplasts is also limited by the thermal lability of the SSS and BE enzymes. Photosynthetic rates in green leaf tissue are dependent in part on the ability of the cells to convert fixed carbon into starch and ⁇ ucro ⁇ e.
- ⁇ tarch synthesis becomes limited at high temperatures because of rate limitation by SSS or BE, there is an accumulation of metabolic intermediate ⁇ in the chloropla ⁇ t, causing feedback inhibition of ribulose bisphosphate regeneration, reducing the overall carbon fixation by photo ⁇ ynthesi ⁇ .
- Our invention i ⁇ al ⁇ o applicable to plant ⁇ who ⁇ e yield depend ⁇ on gro ⁇ s biomass accumulation and which are limited by photo ⁇ ynthetic rate.
- forage crops such as grasses, ryegrass, forage maize and alfalfa; tree ⁇ grown for wood, pulp or ethanol production and vegetables such as cauliflower, cabbage and sprouts.
- our invention is a method of producing a novel ⁇ ub ⁇ tantially homozygou ⁇ maize (corn) line having ⁇ uperior ⁇ tarch depo ⁇ ition properties which comprise ⁇ , (i) identifying a range of potential donor plants which are sexually compatible with a recipient maize plant and screening producing ⁇ oluble ⁇ tarch syntha ⁇ e (SSS) enzyme or branching enzyme (BE) to determine the heat ⁇ tability of the reaction of at lea ⁇ t one of ⁇ aid enzyme ⁇ ; (ii) identifying a plant producing an enhanced SSS or BE enzyme that i ⁇ ⁇ ignificantly more heat-stable for the enzyme reaction than the corresponding enzyme in the 4 Q
- SSS ⁇ oluble ⁇ tarch syntha ⁇ e
- BE branching enzyme
- Genotype ⁇ with a measurable enhancement in SSS or BE activity or altered characteristic ⁇ with re ⁇ pect to temperature are introduced into a back-cro ⁇ ing programme with a commercial maize inbred. Progeny are ⁇ elected on the basis of genetic similarity to the commercial line, using RFLP's (re ⁇ triction fragment length polymorphisms), but with the desired SSS or BE characteristics. Selected progeny are entered into further back-crossing against the commercial line. The end result is a new maize inbred line, genetically vary similar to the parental line, having enhanced SSS or BE activity. The temperature optimum of starch synthesi ⁇ i ⁇ mea ⁇ ured before including the new line in hybrid production.
- Another embodiment of our invention is a method of producing a novel substantially homozygous maize (corn) line having superior starch deposition properties which comprises, (i) identifying a range of potential donor plants which are sexually compatible with a recipient maize plant and screening for plants with high rates of grain starch ⁇ ynthesi ⁇ at elevated temperatures;
- Genotypes with a mea ⁇ urable enhancement in ⁇ tarch depo ⁇ ition rate ⁇ with re ⁇ pect to temperature are introduced into a back-crossing programme with
- Progeny are selected on the basis of genetic similarity to the commercial line, using RFLP's (restriction fragment length polymorphism ⁇ ) , but with the desired SSS or BE characteristics. Selected progeny are entered into
- EXAMPLE 1 Sexual Cros ⁇ ing
- the plant ⁇ selected for screening were maize 5 plants: either commercial maize varieties or varieties from more exotic collections.
- the material selected for ⁇ creening wa ⁇ from amongst other Zea germplasm, for example, Zea trip ⁇ acum, perennis, diploperennis, luxurians, parviglumis, 0 mexicana and mays. Many thousands of potential donors exi ⁇ t throughout the world where maze is grown as a cultivated crop or where it exist ⁇ in the wild plant population, for example in South and Central America and Africa.
- Mo ⁇ t of the Zea family can be inter-bred by traditional plant breeding method ⁇ .
- One characteristic sought for use in this invention was an increa ⁇ e (or minimal loss) in activity from 25 to 35°C.
- a Q. Q value for each line was obtained by a method which is hereinafter described.
- the frequency distribution for all the germplasm assayed in the screen ( Figure 20) show ⁇ that the range of variation for thi ⁇ trait i ⁇ quite narrow.
- our screen succeeded in locating a few rare occurrences from the extremely wide selection of Zea germpla ⁇ m.
- Acro ⁇ all the germpla ⁇ m the overall average drop in activity between 25 and 35 P C wa ⁇ around 40% ( Q 1 Q - 0.61) with a range of 65% to 0% drop in activity (Q. Q range of 0.35 to 1.00).
- a donor gene may al ⁇ o be introduced into a recipient plant by tran ⁇ formation.
- the source of these extra copies may be the recipient line itself as the technique would simply increase the amount of enzyme available in the grain rather than the changing of the properties of the enzyme( ⁇ ).
- the gene promoter ⁇ and other regulatory sequences may also be altered to achieve increased amounts of the enzyme in the recipient plant.
- Technique ⁇ are known in ⁇ o-called "protein engineering" which can alter the characteri ⁇ tic ⁇ of an enzyme.
- the source of these extra copies or antisense constructs may be the recipient line itself as the technique would simply increase or decrease the amount of enzyme available in the grain rather than the changing of the properties of the enzyme(s).
- the gene promoters and other regulatory sequences may also be altered to achieve increased amounts of the enzyme in the recipient plant.
- the donor gene may be isolated from a suitable biological organism (including plant ⁇ , fungi, bacteria or animal cell ⁇ ) after ⁇ creening a range of potential donor organisms producing soluble starch synthase (SSS) enzyme, glycogen synthase (GS) or branching enzyme (BE) to determine the heat stability of the reaction of at least one of said enzymes.
- SSS soluble starch synthase
- GS glycogen synthase
- BE branching enzyme
- the ⁇ creen u ⁇ ed in this invention identified enzyme forms with increased (or minimal los ⁇ in ) activity from 25 to 35°C.
- the characteristics sought for use in the invention can be any one, or several in combination, of the following characteri ⁇ tic ⁇ :
- knockdown is defined as an irreversible loss in activity caused by elevated temperatures
- EXAMPLE 3 Enzyme Activity Assay
- As ⁇ ay SSS activity by adding 50 l of the enzyme extract to 25 ⁇ l of primer (glycogen, 4 ?
- amylopectin, ⁇ tarch 100/1 of a buffer ⁇ olution of the following final concentration ⁇ : lOOmM bicine, 25mM pota ⁇ ium chloride, 5mM EDTA, and lOmM reduced glutathione. 3. Begin the as ⁇ ay by adding 14C-ADP-gluco ⁇ e.
- a polysaccharide (amylose, glycogen, amylopectin, starch) as a carrier and precipitate the polysaccharide with 75% methanol. Centrifuge and wash the polysaccharide precipitate and dissolve and count the scintillation as described in step 4 above.
- BE activity i ⁇ defined a ⁇ the ⁇ timulation achieved by the enzyme in the incorporation of 14C-gluco ⁇ e from the glucose-1-phosphate into the polysaccharide by the phosphoryla ⁇ e A.
- SSS soluble starch synthase
- BE branching enzyme
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Nutrition Science (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Compounds Of Unknown Constitution (AREA)
- Fertilizers (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69233352T DE69233352T2 (en) | 1992-10-14 | 1992-10-14 | PLANTS AND METHOD FOR THEIR PRODUCTION |
DK92921134T DK0664835T3 (en) | 1992-10-14 | 1992-10-14 | New plants and methods for obtaining them |
EP92921134A EP0664835B1 (en) | 1992-10-14 | 1992-10-14 | Novel plants and processes for obtaining them |
PCT/GB1992/001881 WO1994009144A1 (en) | 1992-10-14 | 1992-10-14 | Novel plants and processes for obtaining them |
CA002146998A CA2146998A1 (en) | 1992-10-14 | 1992-10-14 | Novel plants and processes for obtaining them |
AT92921134T ATE267259T1 (en) | 1992-10-14 | 1992-10-14 | PLANTS AND PROCESSES FOR THEIR PRODUCTION |
ES92921134T ES2217254T3 (en) | 1992-10-14 | 1992-10-14 | NEW PLANTS AND PROCESSES TO OBTAIN THEM. |
AU26964/92A AU690517B2 (en) | 1992-10-14 | 1992-10-14 | Novel plants and processes for obtaining them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/GB1992/001881 WO1994009144A1 (en) | 1992-10-14 | 1992-10-14 | Novel plants and processes for obtaining them |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994009144A1 true WO1994009144A1 (en) | 1994-04-28 |
Family
ID=32348568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1992/001881 WO1994009144A1 (en) | 1992-10-14 | 1992-10-14 | Novel plants and processes for obtaining them |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0664835B1 (en) |
AT (1) | ATE267259T1 (en) |
AU (1) | AU690517B2 (en) |
CA (1) | CA2146998A1 (en) |
DE (1) | DE69233352T2 (en) |
DK (1) | DK0664835T3 (en) |
ES (1) | ES2217254T3 (en) |
WO (1) | WO1994009144A1 (en) |
Cited By (213)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995034660A1 (en) * | 1994-06-16 | 1995-12-21 | Advanced Technologies (Cambridge) Limited | Modification of starch content in plants |
WO1996015248A1 (en) * | 1994-11-10 | 1996-05-23 | Hoechst Schering Agrevo Gmbh | Dna molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
WO1997004112A2 (en) * | 1995-07-14 | 1997-02-06 | Danisco A/S | Inhibition of gene expression |
WO1997004113A2 (en) * | 1995-07-14 | 1997-02-06 | Danisco A/S | Inhibition of gene expression |
WO1997011188A1 (en) * | 1995-09-19 | 1997-03-27 | Planttec Biotechnologie Gmbh | Plants which synthesise a modified starch, process for the production thereof and modified starch |
WO1997020936A1 (en) * | 1995-12-06 | 1997-06-12 | Zeneca Limited | Modification of starch synthesis in plants |
WO1997022703A2 (en) * | 1995-12-20 | 1997-06-26 | E.I. Du Pont De Nemours And Company | Novel starches via modification of expression of starch biosynthetic enzyme genes |
WO1997026362A1 (en) * | 1996-01-16 | 1997-07-24 | Planttec Biotechnologie Gmbh | Nucleic acid molecules from plants coding enzymes which participate in the starch synthesis |
WO1997044472A1 (en) * | 1996-05-17 | 1997-11-27 | Planttec Biotechnologie Gmbh | Nucleic acid molecules coding soluble maize starch synthases |
WO1998022601A1 (en) * | 1996-11-18 | 1998-05-28 | University Of Florida | Heat stable mutants of starch biosynthesis enzymes |
WO1998027212A1 (en) * | 1996-12-19 | 1998-06-25 | Planttec Biotechnologie Gmbh | Novel nucleic acid molecules from maize and their use for the production of modified starch |
WO1998037213A1 (en) * | 1997-02-21 | 1998-08-27 | Danisco A/S | Antisense intron inhibition of starch branching enzyme expression |
WO1999058698A2 (en) * | 1998-05-14 | 1999-11-18 | University Of Florida | Heat stable mutants of starch biosynthesis enzymes |
DE19836098A1 (en) * | 1998-07-31 | 2000-02-03 | Hoechst Schering Agrevo Gmbh | Plants that synthesize a modified starch, process for producing the plants, their use and the modified starch |
WO2000008175A2 (en) * | 1998-07-31 | 2000-02-17 | Aventis Cropscience Gmbh | Nucleic acid module coding for alpha glucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch |
WO2000008185A1 (en) * | 1998-07-31 | 2000-02-17 | Aventis Cropscience Gmbh | Nucleic acid molecule coding for beta-amylase, plants synthesizing a modified starch, method of production and applications |
WO2000011192A2 (en) * | 1998-08-25 | 2000-03-02 | Pioneer Hi-Bred International, Inc. | Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids |
WO2000031282A1 (en) * | 1998-11-19 | 2000-06-02 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
WO2000031274A1 (en) * | 1998-11-19 | 2000-06-02 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
WO2000055331A1 (en) * | 1999-03-12 | 2000-09-21 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
US6143562A (en) * | 1995-04-06 | 2000-11-07 | Seminis Vegetable Seeds | Carbon-based process for selection of transgenic plant cells |
WO2000073422A1 (en) * | 1999-05-27 | 2000-12-07 | Planttec Biotechnologie Gmbh | Genetically modified plant cells and plants with an increased activity of an amylosucrase protein and a branching enzyme |
WO2001019975A2 (en) * | 1999-09-15 | 2001-03-22 | National Starch And Chemical Investment Holding Corporation | Plants having reduced activity in two or more starch-modifying enzymes |
WO2001032886A2 (en) * | 1999-10-29 | 2001-05-10 | National Research Council Of Canada | Starch branching enzymes |
WO2001070942A2 (en) * | 2000-03-20 | 2001-09-27 | Danisco A/S | Transformed plant having heterologous glucan branching enzyme activity |
US6392120B1 (en) | 1998-07-28 | 2002-05-21 | E. I. Du Pont De Nemours And Company | Modification of starch biosynthetic enzyme gene expression to produce starches in grain crops |
US6403863B1 (en) | 1996-11-18 | 2002-06-11 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
JP2002527068A (en) * | 1998-10-09 | 2002-08-27 | プランテック バイオテクノロジー ゲーエムベーハー フォーシュング アンド エンテゥウィックラング | Nucleic acid molecule encoding a branching enzyme from a genus Neisseria and method for producing α-1,6-branched α-1,4-glucan |
US6512110B1 (en) | 1997-06-10 | 2003-01-28 | Xyrofin Oy | Process for the production of xylose from a paper-grade hardwood pulp |
US6521816B1 (en) | 1998-11-09 | 2003-02-18 | Planttec Biotechnologie Gmbh Forschung Und Entwicklung | Nucleic acid molecules from rice and their use for the production of modified starch |
US6809235B2 (en) | 1996-11-18 | 2004-10-26 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
US6969783B2 (en) | 2001-03-14 | 2005-11-29 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
AU2002314061B2 (en) * | 1994-11-10 | 2006-01-19 | Bayer Cropscience Ag | DNA molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
US7041484B1 (en) | 1999-10-29 | 2006-05-09 | National Research Council Of Canada | Starch branching enzymes |
WO2006069422A1 (en) | 2004-12-30 | 2006-07-06 | Commonwealth Scientific And Industrial Research Organisation | Method and means for improving bowel health |
AU2004202150B2 (en) * | 1998-11-19 | 2006-07-13 | British American Tobacco (Investments) Limited | Genetically modified plants with altered starch |
US7244839B2 (en) | 2002-03-27 | 2007-07-17 | E. I. Du Pont De Nemours And Company | Maize starch containing elevated amounts of actual amylose |
EP2039772A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants introduction |
EP2039771A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
EP2039770A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
WO2009067751A1 (en) | 2007-11-27 | 2009-06-04 | Commonwealth Scientific And Industrial Research Organisation | Plants with modified starch metabolism |
EP2072506A1 (en) | 2007-12-21 | 2009-06-24 | Bayer CropScience AG | Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide |
EP2090168A1 (en) | 2008-02-12 | 2009-08-19 | Bayer CropScience AG | Method for improving plant growth |
EP2168434A1 (en) | 2008-08-02 | 2010-03-31 | Bayer CropScience AG | Use of azols to increase resistance of plants of parts of plants to abiotic stress |
EP2198709A1 (en) | 2008-12-19 | 2010-06-23 | Bayer CropScience AG | Method for treating resistant animal pests |
EP2201838A1 (en) | 2008-12-05 | 2010-06-30 | Bayer CropScience AG | Active ingredient-beneficial organism combinations with insecticide and acaricide properties |
EP2204094A1 (en) | 2008-12-29 | 2010-07-07 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants Introduction |
WO2010083955A2 (en) | 2009-01-23 | 2010-07-29 | Bayer Cropscience Aktiengesellschaft | Use of enaminocarboxylic compounds for fighting viruses transmitted by insects |
WO2010086095A1 (en) | 2009-01-29 | 2010-08-05 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants introduction |
WO2010086311A1 (en) | 2009-01-28 | 2010-08-05 | Bayer Cropscience Ag | Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives |
EP2218717A1 (en) | 2009-02-17 | 2010-08-18 | Bayer CropScience AG | Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives |
WO2010094666A2 (en) | 2009-02-17 | 2010-08-26 | Bayer Cropscience Ag | Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives |
WO2010094728A1 (en) | 2009-02-19 | 2010-08-26 | Bayer Cropscience Ag | Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance |
EP2223602A1 (en) | 2009-02-23 | 2010-09-01 | Bayer CropScience AG | Method for improved utilisation of the production potential of genetically modified plants |
EP2232995A1 (en) | 2009-03-25 | 2010-09-29 | Bayer CropScience AG | Method for improved utilisation of the production potential of transgenic plants |
EP2239331A1 (en) | 2009-04-07 | 2010-10-13 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
EP2251331A1 (en) | 2009-05-15 | 2010-11-17 | Bayer CropScience AG | Fungicide pyrazole carboxamides derivatives |
EP2255626A1 (en) | 2009-05-27 | 2010-12-01 | Bayer CropScience AG | Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress |
WO2011006603A2 (en) | 2009-07-16 | 2011-01-20 | Bayer Cropscience Ag | Synergistic active substance combinations containing phenyl triazoles |
WO2011015524A2 (en) | 2009-08-03 | 2011-02-10 | Bayer Cropscience Ag | Fungicide heterocycles derivatives |
EP2290084A2 (en) | 2003-06-30 | 2011-03-02 | Commonwealth Scientific and Industrial Research Organization | Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom |
EP2292094A1 (en) | 2009-09-02 | 2011-03-09 | Bayer CropScience AG | Active compound combinations |
WO2011080255A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011080256A1 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011080254A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
EP2343280A1 (en) | 2009-12-10 | 2011-07-13 | Bayer CropScience AG | Fungicide quinoline derivatives |
WO2011089071A2 (en) | 2010-01-22 | 2011-07-28 | Bayer Cropscience Ag | Acaricide and/or insecticide active substance combinations |
WO2011107504A1 (en) | 2010-03-04 | 2011-09-09 | Bayer Cropscience Ag | Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants |
EP2374791A1 (en) | 2008-08-14 | 2011-10-12 | Bayer CropScience Aktiengesellschaft | Insecticidal 4-phenyl-1H pyrazoles |
WO2011124554A2 (en) | 2010-04-06 | 2011-10-13 | Bayer Cropscience Ag | Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants |
WO2011124553A2 (en) | 2010-04-09 | 2011-10-13 | Bayer Cropscience Ag | Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress |
WO2011134911A2 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011134912A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011134913A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011151368A2 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2011151370A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues |
WO2011151369A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues |
WO2011154158A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2011154159A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
US8080688B2 (en) | 2007-03-12 | 2011-12-20 | Bayer Cropscience Ag | 3, 4-disubstituted phenoxyphenylamidines and use thereof as fungicides |
WO2012010579A2 (en) | 2010-07-20 | 2012-01-26 | Bayer Cropscience Ag | Benzocycloalkenes as antifungal agents |
WO2012028578A1 (en) | 2010-09-03 | 2012-03-08 | Bayer Cropscience Ag | Substituted fused pyrimidinones and dihydropyrimidinones |
WO2012038480A2 (en) | 2010-09-22 | 2012-03-29 | Bayer Cropscience Ag | Use of biological or chemical control agents for controlling insects and nematodes in resistant crops |
WO2012045798A1 (en) | 2010-10-07 | 2012-04-12 | Bayer Cropscience Ag | Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative |
WO2012052490A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | N-benzyl heterocyclic carboxamides |
WO2012052489A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | 1-(heterocyclic carbonyl) piperidines |
US8168567B2 (en) | 2007-04-19 | 2012-05-01 | Bayer Cropscience Ag | Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide |
WO2012059497A1 (en) | 2010-11-02 | 2012-05-10 | Bayer Cropscience Ag | N-hetarylmethyl pyrazolylcarboxamides |
WO2012065945A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazole(thio)carboxamides |
WO2012065947A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazolecarboxamides |
WO2012065944A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | N-aryl pyrazole(thio)carboxamides |
EP2460407A1 (en) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Agent combinations comprising pyridylethyl benzamides and other agents |
EP2460406A1 (en) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Use of fluopyram for controlling nematodes in nematode resistant crops |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
WO2012089722A2 (en) | 2010-12-30 | 2012-07-05 | Bayer Cropscience Ag | Use of open-chain carboxylic acids, carbonic esters, carboxamides and carbonitriles of aryl, heteroaryl and benzylsulfonamide or the salts thereof for improving the stress tolerance in plants |
WO2012089757A1 (en) | 2010-12-29 | 2012-07-05 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2474542A1 (en) | 2010-12-29 | 2012-07-11 | Bayer CropScience AG | Fungicide hydroximoyl-tetrazole derivatives |
EP2494867A1 (en) | 2011-03-01 | 2012-09-05 | Bayer CropScience AG | Halogen-substituted compounds in combination with fungicides |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
WO2012123434A1 (en) | 2011-03-14 | 2012-09-20 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
US8288426B2 (en) | 2006-12-22 | 2012-10-16 | Bayer Cropscience Ag | Pesticidal composition comprising fenamidone and an insecticide compound |
EP2511255A1 (en) | 2011-04-15 | 2012-10-17 | Bayer CropScience AG | Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives |
WO2012139890A1 (en) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants |
WO2012139892A1 (en) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants |
WO2012139891A1 (en) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants |
US8299302B2 (en) | 2007-03-12 | 2012-10-30 | Bayer Cropscience Ag | 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides |
WO2012168124A1 (en) | 2011-06-06 | 2012-12-13 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a preselected site |
US8334237B2 (en) | 2007-03-12 | 2012-12-18 | Bayer Cropscience Ag | Substituted phenylamidines and the use thereof as fungicides |
WO2013004652A1 (en) | 2011-07-04 | 2013-01-10 | Bayer Intellectual Property Gmbh | Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants |
WO2013020985A1 (en) | 2011-08-10 | 2013-02-14 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
WO2013026836A1 (en) | 2011-08-22 | 2013-02-28 | Bayer Intellectual Property Gmbh | Fungicide hydroximoyl-tetrazole derivatives |
US8394991B2 (en) | 2007-03-12 | 2013-03-12 | Bayer Cropscience Ag | Phenoxy substituted phenylamidine derivatives and their use as fungicides |
WO2013034621A1 (en) | 2011-09-09 | 2013-03-14 | Bayer Intellectual Property Gmbh | Acyl-homoserine lactone derivatives for improving plant yield |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013041602A1 (en) | 2011-09-23 | 2013-03-28 | Bayer Intellectual Property Gmbh | Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress |
WO2013050324A1 (en) | 2011-10-06 | 2013-04-11 | Bayer Intellectual Property Gmbh | Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
US8455480B2 (en) | 2007-09-26 | 2013-06-04 | Bayer Cropscience Ag | Active agent combinations having insecticidal and acaricidal properties |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
US8487118B2 (en) | 2009-01-19 | 2013-07-16 | Bayer Cropscience Ag | Cyclic diones and their use as insecticides, acaricides and/or fungicides |
US8519003B2 (en) | 2007-03-12 | 2013-08-27 | Bayer Cropscience Ag | Phenoxyphenylamidines as fungicides |
WO2013124275A1 (en) | 2012-02-22 | 2013-08-29 | Bayer Cropscience Ag | Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape. |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013160230A1 (en) | 2012-04-23 | 2013-10-31 | Bayer Cropscience Nv | Targeted genome engineering in plants |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
WO2014009322A1 (en) | 2012-07-11 | 2014-01-16 | Bayer Cropscience Ag | Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress |
WO2014037340A1 (en) | 2012-09-05 | 2014-03-13 | Bayer Cropscience Ag | Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
WO2014079957A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Selective inhibition of ethylene signal transduction |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
EP2740720A1 (en) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants |
EP2740356A1 (en) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives |
WO2014086751A1 (en) | 2012-12-05 | 2014-06-12 | Bayer Cropscience Ag | Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
US8796175B2 (en) | 2008-08-29 | 2014-08-05 | Bayer Cropscience Ag | Method for enhancing plant intrinsic defense |
US8828906B2 (en) | 2009-03-25 | 2014-09-09 | Bayer Cropscience Ag | Active compound combinations having insecticidal and acaricidal properties |
US8828907B2 (en) | 2009-03-25 | 2014-09-09 | Bayer Cropscience Ag | Active ingredient combinations having insecticidal and acaricidal properties |
WO2014135608A1 (en) | 2013-03-07 | 2014-09-12 | Bayer Cropscience Ag | Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives |
US8835657B2 (en) | 2009-05-06 | 2014-09-16 | Bayer Cropscience Ag | Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides |
US8846567B2 (en) | 2009-03-25 | 2014-09-30 | Bayer Cropscience Ag | Active compound combinations having insecticidal and acaricidal properties |
US8846568B2 (en) | 2009-03-25 | 2014-09-30 | Bayer Cropscience Ag | Active compound combinations having insecticidal and acaricidal properties |
WO2014161821A1 (en) | 2013-04-02 | 2014-10-09 | Bayer Cropscience Nv | Targeted genome engineering in eukaryotes |
WO2014167008A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazolinthione derivatives |
WO2014167009A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazole derivatives |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
US8927583B2 (en) | 2006-12-22 | 2015-01-06 | Bayer Cropscience Ag | Pesticidal composition comprising a 2-pyrdilmethylbenzamide derivative and an insecticide compound |
WO2015004040A1 (en) | 2013-07-09 | 2015-01-15 | Bayer Cropscience Ag | Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress |
US9012360B2 (en) | 2009-03-25 | 2015-04-21 | Bayer Intellectual Property Gmbh | Synergistic combinations of active ingredients |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
US9173394B2 (en) | 2007-09-26 | 2015-11-03 | Bayer Intellectual Property Gmbh | Active agent combinations having insecticidal and acaricidal properties |
US9199922B2 (en) | 2007-03-12 | 2015-12-01 | Bayer Intellectual Property Gmbh | Dihalophenoxyphenylamidines and use thereof as fungicides |
US9232794B2 (en) | 2009-06-02 | 2016-01-12 | Bayer Intellectual Property Gmbh | Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp |
WO2016012362A1 (en) | 2014-07-22 | 2016-01-28 | Bayer Cropscience Aktiengesellschaft | Substituted cyano cycloalkyl penta-2,4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2,4-dienes and cyano heterocyclyl pent-2-en-4-ynes as active substances against abiotic plant stress |
EP2997825A1 (en) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
EP3000809A1 (en) | 2009-05-15 | 2016-03-30 | Bayer Intellectual Property GmbH | Fungicide pyrazole carboxamides derivatives |
WO2016096942A1 (en) | 2014-12-18 | 2016-06-23 | Bayer Cropscience Aktiengesellschaft | Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
US9763451B2 (en) | 2008-12-29 | 2017-09-19 | Bayer Intellectual Property Gmbh | Method for improved use of the production potential of genetically modified plants |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018054829A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives and their use as fungicides |
WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
WO2018054832A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives |
WO2018077711A2 (en) | 2016-10-26 | 2018-05-03 | Bayer Cropscience Aktiengesellschaft | Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications |
EP3332645A1 (en) | 2016-12-12 | 2018-06-13 | Bayer Cropscience AG | Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress |
WO2018104392A1 (en) | 2016-12-08 | 2018-06-14 | Bayer Cropscience Aktiengesellschaft | Use of insecticides for controlling wireworms |
WO2018108627A1 (en) | 2016-12-12 | 2018-06-21 | Bayer Cropscience Aktiengesellschaft | Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants |
DE102007045953B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Drug combinations with insecticidal and acaricidal properties |
DE102007045919B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Drug combinations with insecticidal and acaricidal properties |
DE102007045920B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Synergistic drug combinations |
WO2019025153A1 (en) | 2017-07-31 | 2019-02-07 | Bayer Cropscience Aktiengesellschaft | Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0372358A1 (en) * | 1988-11-28 | 1990-06-13 | Iowa State University Research Foundation, Inc. | Dominant amylose-extender mutant of maize |
WO1991019806A1 (en) * | 1990-06-18 | 1991-12-26 | Monsanto Company | Increased starch content in plants |
WO1992011382A1 (en) * | 1990-12-21 | 1992-07-09 | Calgene, Inc. | Glycogen biosynthetic enzymes in plants |
WO1992014827A1 (en) * | 1991-02-13 | 1992-09-03 | Institut Für Genbiologische Forschung Berlin Gmbh | Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids |
WO1993009237A1 (en) * | 1991-11-05 | 1993-05-13 | Sandoz Ltd. | Improved supersweet corn |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9001155D0 (en) * | 1990-03-29 | 1990-03-29 | Soederhamn Architect Ab | DRIVING AND INSTALLATION FOR TREATMENT OF AIR IN THE AREA OF A TRAFFIC DRIVER FOR MOTOR VEHICLES |
-
1992
- 1992-10-14 ES ES92921134T patent/ES2217254T3/en not_active Expired - Lifetime
- 1992-10-14 DE DE69233352T patent/DE69233352T2/en not_active Expired - Fee Related
- 1992-10-14 WO PCT/GB1992/001881 patent/WO1994009144A1/en not_active Application Discontinuation
- 1992-10-14 AU AU26964/92A patent/AU690517B2/en not_active Ceased
- 1992-10-14 EP EP92921134A patent/EP0664835B1/en not_active Revoked
- 1992-10-14 AT AT92921134T patent/ATE267259T1/en not_active IP Right Cessation
- 1992-10-14 CA CA002146998A patent/CA2146998A1/en not_active Abandoned
- 1992-10-14 DK DK92921134T patent/DK0664835T3/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0372358A1 (en) * | 1988-11-28 | 1990-06-13 | Iowa State University Research Foundation, Inc. | Dominant amylose-extender mutant of maize |
WO1991019806A1 (en) * | 1990-06-18 | 1991-12-26 | Monsanto Company | Increased starch content in plants |
WO1992011382A1 (en) * | 1990-12-21 | 1992-07-09 | Calgene, Inc. | Glycogen biosynthetic enzymes in plants |
WO1992014827A1 (en) * | 1991-02-13 | 1992-09-03 | Institut Für Genbiologische Forschung Berlin Gmbh | Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids |
WO1993009237A1 (en) * | 1991-11-05 | 1993-05-13 | Sandoz Ltd. | Improved supersweet corn |
Non-Patent Citations (6)
Title |
---|
ABSTRACTS VIITH INTERNATIONAL CONGRESS ON PLANT TISSUE AND CELL CULTURE.AMSTERDAM JUNE24-29, 1990. page 177 VAN DER LEIJ, F.R., ET AL. 'Expression of the gene encoding granule bound starch synthase after introduction in an amylose-free and a wildtype potato (Solanum tuberosum)' * |
BIOLOGICAL ABSTRACTS vol. 89 , 1990, Philadelphia, PA, US; abstract no. 48351, DANG, P.L., ET AL. 'Comparison of soluble starch synthases and branching enzymes from leaves and kernels of normal and amylose-extender maize' * |
MOLECULAR AND GENERAL GENETICS vol. 225, 1991, BERLIN DE pages 289 - 296 VISSER, R.G.F., ET AL. 'Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs' * |
PLANT PHYSIOLOGY. SUPPL. vol. 93, no. 1, May 1990, ROCKVILLE, MD, USA. page 24 SINGLETARY, G.W., ET AL. 'Sugar metabolism in endosperm of gene dose series involving starch mutants of maize' * |
PLANT PHYSIOLOGY. SUPPL. vol. 99, no. 1, May 1992, ROCKVILLE, MD, USA. page 22 MA, S., ET AL. 'Soluble starch synthase from sweet corn' * |
PLANT PHYSIOLOGY. vol. 99, no. 1, May 1992, ROCKVILLE, MD, USA. page 87 FISHER, D.K., ET AL. 'Cloning and characterization of cDNAs for starch branching enzyme in Zea mays L.' * |
Cited By (281)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995034660A1 (en) * | 1994-06-16 | 1995-12-21 | Advanced Technologies (Cambridge) Limited | Modification of starch content in plants |
AU2002314061B2 (en) * | 1994-11-10 | 2006-01-19 | Bayer Cropscience Ag | DNA molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
WO1996015248A1 (en) * | 1994-11-10 | 1996-05-23 | Hoechst Schering Agrevo Gmbh | Dna molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
US6130367A (en) * | 1994-11-10 | 2000-10-10 | Kossmann; Jens | DNA molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
US6483010B1 (en) | 1994-11-10 | 2002-11-19 | Jens Kossmann | DNA molecules encoding enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing these molecules |
US7429657B2 (en) | 1994-11-10 | 2008-09-30 | Bayer Cropscience Ag | DNA molecules encoding enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing these molecules |
EP1544301A1 (en) * | 1994-11-10 | 2005-06-22 | Bayer CropScience GmbH | DNA molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules |
US6143562A (en) * | 1995-04-06 | 2000-11-07 | Seminis Vegetable Seeds | Carbon-based process for selection of transgenic plant cells |
WO1997004112A3 (en) * | 1995-07-14 | 1997-05-15 | Danisco | Inhibition of gene expression |
US6232122B1 (en) | 1995-07-14 | 2001-05-15 | Danisco A/S | Inhibition of gene expression |
WO1997004113A3 (en) * | 1995-07-14 | 1997-05-15 | Danisco | Inhibition of gene expression |
US6147279A (en) * | 1995-07-14 | 2000-11-14 | Danisco A/S | Inhibition of gene expression |
WO1997004113A2 (en) * | 1995-07-14 | 1997-02-06 | Danisco A/S | Inhibition of gene expression |
WO1997004112A2 (en) * | 1995-07-14 | 1997-02-06 | Danisco A/S | Inhibition of gene expression |
US7176190B2 (en) | 1995-09-19 | 2007-02-13 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US8586722B2 (en) | 1995-09-19 | 2013-11-19 | Bayer Cropscience Ag | Methods of using tubers having genetically modified potato plant cells |
EP1435205A1 (en) * | 1995-09-19 | 2004-07-07 | Bayer BioScience GmbH | Plants which synthesise a modified starch, process for the production thereof and modified starch |
AU715944B2 (en) * | 1995-09-19 | 2000-02-10 | Bayer Cropscience Aktiengesellschaft | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US6207880B1 (en) | 1995-09-19 | 2001-03-27 | Planttec Biotechnologie Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
WO1997011188A1 (en) * | 1995-09-19 | 1997-03-27 | Planttec Biotechnologie Gmbh | Plants which synthesise a modified starch, process for the production thereof and modified starch |
US7897760B2 (en) | 1995-09-19 | 2011-03-01 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US6815581B2 (en) | 1995-09-19 | 2004-11-09 | PlantTec Biotechnologies, GmbH | Plants which synthesize a modified starch, process for the production thereof and modified starch |
US7569744B2 (en) | 1995-09-19 | 2009-08-04 | Bayer Bioscience Gmbh | Plants which synthesize a modified starch, process for the production thereof and modified starch |
WO1997020936A1 (en) * | 1995-12-06 | 1997-06-12 | Zeneca Limited | Modification of starch synthesis in plants |
WO1997022703A3 (en) * | 1995-12-20 | 1997-07-24 | Du Pont | Novel starches via modification of expression of starch biosynthetic enzyme genes |
US6376749B1 (en) | 1995-12-20 | 2002-04-23 | E. I. Du Pont De Nemours And Company | Starches via modification of expression of starch biosynthetic enzyme genes |
WO1997022703A2 (en) * | 1995-12-20 | 1997-06-26 | E.I. Du Pont De Nemours And Company | Novel starches via modification of expression of starch biosynthetic enzyme genes |
US6617495B2 (en) | 1996-01-16 | 2003-09-09 | Planttec Biotechnologie Gmbh | Nucleic acid molecules from plants coding enzymes which participate in the starch synthesis |
US6211436B1 (en) | 1996-01-16 | 2001-04-03 | Planttec Biotechnologie Gmbh | Nucleic acid molecules from plants coding enzymes which participate in the starch synthesis |
WO1997026362A1 (en) * | 1996-01-16 | 1997-07-24 | Planttec Biotechnologie Gmbh | Nucleic acid molecules from plants coding enzymes which participate in the starch synthesis |
US6307124B1 (en) | 1996-05-17 | 2001-10-23 | Planttec Biotechnologie Gmbh | Nucleic acid molecules encoding soluble starch synthases from maize |
US6635804B2 (en) | 1996-05-17 | 2003-10-21 | Planttec Biotechnologie, Gmbh | Nucleic acid molecules encoding soluble starch synthases from maize |
WO1997044472A1 (en) * | 1996-05-17 | 1997-11-27 | Planttec Biotechnologie Gmbh | Nucleic acid molecules coding soluble maize starch synthases |
US8802926B2 (en) | 1996-11-18 | 2014-08-12 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
WO1998022601A1 (en) * | 1996-11-18 | 1998-05-28 | University Of Florida | Heat stable mutants of starch biosynthesis enzymes |
US7312378B2 (en) | 1996-11-18 | 2007-12-25 | University Of Florida Research Foundation, Inc. | Nucleic acids encoding heat stable mutants of plant ADP-glucose pyrophosphorylase |
US6809235B2 (en) | 1996-11-18 | 2004-10-26 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
US6069300A (en) * | 1996-11-18 | 2000-05-30 | University Of Florida | Heat stable mutants of starch biosynthesis enzymes |
US6403863B1 (en) | 1996-11-18 | 2002-06-11 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
WO1998027212A1 (en) * | 1996-12-19 | 1998-06-25 | Planttec Biotechnologie Gmbh | Novel nucleic acid molecules from maize and their use for the production of modified starch |
US7186898B1 (en) | 1996-12-19 | 2007-03-06 | Bayer Bioscience Gmbh | Nucleic acid molecules from maize and their use for the production of modified starch |
WO1998037213A1 (en) * | 1997-02-21 | 1998-08-27 | Danisco A/S | Antisense intron inhibition of starch branching enzyme expression |
US6512110B1 (en) | 1997-06-10 | 2003-01-28 | Xyrofin Oy | Process for the production of xylose from a paper-grade hardwood pulp |
WO1999058698A3 (en) * | 1998-05-14 | 2000-04-06 | Univ Florida | Heat stable mutants of starch biosynthesis enzymes |
WO1999058698A2 (en) * | 1998-05-14 | 1999-11-18 | University Of Florida | Heat stable mutants of starch biosynthesis enzymes |
US6392120B1 (en) | 1998-07-28 | 2002-05-21 | E. I. Du Pont De Nemours And Company | Modification of starch biosynthetic enzyme gene expression to produce starches in grain crops |
US6570008B1 (en) | 1998-07-28 | 2003-05-27 | E. I. Du Pont De Nemours And Company | Modification of starch biosynthetic enzyme gene expression to produce starches in grain crops |
WO2000008175A3 (en) * | 1998-07-31 | 2000-06-08 | Aventis Cropscience Gmbh | Nucleic acid module coding for alpha glucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch |
WO2000008184A1 (en) * | 1998-07-31 | 2000-02-17 | Aventis Cropscience Gmbh | Plants which synthesize a modified starch, methods for producing the plants, their use, and the modified starch |
US7385104B2 (en) | 1998-07-31 | 2008-06-10 | Bayer Cropscience Ag | Plants synthesizing a modified starch, a process for the generation of the plants, their use, and the modified starch |
US7247769B2 (en) | 1998-07-31 | 2007-07-24 | Bayer Cropscience Gmbh | Plants synthesizing a modified starch, a process for the generation of the plants, their use, and the modified starch |
US6794558B1 (en) | 1998-07-31 | 2004-09-21 | Aventis Cropscience Gmbh | Nucleic acid module coding for αglucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch |
US6791010B1 (en) | 1998-07-31 | 2004-09-14 | Bayer Cropscience Gmbh | Nucleic acid molecule coding for beta-amylase, plants synthesizing a modified starch, method of production and applications |
US6596928B1 (en) | 1998-07-31 | 2003-07-22 | Bayer Cropscience Gmbh | Plants synthesizing a modified starch, the generation of the plants, their use, and the modified starch |
WO2000008185A1 (en) * | 1998-07-31 | 2000-02-17 | Aventis Cropscience Gmbh | Nucleic acid molecule coding for beta-amylase, plants synthesizing a modified starch, method of production and applications |
WO2000008175A2 (en) * | 1998-07-31 | 2000-02-17 | Aventis Cropscience Gmbh | Nucleic acid module coding for alpha glucosidase, plants that synthesize modified starch, methods for the production and use of said plants, and modified starch |
DE19836098A1 (en) * | 1998-07-31 | 2000-02-03 | Hoechst Schering Agrevo Gmbh | Plants that synthesize a modified starch, process for producing the plants, their use and the modified starch |
WO2000011192A3 (en) * | 1998-08-25 | 2000-06-02 | Pioneer Hi Bred Int | Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids |
WO2000011192A2 (en) * | 1998-08-25 | 2000-03-02 | Pioneer Hi-Bred International, Inc. | Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids |
JP2002527068A (en) * | 1998-10-09 | 2002-08-27 | プランテック バイオテクノロジー ゲーエムベーハー フォーシュング アンド エンテゥウィックラング | Nucleic acid molecule encoding a branching enzyme from a genus Neisseria and method for producing α-1,6-branched α-1,4-glucan |
US6521816B1 (en) | 1998-11-09 | 2003-02-18 | Planttec Biotechnologie Gmbh Forschung Und Entwicklung | Nucleic acid molecules from rice and their use for the production of modified starch |
US7449623B2 (en) | 1998-11-09 | 2008-11-11 | Bayer Bioscience Gmbh | Nucleic acid molecules from rice and their use for the production of modified starch |
US6468799B1 (en) * | 1998-11-19 | 2002-10-22 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
WO2000031274A1 (en) * | 1998-11-19 | 2000-06-02 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
WO2000031282A1 (en) * | 1998-11-19 | 2000-06-02 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
AU2004202150B2 (en) * | 1998-11-19 | 2006-07-13 | British American Tobacco (Investments) Limited | Genetically modified plants with altered starch |
WO2000055331A1 (en) * | 1999-03-12 | 2000-09-21 | Advanced Technologies (Cambridge) Limited | Genetically modified plants with altered starch |
WO2000073422A1 (en) * | 1999-05-27 | 2000-12-07 | Planttec Biotechnologie Gmbh | Genetically modified plant cells and plants with an increased activity of an amylosucrase protein and a branching enzyme |
US6566585B1 (en) | 1999-05-27 | 2003-05-20 | Planttec Biotechnologie Gmbh | Genetically modified plant cells and plants with an increased activity of an amylosucrase protein and a branching enzyme |
CN100489090C (en) * | 1999-05-27 | 2009-05-20 | 拜尔生物科学有限公司 | Genetically modified plant cells and plants with increased activity of amylosucrease protein and branching enzyme |
WO2001019975A3 (en) * | 1999-09-15 | 2001-09-27 | Nat Starch Chem Invest | Plants having reduced activity in two or more starch-modifying enzymes |
WO2001019975A2 (en) * | 1999-09-15 | 2001-03-22 | National Starch And Chemical Investment Holding Corporation | Plants having reduced activity in two or more starch-modifying enzymes |
WO2001032886A3 (en) * | 1999-10-29 | 2001-11-29 | Ca Nat Research Council | Starch branching enzymes |
WO2001032886A2 (en) * | 1999-10-29 | 2001-05-10 | National Research Council Of Canada | Starch branching enzymes |
US7041484B1 (en) | 1999-10-29 | 2006-05-09 | National Research Council Of Canada | Starch branching enzymes |
WO2001070942A2 (en) * | 2000-03-20 | 2001-09-27 | Danisco A/S | Transformed plant having heterologous glucan branching enzyme activity |
WO2001070942A3 (en) * | 2000-03-20 | 2002-04-04 | Danisco | Transformed plant having heterologous glucan branching enzyme activity |
US6969783B2 (en) | 2001-03-14 | 2005-11-29 | University Of Florida Research Foundation, Inc. | Heat stable mutants of starch biosynthesis enzymes |
US7754942B2 (en) | 2002-03-27 | 2010-07-13 | E. I. Du Pont De Nemours And Company | Maize starch containing elevated amounts of actual amylose |
US7244839B2 (en) | 2002-03-27 | 2007-07-17 | E. I. Du Pont De Nemours And Company | Maize starch containing elevated amounts of actual amylose |
EP2290084A2 (en) | 2003-06-30 | 2011-03-02 | Commonwealth Scientific and Industrial Research Organization | Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom |
WO2006069422A1 (en) | 2004-12-30 | 2006-07-06 | Commonwealth Scientific And Industrial Research Organisation | Method and means for improving bowel health |
US8927583B2 (en) | 2006-12-22 | 2015-01-06 | Bayer Cropscience Ag | Pesticidal composition comprising a 2-pyrdilmethylbenzamide derivative and an insecticide compound |
US8288426B2 (en) | 2006-12-22 | 2012-10-16 | Bayer Cropscience Ag | Pesticidal composition comprising fenamidone and an insecticide compound |
US8299302B2 (en) | 2007-03-12 | 2012-10-30 | Bayer Cropscience Ag | 4-Cycloalkyl or 4-substituted phenoxyphenylamidines and use thereof as fungicides |
US9199922B2 (en) | 2007-03-12 | 2015-12-01 | Bayer Intellectual Property Gmbh | Dihalophenoxyphenylamidines and use thereof as fungicides |
US8394991B2 (en) | 2007-03-12 | 2013-03-12 | Bayer Cropscience Ag | Phenoxy substituted phenylamidine derivatives and their use as fungicides |
US8519003B2 (en) | 2007-03-12 | 2013-08-27 | Bayer Cropscience Ag | Phenoxyphenylamidines as fungicides |
US8785692B2 (en) | 2007-03-12 | 2014-07-22 | Bayer Cropscience Ag | Substituted phenylamidines and the use thereof as fungicides |
US8080688B2 (en) | 2007-03-12 | 2011-12-20 | Bayer Cropscience Ag | 3, 4-disubstituted phenoxyphenylamidines and use thereof as fungicides |
US8334237B2 (en) | 2007-03-12 | 2012-12-18 | Bayer Cropscience Ag | Substituted phenylamidines and the use thereof as fungicides |
US8748662B2 (en) | 2007-03-12 | 2014-06-10 | Bayer Cropscience Ag | 4-cycloalkyl or 4-aryl substituted phenoxyphenylamidines and use thereof as fungicides |
US8168567B2 (en) | 2007-04-19 | 2012-05-01 | Bayer Cropscience Ag | Thiadiazolyl oxyphenyl amidines and the use thereof as a fungicide |
DE102007045953B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Drug combinations with insecticidal and acaricidal properties |
US9173394B2 (en) | 2007-09-26 | 2015-11-03 | Bayer Intellectual Property Gmbh | Active agent combinations having insecticidal and acaricidal properties |
US8455480B2 (en) | 2007-09-26 | 2013-06-04 | Bayer Cropscience Ag | Active agent combinations having insecticidal and acaricidal properties |
DE102007045919B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Drug combinations with insecticidal and acaricidal properties |
DE102007045920B4 (en) | 2007-09-26 | 2018-07-05 | Bayer Intellectual Property Gmbh | Synergistic drug combinations |
WO2009067751A1 (en) | 2007-11-27 | 2009-06-04 | Commonwealth Scientific And Industrial Research Organisation | Plants with modified starch metabolism |
EP2072506A1 (en) | 2007-12-21 | 2009-06-24 | Bayer CropScience AG | Thiazolyloxyphenylamidine or thiadiazolyloxyphenylamidine und its use as fungicide |
EP2090168A1 (en) | 2008-02-12 | 2009-08-19 | Bayer CropScience AG | Method for improving plant growth |
EP2168434A1 (en) | 2008-08-02 | 2010-03-31 | Bayer CropScience AG | Use of azols to increase resistance of plants of parts of plants to abiotic stress |
EP2374791A1 (en) | 2008-08-14 | 2011-10-12 | Bayer CropScience Aktiengesellschaft | Insecticidal 4-phenyl-1H pyrazoles |
US8796175B2 (en) | 2008-08-29 | 2014-08-05 | Bayer Cropscience Ag | Method for enhancing plant intrinsic defense |
EP2201838A1 (en) | 2008-12-05 | 2010-06-30 | Bayer CropScience AG | Active ingredient-beneficial organism combinations with insecticide and acaricide properties |
EP2198709A1 (en) | 2008-12-19 | 2010-06-23 | Bayer CropScience AG | Method for treating resistant animal pests |
EP2204094A1 (en) | 2008-12-29 | 2010-07-07 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants Introduction |
WO2010075994A1 (en) | 2008-12-29 | 2010-07-08 | Bayer Cropscience Aktiengesellschaft | Treatment of transgenic crops with mixtures of fiproles and chloronicotinyls |
US9763451B2 (en) | 2008-12-29 | 2017-09-19 | Bayer Intellectual Property Gmbh | Method for improved use of the production potential of genetically modified plants |
EP2039772A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants introduction |
EP2039771A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
EP2039770A2 (en) | 2009-01-06 | 2009-03-25 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
US8487118B2 (en) | 2009-01-19 | 2013-07-16 | Bayer Cropscience Ag | Cyclic diones and their use as insecticides, acaricides and/or fungicides |
WO2010083955A2 (en) | 2009-01-23 | 2010-07-29 | Bayer Cropscience Aktiengesellschaft | Use of enaminocarboxylic compounds for fighting viruses transmitted by insects |
EP2227951A1 (en) | 2009-01-23 | 2010-09-15 | Bayer CropScience AG | Application of enaminocarbonyl compounds for combating viruses transmitted by insects |
WO2010086311A1 (en) | 2009-01-28 | 2010-08-05 | Bayer Cropscience Ag | Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives |
WO2010086095A1 (en) | 2009-01-29 | 2010-08-05 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants introduction |
EP2218717A1 (en) | 2009-02-17 | 2010-08-18 | Bayer CropScience AG | Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives |
WO2010094666A2 (en) | 2009-02-17 | 2010-08-26 | Bayer Cropscience Ag | Fungicidal n-(phenylcycloalkyl)carboxamide, n-(benzylcycloalkyl)carboxamide and thiocarboxamide derivatives |
WO2010094728A1 (en) | 2009-02-19 | 2010-08-26 | Bayer Cropscience Ag | Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance |
EP2223602A1 (en) | 2009-02-23 | 2010-09-01 | Bayer CropScience AG | Method for improved utilisation of the production potential of genetically modified plants |
US8846567B2 (en) | 2009-03-25 | 2014-09-30 | Bayer Cropscience Ag | Active compound combinations having insecticidal and acaricidal properties |
US8846568B2 (en) | 2009-03-25 | 2014-09-30 | Bayer Cropscience Ag | Active compound combinations having insecticidal and acaricidal properties |
US9012360B2 (en) | 2009-03-25 | 2015-04-21 | Bayer Intellectual Property Gmbh | Synergistic combinations of active ingredients |
US8828907B2 (en) | 2009-03-25 | 2014-09-09 | Bayer Cropscience Ag | Active ingredient combinations having insecticidal and acaricidal properties |
US8828906B2 (en) | 2009-03-25 | 2014-09-09 | Bayer Cropscience Ag | Active compound combinations having insecticidal and acaricidal properties |
EP2232995A1 (en) | 2009-03-25 | 2010-09-29 | Bayer CropScience AG | Method for improved utilisation of the production potential of transgenic plants |
EP2239331A1 (en) | 2009-04-07 | 2010-10-13 | Bayer CropScience AG | Method for improved utilization of the production potential of transgenic plants |
US8835657B2 (en) | 2009-05-06 | 2014-09-16 | Bayer Cropscience Ag | Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides |
EP2251331A1 (en) | 2009-05-15 | 2010-11-17 | Bayer CropScience AG | Fungicide pyrazole carboxamides derivatives |
EP3000809A1 (en) | 2009-05-15 | 2016-03-30 | Bayer Intellectual Property GmbH | Fungicide pyrazole carboxamides derivatives |
EP2255626A1 (en) | 2009-05-27 | 2010-12-01 | Bayer CropScience AG | Use of succinate dehydrogenase inhibitors to increase resistance of plants or parts of plants to abiotic stress |
US9877482B2 (en) | 2009-06-02 | 2018-01-30 | Bayer Intellectual Property Gmbh | Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp |
US9232794B2 (en) | 2009-06-02 | 2016-01-12 | Bayer Intellectual Property Gmbh | Use of succinate dehydrogenase inhibitors for controlling Sclerotinia ssp |
WO2011006603A2 (en) | 2009-07-16 | 2011-01-20 | Bayer Cropscience Ag | Synergistic active substance combinations containing phenyl triazoles |
WO2011015524A2 (en) | 2009-08-03 | 2011-02-10 | Bayer Cropscience Ag | Fungicide heterocycles derivatives |
WO2011035834A1 (en) | 2009-09-02 | 2011-03-31 | Bayer Cropscience Ag | Active compound combinations |
EP2292094A1 (en) | 2009-09-02 | 2011-03-09 | Bayer CropScience AG | Active compound combinations |
EP2343280A1 (en) | 2009-12-10 | 2011-07-13 | Bayer CropScience AG | Fungicide quinoline derivatives |
WO2011080254A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011080256A1 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011080255A2 (en) | 2009-12-28 | 2011-07-07 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011089071A2 (en) | 2010-01-22 | 2011-07-28 | Bayer Cropscience Ag | Acaricide and/or insecticide active substance combinations |
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
WO2011107504A1 (en) | 2010-03-04 | 2011-09-09 | Bayer Cropscience Ag | Fluoroalkyl-substituted 2-amidobenzimidazoles and the use thereof for boosting stress tolerance in plants |
WO2011124554A2 (en) | 2010-04-06 | 2011-10-13 | Bayer Cropscience Ag | Use of 4-phenylbutyric acid and/or the salts thereof for enhancing the stress tolerance of plants |
WO2011124553A2 (en) | 2010-04-09 | 2011-10-13 | Bayer Cropscience Ag | Use of derivatives of the (1-cyanocyclopropyl)phenylphosphinic acid, the esters thereof and/or the salts thereof for enhancing the tolerance of plants to abiotic stress |
WO2011134911A2 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2011134912A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011134913A1 (en) | 2010-04-28 | 2011-11-03 | Bayer Cropscience Ag | Fungicide hydroximoyl-heterocycles derivatives |
WO2011151369A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylethyl)] pyrazole(thio)carboxamides and their heterosubstituted analogues |
WO2011151370A1 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | N-[(het)arylalkyl)] pyrazole (thio)carboxamides and their heterosubstituted analogues |
WO2011151368A2 (en) | 2010-06-03 | 2011-12-08 | Bayer Cropscience Ag | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2011154158A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2011154159A1 (en) | 2010-06-09 | 2011-12-15 | Bayer Bioscience N.V. | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
US9574201B2 (en) | 2010-06-09 | 2017-02-21 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
US9593317B2 (en) | 2010-06-09 | 2017-03-14 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering |
WO2012010579A2 (en) | 2010-07-20 | 2012-01-26 | Bayer Cropscience Ag | Benzocycloalkenes as antifungal agents |
WO2012028578A1 (en) | 2010-09-03 | 2012-03-08 | Bayer Cropscience Ag | Substituted fused pyrimidinones and dihydropyrimidinones |
WO2012038480A2 (en) | 2010-09-22 | 2012-03-29 | Bayer Cropscience Ag | Use of biological or chemical control agents for controlling insects and nematodes in resistant crops |
WO2012038476A1 (en) | 2010-09-22 | 2012-03-29 | Bayer Cropscience Ag | Use of active ingredients for controlling nematodes in nematode-resistant crops |
WO2012045798A1 (en) | 2010-10-07 | 2012-04-12 | Bayer Cropscience Ag | Fungicide composition comprising a tetrazolyloxime derivative and a thiazolylpiperidine derivative |
WO2012052490A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | N-benzyl heterocyclic carboxamides |
WO2012052489A1 (en) | 2010-10-21 | 2012-04-26 | Bayer Cropscience Ag | 1-(heterocyclic carbonyl) piperidines |
WO2012059497A1 (en) | 2010-11-02 | 2012-05-10 | Bayer Cropscience Ag | N-hetarylmethyl pyrazolylcarboxamides |
US9206137B2 (en) | 2010-11-15 | 2015-12-08 | Bayer Intellectual Property Gmbh | N-Aryl pyrazole(thio)carboxamides |
WO2012065944A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | N-aryl pyrazole(thio)carboxamides |
WO2012065947A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazolecarboxamides |
WO2012065945A1 (en) | 2010-11-15 | 2012-05-24 | Bayer Cropscience Ag | 5-halogenopyrazole(thio)carboxamides |
WO2012072660A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Use of fluopyram for controlling nematodes in crops and for increasing yield |
EP3103334A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP2460407A1 (en) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Agent combinations comprising pyridylethyl benzamides and other agents |
EP2460406A1 (en) | 2010-12-01 | 2012-06-06 | Bayer CropScience AG | Use of fluopyram for controlling nematodes in nematode resistant crops |
WO2012072696A1 (en) | 2010-12-01 | 2012-06-07 | Bayer Cropscience Ag | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
EP3092900A1 (en) | 2010-12-01 | 2016-11-16 | Bayer Intellectual Property GmbH | Active ingredient combinations comprising pyridylethylbenzamides and other active ingredients |
EP3103340A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3103338A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
EP3103339A1 (en) | 2010-12-01 | 2016-12-14 | Bayer Intellectual Property GmbH | Agent combinations comprising pyridylethyl benzamides and other agents |
WO2012089757A1 (en) | 2010-12-29 | 2012-07-05 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2474542A1 (en) | 2010-12-29 | 2012-07-11 | Bayer CropScience AG | Fungicide hydroximoyl-tetrazole derivatives |
WO2012089721A1 (en) | 2010-12-30 | 2012-07-05 | Bayer Cropscience Ag | Use of substituted spirocyclic sulfonamidocarboxylic acids, carboxylic esters thereof, carboxamides thereof and carbonitriles thereof or salts thereof for enhancement of stress tolerance in plants |
WO2012089722A2 (en) | 2010-12-30 | 2012-07-05 | Bayer Cropscience Ag | Use of open-chain carboxylic acids, carbonic esters, carboxamides and carbonitriles of aryl, heteroaryl and benzylsulfonamide or the salts thereof for improving the stress tolerance in plants |
EP2494867A1 (en) | 2011-03-01 | 2012-09-05 | Bayer CropScience AG | Halogen-substituted compounds in combination with fungicides |
WO2012120105A1 (en) | 2011-03-10 | 2012-09-13 | Bayer Cropscience Ag | Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds |
WO2012123434A1 (en) | 2011-03-14 | 2012-09-20 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
WO2012136581A1 (en) | 2011-04-08 | 2012-10-11 | Bayer Cropscience Ag | Fungicide hydroximoyl-tetrazole derivatives |
EP2511255A1 (en) | 2011-04-15 | 2012-10-17 | Bayer CropScience AG | Substituted prop-2-in-1-ol and prop-2-en-1-ol derivatives |
WO2012139890A1 (en) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituted 5-(cyclohex-2-en-1-yl)-penta-2,4-dienes and 5-(cyclohex-2-en-1-yl)-pent-2-en-4-ines as active agents against abiotic stress in plants |
WO2012139892A1 (en) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituted 5-(bicyclo[4.1.0]hept-3-en-2-yl)-penta-2,4-dienes and 5-(bicyclo[4.1.0]hept-3-en-2-yl)-pent-2-ene-4-ines as active agents against abiotic stress in plants |
WO2012139891A1 (en) | 2011-04-15 | 2012-10-18 | Bayer Cropscience Ag | Substituted vinyl and alkinyl cyclohexenols as active agents against abiotic stress in plants |
EP2997825A1 (en) | 2011-04-22 | 2016-03-23 | Bayer Intellectual Property GmbH | Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound |
WO2012168124A1 (en) | 2011-06-06 | 2012-12-13 | Bayer Cropscience Nv | Methods and means to modify a plant genome at a preselected site |
WO2013004652A1 (en) | 2011-07-04 | 2013-01-10 | Bayer Intellectual Property Gmbh | Use of substituted isoquinolinones, isoquinolindiones, isoquinolintriones and dihydroisoquinolinones or in each case salts thereof as active agents against abiotic stress in plants |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
WO2013020985A1 (en) | 2011-08-10 | 2013-02-14 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
US9670496B2 (en) | 2011-08-22 | 2017-06-06 | Bayer Cropscience N.V. | Methods and means to modify a plant genome |
WO2013026740A2 (en) | 2011-08-22 | 2013-02-28 | Bayer Cropscience Nv | Methods and means to modify a plant genome |
WO2013026836A1 (en) | 2011-08-22 | 2013-02-28 | Bayer Intellectual Property Gmbh | Fungicide hydroximoyl-tetrazole derivatives |
US10538774B2 (en) | 2011-08-22 | 2020-01-21 | Basf Agricultural Solutions Seed, Us Llc | Methods and means to modify a plant genome |
EP2561759A1 (en) | 2011-08-26 | 2013-02-27 | Bayer Cropscience AG | Fluoroalkyl-substituted 2-amidobenzimidazoles and their effect on plant growth |
WO2013034621A1 (en) | 2011-09-09 | 2013-03-14 | Bayer Intellectual Property Gmbh | Acyl-homoserine lactone derivatives for improving plant yield |
WO2013037717A1 (en) | 2011-09-12 | 2013-03-21 | Bayer Intellectual Property Gmbh | Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4h)-one derivatives |
WO2013037958A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of phenylpyrazolin-3-carboxylates for improving plant yield |
WO2013037955A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of acylsulfonamides for improving plant yield |
WO2013037956A1 (en) | 2011-09-16 | 2013-03-21 | Bayer Intellectual Property Gmbh | Use of 5-phenyl- or 5-benzyl-2 isoxazoline-3 carboxylates for improving plant yield |
WO2013041602A1 (en) | 2011-09-23 | 2013-03-28 | Bayer Intellectual Property Gmbh | Use of 4-substituted 1-phenyl-pyrazole-3-carboxylic-acid derivatives as agents against abiotic plant stress |
WO2013050410A1 (en) | 2011-10-04 | 2013-04-11 | Bayer Intellectual Property Gmbh | RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE |
WO2013050324A1 (en) | 2011-10-06 | 2013-04-11 | Bayer Intellectual Property Gmbh | Combination, containing 4-phenylbutyric acid (4-pba) or a salt thereof (component (a)) and one or more selected additional agronomically active compounds (component(s) (b)), that reduces abiotic plant stress |
WO2013075817A1 (en) | 2011-11-21 | 2013-05-30 | Bayer Intellectual Property Gmbh | Fungicide n-[(trisubstitutedsilyl)methyl]-carboxamide derivatives |
WO2013079566A2 (en) | 2011-11-30 | 2013-06-06 | Bayer Intellectual Property Gmbh | Fungicidal n-bicycloalkyl and n-tricycloalkyl (thio)carboxamide derivatives |
WO2013092519A1 (en) | 2011-12-19 | 2013-06-27 | Bayer Cropscience Ag | Use of anthranilic acid diamide derivatives for pest control in transgenic crops |
WO2013098146A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(1,3-thiazol-4-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013098147A1 (en) | 2011-12-29 | 2013-07-04 | Bayer Intellectual Property Gmbh | Fungicidal 3-[(pyridin-2-ylmethoxyimino)(phenyl)methyl]-2-substituted-1,2,4-oxadiazol-5(2h)-one derivatives |
WO2013124275A1 (en) | 2012-02-22 | 2013-08-29 | Bayer Cropscience Ag | Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape. |
WO2013127704A1 (en) | 2012-02-27 | 2013-09-06 | Bayer Intellectual Property Gmbh | Active compound combinations containing a thiazoylisoxazoline and a fungicide |
WO2013139949A1 (en) | 2012-03-23 | 2013-09-26 | Bayer Intellectual Property Gmbh | Compositions comprising a strigolactame compound for enhanced plant growth and yield |
WO2013153143A1 (en) | 2012-04-12 | 2013-10-17 | Bayer Cropscience Ag | N-acyl- 2 - (cyclo) alkylpyrrolidines and piperidines useful as fungicides |
WO2013156560A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(trisubstitutedsilylphenyl)methylene]-(thio)carboxamide derivatives |
WO2013156559A1 (en) | 2012-04-20 | 2013-10-24 | Bayer Cropscience Ag | N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives |
US11518997B2 (en) | 2012-04-23 | 2022-12-06 | BASF Agricultural Solutions Seed US LLC | Targeted genome engineering in plants |
WO2013160230A1 (en) | 2012-04-23 | 2013-10-31 | Bayer Cropscience Nv | Targeted genome engineering in plants |
WO2013167545A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | Pyrazole indanyl carboxamides |
EP2662362A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole indanyl carboxamides |
EP2662360A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole indanyl carboxamides |
EP2662361A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazol indanyl carboxamides |
EP2662364A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | Pyrazole tetrahydronaphthyl carboxamides |
WO2013167544A1 (en) | 2012-05-09 | 2013-11-14 | Bayer Cropscience Ag | 5-halogenopyrazole indanyl carboxamides |
EP2662363A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole biphenylcarboxamides |
EP2662370A1 (en) | 2012-05-09 | 2013-11-13 | Bayer CropScience AG | 5-Halogenopyrazole benzofuranyl carboxamides |
WO2013174836A1 (en) | 2012-05-22 | 2013-11-28 | Bayer Cropscience Ag | Active compounds combinations comprising a lipo-chitooligosaccharide derivative and a nematicide, insecticidal or fungicidal compound |
WO2014009322A1 (en) | 2012-07-11 | 2014-01-16 | Bayer Cropscience Ag | Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress |
WO2014037340A1 (en) | 2012-09-05 | 2014-03-13 | Bayer Cropscience Ag | Use of substituted 2-amidobenzimidazoles, 2-amidobenzoxazoles and 2-amidobenzothiazoles or salts thereof as active substances against abiotic plant stress |
WO2014060502A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Active compound combinations comprising carboxamide derivatives |
WO2014060518A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method of plant growth promotion using carboxamide derivatives |
WO2014060519A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives |
WO2014060520A1 (en) | 2012-10-19 | 2014-04-24 | Bayer Cropscience Ag | Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives |
WO2014079789A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Active compound combinations |
EP2735231A1 (en) | 2012-11-23 | 2014-05-28 | Bayer CropScience AG | Active compound combinations |
WO2014079957A1 (en) | 2012-11-23 | 2014-05-30 | Bayer Cropscience Ag | Selective inhibition of ethylene signal transduction |
WO2014082950A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal mixtures |
WO2014083088A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary fungicidal mixtures |
WO2014083031A2 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Binary pesticidal and fungicidal mixtures |
WO2014083089A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropscience Ag | Ternary fungicidal and pesticidal mixtures |
WO2014083033A1 (en) | 2012-11-30 | 2014-06-05 | Bayer Cropsience Ag | Binary fungicidal or pesticidal mixture |
EP2740720A1 (en) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituted bicyclic and tricyclic pent-2-en-4-inic acid derivatives and their use for enhancing the stress tolerance in plants |
EP2740356A1 (en) | 2012-12-05 | 2014-06-11 | Bayer CropScience AG | Substituted (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-inic acid derivatives |
WO2014086751A1 (en) | 2012-12-05 | 2014-06-12 | Bayer Cropscience Ag | Use of substituted 1-(aryl ethynyl)-, 1-(heteroaryl ethynyl)-, 1-(heterocyclyl ethynyl)- and 1-(cyloalkenyl ethynyl)-cyclohexanols as active agents against abiotic plant stress |
WO2014090765A1 (en) | 2012-12-12 | 2014-06-19 | Bayer Cropscience Ag | Use of 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-amino-3-trifluoromethyl)-1 h-1,2,4 tfia zole for controlling nematodes in nematode-resistant crops |
WO2014095826A1 (en) | 2012-12-18 | 2014-06-26 | Bayer Cropscience Ag | Binary fungicidal and bactericidal combinations |
WO2014095677A1 (en) | 2012-12-19 | 2014-06-26 | Bayer Cropscience Ag | Difluoromethyl-nicotinic- tetrahydronaphtyl carboxamides |
WO2014135608A1 (en) | 2013-03-07 | 2014-09-12 | Bayer Cropscience Ag | Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-heterocycle derivatives |
WO2014161821A1 (en) | 2013-04-02 | 2014-10-09 | Bayer Cropscience Nv | Targeted genome engineering in eukaryotes |
WO2014167009A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazole derivatives |
WO2014167008A1 (en) | 2013-04-12 | 2014-10-16 | Bayer Cropscience Ag | Novel triazolinthione derivatives |
WO2014170345A2 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Method for improved utilization of the production potential of transgenic plants |
WO2014170364A1 (en) | 2013-04-19 | 2014-10-23 | Bayer Cropscience Ag | Binary insecticidal or pesticidal mixture |
WO2014177582A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | N-(2-fluoro-2-phenethyl)carboxamides as nematicides and endoparasiticides |
WO2014177514A1 (en) | 2013-04-30 | 2014-11-06 | Bayer Cropscience Ag | Nematicidal n-substituted phenethylcarboxamides |
WO2014206953A1 (en) | 2013-06-26 | 2014-12-31 | Bayer Cropscience Ag | N-cycloalkyl-n-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives |
WO2015004040A1 (en) | 2013-07-09 | 2015-01-15 | Bayer Cropscience Ag | Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress |
WO2015082587A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2015082586A1 (en) | 2013-12-05 | 2015-06-11 | Bayer Cropscience Ag | N-cycloalkyl-n-{[2-(1-substitutedcycloalkyl)phenyl]methylene}-(thio)carboxamide derivatives |
WO2016012362A1 (en) | 2014-07-22 | 2016-01-28 | Bayer Cropscience Aktiengesellschaft | Substituted cyano cycloalkyl penta-2,4-dienes, cyano cycloalkyl pent-2-en-4-ynes, cyano heterocyclyl penta-2,4-dienes and cyano heterocyclyl pent-2-en-4-ynes as active substances against abiotic plant stress |
WO2016096942A1 (en) | 2014-12-18 | 2016-06-23 | Bayer Cropscience Aktiengesellschaft | Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress |
WO2016166077A1 (en) | 2015-04-13 | 2016-10-20 | Bayer Cropscience Aktiengesellschaft | N-cycloalkyl-n-(biheterocyclyethylene)-(thio)carboxamide derivatives |
US11180751B2 (en) | 2015-06-18 | 2021-11-23 | The Broad Institute, Inc. | CRISPR enzymes and systems |
WO2018019676A1 (en) | 2016-07-29 | 2018-02-01 | Bayer Cropscience Aktiengesellschaft | Active compound combinations and methods to protect the propagation material of plants |
WO2018054829A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives and their use as fungicides |
WO2018054832A1 (en) | 2016-09-22 | 2018-03-29 | Bayer Cropscience Aktiengesellschaft | Novel triazole derivatives |
WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
WO2018077711A2 (en) | 2016-10-26 | 2018-05-03 | Bayer Cropscience Aktiengesellschaft | Use of pyraziflumid for controlling sclerotinia spp in seed treatment applications |
WO2018104392A1 (en) | 2016-12-08 | 2018-06-14 | Bayer Cropscience Aktiengesellschaft | Use of insecticides for controlling wireworms |
WO2018108627A1 (en) | 2016-12-12 | 2018-06-21 | Bayer Cropscience Aktiengesellschaft | Use of substituted indolinylmethyl sulfonamides, or the salts thereof for increasing the stress tolerance of plants |
EP3332645A1 (en) | 2016-12-12 | 2018-06-13 | Bayer Cropscience AG | Use of substituted pyrimidine diones or their salts as agents to combat abiotic plant stress |
US11591601B2 (en) | 2017-05-05 | 2023-02-28 | The Broad Institute, Inc. | Methods for identification and modification of lncRNA associated with target genotypes and phenotypes |
WO2019025153A1 (en) | 2017-07-31 | 2019-02-07 | Bayer Cropscience Aktiengesellschaft | Use of substituted n-sulfonyl-n'-aryl diaminoalkanes and n-sulfonyl-n'-heteroaryl diaminoalkanes or salts thereof for increasing the stress tolerance in plants |
WO2019060746A1 (en) | 2017-09-21 | 2019-03-28 | The Broad Institute, Inc. | Systems, methods, and compositions for targeted nucleic acid editing |
US10968257B2 (en) | 2018-04-03 | 2021-04-06 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
US11999767B2 (en) | 2018-04-03 | 2024-06-04 | The Broad Institute, Inc. | Target recognition motifs and uses thereof |
WO2019233863A1 (en) | 2018-06-04 | 2019-12-12 | Bayer Aktiengesellschaft | Herbicidally active bicyclic benzoylpyrazoles |
WO2020131862A1 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Crispr-associated transposase systems and methods of use thereof |
Also Published As
Publication number | Publication date |
---|---|
ES2217254T3 (en) | 2004-11-01 |
DE69233352T2 (en) | 2004-10-07 |
CA2146998A1 (en) | 1994-04-28 |
AU2696492A (en) | 1994-05-09 |
DE69233352D1 (en) | 2004-06-24 |
ATE267259T1 (en) | 2004-06-15 |
DK0664835T3 (en) | 2004-09-27 |
EP0664835A1 (en) | 1995-08-02 |
AU690517B2 (en) | 1998-04-30 |
EP0664835B1 (en) | 2004-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6013861A (en) | Plants and processes for obtaining them | |
WO1994009144A1 (en) | Novel plants and processes for obtaining them | |
Keeling et al. | Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain | |
AU784405B2 (en) | Transgenic fiber producing plants with increased expression of sucrose phosphate synthase | |
JP5271160B2 (en) | Barley with reduced SSII activity and starch and starch-containing products with reduced amylopectin content | |
Hannah et al. | Biotechnological modification of carbohydrates for sweet corn and maize improvement | |
US20040221336A1 (en) | Plants which synthesize a modified starch, process for the production thereof and modified starch | |
Saripalli et al. | AGPase: its role in crop productivity with emphasis on heat tolerance in cereals | |
JPWO2008087932A1 (en) | Plants with improved seed yield | |
Wang et al. | Molecular characterization and expression of starch granule‐bound starch synthase in the sink and source tissues of sweet potato | |
US6664444B1 (en) | Transgenic plants presenting a modified inulin producing profile | |
EA008669B1 (en) | A method of increasing the total or soluble carbohydrate content or sweetness of an endogenous carbohydrate by catalysing the conversion of an endogenous sugar to an alien sugar | |
Stoop et al. | Developmental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato | |
US5750869A (en) | Soluble solids modification using sucrose phosphate synthase encoding sequences | |
AU730997B2 (en) | Method for increasing sucrose content of plants | |
JP4711762B2 (en) | Function elucidation of starch synthase type IIIa and new starch production method | |
Ihemere | Somatic embryogenesis and transformation of cassava for enhanced starch production | |
Hamada et al. | Starch-branching enzyme I gene (IbSBEI) from sweet potato (Ipomoea batatas); molecular cloning and expression analysis | |
US6538180B1 (en) | Method for increasing sucrose content of plants | |
US6881433B1 (en) | Food products containing altered starch | |
EP1001029A1 (en) | Method for increasing sucrose content of plants | |
WO2024125590A1 (en) | Polynucleotide, protein, biological material, and use thereof in improving quality of plant fruit | |
RU2152997C2 (en) | Dna structure (variants), method of transgenic plant preparing and fructans | |
WO2005042722A2 (en) | Materials and methods for improved sweet corn | |
CN117660497A (en) | Gene for regulating and controlling amylose and amylopectin content of sorghum and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BB BG BR CA CS FI HU JP KP KR LK MG MN MW NO PL RO RU SD |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2146998 Country of ref document: CA Ref document number: 1992921134 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1992921134 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1992921134 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1992921134 Country of ref document: EP |