WO1994003445A1 - 3-benzylamino-2-phenyl-piperidine derivatives as substance p receptor antagonists - Google Patents

3-benzylamino-2-phenyl-piperidine derivatives as substance p receptor antagonists Download PDF

Info

Publication number
WO1994003445A1
WO1994003445A1 PCT/US1993/005077 US9305077W WO9403445A1 WO 1994003445 A1 WO1994003445 A1 WO 1994003445A1 US 9305077 W US9305077 W US 9305077W WO 9403445 A1 WO9403445 A1 WO 9403445A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
carbon
phenyl
mammal
nitrogen
Prior art date
Application number
PCT/US1993/005077
Other languages
French (fr)
Inventor
Terry J. Rosen
Original Assignee
Pfizer Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer Inc. filed Critical Pfizer Inc.
Priority to JP6505270A priority Critical patent/JPH07506379A/en
Priority to US08/379,625 priority patent/US5688804A/en
Priority to AU43961/93A priority patent/AU4396193A/en
Priority to EP93914220A priority patent/EP0654029A1/en
Publication of WO1994003445A1 publication Critical patent/WO1994003445A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to novel substituted derivatives of nitrogen containing heterocycles, pharmaceutical compositions comprising such compounds and the use of such compounds in the treatment and prevention of inflammatory and central nervous system disorders, as well as several other disorders.
  • the pharmaceutically active compounds of this invention are substance P receptor antagonists.
  • Substance P is a naturally occurring undecapeptide belonging to the tachykinin family of peptides, the latter being named because of their prompt stimulatory action on smooth muscle tissue. More specifically, substance P is a pharmacologically active neuropeptide that is produced in mammals (having originally been isolated from gut) and possesses a characteristic amino acid sequence that is illustrated by D. F. Veber et al. in U.S. Patent No. 4,680,283. The wide involvement of substance P and other tachykinins in the pathophysiology of numerous diseases has been amply demonstrated in the art. For instance, substance P has recently been shown to be involved in the transmission of pain or migraine (see B.E.B. Sandberg et al., Journal of Medicinal Chemistry.
  • the present invention relates to compounds of the formula
  • m is an integer from 1 to 8
  • any one of the carbon-carbon single bonds of (CH 2 ) m may optionally be replaced by a carbon-carbon double bond or a carbon-carbon triple bond, and any one of the carbon atoms of said (CH 2 ) m may optionally be substituted with R 11 ;
  • w is an integer from zero to four;
  • x is an integer from zero to four;
  • y is an integer from zero to four;
  • z is an integer from zero to six and wherein the ring containing (CH 2 ) z may contain from zero to three double bonds, and one of the carbons of (CH 2 ) z may optionally be replaced by oxygen, sulfur or nitrogen;
  • R 1 is hydrogen or (C 1 -C 8 ) alkyl optionally substituted with hydroxy, alkoxy or fluoro;
  • R 3 is aryl selected from phenyl, indanyl, and naphthyl; heteroaryl selected from benzothienyl, benzofuryl, thienyl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, and quinolyl; or cycloalkyl having from three to seven carbon atoms, wherein one of said carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; wherein each of said aryl and heteroaryl groups may optionally be substituted with one or more substituents, and said (C 3 -C 7 ) cycloalkyl may optionally be substituted with one or two substituents, said substituents being independently selected from halo, nitro,
  • (C 3 -C 10 ) alkyl optionally substituted with from one to three fluorine atoms
  • (C 3 -C 10 ) alkoxy optionally substituted with from one to three fluorine atoms, trifluoromethyl, amino
  • R 6 is a functionality selected from hydrogen, (C 1 -C 6 )straight or branched alkyl, (C 3 -C 7 )cycloalkyl wherein one of the carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; aryl selected from biphenyl, phenyl, indanyl and naphthyl; heteroaryl selected from benzothienyl, thienyl, furyl, benzofuryl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl and quinolyl; phenyl (C 2 -C 6 )alkyl, benzhydryl and benzyl, wherein each of said aryl and heteroaryl groups and the phenyl moieties of said benzyl, phenyl (C 2 -C 6 )alkyl and benzhydryl may optionally be substituted
  • R 7 is hydrogen, phenyl or (C 1 -C 6 ) alkyl
  • R 6 and R 7 together with the carbon to which they are attached, form a saturated carbocyclic ring having from 3 to 7 carbon atoms wherein one of said carbon atoms may optionally be replaced by oxygen, nitrogen or sulfur;
  • R 8 may be attached to any atom of the nitrogen containing ring having an available bonding site and R 9 may be attached to any atom of the (CH 2 ) z containing ring having an available bonding site or to any carbon atom of the nitrogen containing ring having an available bonding site;
  • A is selected from the group consisting of CH 2 , nitrogen, oxygen, sulfur and carbonyl; G is nitrogen, oxygen or sulfur;
  • R 10 is a monocyclic or bicyclic heterocycle selected from the group consisting of pyrimidinyl, benzoxazolyl, 2,3-dihydro-3-oxobenzisosulfonazol-2-yl, morpholin-1-yl, thiomorpholin-1-yl, benzofuranyl, benzothienyl, indolyl, isoindolyl, isoquinolinyl, furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, thienyl, and groups of the formulae and
  • B and D are selected from carbon, oxygen and nitrogen, and at least one of B and D is other than carbon; E is carbon or nitrogen; n is an integer from 1 to 5; any one of the carbon atoms of said (CH 2 ) n and (CH 2 ) n+1 may be optionally substituted with (C 1 -C 6 ) alkyl or (C 2 -C 6 ) spiroalkyl; and either any one pair of the carbon atoms of said (CH 2 ) n and (CH 2 ) n+1 may be bridged by a one or two carbon atom linkage, or any one pair of adjacent carbon atoms of said (CH 2 ) n and (CH 2 ) n+1 may form, together with from one to three carbon atoms that are not members of the carbonyl containing ring, a (C 3 -C 5 ) fused carbocyclic ring;
  • R 8 and R 9 is independently selected from hydrogen, fluoro, (C 1 -C 6 )alkyl, hydroxy-(C 1 -C 6 )alkyl and (C 1 -C C )alkoxy- (C 1 -C 6 ) alkyl, or R 8 and R 9 , together with the carbon to which they are attached, form a (C 3 -C 6 ) saturated carbocyclic ring that forms a spiro compound with the nitrogen containing ring to which they are attached, (d) when A is nitrogen,
  • Preferred compounds of the formula I are those wherein z is zero, G is nitrogen, and R 9 is attached to the ring to which R 6 and R 7 are attached.
  • Preferred compounds of the formula I are those wherein m is an integer from 4 to 6; G is nitrogen; R 3 is phenyl optionally substituted with one or two substituents, said substituents being independently selected from halo, nitro, (C 1 -C 10 ) alkyl optionally substituted with from one to three fluorine atoms, (C 1 -C 10 ) alkoxy optionally substituted with from one to three fluorine atoms, trifluoromethyl, amino,
  • More preferred compounds of formula I are the foregoing compounds wherein x is zero to two, w, y and z are zero and R 8 , R 9 and R 11 are hydrogen.
  • Specific preferred compounds of the formula I are: (2S,3S)-3-(2-methoxybenzyl)amino-2-phenyl-1-[4- (thiazol-2-yl)aminobutyl]piperidine; I (2S,3S)-3-(2-methoxybenzyl)amino-2-phenyl-1-[4- (pyrimidin-2-yl)aminobutyl]piperidine;
  • the present invention also relates to the pharmaceutically acceptable acid addition salts of compounds of the formula I.
  • the acids which are used to prepare the pharmaceutically acceptable acid addition salts of the basic compounds of this invention are those which form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, acetate, lactate, citrate, acid citrate, tartrate, bitartrate, succinate, maleate, fumarate, gluconate, saccharate, benzoate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate [i.e. , 1,1'-methylene-bis-(2-hydroxy-3- naphthoate)]saltsaltsalts
  • halo as used herein, unless otherwise indicated, includes chloro, fluoro, bromo and iodo.
  • alkyl as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof.
  • one or more substituents includes from one to the maximum number of substituents possible based on the number of available bonding sites.
  • the present invention also relates to a pharmaceutical composition for treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as system
  • the present invention also relates to a method of treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic
  • the present invention also relates to a pharmaceutical composition for antagonizing the effects of substance P in a mammal, including a human, comprising a substance P antagonizing amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the present invention also relates to a method of antagonizing the effects of substance P in a mammal, including a human, comprising administering to said mammal a substance P antagonizing amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention also relates to a pharmaceutical composition for treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus
  • the present invention also relates to a method of treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus,
  • the present invention also relates to a pharmaceutical composition for treating or preventing a disorder in a mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site, and a pharmaceutically acceptable carrier.
  • the present invention also relates to a method of treating or preventing a disorder in mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site.
  • the present invention also relates to a pharmaceutical composition for treating or preventing a disorder in a mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such disorder, and a pharmaceutically acceptable carrier.
  • the present invention also relates to a method of treating or preventing a disorder in mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such disorder.
  • the compounds of the formula I have chiral centers and therefore exist in different enantiomeric forms.
  • This invention relates to all optical isomers and all stereoisomers of compounds of the formula I, and mixtures thereof.
  • the compounds of the formula I may be prepared as described in the following reaction schemes and discussion.
  • R 1 , R 3 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , m, w, x, y, and z in the reaction schemes and discussion that follow are defined as above.
  • the compounds of formula III may be converted to compounds of the formula I having the same stereochemistry by reacting them with the appropriate compound of the formula , wherein L is halo,
  • This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane, at a temperature from about room temperature to about 150°C.
  • a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide
  • a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane
  • the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
  • Scheme 2 illustrates an alternative method of converting compounds of formula III into compounds of the formula I having the same stereochemistry, and in which R 10 is a heteroaromatic group and A is selected from oxygen, nitrogen and sulfur, by first converting compounds of formula III into intermediates of formula II. These intermediates of formula II can then be converted into compounds of formula I.
  • Preferred protecting groups for the hydroxyl, amino and thiol groups are t-butyldimethylsilyl, t-butoxycarbonyl and acetyl, respectively.
  • This reaction is typically carried out in the presence of a base such as triethylamine or potassium t-butoxide, in a polar solvent such as methylene chloride, dichloroethane, tetrahydrofuran or chloroform, at a temperature from about room temperature to about 150°C.
  • a base such as triethylamine or potassium t-butoxide
  • a polar solvent such as methylene chloride, dichloroethane, tetrahydrofuran or chloroform
  • the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
  • the reaction is generally carried out for about 0.5 to about 72 hours.
  • a protecting group When a protecting group is present, it is then removed from the compound of formula II.
  • deprotection is accomplished by reacting the protected compound of formula II with an acid such as hydrochloric acid, trifluoroacetic acid or perchloric acid, to yield a compound of the formula II having the same stereochemistry in which the protecting group has been replaced with hydrogen.
  • acid such as hydrochloric acid, trifluoroacetic acid or perchloric acid
  • solvents for this reaction include polar solvents such as methylene chloride, dioxane, ether or THF, preferably dioxane.
  • a t-butyldimethylsilyl ether is cleaved by similar conditions or by using tetrabutylammonium fluoride, in tetrahydrofuran (THF).
  • An acetyl-protected thiol is cleaved using methanolic sodium methoxide or aqueous ammonia.
  • the deprotection reaction is typically run at a temperature from about -10°C to about 50°C, preferably about 25°C, for about 0.5 to about 24 hours.
  • Intermediate compounds of formula II so formed can be converted into compounds of formula I by reacting them with the appropriate monocyclic or bicyclic heterocycle of the formula R 10 -X wherein X is halo, mesylate, or tosylate and R 10 is defined as above.
  • This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as methylene chloride, t-butanol, dimethyl formamide (DMF) or dichloroethane, at a temperature from about room temperature to about 150°C.
  • a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide
  • a polar solvent such as methylene chloride, t-butanol, dimethyl formamide (DMF) or dichloroethane
  • the reaction is
  • compounds of formula II in which R 13 is amino may be converted into compounds of formula I in which R 10 is a cyclic imido group such as succinimido by treating the compound of formula II with an appropriate dicarboxylic acid, an activated derivative of a dicarboxylic acid (e.g., dihalo, mesylate or tosylate), or an anhydride.
  • This reaction is typically carried out in a non-polar solvent such as xylene, hexanes, cyclohexane, ether, tetrahydrofuran or toluene at a temperature from 60°C to about the reflux temperature of the solvent.
  • Scheme 3 illustrates an alternative method of converting compounds of formula III into compounds of formula I, in which A is oxygen or nitrogen, by first treating compounds of formula III with a compound of formula , wherein L' is halo, mesylate
  • reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane, at a temperature from about room temperature to about 150°C.
  • a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide
  • a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane
  • the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
  • the hydroxyl group may be protected as appropriate, preferably with the t-butyl dimethylsilyl group.
  • This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane, at a temperature from about room temperature to about 150°C.
  • a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide
  • a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane
  • the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
  • the protecting group is t-butyldimethylsilyl
  • deprotection is carried out with tetrabutylammonium fluoride in tetrahydrofuran or with an acid such as hydrochloric acid (HCl) or acetic acid in a polar solvent such as water or tetrahydrofuran, at a temperature from about 0°C to about 60°C, preferably at about room temperature.
  • HCl hydrochloric acid
  • acetic acid in a polar solvent such as water or tetrahydrofuran
  • the free hydroxyl can then be converted into a leaving group by any of the conventional means.
  • Treatment of the hydroxyl group with an agent such as methanesulfonyl chloride is preferred.
  • Compounds of formula IV are converted into compounds of formula I by reacting them with the appropriate compound of the formula R 10 -A-H.
  • This reaction is typically carried out in the presence of a base such as triethylamine or potassium t-butoxide, in a polar solvent such as methylene chloride, dichloroethane, tetrahydrofuran or chloroform, at a temperature from about room temperature to about 150°C.
  • a base such as triethylamine or potassium t-butoxide
  • a polar solvent such as methylene chloride, dichloroethane, tetrahydrofuran or chloroform
  • the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
  • the reaction is generally carried out for about 0.5 to about 72 hours.
  • compounds of formula IV are converted into compounds of formula I by reacting them with the corresponding anion derived from treatment of R 10 -A-H with a base.
  • the anion can be formed with a reagent such as sodium hydride or butyl lithium in a solvent such as tetrahydrofuran or ether.
  • This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as methylene chloride, t-butanol, dimethyl formamide (DMF) or dichloroethane, at a temperature from about room temperature to about 150°C.
  • the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
  • Compounds of formula III may also be converted into the corresponding compounds of the formula I by first reacting them with the appropriate compound of the formula wherein L is defined as above or is imidazole, and then reducing the resulting amide.
  • This reaction is typically carried out in an inert solvent such as THF or dichloromethane at a temperature from about -20°C to about 60°C. It is preferably carried out in dichloromethane at about 0°C.
  • Reduction of the resulting amide is accomplished by treatment with a reducing agent such as borane dimethylsulfide complex, lithium aluminum hydride or diisobutylaluminum hydride in an inert solvent such as ethyl ether or THF.
  • the reaction temperature may range from about 0°C to about 60°C.
  • the reduction is accomplished using borane dimethylsulfide complex in THF at about 60°C.
  • Scheme 4 illustrates a method of preparing compounds of formula III wherein G is sulfur or oxygen, and R 1 is absent.
  • Esters of formula VI are hydrolyzed to form acids of formula VI, wherein R 12 is hydrogen, by methods well known to those skilled in the art, for example, by treatment of the ester of formula VI with an acid or a base in a solvent such as water.
  • the acids of formula VI, wherein R 12 is hydrogen, are oxidized to form a compound of formula V wherein G is oxygen by reacting the compound of formula VI with lead tetraacetate in an inert solvent such as cyclohexane, hexane, methylene chloride, or benzene at a temperature of 0°C to a temperature of 90°C.
  • an inert solvent such as cyclohexane, hexane, methylene chloride, or benzene
  • the oxidation of the compounds of formula is facilitated by the addition of copper (II) salts such as copper (II) acetate (Cu(OCOCH 3 ) 2 ) and pyridine.
  • the compound of formula V wherein G is oxygen is converted to a compound of formula III wherein R 1 is absent by alkylating the compound of formula V with a compound of formula R 3 CH 2 X and a base, wherein X is a leaving group selected from halo and -SO 3 R 12 , wherein R 12 is (C 1 -C 4 )alkyl or phenyl, and R 3 is defined as above.
  • the reaction of the compound of formula III with the compound of formula R 3 CH 2 X is typically carried out in a solvent such as dichloromethane, chloroform, carbon tetrachloride, ether, hexane, cyclohexane or tetrahydrofuran, preferably tetrahydrofuran, at a temperature from about 0°C to about 60°C, preferably at about 25°C.
  • Suitable bases include sodium hydride, organolithium bases such as butyl lithium, alkali metal alkoxides such as potassium or sodium t-butoxide and organic bases such as triethylamine, diisopropylethylamine and hexamethyldisilazide.
  • Non-nucleophilic bases such as triethylamine, diisopropylethylamine and hexamethyldisilazide are preferred because they will not react with the compound of formula II and this will not form the unwanted byproducts that result from such reaction.
  • the conversion of the compound of formula V to the compound of formula III is facilitated by preforming the anion of formula V by the addition of a strong base such as sodium hydride.
  • the amine of formula III can be converted to compounds of formula I by the procedures described in schemes 1 through 3 above.
  • compounds of formula V can be prepared by reducing a ketone of formula VII.
  • Ketones of formula VII can be reduced with lithium aluminium hydride, borane dimethylsulfide in tetrahydrofuran (THF), borane in THF and sodium borohydride titanium tetrachloride. Best results are obtained using sodium borohydride in THF.
  • the reaction may be carried out at temperatures from about -78 °C to about 80°C, and are preferably carried out at about 0 °C temperature of the solvent.
  • Compounds of formula V so formed may be converted to compounds of formula III as described above.
  • Compounds of formula III wherein G is sulfur and R 1 is absent can be formed from compounds of formula V wherein G is sulfur.
  • Compounds of formula V wherein G is sulfur may be prepared from compounds of formula VII wherein G is oxygen by reaction with phosphorus pentasulfide (P 4 S 10 ) in pyridine, followed by reduction with sodium borohydride (NaBH 4 ).
  • P 4 S 10 phosphorus pentasulfide
  • NaBH 4 sodium borohydride
  • the temperature during the reaction with P 4 S 10 is preferably about 90°C, but can range between about 0°C to about 110°C.
  • compounds of formula V wherein G is sulfur can be prepared from compounds of formula VII wherein the ketone of formula VII is reacted with Lawesson's reagent in the presence of a base followed by reduction with sodium borohydride.
  • the compounds of formula V wherein G is sulfur can be converted to compounds of formula III wherein G is sulfur by reaction of the compound of formula V with a compound of the formula R 3 CH 2 X wherein X is a leaving group selected from halo and -SO 3 R 12 , R 3 is defined as above and R 12 is (C 1 -C 6 )alkyl or phenyl.
  • the reaction of the compound of formula V with a compound of formula R 3 CH 2 X is typically carried out in a solvent such as dichloromethane, chloroform, carbon tetrachloride, hexane, cyclohexane or tetrahydrofuran, preferably dichloromethane at a temperature from about 0°C to about 60°C, preferably at about 25°C.
  • a solvent such as dichloromethane, chloroform, carbon tetrachloride, hexane, cyclohexane or tetrahydrofuran, preferably dichloromethane at a temperature from about 0°C to about 60°C, preferably at about 25°C.
  • the compound of formula III so formed is deprotected by the methods described above.
  • compounds of formula V wherein G is oxygen may be converted to compounds of formula III by reaction of the compound of formula V with mesylchloride followed by reaction with a thiol of formula R 3 CH 2 SH, wherein R 3 is defined as above.
  • the reaction of the compound of formula V with the compound of formula R 3 CH 2 SH is typically carried out in solvents such as dichloromethane, chloroform, carbon tetrachloride, hexane, cyclohexane or tetrahydrofuran, preferably dichloromethane at a temperature from about 0°C to about 60°C, preferably at about 25°C.
  • the compounds of formula III so formed can be deprotected to form compounds of formula III by the methods described above.
  • the compounds of formula III so formed may be converted to the final products of formula I by schemes 1 through 3, described above.
  • pressure is not critical unless otherwise indicated. Pressures from about 0.5 atmospheres to about 5 atmospheres are generally acceptable, and ambient pressure, i.e. about 1 atmosphere, is preferred as a matter of convenience.
  • novel compounds of the formula I and the pharmaceutically acceptable salts thereof are useful as substance P antagonists, i.e., they possess the ability to antagonize the effects of substance P at its receptor site in mammals, and therefore they are able to function as therapeutic agents in the treatment of the aforementioned disorders and diseases in an afflicted mammal.
  • the compounds of the formula I which are basic in nature are capable of forming a wide variety of different salts with various inorganic and organic acids. Although such salts must be pharmaceutically acceptable for administration to animals, it is often desirable in practice to initially isolate a compound of the Formula I from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert the latter back to the free base compound by treatment with an alkaline reagent and subsequently convert the latter free base to a pharmaceutically acceptable acid addition salt.
  • the acid addition salts of the base compounds of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily obtained.
  • the compounds of formula I and their pharmaceutically acceptable salts exhibit substance P receptor-binding activity and therefore are of value in the treatment and prevention of a wide variety of clinical conditions the treatment or prevention of which are effected or facilitated by a decrease in substance P mediated neurotransmission.
  • Such conditions include urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrosit
  • the compounds of the formula I and the pharmaceutically acceptable salts thereof can be administered via either the oral, parenteral or topical routes.
  • these compounds are most desirably administered in dosages ranging from about 5.0 mg up to about 1500 mg per day, although variations will necessarily occur depending upon the weight and condition of the subject being treated and the particular route of administration chosen.
  • a dosage level that is in the range of about 0.07 mg to about 21 mg per kg of body weight per day is most desirably employed. Variations may nevertheless occur depending upon the species of animal being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out.
  • dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day.
  • the compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any one of the three routes previously indicated, and such administration may be carried out in single or multiple doses.
  • the novel therapeutic agents of this invention can be administered in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like.
  • Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc.
  • oral pharmaceutical compositions can be suitably sweetened and/or flavored.
  • the therapeutically-effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.
  • tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes.
  • compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.
  • solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed.
  • the aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic.
  • These aqueous solutions are suitable for intravenous injection purposes.
  • the oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.
  • the activity of the compounds of the present invention as substance P antagonists may be determined by their ability to inhibit the binding of substance P at its receptor sites in bovine caudate tissue, employing radioactive ligands to visualize the tachykinin receptors by means of autoradiography.
  • the substance P antagonizing activity of the herein described compounds may be evaluated by using the standard assay procedure described by M. A. Cascieri et al., as reported in the Journal of Biological Chemistry. Vol. 258, p. 5158 (1983). This method essentially involves determining the concentration of the individual compound required to reduce by 50% the amount of radiolabelled substance P ligands at their receptor sites in said isolated cow tissues, thereby affording characteristic IC 50 values for each compound tested.
  • bovine caudate tissue is removed from a -70°C freezer and homogenized in 50 volumes (w./v.) of an ice-cold 50 mM Tris (i.e., trimethamine which is 2-amino-2-hydroxymethyl-1,3-propanediol) hydrochloride buffer having a pH of 7.7.
  • Tris i.e., trimethamine which is 2-amino-2-hydroxymethyl-1,3-propanediol
  • the homogenate is centrifuged at 30,000 ⁇ G for a period of 20 minutes.
  • the pellet is resuspended in 50 volumes of Tris buffer, rehomogenized and then recentrifuged at 30,000 ⁇ G for another twenty-minute period.
  • the pellet is then resuspended in 40 volumes of ice-cold 50 mM Tris buffer (pH 7.7) containing 2 mM of calcium chloride, 2 mM of magnesium chloride, 40 g/ml of bacitracin, 4 ⁇ g/ml of leupeptin, 2 ⁇ g of chymostatin and 200 g/ml of bovine serum albumin. This step completes the production of the tissue preparation.
  • the radioligand binding procedure is then carried out in the following manner, viz., by initiating the reaction via the addition of 100 ⁇ l of the test compound made up to a concentration of 1 ⁇ M, followed by the addition of
  • the anti-psychotic activity of the compounds of the present invention as neuroleptic agents for the control of various psychotic disorders may be determined by a study of their ability to suppress substance P-induced or substance P agonist induced hypermotility in guinea pigs. This study is carried out by first dosing the guinea pigs with a control compound or with an appropriate test compound of the present invention, then injecting the guinea pigs with substance P or a substance P agonist by intracerebral administration via canula and thereafter measuring their individual locomotor response to said stimulus.
  • the mixture was partitioned between chloroform and saturated aqueous sodium bicarbonate and extracted with two portions of chloroform.
  • the combined chloroform extracts were dried (Na 2 SO 4 ) and concentrated.
  • the crude brown oil was purified by flash column chromatography (35 g of silica gel) using 1:3 methanol/chloroform as the eluant to obtain 38 mg of product.
  • This material was dissolved in ethyl acetate, and ether saturated with hydrogen chloride (HCl) was added to the solution. The solvent was removed with a pipet and the residue was subjected to high vacuum to obtain 21 mg of the title compound, mp 90-95°C.
  • the crude product was purified by flash column chromotography (20 g of silica gel) using 1:19 methanol/chloroform as the eluant to obtain pure title compound as its free base. This material was dissolved in ethyl acetate, and the ether saturated with HCl was added to the solution. Filtration of the resulting suspension afforded the title compound as a hygroscopic solid, mp 69-74°C.
  • the title compound was prepared in a similar manner to the compound of Example 4 by replacing cis-3-(2-methoxybenzylamino)-2-phenylpiperidine with the corresponding (2S, 3S)-enantiomer and the substituted chlorobutane with 1-bromo-4- (2 , 3-dihydro-3-oxobenzisosulfonazol-2-yl)butane: mp 120-122°C.
  • the title compound was prepared in a similar manner to the compound of Example 4 by replacing the substituted chlorobutane with 4-(succinimido-1-yl)-1-methylsufonyloxybutane [prepared from 4-amino-1-butanol by sequential treatment with succinic anhydride (xylenes, acetic anhydride, reflux, 2 hours), sodium methoxide (methanol, 3 hours) and methanesulfonyl chloride (triethylamine, THF, 3h)].
  • succinic anhydride xylenes, acetic anhydride, reflux, 2 hours
  • sodium methoxide methanol, 3 hours
  • methanesulfonyl chloride triethylamine, THF, 3h

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Psychiatry (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention relates to derivatives of formula (I). These novel compounds are useful in the treatment of inflammatory and central nervous system disorders, as well as other disorders.

Description

3-BENZYLAMINO-2-PHENYL-PIPERIDINE DERIVATIVES AS SUBSTANCE P RECEPTOR ANTAGONISTS
Background of the Invention
The present invention relates to novel substituted derivatives of nitrogen containing heterocycles, pharmaceutical compositions comprising such compounds and the use of such compounds in the treatment and prevention of inflammatory and central nervous system disorders, as well as several other disorders. The pharmaceutically active compounds of this invention are substance P receptor antagonists.
Substance P is a naturally occurring undecapeptide belonging to the tachykinin family of peptides, the latter being named because of their prompt stimulatory action on smooth muscle tissue. More specifically, substance P is a pharmacologically active neuropeptide that is produced in mammals (having originally been isolated from gut) and possesses a characteristic amino acid sequence that is illustrated by D. F. Veber et al. in U.S. Patent No. 4,680,283. The wide involvement of substance P and other tachykinins in the pathophysiology of numerous diseases has been amply demonstrated in the art. For instance, substance P has recently been shown to be involved in the transmission of pain or migraine (see B.E.B. Sandberg et al., Journal of Medicinal Chemistry. 25, 1009 (1982)), as well as in central nervous system disorders such as anxiety and schizophrenia, in respiratory and inflammatory diseases such as asthma and rheumatoid arthritis, respectively, in rheumatic diseases such as fibrositis, and in gastrointestinal disorders and diseases of the GI tract such as ulcerative colitis and Crohn's disease, etc. (see D. Regoli in "Trends in Cluster Headache," edited by F. Sicuteri et al., Elsevier Scientific Publishers, Amsterdam, pp. 85-95 (1987)).
Quinuclidine derivatives and related compounds that exhibit activity as substance P receptor antagonists are referred to in PCT Patent Application PCT/US 89/05338, filed November 20, 1989 and United States Patent Application Serial No. 557,442, filed July 23, 1990. Similar compounds are referred to in the PCT Application PCT/US91/02853, filed on April 25, 1991 and PCT Application PCT/US91/03369 filed on May 14, 1991.
Monocyclic piperidine compounds are referred to in European Patent Publication 0,436,334 published on July 10, 1990.
Piperidine derivatives and related heterocyclic nitrogen containing compounds that are useful as substance
P antagonists are referred to in United States Patent Application Serial No. 619,361, filed November 28, 1990,
United States Patent Application Serial No. 590,423, filed
September 28, 1990, United States Patent Application Serial
No. 717,943 filed June 20, 1991, United States Patent
Application Serial No. 719,884 filed on June 21, 1991, and United States Patent Application 724,268 filed July 1, 1991.
Compounds containing a sulfur or an oxygen group at the
3 position of a nitrogen containing ring are referred to in
European Patent Publications 520,555A1 published on December
12, 1992, 499,313A1 published on August 19,1992, and 528,495A1 published on Feburary 24, 1993.
Summary of the Invention
The present invention relates to compounds of the formula
Figure imgf000005_0001
wherein m is an integer from 1 to 8, any one of the carbon-carbon single bonds of (CH2)m may optionally be replaced by a carbon-carbon double bond or a carbon-carbon triple bond, and any one of the carbon atoms of said (CH2)m may optionally be substituted with R11;
w is an integer from zero to four;
x is an integer from zero to four;
y is an integer from zero to four;
z is an integer from zero to six and wherein the ring containing (CH2)z may contain from zero to three double bonds, and one of the carbons of (CH2)z may optionally be replaced by oxygen, sulfur or nitrogen;
R1 is hydrogen or (C1-C8) alkyl optionally substituted with hydroxy, alkoxy or fluoro;
R3 is aryl selected from phenyl, indanyl, and naphthyl; heteroaryl selected from benzothienyl, benzofuryl, thienyl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, and quinolyl; or cycloalkyl having from three to seven carbon atoms, wherein one of said carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; wherein each of said aryl and heteroaryl groups may optionally be substituted with one or more substituents, and said (C3-C7) cycloalkyl may optionally be substituted with one or two substituents, said substituents being independently selected from halo, nitro,
(C3-C10) alkyl optionally substituted with from one to three fluorine atoms, (C3-C10) alkoxy optionally substituted with from one to three fluorine atoms, trifluoromethyl, amino,
(C1-C6) -alkylamino, di (C1-C6) alkylamino,
Figure imgf000006_0001
,
Figure imgf000006_0002
, phenyl, hydroxy,
Figure imgf000006_0003
,
Figure imgf000006_0004
(C1-C6) alkyl, hydroxy(C1-C6)alkyl, and (C1-C6) alkoxy(C1-C6) alkyl;
R6 is a functionality selected from hydrogen, (C1-C6)straight or branched alkyl, (C3-C7)cycloalkyl wherein one of the carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; aryl selected from biphenyl, phenyl, indanyl and naphthyl; heteroaryl selected from benzothienyl, thienyl, furyl, benzofuryl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl and quinolyl; phenyl (C2-C6)alkyl, benzhydryl and benzyl, wherein each of said aryl and heteroaryl groups and the phenyl moieties of said benzyl, phenyl (C2-C6)alkyl and benzhydryl may optionally be substituted with one or more substituents independently selected from halo, nitro, (C1-C10)alkyl optionally substituted with from one to three fluorine atoms, (C1-C10)alkoxy optionally substituted with from one to three fluorine atoms, amino, hydroxy (C1-C6)alkyl, (C1-C6) alkoxy(C1-C6) alkyl, (C1-C6)-alkylamino,
Figure imgf000006_0005
,
Figure imgf000006_0006
(C1-C6) alkyl,
Figure imgf000006_0007
,
Figure imgf000006_0008
(C1-C6)alkyl-O-,
Figure imgf000007_0001
,
Figure imgf000007_0002
(C1-C6)alkyl-, di-(C1-C6)alkylamino,
Figure imgf000007_0003
, (C1-C6)-
Figure imgf000007_0004
,
Figure imgf000007_0005
and
Figure imgf000007_0006
; and wherein one of the phenyl moieties of said benzhydryl may optionally be replaced by naphthyl, thienyl, furyl or pyridyl;
R7 is hydrogen, phenyl or (C1-C6) alkyl;
or R6 and R7, together with the carbon to which they are attached, form a saturated carbocyclic ring having from 3 to 7 carbon atoms wherein one of said carbon atoms may optionally be replaced by oxygen, nitrogen or sulfur;
R8 may be attached to any atom of the nitrogen containing ring having an available bonding site and R9 may be attached to any atom of the (CH2)z containing ring having an available bonding site or to any carbon atom of the nitrogen containing ring having an available bonding site;
R8 and R9 are independently selected from hydrogen, hydroxy, halo, amino, oxo (=O), cyano, hydroxy- (C1-C6)alkyl, (C1-C6 )alkoxy- (C1-C6 )alkyl, (C1-C6)alkylamino, di-(C1-C6)alkylamino, (C1-C6)alkoxy, , ,
Figure imgf000007_0007
Figure imgf000007_0008
Figure imgf000007_0009
,
Figure imgf000007_0010
,
Figure imgf000007_0011
,
Figure imgf000007_0012
, and the functionalities set forth in the definition of R6;
A is selected from the group consisting of CH2, nitrogen, oxygen, sulfur and carbonyl; G is nitrogen, oxygen or sulfur;
R10 is a monocyclic or bicyclic heterocycle selected from the group consisting of pyrimidinyl, benzoxazolyl, 2,3-dihydro-3-oxobenzisosulfonazol-2-yl, morpholin-1-yl, thiomorpholin-1-yl, benzofuranyl, benzothienyl, indolyl, isoindolyl, isoquinolinyl, furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, thienyl, and groups of the formulae and
Figure imgf000008_0001
Figure imgf000008_0002
wherein B and D are selected from carbon, oxygen and nitrogen, and at least one of B and D is other than carbon; E is carbon or nitrogen; n is an integer from 1 to 5; any one of the carbon atoms of said (CH2)n and (CH2)n+1 may be optionally substituted with (C1-C6) alkyl or (C2-C6) spiroalkyl; and either any one pair of the carbon atoms of said (CH2)n and (CH2)n+1 may be bridged by a one or two carbon atom linkage, or any one pair of adjacent carbon atoms of said (CH2)n and (CH2)n+1 may form, together with from one to three carbon atoms that are not members of the carbonyl containing ring, a (C3-C5) fused carbocyclic ring;
R11 is oximino (=NOH) or one of the functionalities set forth in any of the definitions of R6, R8 and R9;
with the proviso that (a) neither R8, R9, R10 nor R11 can form, together with the carbon to which it is attached, a ring with R7, (b) when z is other than zero, R9 must be attached to the (CH2)z containing ring and R8 and R9 cannot be attached to the same carbon atom, (c) when both z is zero and R8 and R9 are attached to the same carbon atom, then either each of R8 and R9 is independently selected from hydrogen, fluoro, (C1-C6)alkyl, hydroxy-(C1-C6)alkyl and (C1-CC)alkoxy- (C1-C6) alkyl, or R8 and R9, together with the carbon to which they are attached, form a (C3-C6) saturated carbocyclic ring that forms a spiro compound with the nitrogen containing ring to which they are attached, (d) when A is nitrogen, sulfur, or oxygen, m is greater than one, (e) when A is -CH2- or carbonyl, R10 cannot be furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, or thienyl, (f) when w is other than zero, then y is zero, the sum of w and z is less than 7, x is an integer from 0 to 2, z is an integer from 1 to 4, and wherein the ring containing (CH2)z is a saturated ring wherein no carbon atom may be replaced by oxygen, sulfur or nitrogen, and wherein R8 is optionally only a substituent on one of the carbon atoms of said (CH2)z.
Preferred compounds of the formula I are those wherein z is zero, G is nitrogen, and R9 is attached to the ring to which R6 and R7 are attached.
Preferred compounds of the formula I are those wherein m is an integer from 4 to 6; G is nitrogen; R3 is phenyl optionally substituted with one or two substituents, said substituents being independently selected from halo, nitro, (C1-C10) alkyl optionally substituted with from one to three fluorine atoms, (C1-C10) alkoxy optionally substituted with from one to three fluorine atoms, trifluoromethyl, amino,
(C1-C6)alkylamino, di(C1-C6) alkylamino,
Figure imgf000009_0001
, -(C1-
Figure imgf000009_0004
, phenyl, hydroxy,
Figure imgf000009_0002
,
Figure imgf000009_0003
C6) alkyl, hydroxy (C1-C6) alkyl and (C1-C6) alkoxy(C1-C6) alkyl; R6 is phenyl, R7 is hydrogen, and R1 is hydrogen.
More preferred compounds of formula I are the foregoing compounds wherein x is zero to two, w, y and z are zero and R8, R9 and R11 are hydrogen.
Specific preferred compounds of the formula I are: (2S,3S)-3-(2-methoxybenzyl)amino-2-phenyl-1-[4- (thiazol-2-yl)aminobutyl]piperidine; I (2S,3S)-3-(2-methoxybenzyl)amino-2-phenyl-1-[4- (pyrimidin-2-yl)aminobutyl]piperidine;
cis-1-[4-(benzoxazol-2-yl)aminobutyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-1-[2,3-(dihydro-3-oxobenzisosulfonazol-2-yl)butyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine;
cis-3-(2-methoxybenzyl)amino-2-phenyl-1-[4- (succinimido-1-yl-butyl]piperidine;
(2S,3S)-1-(5,6-carbonyldioxyhexyl)-3-(2-methoxybenzyl)amino-2-phenylpiperidine;
Other compounds of formula I are:
[1α, 3α, 4α,5α]-4-(5-tert-butyl-2-methoxybenzyl)amino-3-phenyl-2-[4-(thiazol-2-yl)aminobutyl]-2-azabicyclo-[3.3.0]octane;
4-(2-methoxy-5-trifluoromethoxybenzyl)amino-3-phenyl-2-[4-(pyrimidin-2-yl)aminobutyl]-2-azabicyclo[4.4.0]decane;
4-benzhydryl-3-[4-(thiazol-2-yl)aminobutyl]-5-(2-trifluoromethoxybenzyl)amino-3-azabicyclo[4.1.0]heptane;
1-(5,6-carbonyldioxyhexyl)-3-(2-cyclopropylmethoxy-5-trifluoromethoxybenzyl)amino-2-phenylpiperidine;
3-(2,4-dimethoxybenzyl)amino-2-phenyl-1-[4-(pyrimidin-2-yl)aminopentyl]pyrrolidine;
1-[4-(glutarimido-1-yl)butyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine;
2-benzhydryl-3-(5-cyclopropylmethoxy-2-isopropoxy)-2-[4-(thiazol-2-yl)aminobutyl]-2-azabicyclo[3.3.0]octane.
Compounds of formula I are basic in nature. The present invention, therefore, also relates to the pharmaceutically acceptable acid addition salts of compounds of the formula I. The acids which are used to prepare the pharmaceutically acceptable acid addition salts of the basic compounds of this invention are those which form non-toxic acid addition salts, i.e., salts containing pharmacologically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, acetate, lactate, citrate, acid citrate, tartrate, bitartrate, succinate, maleate, fumarate, gluconate, saccharate, benzoate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate [i.e. , 1,1'-methylene-bis-(2-hydroxy-3- naphthoate)]salts.
The term "halo", as used herein, unless otherwise indicated, includes chloro, fluoro, bromo and iodo.
The term "alkyl", as used herein, unless otherwise indicated, includes saturated monovalent hydrocarbon radicals having straight, branched or cyclic moieties or combinations thereof.
The term "one or more substituents," as used herein, includes from one to the maximum number of substituents possible based on the number of available bonding sites.
The present invention also relates to a pharmaceutical composition for treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis in a mammal, including a human, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such condition, and a pharmaceutically acceptable carrier. The present invention also relates to a method of treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such condition.
The present invention also relates to a pharmaceutical composition for antagonizing the effects of substance P in a mammal, including a human, comprising a substance P antagonizing amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
The present invention also relates to a method of antagonizing the effects of substance P in a mammal, including a human, comprising administering to said mammal a substance P antagonizing amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof.
The present invention also relates to a pharmaceutical composition for treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis in a mammal, including a human, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site, and a pharmaceutically acceptable carrier.
The present invention also relates to a method of treating or preventing a condition selected from the group consisting of urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis in a mammal, including a human, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site.
The present invention also relates to a pharmaceutical composition for treating or preventing a disorder in a mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site, and a pharmaceutically acceptable carrier.
The present invention also relates to a method of treating or preventing a disorder in mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site.
The present invention also relates to a pharmaceutical composition for treating or preventing a disorder in a mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such disorder, and a pharmaceutically acceptable carrier.
The present invention also relates to a method of treating or preventing a disorder in mammal, including a human, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising administering to said mammal an amount of a compound of the formula I, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such disorder.
The compounds of the formula I have chiral centers and therefore exist in different enantiomeric forms. This invention relates to all optical isomers and all stereoisomers of compounds of the formula I, and mixtures thereof.
Detailed Description of the Invention
The compounds of the formula I may be prepared as described in the following reaction schemes and discussion.
Unless otherwise indicated, R1, R3, R6, R7, R8, R9, R10, R11, m, w, x, y, and z in the reaction schemes and discussion that follow are defined as above.
SCHEME 1
Figure imgf000016_0001
SCHEME 2
Figure imgf000017_0001
SCHEME 3
Figure imgf000018_0001
SCHEME 4
Figure imgf000019_0001
The starting materials of the formula III wherein B is nitrogen and w and z equal zero may be prepared as described in United States Patent Application Serial No. 619,361, filed November 28, 1990, United States Patent Application Serial No. 675,244, filed March 26, 1991, United States Patent Application Serial No. 717,943 filed on June 20, 1991 and, United States Patent Application Serial No. 719,884 filed on June 21, 1991. These applications are incorporated herein in their entirety.
The starting materials of the formula III wherein B is nitrogen, w is zero and z is other than zero may be prepared as described in United States Patent Application Serial No. 590,423, filed September 28, 1990 and. United States Patent Application Serial No. 717,943 filed on June 20, 1991. These applications are incorporated herein in their entirety.
The starting materials of the formula III wherein B is nitrogen, y is zero and w is other than zero can be prepared as described in United States Patent Application of M. Desai entitled Bridged Aza-Bicyclic Derivatives filed on May 18, 1992, which is incorporated herein by reference in its entirety.
Referring to Scheme 1, the compounds of formula III may be converted to compounds of the formula I having the same stereochemistry by reacting them with the appropriate compound of the formula , wherein L is halo,
Figure imgf000020_0001
mesylate or tosylate and wherein any one of the carbon-carbon single bonds of said (CH2)m may optionally be replaced by a carbon-carbon double bond, and wherein any one of the carbons of said (CH2) m may optionally be substituted with R11. This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
Scheme 2 illustrates an alternative method of converting compounds of formula III into compounds of the formula I having the same stereochemistry, and in which R10 is a heteroaromatic group and A is selected from oxygen, nitrogen and sulfur, by first converting compounds of formula III into intermediates of formula II. These intermediates of formula II can then be converted into compounds of formula I.
Compounds of formula III are converted into compounds of formula II by reacting them with the appropriate compound of the formula , wherein L is halo, mesylate or
Figure imgf000021_0001
tosylate and wherein one of the carbon-carbon single bonds of said (CH2)m may optionally be replaced by a carbon-carbon double bond, and wherein one of the carbons of said (CH2)m may optionally be substituted with Rn, and wherein R13 is amino, hydroxyl or thiol, and wherein said hydroxyl, amino and thiol groups may be optionally protected as appropriate (e.g., t-butoxy carbonyl (BOC), trifluoroacetyl, carbobenzyloxy or carboethoxy). Preferred protecting groups for the hydroxyl, amino and thiol groups are t-butyldimethylsilyl, t-butoxycarbonyl and acetyl, respectively. This reaction is typically carried out in the presence of a base such as triethylamine or potassium t-butoxide, in a polar solvent such as methylene chloride, dichloroethane, tetrahydrofuran or chloroform, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine. The reaction is generally carried out for about 0.5 to about 72 hours.
When a protecting group is present, it is then removed from the compound of formula II. For the case of a t-butoxycarbonyl protected amino group, deprotection is accomplished by reacting the protected compound of formula II with an acid such as hydrochloric acid, trifluoroacetic acid or perchloric acid, to yield a compound of the formula II having the same stereochemistry in which the protecting group has been replaced with hydrogen. Appropriate solvents for this reaction include polar solvents such as methylene chloride, dioxane, ether or THF, preferably dioxane. A t-butyldimethylsilyl ether is cleaved by similar conditions or by using tetrabutylammonium fluoride, in tetrahydrofuran (THF). An acetyl-protected thiol is cleaved using methanolic sodium methoxide or aqueous ammonia. The deprotection reaction is typically run at a temperature from about -10°C to about 50°C, preferably about 25°C, for about 0.5 to about 24 hours.
Intermediate compounds of formula II so formed can be converted into compounds of formula I by reacting them with the appropriate monocyclic or bicyclic heterocycle of the formula R10-X wherein X is halo, mesylate, or tosylate and R10 is defined as above. This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as methylene chloride, t-butanol, dimethyl formamide (DMF) or dichloroethane, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
Alternatively, compounds of formula II in which R13 is amino may be converted into compounds of formula I in which R10 is a cyclic imido group such as succinimido by treating the compound of formula II with an appropriate dicarboxylic acid, an activated derivative of a dicarboxylic acid (e.g., dihalo, mesylate or tosylate), or an anhydride. This reaction is typically carried out in a non-polar solvent such as xylene, hexanes, cyclohexane, ether, tetrahydrofuran or toluene at a temperature from 60°C to about the reflux temperature of the solvent. Scheme 3 illustrates an alternative method of converting compounds of formula III into compounds of formula I, in which A is oxygen or nitrogen, by first treating compounds of formula III with a compound of formula , wherein L' is halo, mesylate
Figure imgf000023_0001
or tosylate and L is defined as above, to give a compound of formula IV. This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
Compounds of formula IV may similarly be obtained by treating compounds of formula III with a compound of formula
Figure imgf000023_0002
in which the hydroxyl group may be protected as appropriate, preferably with the t-butyl dimethylsilyl group. This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as t-butanol, dimethyl formamide (DMF), methylene chloride or dichloroethane, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine. After this initial reaction, the hydroxyl group can then be deprotected, if necessary, by any of the conventional means. Preferably, when the protecting group is t-butyldimethylsilyl, deprotection is carried out with tetrabutylammonium fluoride in tetrahydrofuran or with an acid such as hydrochloric acid (HCl) or acetic acid in a polar solvent such as water or tetrahydrofuran, at a temperature from about 0°C to about 60°C, preferably at about room temperature. The free hydroxyl can then be converted into a leaving group by any of the conventional means. Treatment of the hydroxyl group with an agent such as methanesulfonyl chloride is preferred.
Compounds of formula IV are converted into compounds of formula I by reacting them with the appropriate compound of the formula R10-A-H. This reaction is typically carried out in the presence of a base such as triethylamine or potassium t-butoxide, in a polar solvent such as methylene chloride, dichloroethane, tetrahydrofuran or chloroform, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine. The reaction is generally carried out for about 0.5 to about 72 hours.
Alternatively, compounds of formula IV are converted into compounds of formula I by reacting them with the corresponding anion derived from treatment of R10-A-H with a base. Preferably, the anion can be formed with a reagent such as sodium hydride or butyl lithium in a solvent such as tetrahydrofuran or ether. This reaction is typically carried out in the presence of a base such as triethylamine, lithium diisopropylamine, sodium methoxide, potassium hydroxide or potassium t-butoxide, in a polar solvent such as methylene chloride, t-butanol, dimethyl formamide (DMF) or dichloroethane, at a temperature from about room temperature to about 150°C. Preferably, the reaction is carried out at the reflux temperature in methylene chloride in the presence of triethylamine.
Compounds of formula III may also be converted into the corresponding compounds of the formula I by first reacting them with the appropriate compound of the formula
Figure imgf000024_0001
wherein L is defined as above or is imidazole, and then reducing the resulting amide. This reaction is typically carried out in an inert solvent such as THF or dichloromethane at a temperature from about -20°C to about 60°C. It is preferably carried out in dichloromethane at about 0°C. Reduction of the resulting amide is accomplished by treatment with a reducing agent such as borane dimethylsulfide complex, lithium aluminum hydride or diisobutylaluminum hydride in an inert solvent such as ethyl ether or THF. The reaction temperature may range from about 0°C to about 60°C. Preferably, the reduction is accomplished using borane dimethylsulfide complex in THF at about 60°C.
Scheme 4 illustrates a method of preparing compounds of formula III wherein G is sulfur or oxygen, and R1 is absent.
Compounds of formula III can be prepared from esters of formula VI wherein R12 is (C1-C4)alkyl or phenyl and the ring nitrogen adjacent to R6 and R7 is protected with an appropriate protecting group P.
Esters of formula VI are hydrolyzed to form acids of formula VI, wherein R12 is hydrogen, by methods well known to those skilled in the art, for example, by treatment of the ester of formula VI with an acid or a base in a solvent such as water.
The acids of formula VI, wherein R12 is hydrogen, are oxidized to form a compound of formula V wherein G is oxygen by reacting the compound of formula VI with lead tetraacetate in an inert solvent such as cyclohexane, hexane, methylene chloride, or benzene at a temperature of 0°C to a temperature of 90°C. Preferably, the oxidation of the compounds of formula is facilitated by the addition of copper (II) salts such as copper (II) acetate (Cu(OCOCH3)2) and pyridine.
The compound of formula V wherein G is oxygen is converted to a compound of formula III wherein R1 is absent by alkylating the compound of formula V with a compound of formula R3CH2X and a base, wherein X is a leaving group selected from halo and -SO3R12, wherein R12 is (C1-C4)alkyl or phenyl, and R3 is defined as above. The reaction of the compound of formula III with the compound of formula R3CH2X is typically carried out in a solvent such as dichloromethane, chloroform, carbon tetrachloride, ether, hexane, cyclohexane or tetrahydrofuran, preferably tetrahydrofuran, at a temperature from about 0°C to about 60°C, preferably at about 25°C. Suitable bases include sodium hydride, organolithium bases such as butyl lithium, alkali metal alkoxides such as potassium or sodium t-butoxide and organic bases such as triethylamine, diisopropylethylamine and hexamethyldisilazide. Non-nucleophilic bases such as triethylamine, diisopropylethylamine and hexamethyldisilazide are preferred because they will not react with the compound of formula II and this will not form the unwanted byproducts that result from such reaction.
Preferably, the conversion of the compound of formula V to the compound of formula III is facilitated by preforming the anion of formula V by the addition of a strong base such as sodium hydride.
The compound of formula III so formed is then deprotected by the procedure described above to form the free amine of formula III.
The amine of formula III can be converted to compounds of formula I by the procedures described in schemes 1 through 3 above.
Alternatively, compounds of formula V can be prepared by reducing a ketone of formula VII. Ketones of formula VII can be reduced with lithium aluminium hydride, borane dimethylsulfide in tetrahydrofuran (THF), borane in THF and sodium borohydride titanium tetrachloride. Best results are obtained using sodium borohydride in THF. The reaction may be carried out at temperatures from about -78 °C to about 80°C, and are preferably carried out at about 0 °C temperature of the solvent. Compounds of formula V so formed may be converted to compounds of formula III as described above.
Compounds of formula III wherein G is sulfur and R1 is absent can be formed from compounds of formula V wherein G is sulfur. Compounds of formula V wherein G is sulfur may be prepared from compounds of formula VII wherein G is oxygen by reaction with phosphorus pentasulfide (P4S10) in pyridine, followed by reduction with sodium borohydride (NaBH4). The temperature during the reaction with P4S10 is preferably about 90°C, but can range between about 0°C to about 110°C.
Alternatively, compounds of formula V wherein G is sulfur can be prepared from compounds of formula VII wherein the ketone of formula VII is reacted with Lawesson's reagent in the presence of a base followed by reduction with sodium borohydride. The compounds of formula V wherein G is sulfur can be converted to compounds of formula III wherein G is sulfur by reaction of the compound of formula V with a compound of the formula R3CH2X wherein X is a leaving group selected from halo and -SO3R12, R3 is defined as above and R12 is (C1-C6)alkyl or phenyl. The reaction of the compound of formula V with a compound of formula R3CH2X is typically carried out in a solvent such as dichloromethane, chloroform, carbon tetrachloride, hexane, cyclohexane or tetrahydrofuran, preferably dichloromethane at a temperature from about 0°C to about 60°C, preferably at about 25°C. The compound of formula III so formed is deprotected by the methods described above.
Alternatively, compounds of formula V wherein G is oxygen may be converted to compounds of formula III by reaction of the compound of formula V with mesylchloride followed by reaction with a thiol of formula R3CH2SH, wherein R3 is defined as above. The reaction of the compound of formula V with the compound of formula R3CH2SH is typically carried out in solvents such as dichloromethane, chloroform, carbon tetrachloride, hexane, cyclohexane or tetrahydrofuran, preferably dichloromethane at a temperature from about 0°C to about 60°C, preferably at about 25°C. The compounds of formula III so formed can be deprotected to form compounds of formula III by the methods described above.
The compounds of formula III so formed may be converted to the final products of formula I by schemes 1 through 3, described above.
The preparation of other compounds of the formula I not specifically described in the foregoing experimental section can be accomplished using combinations of the reactions described above that will be apparent to those skilled in the art.
In each of the reactions discussed or illustrated in Schemes 1 to 4 above, pressure is not critical unless otherwise indicated. Pressures from about 0.5 atmospheres to about 5 atmospheres are generally acceptable, and ambient pressure, i.e. about 1 atmosphere, is preferred as a matter of convenience.
The novel compounds of the formula I and the pharmaceutically acceptable salts thereof are useful as substance P antagonists, i.e., they possess the ability to antagonize the effects of substance P at its receptor site in mammals, and therefore they are able to function as therapeutic agents in the treatment of the aforementioned disorders and diseases in an afflicted mammal.
The compounds of the formula I which are basic in nature are capable of forming a wide variety of different salts with various inorganic and organic acids. Although such salts must be pharmaceutically acceptable for administration to animals, it is often desirable in practice to initially isolate a compound of the Formula I from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert the latter back to the free base compound by treatment with an alkaline reagent and subsequently convert the latter free base to a pharmaceutically acceptable acid addition salt. The acid addition salts of the base compounds of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily obtained.
The compounds of formula I and their pharmaceutically acceptable salts exhibit substance P receptor-binding activity and therefore are of value in the treatment and prevention of a wide variety of clinical conditions the treatment or prevention of which are effected or facilitated by a decrease in substance P mediated neurotransmission. Such conditions include urinary incontinence, inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis. Hence, these compounds are readily adapted to therapeutic use as substance P antagonists for the control and/or treatment of any of the aforesaid clinical conditions in mammals, including humans.
The compounds of the formula I and the pharmaceutically acceptable salts thereof can be administered via either the oral, parenteral or topical routes. In general, these compounds are most desirably administered in dosages ranging from about 5.0 mg up to about 1500 mg per day, although variations will necessarily occur depending upon the weight and condition of the subject being treated and the particular route of administration chosen. However, a dosage level that is in the range of about 0.07 mg to about 21 mg per kg of body weight per day is most desirably employed. Variations may nevertheless occur depending upon the species of animal being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out. In some instances, dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed without causing any harmful side effect, provided that such larger doses are first divided into several small doses for administration throughout the day.
The compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any one of the three routes previously indicated, and such administration may be carried out in single or multiple doses. More particularly, the novel therapeutic agents of this invention can be administered in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like. Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc. Moreover, oral pharmaceutical compositions can be suitably sweetened and/or flavored. In general, the therapeutically-effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight. For oral administration, tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols. When aqueous suspensions and/or elixirs are desired for oral administration, the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.
For parenteral administration, solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed. The aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic. These aqueous solutions are suitable for intravenous injection purposes. The oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.
Additionally, it is also possible to administer the compounds of the present invention topically when treating inflammatory conditions of the skin and this may preferably be done by way of creams, jellies, gels, pastes, ointments and the like, in accordance with standard pharmaceutical practice.
The activity of the compounds of the present invention as substance P antagonists may be determined by their ability to inhibit the binding of substance P at its receptor sites in bovine caudate tissue, employing radioactive ligands to visualize the tachykinin receptors by means of autoradiography. The substance P antagonizing activity of the herein described compounds may be evaluated by using the standard assay procedure described by M. A. Cascieri et al., as reported in the Journal of Biological Chemistry. Vol. 258, p. 5158 (1983). This method essentially involves determining the concentration of the individual compound required to reduce by 50% the amount of radiolabelled substance P ligands at their receptor sites in said isolated cow tissues, thereby affording characteristic IC50 values for each compound tested.
In this procedure, bovine caudate tissue is removed from a -70°C freezer and homogenized in 50 volumes (w./v.) of an ice-cold 50 mM Tris (i.e., trimethamine which is 2-amino-2-hydroxymethyl-1,3-propanediol) hydrochloride buffer having a pH of 7.7. The homogenate is centrifuged at 30,000 × G for a period of 20 minutes. The pellet is resuspended in 50 volumes of Tris buffer, rehomogenized and then recentrifuged at 30,000 × G for another twenty-minute period. The pellet is then resuspended in 40 volumes of ice-cold 50 mM Tris buffer (pH 7.7) containing 2 mM of calcium chloride, 2 mM of magnesium chloride, 40 g/ml of bacitracin, 4 μg/ml of leupeptin, 2 μg of chymostatin and 200 g/ml of bovine serum albumin. This step completes the production of the tissue preparation.
The radioligand binding procedure is then carried out in the following manner, viz., by initiating the reaction via the addition of 100 μl of the test compound made up to a concentration of 1 μM, followed by the addition of
100 μl of radioactive ligand made up to a final concentration 0.5 mM and then finally by the addition of 800 μl of the tissue preparation produced as described above. The final volume is thus 1.0 ml, and the reaction mixture is next vortexed and incubated at room temperature (ca. 20°C) for a period of 20 minutes. The tubes are then filtered using a cell harvester, and the glass fiber filters (Whatman GF/B) are washed four times with 50 mM of Tris buffer (pH 7.7), with the filters having previously been presoaked for a period of two hours prior to the filtering procedure. Radioactivity is then determined in a Beta counter at 53% counting efficiency, and the IC50 values are calculated by using standard statistical methods.
The anti-psychotic activity of the compounds of the present invention as neuroleptic agents for the control of various psychotic disorders may be determined by a study of their ability to suppress substance P-induced or substance P agonist induced hypermotility in guinea pigs. This study is carried out by first dosing the guinea pigs with a control compound or with an appropriate test compound of the present invention, then injecting the guinea pigs with substance P or a substance P agonist by intracerebral administration via canula and thereafter measuring their individual locomotor response to said stimulus.
The present invention is illustrated by the following examples. It will be understood, however, that the invention is not limited to the specific details of these examples.
EXAMPLE 1
(2S,3S)-3-(2-Methoxybenzyl)amino-2-phenyl-1-[4-(thiazol-2-yl)aminobutyl]piperidine Hydrochloride
In a round-bottom flask were placed 100 mg (0.27 mmol) of (2S,3S)-1-(4-aminobutyl)-3-(2-methoxybenzyl)amino-2-phenylpiperidine and 0.5 mL of water. To the system were added 57 mg (0.54 mmol) of sodium carbonate and 25 μL of 2-bromothiazole, and the mixture was heated at 60°C overnight. The mixture was heated at 80-90°C for an additional day. During this period, 0.5 mL of isopropanol and 0.5 mL of 2-bromothiazole were added to the system. The mixture was partitioned between chloroform and saturated aqueous sodium bicarbonate and extracted with two portions of chloroform. The combined chloroform extracts were dried (Na2SO4) and concentrated. The crude brown oil was purified by flash column chromatography (35 g of silica gel) using 1:3 methanol/chloroform as the eluant to obtain 38 mg of product. This material was dissolved in ethyl acetate, and ether saturated with hydrogen chloride (HCl) was added to the solution. The solvent was removed with a pipet and the residue was subjected to high vacuum to obtain 21 mg of the title compound, mp 90-95°C.
1H NMR (CDCl3) δ 1.20 (m, 1H), 1.50 (m, 3H), 1.76 (m, 3H), 2.02 (m, 3H), 2.56 (m, 2H), 3.20 (m, 3H), 3.28 (d, 1H, J=2), 3.38 (d, 1H, J=15), 3.46 (s, 3H), 3.66 (d, 1H, J=15), 5.80 (br s, 1H), 6.39 (d, 1H, J=3), 6.60 (d, 1H, J=9), 6.70 (t, 1H, J=6), 6.81 (d, 1H, J=6), 7.04 (m, 2H), 7.26 (m, 5H). HRMS calc'd for C26H34N4OS: 450.2457. Found: 450.2411.
EXAMPLE 2
(2S,3S)-3-(2-Methoxybenzyl)amino-2-phenyl-1-[4-(pyrimidin-2-yl)aminobutyl]piperidine Hydrochloride
The title compound was prepared in a similar manner to the compound of Example 1 by replacing 2-bromothiazole with 2-chloropyrimidine; mp 123-127°C (dec.) 1H NMR (CDCl3) δ 1.46 (m, 5H), 1.94 (m, 6H), 2.54 (m, 2H), 3.24 (m, 4H), 3.35 (d, 1H, J=15), 3.48 (s, 3H), 3.64 (d, 1H, J=15), 6.42 (t, 1H, J=5), 6.59 (d, 1H, J=9), 6.68 (t, 1H, J=6), 6.80 (d, 1H, J=6), 7.05 (t, 1H, J=9), 7.22 (m, 5H), 8.18 (d, 2H, J=5). HRMS calc'd for C27H35N5O: 445.2836. Found: 445.2813.
EXAMPLE 3
cis-1-[4-(Benzoxazol-2-yl)aminobutyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine Hydrochloride
The title compound was prepared in a similar manner to the compound of Example 1 by replacing (2S, 3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine with the corresponding racemate and 2-bromothiazole with 2-chlorobenzoxazole; mp 158-160°C (dec.) 1H NMR (CDCl3) δ 1.58 (m, 5H), 1.90 (m, 1H), 2.04 (m, 4H), 2.20 (in, 1H), 2.56 (m, 1H), 2.71 (d, 1H, J=2), 3.25 (m, 1H), 3.38 (m, 5H), 3.57 (d, 1H, J=15), 3.96 (d, 1H, J=15), 6.60 (d, 1H, J=6), 6.76 (t, 1H, J=6), 6.96 (m, 2H), 7.12 (m, 3H), 7.28 (m, 6H). HRMS calc'd for C30H36N4O2: 484.2838. Found: 484.2844.
EXAMPLE 4
cis-3-(2-Methoxybenzyl)amino-1-[4-oxo-4-(thien-2-yl)butyl]-2-phenylpiperidine
Under a nitrogen atmosphere, in a round-bottom flask were placed 200 mg (0.68 mmol) of cis-3-(2-methoxybenzyl)amino-2-phenylpiperidine and 0.6 mL of tetrahydrofuran. To the system were added 95 μL of triethylamine and 0.11 mL (0.68 mmol) of 4-chloro-1-oxo-1-(thien-2-yl) butane, and the mixture was heated at 75°C for 1 day. The reaction mixture was partitioned between chloroform and saturated aqueous sodium bicarbonate and extracted with three portions of chloroform. The combined extracts were dried using sodium sulfate (Na2SO4) and concentrated. The crude product was purified by flash column chromotography (20 g of silica gel) using 1:19 methanol/chloroform as the eluant to obtain pure title compound as its free base. This material was dissolved in ethyl acetate, and the ether saturated with HCl was added to the solution. Filtration of the resulting suspension afforded the title compound as a hygroscopic solid, mp 69-74°C. 1H NMR (CDCl3) δ 1.22 (m, 1H), 1.50 (m, 2H), 2.00 (m, 5H), 2.66 (m, 3H), 2.88 (m, 1H), 3.24 (m, 1H), 3.35 (d, 1H, J=2), 3.40 (d, 1H, J=15), 3.48 (s, 3H), 3.70 (d, 1H, J=15), 6.65 (d, 1H, J=6), 6.76 (t, 1H, J=6), 6.88 (d, 1H, J=6), 7.10 (m, 2H), 7.28 (m, 4H), 7.58 (m, 1H), 7.66 (d, 1H, J=2). Mass spectrum: m/z 448 (parent).
EXAMPLE 5
(2S,3S)-1-[2,3-(Dihydro-3-oxobenzisosulfonazol-2- yl)butyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine Hydrochloride
The title compound was prepared in a similar manner to the compound of Example 4 by replacing cis-3-(2-methoxybenzylamino)-2-phenylpiperidine with the corresponding (2S, 3S)-enantiomer and the substituted chlorobutane with 1-bromo-4- (2 , 3-dihydro-3-oxobenzisosulfonazol-2-yl)butane: mp 120-122°C. 1H NMR (CDCl3) δ 1.60 (m, 6H) , 2.02 (m, 4H), 2.58 (m, 2H) , 3.22 (m, 1H) , 3.31 (d, 1H, J=3) , 3.37 (d, 1H, J=15) , 3.47 (s, 3H) , 3.68 (m, 3H) , 6.62 (d, 1H, J=6) , 6.73 (t, 1H, J=9) , 6.86 (d, 1H, J=9), 7.09 (t, 1H, J=6), 7.26 (m, 5H) , 7.82 (m, 3H) , 8.00 (m, 1H) . HRMS calc'd for C30H25N3O4S: 533.2344. Found: 533.2354.
EXAMPLE 6
cis-3-(2-Methoxybenzyl)amino-2-phenγl-1-[4-succinimido-1-yl)butyllpiperidine Hydrochloride
The title compound was prepared in a similar manner to the compound of Example 4 by replacing the substituted chlorobutane with 4-(succinimido-1-yl)-1-methylsufonyloxybutane [prepared from 4-amino-1-butanol by sequential treatment with succinic anhydride (xylenes, acetic anhydride, reflux, 2 hours), sodium methoxide (methanol, 3 hours) and methanesulfonyl chloride (triethylamine, THF, 3h)]. 1H NMR (CDCl3) δ 1.40 (m, 4H), 1.60 (m, 1H), 1.94 (m, 1H), 1.96 (m, 2H), 2.34 (m, 1H), 2.46 (m, 1H), 2.60 (m, 4H), 3.14 (m, 1H), 3.20 (d, 1H, J=2), 3.34 (m, 6H), 3.51 (m, 1H), 3.62 (m, 2H), 6.56 (d, 1H, J=9), 6.67 (t, 1H, J=9), 6.78 (d, 1H, J=6), 7.03 (t, 1H, J=6), 7.18 (m, 5H). HRMS calc'd for C27H35N3O3: 449.2678. Found: 449.2678.
EXAMPLE 7
(2S,3S)-1-(5,6-Carbonγldioxyhexyl)-3-(2-methoxybenzyl)-amino-2-phenylpiperidine Hydrochloride
Under a nitrogen atmosphere, in a round-bottom flask were placed 0.15 mmol of (2S,3S)-1-(5,6-dihydroxyhexyl)-3-(2-methoxybenzyl)amino-2-phenylpiperidine and 0.5 ml of CHCl3. To the system was added 49 mg (0.30 mmol) carbonyldiimidazole. The mixture was heated at 60-75°C for 5 days. During this period, additional (325 mg) carbonyldiimidazole, CHCl3 (0.5 ml), and THF (0.5 ml) were added to the system. The reaction mixture was partitioned between chloroform and saturated aqueous sodium bicarbonate and extracted with two portions of chloroform. The combined extracts were washed with water, dried (Na2SO4) and concentrated. The crude product was purified by flash column chromatography (1.5 g of silica gel) using 1:9 methanol/chloroform as the eluant to obtain 35 mg of product. This material was dissolved in ethyl acetate, and ether saturated with HCl was added to the solution. Solvent was removed from the resulting suspension using a pipet, and the residue was subjected to high vacuum to afford 17 mg of the title compound, mp 73-76°C (dec). 1H NMR (CDCl3) δ 1.26 (m, 2H), 1.50 (m, 4H), 1.70 (m, 2H), 1.94 (m, 1H), 2.04 (m, 3H), 2.58 (m, 2H), 3.22 (m, 1H), 3.30 (d, 1H, J=2), 3.38 (d, 1H, J=15), 3.47 (s, 3H), 3.70 (d, 1H, J=15), 4.00 (m, 1H), 4.44 (m, 1H), 4.60 (m, 1H), 6.64 (d, 1H, J=9), 6.75 (t, 1H, J=6), 6.85 (d, 1H, J=6), 7.10 (t, 1H, J=9), 7.26 (m, 5H). HRMS calc'd for C23H34N2O4: 438.2518. Found: 438.2521.
EXAMPLE 8
cis-3-( 2-Methoxybenzyl)amino-2-phenyl-1-[4-(thien-2-yl)butyl]piperidine
The title compound was prepared in a similar manner to the compound of Example 4 by replacing the chlorobutane with 1-methylsulfonyloxy-4-(thien-2-yl) butane. 1H NMR (CDCl3) δ 1.32-1.6 (m, 6H), 1.96-2.3 (m, 4H), 2.50-2.72 (m, 4H), 2.8-2.9 (m, 1H), 3.16-3.38 (m, 3H), 3.40 (s, 3H), 3.65-3.80 (m, 1H), 6.59-6.76 (m, 3H), 6.81-6.88 (m, 2H), 7.02-7.12 (m, 2H), 7.20-7.38 (m, 5H). Mass spectrum: m/z 434 (parent).

Claims

A compound having the formula
Figure imgf000038_0001
wherein m is an integer from 1 to 8, and any one of the carbon-carbon single bonds of (CH2)m may optionally be replaced by a carbon-carbon double bond or a carbon-carbon triple bond, and any one of the carbon atoms of said (CH2)m may optionally be substituted with R11;
w is an integer from zero to four;
x is an integer from zero to four;
y is an integer from zero to four;
z is an integer from one to six, wherein the ring containing (CH2)z may contain from zero to three double bonds, and one of the carbons of (CH2)z may optionally be replaced by oxygen, sulfur or nitrogen;
R1 is hydrogen or (C1-C8) alkyl optionally substituted with hydroxy, alkoxy or fluoro;
R3 is aryl selected from phenyl, indanyl and naphthyl; heteroaryl selected from benzothienyl, benzofuryl, thienyl, furyl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, and quinolyl; or cycloalkyl having from three to seven carbon atoms, wherein one of said carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; wherein each of said aryl and heteroaryl groups may optionally be substituted with one or more substituents, and said (C3-C7) cycloalkyl may optionally be substituted with one or two substituents, said substituents being independently selected from halo, nitro, (C1-C10) alkyl optionally substituted with from one to three fluorine atoms, (C1-C10) alkoxy optionally substituted with from one to three fluorine atoms, trifluoromethyl, amino,
(C1-C6) -alkylamino, di(C1-C6) alkylamino,
Figure imgf000039_0002
,
Figure imgf000039_0001
, phenyl, hydroxy,
Figure imgf000039_0003
,
Figure imgf000039_0004
, hydroxy (C1-C6) alkyl, and (C1-C6 alkoxy (C1-C6) alkyl;
R6 is a functionality selected from hydrogen, (C,-C6) straight or branched alkyl, (C3-C7) cycloalkyl wherein one of the carbon atoms may optionally be replaced by nitrogen, oxygen or sulfur; aryl selected from biphenyl, phenyl, indanyl and naphthyl; heteroaryl selected from benzothienyl, thienyl, furyl, benzofuryl, pyridyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl and quinolyl; phenyl (C2-C6) alkyl, benzhydryl and benzyl, wherein each of said aryl and heteroaryl groups and the phenyl moieties of said benzyl, phenyl (C2-C6) alkyl and benzhydryl may optionally be substituted with one or more substituents independently selected from halo, nitro, (C1-C10) alkyl optionally substituted with from one to three fluorine atoms, (C1-C10) alkoxy optionally substituted with from one to three fluorine atoms, amino, hydroxy (C1-C6) alkyl, (C1-C6) alkoxy(C1-C6) alkyl,
(C1-C6)-alkylamino,
Figure imgf000039_0005
,
Figure imgf000039_0006
(C1-C6)alkyl,
Figure imgf000040_0001
,
Figure imgf000040_0002
(C1-C6)alkyl-O-,
Figure imgf000040_0003
,
Figure imgf000040_0004
(C1-C6) alkyl-, di-(C1-C6)alkylamino,
Figure imgf000040_0005
, (C1-C6) -
Figure imgf000040_0006
,
Figure imgf000040_0007
and
Figure imgf000040_0008
; and wherein one of the phenyl moieties of said benzhydryl may optionally be replaced by naphthyl, thienyl, furyl or pyridyl;
R7 is hydrogen, phenyl or (C1-C6) alkyl;
or R6 and R7, together with the carbon to which they are attached, form a saturated carbocyclic ring having from 3 to 7 carbon atoms wherein one of said carbon atoms may optionally be replaced by oxygen, nitrogen or sulfur;
R8 may be attached to any atom of the nitrogen containing ring having an available bonding site and R9 may be attached to any atom of the (CH2)z containing ring having an available bonding site or to any carbon atom of the nitrogen containing ring having an available bonding site;
R8 and R9 are independently selected from hydrogen, hydroxy, halo, amino, oxo (=0), cyano, hydroxy-(C1-C6) alkyl,
(C1- C6) alkoxy-(C1-C6) alkyl, (C1-C6) alkylamino, di- (C1-C6) alkylamino, (C1-C6) alkoxy,
Figure imgf000040_0009
,
Figure imgf000040_0010
,
Figure imgf000040_0011
,
Figure imgf000040_0012
,
Figure imgf000041_0001
,
Figure imgf000041_0002
, and the functionalities set forth in the definition of R6;
A is selected from the group consisting of CH2, nitrogen, oxygen, sulfur and carbonyl;
G is nitrogen, oxygen or sulfur;
R10 is a monocyclic or bicyclic heterocycle selected from the group consisting of pyrimidinyl, benzoxazolyl, 2,3-dihydro-3-oxobenzisosulfonazol-2-yl, morpholin-1-yl , thiomorpholin-1-yl, benzofuranyl, benzothienyl, indolyl, isoindolyl, isoquinolinyl, furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, or thienyl groups of the formulae
and
Figure imgf000041_0003
Figure imgf000041_0004
wherein B and D are selected from carbon, oxygen, and nitrogen, and at least one of B and D is other than carbon; E is carbon or nitrogen; n is an integer from 1 to 5; and any one of the carbons of the (CH2)n or (CH2)n+1 may be optionally substituted with (C1-C6) alkyl or (C2-C6) spiroalkyl, and either any two of the carbon atoms of said (CH2)n and (CH2)n+1 may be bridged by a one or two carbon atom linkage, or any one pair of adjacent carbons of said (CH2)n and (CH2)n+1 may form, together with from one to three carbon atoms that are not members of the carbonyl containing ring, a(C3-C5) fused carbocyclic ring;
R11 is oximino (=NOH) or one of the functionalities set forth in any of the definitions of R6, R8 and R9; and
with the proviso that (a) neither R8, R9, R10 nor R11 can form, together with the carbon to which it is attached, a ring with R7, (b) when z is other than zero R9 must be attached to the (CH2)z containing ring and R8 and R9 cannot be attached to the same carbon atom, (c) when both z is zero and R8 and R9 are attached to the same carbon atom, then either each of R8 and R9 is independently selected from hydrogen, fluoro (C1-C6) alkyl, hydroxy-(C1-C6)alkyl, and (C1- C6) alkoxy-(C1-C6) alkyl; or R8 and R9, together with the carbon to which they are attached, form a (C3-C6) saturated carbocyclic ring that forms a spiro compound with the nitrogen containing ring to which they are attached, (d) when A is nitrogen, sulfur or oxygen, m is greater than one, (e) when A is CH2 or carbonyl, R10 cannot be furyl, pyridyl, isothiazolyl, oxazolyl, triazolyl, tetrazolyl, quinolyl, thiazolyl, or thienyl, (f) when w is other than zero, y is zero, the sum of w and z is less than 7,
x is an integer from 0 to 2,
z is an integer from 1 to 4, and wherein the ring containing (CH2)z is a saturated ring wherein no carbon atom may be replaced by oxygen, sulfur or nitrogen, and wherein R8 is optionally only. a substituent on one of the carbon atoms of said (CH2)z.
2. A compound according to claim 1 wherein z is zero, G is nitrogen and R9 is attached to the ring to which R6 and R7 are attached.
3. A compound according to claim 1 wherein m is an integer from 4 to 6; G is nitrogen; R3 is phenyl, optionally substituted with one or two substituents, said substituents being independently selected from halo, nitro, (C1-C10) alkyl optionally substituted with from one to three fluorine atoms, (C1-C10) alkoxy optionally substituted with from one to three fluorine atoms, trifluoromethyl, amino, (C1-C6) - alkylamino, di(C1-C6) alkylamino,
Figure imgf000042_0001
, - (C1-
Figure imgf000042_0002
, phenyl, hydroxy,
Figure imgf000042_0003
,
Figure imgf000042_0004
C6) alkyl, hydroxy (C1-C6) alkyl, and (C1-C6) alkoxy (C1-C6) alkyl; R6 is phenyl; R7 is hydrogen; and R1 is hydrogen.
4. A compound according to claim 3 wherein x is an integer from zero to two; w, y and z are zero; and R1, R8, R9 and R11 are hydrogen.
5. A compound according to claim 1 wherein said compound is selected from (2S,3S)-3-(2-methoxybenzyl)amino- 2-phenyl-1-[4-(thiazol-2-yl)aminobutyl]piperidine;
(2S,3S)-3-(2-methoxybenzyl)amino-2-phenyl-1- [4-(pyrimidin-2-yl)aminobutyl]piperidine;
cis-1-[4-(benzoxazol-2-yl)aminobutyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine;
(2S,3S)-1-[2,3-(dihydro-3-oxobenzisosulfonazol-2-yl)butyl]-3-(2-methoxybenzyl)amino-2-phenylpiperidine;
cis-3-(2-methoxybenzyl)amino-2-phenyl-1-[4- (succinimido-1-yl)butyl]piperidine; and
(2S,3S)-1-(5,6-carbonyldioxyhexyl)-3-(2-methoxybenzyl)amino-2-phenylpiperidine.
6. A pharmaceutical composition for treating or preventing a condition selected from the group consisting of inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis in a mammal, including a human, comprising an amount of a compound according to claim 1 effective in preventing or treating such condition and a pharmaceutically acceptable carrier.
7. A method of treating or preventing a condition selected from the group consisting of inflammatory diseases (e.g., arthritis, psoriasis, asthma and inflammatory bowel disease), reflux gastroesophogal disease, hypertension, anxiety, depression or dysthymic disorders, cluster headache, colitis, psychosis, pain, allergies such as eczema and rhinitis, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina, migraine and Reynaud's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, peripheral neuropathy, neuralgia, neuropathological disorders such as Alzheimer's disease, AIDS related dementia, diabetic neuropathy and multiple sclerosis, disorders related to immune enhancement or suppression such as systemic lupus erythematosus, and rheumatic diseases such as fibrositis in a mammal, including a human, comprising administering to a mammal in need of such treatment or prevention an amount of a compound according to claim 1 effective in preventing or treating such condition.
8. A pharmaceutical composition for antagonizing the effects of substance P in a mammal, comprising a substance P antagonizing effective amount of a compound according to claim 1 and a pharmaceutically acceptable carrier.
9. A method of antagonizing the effects of substance P in a mammal, comprising administering to said mammal a substance P antagonizing effective amount of a compound according to claim 1.
10. A pharmaceutical composition for treating or preventing a condition in a mammal, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising an amount of a compound according to claim 1 effective in antagonizing the effect of substance P at its receptor site and a pharmaceutically acceptable carrier.
11. A method of treating or preventing a condition in a mammal, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising administering to a mammal in need of such treatment or prevention an amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, effective in antagonizing the effect of substance P at its receptor site.
12. A pharmaceutical composition for treating or preventing a condition in a mammal, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising an amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, effective in treating or preventing such condition, and a pharmaceutically acceptable carrier.
13. A method of treating or preventing a condition in mammal, the treatment or prevention of which is effected or facilitated by a decrease in substance P mediated neurotransmission, comprising administering to a mammal in need of such treatment or prevention an amount of a compound according to claim 1 effective in treating or preventing such condition.
14. A pharmaceutical composition for treating or preventing urinary incontinence in a mammal, comprising an amount of a compound according to formula I wherein G is oxygen or sulfur effective in preventing or treating such condition and a pharmaceutically acceptable carrier.
15. A method of treating or preventing urinary incontinence in a mammal, comprising administering to a mammal in need of such treatment or prevention an amount of a compound according to formula I wherein G is oxygen or sulfur effective in preventing or treating such condition.
PCT/US1993/005077 1992-08-04 1993-06-03 3-benzylamino-2-phenyl-piperidine derivatives as substance p receptor antagonists WO1994003445A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6505270A JPH07506379A (en) 1992-08-04 1993-06-03 3-benzylamino-2-phenyl-piperidine as substance P receptor antagonist
US08/379,625 US5688804A (en) 1992-08-04 1993-06-03 3-Benzylamino-2-phenyl-piperidine derivatives as substance P receptor antagonists
AU43961/93A AU4396193A (en) 1992-08-04 1993-06-03 3-benzylamino-2-phenyl-piperidine derivatives as substance p receptor antagonists
EP93914220A EP0654029A1 (en) 1992-08-04 1993-06-03 3-benzylamino-2-phenyl-piperidine derivatives as substance p receptor antagonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92477392A 1992-08-04 1992-08-04
US07/924,773 1992-08-04

Publications (1)

Publication Number Publication Date
WO1994003445A1 true WO1994003445A1 (en) 1994-02-17

Family

ID=25450702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/005077 WO1994003445A1 (en) 1992-08-04 1993-06-03 3-benzylamino-2-phenyl-piperidine derivatives as substance p receptor antagonists

Country Status (10)

Country Link
US (1) US5688804A (en)
EP (1) EP0654029A1 (en)
JP (1) JPH07506379A (en)
AU (1) AU4396193A (en)
CA (1) CA2141051A1 (en)
FI (1) FI933455A (en)
HU (1) HU9302246D0 (en)
IL (1) IL106532A0 (en)
MX (1) MX9304698A (en)
WO (1) WO1994003445A1 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020575A1 (en) * 1994-01-28 1995-08-03 Merck Sharp & Dohme Limited Aralkylamino substituted azacyclic therapeutic agents
US5610165A (en) * 1994-02-17 1997-03-11 Merck & Co., Inc. N-acylpiperidine tachykinin antagonists
WO2000047562A1 (en) * 1999-02-09 2000-08-17 Merck Sharp & Dohme Limited Spirocyclic ketones and their use as tachykinin antagonists
WO2006123182A2 (en) 2005-05-17 2006-11-23 Merck Sharp & Dohme Limited Cyclohexyl sulphones for treatment of cancer
WO2007011820A2 (en) 2005-07-15 2007-01-25 Amr Technology, Inc. Aryl-and heteroaryl-substituted tetrahydrobenzazepines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
WO2007041052A2 (en) 2005-09-29 2007-04-12 Merck & Co., Inc. Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators
WO2007093827A1 (en) 2006-02-15 2007-08-23 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Thiophene and thiazole substituted trifluoroethanone derivatives as histone deacetylase (hdac) inhibitors
WO2008120653A1 (en) 2007-04-02 2008-10-09 Banyu Pharmaceutical Co., Ltd. Indoledione derivative
WO2009002495A1 (en) 2007-06-27 2008-12-31 Merck & Co., Inc. 4-carboxybenzylamino derivatives as histone deacetylase inhibitors
WO2009111354A2 (en) 2008-03-03 2009-09-11 Tiger Pharmatech Tyrosine kinase inhibitors
WO2010114780A1 (en) 2009-04-01 2010-10-07 Merck Sharp & Dohme Corp. Inhibitors of akt activity
WO2010132487A1 (en) 2009-05-12 2010-11-18 Bristol-Myers Squibb Company CRYSTALLINE FORMS OF (S)-7-([1,2,4]TRIAZOLO[1,5-a]PYRIDIN-6-YL)-4-(3,4-DICHLOROHPHENYL)-1,2,3,4-TETRAHYDROISOQUINOLINE AND USE THEREOF
WO2010132442A1 (en) 2009-05-12 2010-11-18 Albany Molecular Reserch, Inc. 7-([1,2,4,]triazolo[1,5,-a]pyridin-6-yl)-4-(3,4-dichlorophenyl)-1,2,3,4- tetrahydroisoquinoline and use thereof
WO2011046771A1 (en) 2009-10-14 2011-04-21 Schering Corporation SUBSTITUTED PIPERIDINES THAT INCREASE p53 ACTIVITY AND THE USES THEREOF
EP2336120A1 (en) 2007-01-10 2011-06-22 Istituto di ricerche di Biologia Molecolare P. Angeletti S.R.L. Combinations containing amide substituted indazoles as poly(ADP-ribose)polymerase (PARP) inhibitors
WO2011163330A1 (en) 2010-06-24 2011-12-29 Merck Sharp & Dohme Corp. Novel heterocyclic compounds as erk inhibitors
WO2012018754A2 (en) 2010-08-02 2012-02-09 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF CATENIN (CADHERIN-ASSOCIATED PROTEIN), BETA 1 (CTNNB1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2012027236A1 (en) 2010-08-23 2012-03-01 Schering Corporation NOVEL PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVES AS mTOR INHIBITORS
WO2012030685A2 (en) 2010-09-01 2012-03-08 Schering Corporation Indazole derivatives useful as erk inhibitors
WO2012036997A1 (en) 2010-09-16 2012-03-22 Schering Corporation Fused pyrazole derivatives as novel erk inhibitors
WO2012087772A1 (en) 2010-12-21 2012-06-28 Schering Corporation Indazole derivatives useful as erk inhibitors
WO2012145471A1 (en) 2011-04-21 2012-10-26 Merck Sharp & Dohme Corp. Insulin-like growth factor-1 receptor inhibitors
WO2013063214A1 (en) 2011-10-27 2013-05-02 Merck Sharp & Dohme Corp. Novel compounds that are erk inhibitors
WO2013165816A2 (en) 2012-05-02 2013-11-07 Merck Sharp & Dohme Corp. SHORT INTERFERING NUCLEIC ACID (siNA) COMPOSITIONS
EP2698157A1 (en) 2006-09-22 2014-02-19 Merck Sharp & Dohme Corp. Method of treatment using fatty acid synthesis inhibitors
WO2014052563A2 (en) 2012-09-28 2014-04-03 Merck Sharp & Dohme Corp. Novel compounds that are erk inhibitors
WO2014085216A1 (en) 2012-11-28 2014-06-05 Merck Sharp & Dohme Corp. Compositions and methods for treating cancer
WO2014100065A1 (en) 2012-12-20 2014-06-26 Merck Sharp & Dohme Corp. Substituted imidazopyridines as hdm2 inhibitors
WO2014120748A1 (en) 2013-01-30 2014-08-07 Merck Sharp & Dohme Corp. 2,6,7,8 substituted purines as hdm2 inhibitors
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
US9034899B2 (en) 2009-05-12 2015-05-19 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
US9085531B2 (en) 2004-07-15 2015-07-21 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US9156812B2 (en) 2008-06-04 2015-10-13 Bristol-Myers Squibb Company Crystalline form of 6-[(4S)-2-methyl-4-(2-naphthyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]pyridazin-3-amine
WO2018071283A1 (en) 2016-10-12 2018-04-19 Merck Sharp & Dohme Corp. Kdm5 inhibitors
EP3327125A1 (en) 2010-10-29 2018-05-30 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acids (sina)
US10154988B2 (en) 2012-11-14 2018-12-18 The Johns Hopkins University Methods and compositions for treating schizophrenia
WO2019094311A1 (en) 2017-11-08 2019-05-16 Merck Sharp & Dohme Corp. Prmt5 inhibitors
WO2020033284A1 (en) 2018-08-07 2020-02-13 Merck Sharp & Dohme Corp. Prmt5 inhibitors
WO2020033282A1 (en) 2018-08-07 2020-02-13 Merck Sharp & Dohme Corp. Prmt5 inhibitors
US11096950B2 (en) 2006-11-01 2021-08-24 Barbara Brooke Jennings Compounds, methods, and treatments for abnormal signaling pathways for prenatal and postnatal development
EP4079856A1 (en) 2010-08-17 2022-10-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of hepatitis b virus (hbv) gene expression using short interfering nucleic acid (sina)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA39168C2 (en) * 1991-06-20 2001-06-15 Пфайзер, Інк. Fluoroalkoxyphenyl derivatives of pyperidine or quinuclidine AS antagonists of P substance and pharmaceutical composition based thereon
US5988870A (en) * 1998-03-02 1999-11-23 Partsky; Howard Apparatus and method for diluting nasal sprays containing addictive compounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436334A2 (en) * 1990-01-04 1991-07-10 Pfizer Inc. 3-Aminopiperidine derivatives and related nitrogen containing heterocycles
WO1992006079A1 (en) * 1990-09-28 1992-04-16 Pfizer Inc. Fused ring analogs of nitrogen containing nonaromatic heterocycles
WO1993000331A1 (en) * 1991-06-20 1993-01-07 Pfizer Inc. Fluoroalkoxybenzylamino derivatives of nitrogen containing heterocycles
WO1993000330A2 (en) * 1991-06-21 1993-01-07 Pfizer Inc. Azanorbornane derivatives

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560510A (en) * 1969-03-05 1971-02-02 Aldrich Chem Co Inc 2-benzhydrylquinuclidines
CA1160229A (en) * 1979-03-13 1984-01-10 Pieter T. Haken Pyridyliminomethylbenzene derivatives
CA1231710A (en) * 1979-07-19 1988-01-19 Haken Pieter Ten Heterocyclic compounds having fungicidal, herbicidal and plant-growth regulating properties
EP0100158A3 (en) * 1982-07-28 1985-03-27 The Upjohn Company (3-pyridinyl)heteroalkarylalkanols, alkanoic acids and esters
US4552960A (en) * 1983-06-20 1985-11-12 Eli Lilly And Company Fungicidal amines
US4680283A (en) * 1984-09-26 1987-07-14 Merck & Co., Inc. Analogs of substance P and eledoisin
US5232929A (en) * 1990-11-28 1993-08-03 Pfizer Inc. 3-aminopiperidine derivatives and related nitrogen containing heterocycles and pharmaceutical compositions and use
US5364943A (en) * 1991-11-27 1994-11-15 Pfizer Inc. Preparation of substituted piperidines
CA2086434C (en) * 1990-07-23 1998-09-22 John A. Lowe, Iii Quinuclidine derivatives
US5138060A (en) * 1991-01-03 1992-08-11 Pfizer Inc. Process and intermediates for preparing azabicyclo(2.2.2)octan-3-imines
AU652407B2 (en) * 1991-01-10 1994-08-25 Pfizer Inc. N-alkyl quinuclidinium salts as substance P antagonists
DE69200921T2 (en) * 1991-03-01 1995-05-04 Pfizer 1-AZABICYCLO [3.2.2] NONAN-3-AMINE DERIVATIVES.
BR9205807A (en) * 1991-03-26 1994-06-28 Pfizer Stereo-selective preparation of substituted piperidines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0436334A2 (en) * 1990-01-04 1991-07-10 Pfizer Inc. 3-Aminopiperidine derivatives and related nitrogen containing heterocycles
WO1992006079A1 (en) * 1990-09-28 1992-04-16 Pfizer Inc. Fused ring analogs of nitrogen containing nonaromatic heterocycles
WO1993000331A1 (en) * 1991-06-20 1993-01-07 Pfizer Inc. Fluoroalkoxybenzylamino derivatives of nitrogen containing heterocycles
WO1993000330A2 (en) * 1991-06-21 1993-01-07 Pfizer Inc. Azanorbornane derivatives

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020575A1 (en) * 1994-01-28 1995-08-03 Merck Sharp & Dohme Limited Aralkylamino substituted azacyclic therapeutic agents
US5728716A (en) * 1994-01-28 1998-03-17 Merck Sharp & Dohme Limited Aralkylamino substituted azacyclic therapeutic agents
US5610165A (en) * 1994-02-17 1997-03-11 Merck & Co., Inc. N-acylpiperidine tachykinin antagonists
WO2000047562A1 (en) * 1999-02-09 2000-08-17 Merck Sharp & Dohme Limited Spirocyclic ketones and their use as tachykinin antagonists
US6372754B1 (en) 1999-02-09 2002-04-16 Merck Sharp & Dohme Ltd. Spirocyclic ketones and their use as tachykinin antagonists
US9085531B2 (en) 2004-07-15 2015-07-21 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US9499531B2 (en) 2004-07-15 2016-11-22 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydroisoquinolines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
WO2006123182A2 (en) 2005-05-17 2006-11-23 Merck Sharp & Dohme Limited Cyclohexyl sulphones for treatment of cancer
WO2007011820A2 (en) 2005-07-15 2007-01-25 Amr Technology, Inc. Aryl-and heteroaryl-substituted tetrahydrobenzazepines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
US9403776B2 (en) 2005-07-15 2016-08-02 Albany Molecular Research, Inc. Aryl- and heteroaryl-substituted tetrahydrobenzazepines and use thereof to block reuptake of norepinephrine, dopamine, and serotonin
WO2007041052A2 (en) 2005-09-29 2007-04-12 Merck & Co., Inc. Acylated spiropiperidine derivatives as melanocortin-4 receptor modulators
WO2007093827A1 (en) 2006-02-15 2007-08-23 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Thiophene and thiazole substituted trifluoroethanone derivatives as histone deacetylase (hdac) inhibitors
EP2698157A1 (en) 2006-09-22 2014-02-19 Merck Sharp & Dohme Corp. Method of treatment using fatty acid synthesis inhibitors
EP2946778A1 (en) 2006-09-22 2015-11-25 Merck Sharp & Dohme Corp. Method of treatment using fatty acid synthesis inhibitors
US11096950B2 (en) 2006-11-01 2021-08-24 Barbara Brooke Jennings Compounds, methods, and treatments for abnormal signaling pathways for prenatal and postnatal development
EP2805945A1 (en) 2007-01-10 2014-11-26 MSD Italia S.r.l. Amide substituted indazoles as poly(ADP-ribose)polymerase (PARP) inhibitors
EP2336120A1 (en) 2007-01-10 2011-06-22 Istituto di ricerche di Biologia Molecolare P. Angeletti S.R.L. Combinations containing amide substituted indazoles as poly(ADP-ribose)polymerase (PARP) inhibitors
WO2008120653A1 (en) 2007-04-02 2008-10-09 Banyu Pharmaceutical Co., Ltd. Indoledione derivative
EP3103791A1 (en) 2007-06-27 2016-12-14 Merck Sharp & Dohme Corp. 4-carboxybenzylamino derivatives as histone deacetylase inhibitors
WO2009002495A1 (en) 2007-06-27 2008-12-31 Merck & Co., Inc. 4-carboxybenzylamino derivatives as histone deacetylase inhibitors
WO2009111354A2 (en) 2008-03-03 2009-09-11 Tiger Pharmatech Tyrosine kinase inhibitors
US9498476B2 (en) 2008-06-04 2016-11-22 Albany Molecular Research, Inc. Crystalline form of 6-[(4S)-2-methyl-4-(2-naphthyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]pyridazin-3-amine
US9156812B2 (en) 2008-06-04 2015-10-13 Bristol-Myers Squibb Company Crystalline form of 6-[(4S)-2-methyl-4-(2-naphthyl)-1,2,3,4-tetrahydroisoquinolin-7-yl]pyridazin-3-amine
WO2010114780A1 (en) 2009-04-01 2010-10-07 Merck Sharp & Dohme Corp. Inhibitors of akt activity
US9604960B2 (en) 2009-05-12 2017-03-28 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
WO2010132487A1 (en) 2009-05-12 2010-11-18 Bristol-Myers Squibb Company CRYSTALLINE FORMS OF (S)-7-([1,2,4]TRIAZOLO[1,5-a]PYRIDIN-6-YL)-4-(3,4-DICHLOROHPHENYL)-1,2,3,4-TETRAHYDROISOQUINOLINE AND USE THEREOF
WO2010132442A1 (en) 2009-05-12 2010-11-18 Albany Molecular Reserch, Inc. 7-([1,2,4,]triazolo[1,5,-a]pyridin-6-yl)-4-(3,4-dichlorophenyl)-1,2,3,4- tetrahydroisoquinoline and use thereof
US9173879B2 (en) 2009-05-12 2015-11-03 Bristol-Myers Squibb Company Crystalline forms of (S)-7-([1,2,4]triazolo[1,5-a ]pyridin-6-yl)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydroisoquinoline and use thereof
US9034899B2 (en) 2009-05-12 2015-05-19 Albany Molecular Research, Inc. Aryl, heteroaryl, and heterocycle substituted tetrahydroisoquinolines and use thereof
WO2011046771A1 (en) 2009-10-14 2011-04-21 Schering Corporation SUBSTITUTED PIPERIDINES THAT INCREASE p53 ACTIVITY AND THE USES THEREOF
WO2011163330A1 (en) 2010-06-24 2011-12-29 Merck Sharp & Dohme Corp. Novel heterocyclic compounds as erk inhibitors
EP3330377A1 (en) 2010-08-02 2018-06-06 Sirna Therapeutics, Inc. Rna interference mediated inhibition of catenin (cadherin-associated protein), beta 1 (ctnnb1) gene expression using short interfering nucleic acid (sina)
WO2012018754A2 (en) 2010-08-02 2012-02-09 Merck Sharp & Dohme Corp. RNA INTERFERENCE MEDIATED INHIBITION OF CATENIN (CADHERIN-ASSOCIATED PROTEIN), BETA 1 (CTNNB1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP4079856A1 (en) 2010-08-17 2022-10-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of hepatitis b virus (hbv) gene expression using short interfering nucleic acid (sina)
WO2012027236A1 (en) 2010-08-23 2012-03-01 Schering Corporation NOVEL PYRAZOLO[1,5-a]PYRIMIDINE DERIVATIVES AS mTOR INHIBITORS
WO2012030685A2 (en) 2010-09-01 2012-03-08 Schering Corporation Indazole derivatives useful as erk inhibitors
WO2012036997A1 (en) 2010-09-16 2012-03-22 Schering Corporation Fused pyrazole derivatives as novel erk inhibitors
EP3766975A1 (en) 2010-10-29 2021-01-20 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
EP3327125A1 (en) 2010-10-29 2018-05-30 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acids (sina)
WO2012087772A1 (en) 2010-12-21 2012-06-28 Schering Corporation Indazole derivatives useful as erk inhibitors
WO2012145471A1 (en) 2011-04-21 2012-10-26 Merck Sharp & Dohme Corp. Insulin-like growth factor-1 receptor inhibitors
WO2013063214A1 (en) 2011-10-27 2013-05-02 Merck Sharp & Dohme Corp. Novel compounds that are erk inhibitors
EP3919620A1 (en) 2012-05-02 2021-12-08 Sirna Therapeutics, Inc. Short interfering nucleic acid (sina) compositions
WO2013165816A2 (en) 2012-05-02 2013-11-07 Merck Sharp & Dohme Corp. SHORT INTERFERING NUCLEIC ACID (siNA) COMPOSITIONS
WO2014052563A2 (en) 2012-09-28 2014-04-03 Merck Sharp & Dohme Corp. Novel compounds that are erk inhibitors
US10154988B2 (en) 2012-11-14 2018-12-18 The Johns Hopkins University Methods and compositions for treating schizophrenia
EP3610890A1 (en) 2012-11-14 2020-02-19 The Johns Hopkins University Methods and compositions for treating schizophrenia
US10624875B2 (en) 2012-11-14 2020-04-21 The Johns Hopkins University Methods and compositions for treating schizophrenia
WO2014085216A1 (en) 2012-11-28 2014-06-05 Merck Sharp & Dohme Corp. Compositions and methods for treating cancer
WO2014100065A1 (en) 2012-12-20 2014-06-26 Merck Sharp & Dohme Corp. Substituted imidazopyridines as hdm2 inhibitors
WO2014120748A1 (en) 2013-01-30 2014-08-07 Merck Sharp & Dohme Corp. 2,6,7,8 substituted purines as hdm2 inhibitors
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
WO2018071283A1 (en) 2016-10-12 2018-04-19 Merck Sharp & Dohme Corp. Kdm5 inhibitors
WO2019094311A1 (en) 2017-11-08 2019-05-16 Merck Sharp & Dohme Corp. Prmt5 inhibitors
WO2020033284A1 (en) 2018-08-07 2020-02-13 Merck Sharp & Dohme Corp. Prmt5 inhibitors
WO2020033282A1 (en) 2018-08-07 2020-02-13 Merck Sharp & Dohme Corp. Prmt5 inhibitors

Also Published As

Publication number Publication date
MX9304698A (en) 1994-02-28
US5688804A (en) 1997-11-18
CA2141051A1 (en) 1994-02-17
FI933455A (en) 1994-02-05
EP0654029A1 (en) 1995-05-24
IL106532A0 (en) 1993-11-15
JPH07506379A (en) 1995-07-13
HU9302246D0 (en) 1993-10-28
FI933455A0 (en) 1993-08-03
AU4396193A (en) 1994-03-03

Similar Documents

Publication Publication Date Title
US5688804A (en) 3-Benzylamino-2-phenyl-piperidine derivatives as substance P receptor antagonists
EP0594636B1 (en) 3-aminopiperidine derivatives and related nitrogen containing heterocycles
US6222038B1 (en) Quinuclidine derivatives
US5688806A (en) Spiroazacyclic derivatives as substance P antagonists
JP2535134B2 (en) Fused tricyclic nitrogen-containing heterocycle
CA2149242C (en) Quinuclidine derivative for treatment of inflammatory and gastrointestinal disorders
EP0436334B1 (en) 3-Aminopiperidine derivatives and related nitrogen containing heterocycles
EP0589924B1 (en) Fluoroalkoxybenzylamino derivatives of nitrogen containing heterocycles
US5703065A (en) Heteroarylamino and heteroarylsulfonamido substituted 3-benyzlaminomethyl piperidines and related compounds
CZ247993A3 (en) Substituted 3-aminoquinuclidine derivatives, process of their preparation and use thereof
US5716965A (en) Substituted 3-aminoquinuclidines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR NO NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993914220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2141051

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08379625

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993914220

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993914220

Country of ref document: EP