Connect public, paid and private patent data with Google Patents Public Datasets

Apparatus and method for sealing vascular punctures

Info

Publication number
WO1993021844A1
WO1993021844A1 PCT/US1993/003849 US9303849W WO1993021844A1 WO 1993021844 A1 WO1993021844 A1 WO 1993021844A1 US 9303849 W US9303849 W US 9303849W WO 1993021844 A1 WO1993021844 A1 WO 1993021844A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
puncture
tissue
vascular
balloon
sheath
Prior art date
Application number
PCT/US1993/003849
Other languages
French (fr)
Inventor
Sew Wah Tay
Kemal Schankerili
Thomas Holman
Hans Mische
Original Assignee
Scimed Life Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters

Abstract

An apparatus (7) for closing and sealing a vascular puncture is connected to an energy supply such that heat is generated in, or thermally conducted to, the tissue, thereby thermally fusing the vascular tissue together. The method for closing and sealing a vascular puncture comprises applying radio frequency or other energy to the tissue, the energy being sufficient to thermally fuse the tissue together, thus sealing the puncture.

Description

APPARATUS AND METHOD FOR SEALING VASCULAR PUNCTURES

FIELD OF THE INVENTION

The present invention relates to an apparatus and method for closing and sealing vascular punctures. More particularly, the present invention relates to a novel apparatus and method for sealing a vascular puncture resulting from the use of a medical device, catheter system or the like by using radio frequency or other energy to effect closure and thermal fusing of a puncture.

BACKGROUND OF THE INVENTION

Many medical procedures require access into the vascular system of the patient. Although various means may be used to obtain access into a vein or artery, typically access is obtained by inserting a cannula or introducer sheath through the skin and into the selected blood vessel. A medical device or diagnostic instrument, such as a.guide wire, guiding catheter, balloon angioplasty device, atherectomy device, or the like is then inserted into the vascular system through the cannula or introducer sheath.

In percutaneous transluminal coronary angioplasty, for example, it is customary to introduce a catheter into the femoral artery at an entry site in a patient's leg and to advance the catheter through the artery to the coronary region. The artery, which may be located one half inch or more beneath the skin, is punctured with a needle or similar device. A guide wire is inserted through the needle and the needle is removed.

An introducer sheath and dilator together are threaded over the guide wire. The introducer sheath is often twisted and otherwise manipulated as it is inserted into the vessel, thereby causing further enlargement of the vascular puncture. The dilator is then removed and the catheter is inserted.

To permit the insertion of a medical device or instrument therethrough, the introducer sheath must be of a relatively large diameter. Introducer sheaths typically have a diameter in the range between one millimeter and six millimeters, thus creating a significant puncture in the artery. After the intravascular medical procedure is completed, this puncture must be closed and bleeding from the blood vessel stopped.

At present, such bleeding is stopped by the application of direct digital pressure over the puncture site by a trained physician or other suitably trained medical personnel. Such direct pressure must be applied for a sufficiently long time for hemostasis to occur so that the opening is effectively closed and further bleeding is prevented. In the case of punctures into the femoral artery, the pressure is generally applied for twenty to thirty minutes, but it may be necessary to apply pressure for as long as one hour. Further, twelve pound sandbags may then be placed on the puncture site for an additional two to six hours.

The time required to stop bleeding using digital pressure is not an efficient use of medical professional services. Not only is this direct digital pressure application procedure wasteful of time by highly skilled medical professionals, the procedure results in a substantial reduction, if not virtual arrest, of blood flow through the vessel. Since thrombosis is one of the major problems that can occur in the immediate post-operative period, any reduction in blood flow, caused by the application of digital pressure, is undesirable. Furthermore, when digital pressure is applied, an undesirable bruise or hematoma can form at the entry site, since internal bleeding of the punctured artery continues until clotting blocks the puncture. There is also a significant chance that upon movement by the patient, the puncture will reopen and begin bleeding again, resulting in a hematoma or other complications. In addition, when anticoagulants used in the medical procedure are left active in the body, the introducer sheath is generally left inside the patient for twelve to twenty four hours in order for the anticoagulants to clear from the blood. Because the patient may be required to remain immobile and because of the risk of complications, patients are usually required to remain overnight in the hospital for observation, thus greatly increasing the cost of the overall procedure.

One prior device for stopping bleeding from a puncture in a blood vessel is a type of expandable plug. An example of such a device is shown in U.S. Patent 4,890,612 (Kensey) . The plug is pushed through the puncture into the blood vessel and into the blood stream. Once exposed to blood, it expands. The expanded plug is then pulled back against the puncture where, because of its expanded size, it plugs the opening. A similar device is an expandable closure, such as that described in U.S. Patent 4,852,568 (Kensey) . Such devices may work satisfactorily, but require inserting and leaving a foreign object in the vessel for a period of time. It is usually medically preferable to avoid leaving objects in a vessel, even if they eventually biodegrade. Another device for stopping bleeding from a puncture is disclosed in U.S. Patent 4,929,246 (Sinofsky) . This patent relates to a method for closing an artery using laser energy while simultane¬ ously applying pressure directly to the artery through the use of a balloon placed on the exterior of the artery over the puncture site.

SUMMARY OF THE INVENTION

An apparatus for closing and sealing a puncture at a puncture site in a vessel located beneath the skin using radio frequency or other energy to cauterize the puncture has been developed. In one aspect, the invention constitutes a probe sized to be percutaneously inserted adjacent the -vascular opening and a connector for connecting the probe to an energy supply source; the probe being configured to conduct energy directly to tissue adjacent the probe to cause heating of tissue surrounding the vascular opening to close the opening.

In another aspect, the apparatus comprises a cautery device having a means for forcing together biological tissue surrounding a percutaneous vascular puncture and at least one electrode connectable to a radio frequency power source such that an electrical current may flow through the tissue, thermally fusing the tissue together.

In yet another aspect, the invention is an apparatus or the percutaneous medical treatment of biological tissue, comprising a plurality of electrodes connectable to a radio frequency power source, the electrodes adapted to engage biological tissue at spaced points; and a lumen connected to the electrodes for guiding the electrodes to the biological tissue at said spaced points.

In one specifically disclosed embodiment, the apparatus comprises a radio frequency cautery device having forceps adapted to grasp vascular tissue surrounding the puncture site. The forceps, when connected to a radio frequency power source, also serve as bipolar electrodes for fusing the tissue surrounding the puncture.

A backstop element, such as a balloon occluder assembly or a T-shaped occluder, may also be used in conjunction with the cautery device. The balloon occluder assembly essentially comprises a balloon at the distal end of a balloon shaft and a means for inflating the balloon. The balloon occluder assembly temporarily occludes the puncture while providing a backstop against which the forceps may grasp the vascular tissue. The balloon occluder assembly also has utility separate from its use with the disclosed cautery device, as discussed more fully hereafter.

In another aspect, the invention is a method of sealing a vascular opening comprising the step of delivering energy to the vascular wall, resulting in local heating of bodily material external to the intima layer of the vessel to achieve hemostasis without substantially heating the intima layer of the vessel.

In yet another aspect, the method of the invention comprises the steps of percutaneously inserting a probe adjacent to the vascular opening; conducting energy from the probe directly to tissue adjacent the probe in an amount sufficient to cauterize the tissue to thereby close the vascular opening; and removing the probe.

The invention in still another aspect is a method of sealing a vascular puncture comprising the steps of holding the vascular tissue surrounding the puncture site in a contacting position and applying energy to that tissue, the energy being sufficient to thermally fuse the tissue together, thus sealing the puncture. Preferably, this method of sealing a puncture includes the steps of advancing a balloon into the lumen of a vessel, inflating the balloon and withdrawing it to abut the puncture from within the vessel, inserting a cautery device having forceps connected to a radio frequency power source, grasping and bringing the vascular tissue into a contacting position, causing an electrical current to flow from one forceps, through the vascular tissue to the other forceps, thus effecting a closure by thermally fusing the vascular tissue together.

In another aspect of the invention, a balloon occluder need not be used. Instead, pressure is applied to the vessel to restrict blood flow there¬ through, an electrode is percutaneously inserted to a position proximate the puncture site, and radio frequency energy is used to cause thrombosis of the blood to seal the puncture site.

The present invention thus provides an apparatus which is simple to use and which overcomes the disadvantages of the prior art, including the need for the application of digital pressure for long periods of time and the possibility of a substantial reduction of blood flow through the vessel. The present invention also provides methods that are effective for closing off a puncture or other opening in a blood vessel by using radio frequency or other energy to thermally fuse the vascular tissue or form a seal by causing thrombosis of the blood. The puncture is hemostatically sealed almost immediately after the medical procedure is performed, thus avoiding any potential complications associated with re-opening of the puncture or long hospital stays while antico¬ agulants remain active in the body.

The forgoing has outlined rather broadly the advantages of the present invention. Additional benefits of the invention will be described herein¬ after. These advantages, as well as the invention itself, are more easily understood in view of the attached drawings, a brief description of which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded view of the first preferred apparatus embodiment of the present invention.

FIG. 2 is an enlarged cross-sectional view of the distal portion of the device of the first preferred embodiment.

FIG. 3 is an enlarged perspective view of the distal end of a forceps of the first preferred embodiment.

FIG. 4 is an enlarged cross-sectional view of the distal end of a forceps of the first preferred embodiment.

FIG. 5 is an enlarged cross-sectional view of a check valve assembly and hub used in conjunction with the inflation means of the first preferred embodiment.

FIG. 6 through FIG. 8 illustrate alternate embodiments of the actuating mechanism.

FIG. 9 through FIG. 18 are partial cross-sectional views illustrating the method of using the first preferred embodiment of the present invention.

FIG. 9A is a partial cross-sectional view taken along line 9A-9A of FIG. 9 showing the relationship of the arterial sheath to the femoral artery and associated anatomy.

FIG. 15A is an enlarged cross-sectional view of the region of FIG. 15 showing the various layers of the vascular tissue being contacted by the electrodes.

FIG. 17A is an enlarged cross-sectional view of the region of FIG. 17 where the seal is made.

FIG. 19A and 19B illustrate an alternate embodi¬ ment of the backstop element of the present invention. DETAILED DESCRIPTION OF THE DRAWINGS AND PREFERRED EMBODIMENTS OF THE INVENTION

Before describing the apparatus of the present invention, a brief description of a typical intra- vascular surgical procedure, e.g., catheter instru¬ mentation of an artery using a percutaneous incision or puncture, will be given to best appreciate the features of the cautery apparatus of the present invention. In such a procedure a cannula of an instrument, such as an angiographic needle, is inserted percutaneously through the skin and arterial sheath and into the artery. The needle cannula of an instrument is held in place and the flexible end of a guide wire is then passed through the cannula into the artery to the desired depth (i.e., longitudinal position therealong) . Once the guidewire is in place the needle cannula is removed leaving the guidewire in place. A conventional introducer sheath combined with an arterial dilator are then passed over the guidewire through the puncture and into the artery. The guidewire and the dilator are then removed leaving the sheath in place. The catheter is then inserted through the introducer sheath and threaded down the artery to the desired intravascular location, e.g., the situs of the atherosclerotic occlusion, usually the coronary region. Once the intravascular procedure has been completed, the catheter is removed. Thereafter, once anticoagulants have been inactivated or cleared from the body, the usual procedure has been to remove the sheath and to have a surgeon or other trained person apply digital pressure to the percutaneous puncture until hemostasis has occurred. As noted above, the stopping of bleeding from a puncture was previously a difficult and time consuming task.

The apparatus of the present invention effects the hemostatic closure of a percutaneous or other type of puncture, incision or opening in a body vessel without necessitating the application of digital pressure thereto. In accordance with the preferred embodiment of the present invention, the introducer sheath is left in place after the catheter is removed and a balloon occluder is advanced through the introducer sheath into the vessel lumen. In additional preferred embodiments, any backstop element, such as a T-shaped occluder, can be used to support the tissue surrounding the puncture. A cautery device having forceps which are connected to a radio frequency power source are then inserted into the skin to the puncture site, where the forceps grasp the vascular tissue surrounding the puncture. The balloon or T-shaped occluder is withdrawn and the device is then energized, causing a cauterizing discharge to pass from the device to the vascular tissue surrounding the puncture, thereby thermally fusing the puncture.

Referring now in greater detail to the various figures of the drawing wherein like reference characters refer to like parts, FIG. 1 generally illustrates a cautery apparatus of the first preferred embodiment. This apparatus consists essentially of three components: a cautery device 7, a balloon occluder assembly 15 and a radio frequency power source (not shown) . The apparatus functions to close and seal a puncture or other opening in a blood vessel, duct or lumen in a living being. The apparatus thus has particular utility when used in connection with intravascular procedures such as angioplasty and other types of recanalization of atherosclerotic arteries, etc. However, it should be appreciated that the apparatus can be used to hemostatically close a puncture or other opening within a body. Thus, it is to be understood that while the description of the invention contained herein is directed to closing and sealing percutaneous punctures in vessels, the apparatus has other applications. The cautery device or probe 7 of the first preferred embodiment comprises a gripping handle 26, a tubular retaining housing 38, a spring 28, a thumb rest 32, forceps 50, a cap 40, an inner tubular housing 41 and detachable electrical leads 42. The gripping handle 26 is preferably cylindrical, but may be of any shape or size which allows it to be conveniently grasped with one hand. The gripping handle 26, for example, may incorporate an outwardly projecting annular ledge 27 or any other additional element which allows it to be easily grasped and held. The gripping handle 26, as well as the cap 40 and the thumb rest 32, can be constructed from any suitable material, preferably a lightweight plastic, such as polycarbonate or acrylonitrile-butadiene-styrene copolymer (ABS) . The cap 40 is located at the proximal end of the thumb rest 32 and provides outlets for the balloon shaft 8 and the detachable electrical leads 42.

In the first preferred embodiment, the thumb rest 32, the spring 28 and the gripping handle 26 comprise the actuator element. While holding the gripping handle 26, the thumb rest 32 is used to oppose the spring force of the spring 28, actuating the forceps 50. Actuating the forceps 50 causes the forceps to move from a first stored position to a second open position, as discussed more fully hereafter.

The tubular retaining housing 38, the distal end of which is also referred to as an elongated cautery probe or a cautery probe tip, is preferably an elongated, thin-walled tube or lumen made of any common plastic, including but not limited to PTFE, poly¬ ethylene, polyurethane, polycarbonate, polyester, nylon or ABS. The wall of the housing 38 is preferably 0.010" thick, but may be between 0.005" and 0.030". The inner diameter of the housing 38 is preferably about 0.158" and may vary from approximately 0.010" to 0.250". The tubular retaining housing 38 has an inner tubular housing 41 inside, which provides a guide lumen. The inner tubular housing 41, along with the tubular.retaining housing 38, are used to guide the forceps 50 to the puncture site.

Detachable electrical leads 42 connect the proximal end of the forceps 50 to the power source, allowing the forceps 50 to act as electrodes. Any connector element, however, that connects the forceps to the power supply is contemplated by the present invention. Further, the connector element may also include an activating switch element, such as a thumb switch, which allows the electrical current to flow only when said switch element is activated. Alter¬ natively, a foot switch associated with the power source may be used. The activating switch element may also include a timing feature which allows the physician to energize the device for a predetermined amount of time, regardless of how long the switch element is engaged.

In their first position, the forceps 50 reside substantially inside the tubular retaining housing 38 (FIG. 2) . The forceps 50 are insulated, preferably with plastic insulation 51, except for the distal end where the gripping of tissue occurs (FIG. 4) . Any suitable insulating material may also be used. The distal end of the forceps 50 of the first preferred embodiment form an arc of approximately 160° and have a serrated gripping portion 52 (FIG.3). The forceps are preferably up to 2 mm wide at their gripping portion 52. The gripping portion 52 of the forceps 50 will preferably almost touch when just outside the distal end of the tubular retaining housing 38. When in use, the vascular tissue is disposed in this gap. The forceps 50 are preferably uneven in length to accommodate the angle of entry of the cautery device 7 into the skin (as shown in FIG. 14) , the angle ideally being 45° to the surface of the vessel. For additional preferred embodiments, the forceps are preformed into any shape that is advantageous for gripping tissue and may be of even or uneven length. The forceps 50 are preferably made of a metal alloy such as Elgiloy1", manufactured by Elgiloy Partnership, Ltd., MP-35N™ or hardened stainless steel, but may be made of any material suitable for the purpose of gripping biological tissue.

Preferably, the forceps comprise bipolar electrodes. Thus, at any one time, one forceps will function as the anode and the other as the cathode. Although the first preferred embodiment contemplates the use of only two forceps, embodiments including a plurality of forceps are also contemplated. In these embodiments, the firing or activating of the current can be controlled electronically to occur in sequence.

As best shown in FIGS. 1 and 2, the inner tubular housing 41, also referred to as a guide lumen, is a thin tube preferably made of any common plastic, including but not limited to PTFE, polyethylene, polyurethane, polycarbonate, polyester, nylon or ABS. It is located between the substantially parallel arm portions of the insulated forceps 50 and extends through the gripping handle 26 and the tubular retaining housing 38. The inner tubular housing 41 allows the balloon shaft 8 of the balloon occluder assembly 15 to pass through the forceps 50 and out through the proximal end of the cautery device 7. In additional preferred embodiments, conventional triple lumen tubing comprising an inner hollow tube connected to the inside of an outer hollow tube by two longi¬ tudinally extending flat sections can be used in place of the combination of the tubular retaining housing 38 and the inner tubular housing 41. The triple lumen tubing is advantageous in that it isolates the forceps from each other and from the balloon shaft and avoids the need for constructing the tubular retaining housing 38 and- the inner tubular housing 41 from separate elements.

The balloon occluder assembly 15 of the first preferred embodiment consists of a elongated balloon shaft 8 having spaced markings 24 on the distal portion thereof, a balloon 14 at the distal end of shaft 8, a check valve assembly 20 on the proximal portion of the shaft 8, a removable hub 10 and a syringe 12.

The balloon shaft 8 is essentially a thin tube or lumen made of plastic or metal. The balloon shaft has an outer diameter of approximately 0.050" and an inner diameter of approximately 0.040". The balloon 14, disposed at the distal end of the balloon shaft 8, may be made with any suitable material including, but not limited to, latex, polyurethane, silicone, polyethylene terephthalate (PETP) and polyethylene copolymer, and may be compliant or non-compliant. Preferably, the balloon is made from a natural rubber latex material and is shaped in the form of a flat disk, though spherical and cylindrical forms are also acceptable. The balloon may be of any shape and size suitable to occlude the puncture being sealed. The balloon 14 may also be fitted with a balloon protector (not shown) . The protector is a lumen or tube, made of plastic, PTFE, PETP or any other suitable material, which fits around the balloon 14 to protect the balloon from being torn or ripped and also, if necessary, to alter the shape of the inflated balloon by radially compressing certain areas of the balloon.

The check valve assembly 20 at the proximal end of balloon shaft 8 provides a means for inflating and keeping the balloon 14 inflated for the desired period of time. The diameter of both the balloon shaft 8 and the check valve assembly 20 is preferably smaller than approximately 0.12" (9 French), although both can be of any size which allows the cautery device to be easily inserted over them. As best seen in FIG. 5, the preferred embodiment of the check valve assembly 20 consists essentially of housing 60 into which the proximal end of the balloon shaft 8 enters, an air passage 62 connecting the balloon shaft 8 to a chamber 64. The chamber 64 has a conical portion at the proximal end and a shelf 68 at the distal end thereof. The chamber also contains a spherical member 70, which is movable between a first and second position within the chamber 64. When in a first position (as shown in FIG. 5) , the spherical member 70 is in a contacting position with the shelf 68, which prevents the spherical member 70 from blocking the air passage 62. The spherical member 70 is held in this position by the pin element 72, discussed below. Thus air is allowed to pass through the assembly to inflate or deflate the balloon 14. At a second position, the spherical member 70 lodges against the conical portion of the chamber 64, completely preventing any air from passing through the assembly. Also contemplated by this invention are other conventional check valve assemblies.

A removable hub 10 with a standard female luer fitting is adapted to attach to the check valve assembly 20. The hub 10 generally provides a means for deflating the balloon 14, and, in conjunction with a syringe 12, for inflating the balloon. In the first preferred embodiment, a pin element 72 in the hub 10 provides a means for moving the spherical member 70 of the check valve assembly 20 from a position where it blocks the flow of air through the assembly to a position where the flow of air is unimpeded. The hub 10 may be made from any suitable material, such as polycarbonate or high-density ABS, and may be of any shape and size suitable for accomplishing the desired task.

A syringe 12 attaches to the removable hub 10 via a standard female luer fitting on the proximal end of the hub 10 and provides a means for inflating the balloon 14. Preferably, a 1 ml syringe is used. A liquid or a gas may be used to inflate the balloon 14, though a solution of saline is preferable.

A suitable radio frequency power source (not shown) is the Wet Field II made by Mentor 0&0, Inc. The power source may be either alternating current (AC) or direct current (DC) .

The cautery apparatus of the first preferred embodiment also includes other secondary components, such as a conventional introducer sheath 2, a dilator 34, a cautery sheath 30 and an introducer (not shown) . The introducer sheath 2 comprises a hollow tube which extends into the vessel lumen 6 (FIG. 9) . It is left in the artery after the catheterization or other percutaneous intravascular procedure and is standard and well known in the art. It is generally made from a suitable, flexible material, such as polyurethane, PTFE or polyethylene. Typical introducer sheaths range in diameter from 5 to 20 French and contain a diaphragm at the proximal end thereof to prevent the fluid in the lumen of the vessel from escaping through the sheath 2 once it is inserted into the vessel. Any suitably sized and constructed introducer sheath may be used.

The introducer (not shown) , which is also conventional, is a small hollow tube having a tapered distal end. The introducer is adapted to be inserted into the proximal end of the introducer sheath 2. The introducer spreads apart the walls of the diaphragm in the introducer sheath 2 to allow a portion of an instrument, such as a guide wire, to be inserted into the introducer sheath without damaging the instrument. When used in practicing the method of the present invention, the introducer is used to allow insertion of the distal end of the balloon occluder assembly, which contains a relatively fragile balloon 14, into the introducer sheath and hence into the vessel lumen 6. The cautery sheath 30 is similar to the introducer sheath 2, except that it is larger in diameter and not designed to extend into th vessel lumen 6 (FIG. 12) . The cautery sheath 30 is a hollow tube which is adapted to be inserted into the skin after the introducer sheath 2 has been removed and around the balloon shaft 8 already in place. The cautery sheath 30 spreads and holds the skin and subcutaneous tissue above the vascular puncture away from the balloon shaft 8 and allows the tubular retaining housing 38 containing the forceps 50 to be inserted into the body without contacting the surface of the skin or any subdermal tissue. It may be made of any suitable material including polyethylene, polyurethane and PTFE and may have an inner diameter of approximately 0.10" to 0.250", but in any case, must be larger in diameter than the tubular retaining housing. The cautery sheath 30 of the first preferred embodiment is capable of spreading the tissue to an opening dimension that is both larger than the opening in the vessel wall and larger than the dimension of the portion of the energy delivery probe used to contact the tissue surrounding the opening. The cautery sheath 30 is also generally about 3"-4" in length. The distal end of the cautery • sheath 30 is preferably cut at a 45° angle, but any suitable angle is also acceptable. The cautery sheath 30 has markings 36, which correspond to the markings 24 on the balloon shaft 8. These markings could be numbers or a sequence of color bands. Also contemplated are other marking systems where the physician is able to identify and locate the exact depth of the puncture.

The dilator 34 is a hollow tube portion having a blunted tapered distal end portion (FIG. 12) . The tapered distal end is adapted to be inserted into the skin above the puncture site and over the balloon shaft 8 to gradually spread the skin apart. The tapered distal end is blunted, however, so that it abuts the exterior surface of the vessel surrounding the puncture. The dilator 34 is generally longer than the cautery sheath 30 so that it may be conveniently removed from the cautery sheath. Prior to insertion into the skin, the dilator 34 is fitted inside the cautery sheath 30, with the blunted tapered distal end of the dilator extending beyond the distal end of the cautery sheath. In use, the distal end of the dilator 34 is inserted first, followed by the distal end of the cautery sheath 30. Once the cautery sheath 30 is in place, i.e., its distal end contacting the exterior surface of the vessel wall, the dilator 34 is removed (FIG. 12) .

The cautery device 7, the balloon occluder assembly 15 and all the secondary components mentioned above may be disposed of after one use. The power supply, however, may be reused.

Generally, the present invention contemplates various methods of using radio frequency and other energy to seal a percutaneous vascular puncture. Operation of the first preferred embodiment of the cautery apparatus may be explained with reference to FIGS. 9 - 18.

FIG. 9A show the location of the vascular sheath 21 with respect to the vessel wall 5, in this case the femoral artery. The vascular sheath 21 is actually made of an outer layer 22 that comprises collagen, a fatty layer 23 and a thin connective tissue 25 in contact with the artery wall 5. At the point in the body where punctures are made for percutaneous transluminal coronary angioplasty procedures, the outer layer 22 of the arterial sheath 21 is actually a continuation of the iliac facia combined with the facia transversalis, which come together at the femoral triangle to form the sheath. The fatty layer 23 is a funnel shaped areolar tissue which encapsulates the vascular bundle (the femoral artery 5, the femoral vein 9 and lymph canal 13) . The fatty areolar tissue is made of clusters of fat cells linked together by collagenous connective fibers. As used herein and in the claims, the term vascular tissue includes the vessel wall and any associated vascular sheath. It has been found that the vascular sheath 21, as explained more fully below, plays a role in properly closing the puncture site in the vessel wall 5.

In use, a catheter introducer sheath 2, if not already in place from a prior medical procedure, is inserted into a vessel, such that it extends from the interior of the vessel lumen 6, through the vessel wall 5 and out through the vascular sheath 21, subcutaneous tissue and skin surface 4 of the patient (FIG. 9) . The distal portion of the balloon occluder assembly 15 is inserted into the introducer sheath 2 through the diaphragm using the introducer (not shown) , and pushed until the distal end of the balloon shaft 8 extends beyond the distal end of the introducer sheath 2 (FIG. 10) .

The syringe 12 and the removable hub 10 are attached to the check valve assembly 20, and the balloon 14 is inflated with a predetermined volume of fluid, preferably saline. The balloon 14 is inflated to a size sufficient to occlude the puncture and preferably in the form of a sphere as shown, or more preferably in the form of a flat disk. Preferably, the syringe 12 is sized such that full displacement of its piston will provide the exact amount of fluid to properly inflate the balloon 14. The removable hub 10, together with the syringe 12, are then removed from the balloon occluder assembly 15. The check valve assembly 20 prevents deflation of the balloon.

The balloon 14 is withdrawn (i.e., pulled out of the body) until the inflated balloon abuts the distal end of the introducer sheath 2, and then both are withdrawn until the balloon abuts the puncture. At this point, the introducer sheath 2 is totally removed from the body, exposing the color bands or marking 24 on the balloon shaft 8 (FIG. 11) .' The balloon 14 temporarily occludes the puncture site to prevent bleeding. Digital pressure is thus not required.

The physician notes the markings 24 on the shaft 8 at the point where the shaft meets the surface of the skin (FIG. 11). The balloon occluder assembly 15, in addition to temporarily occluding the puncture, also functions to (a) identify for the physician the exact depth of the puncture, (b) provide positioning support for the area surrounding the puncture so that the forceps 50 may more easily grasp the vascular tissue (i.e., a backstop element), (c) act as a guide for a hemostatic device, including, but not limited to the cautery device 7 of the present invention and (d) to keep the vascular tissue through which the puncture has been made separated from the tissue of the opposite vessel wall. The importance of the various functions of the balloon occluder assembly 15 will become more evident as the subsequent steps in the preferred method are explained. It will be understood that backstop elements of additional preferred embodiments will also perform some or all of these functions.

The cautery sheath 30 and dilator 34 are inserted over the shaft 8 of the balloon occluder assembly 15 and into the skin. Based on the depth markings, the tapered distal end of the dilator 34 and cautery sheath 30 are inserted so that they do not penetrate the vessel, but merely abut it (FIG. 12) . Once the cautery sheath 30 is in place, the dilator 34 is removed.

Referring to FIG. 13, the cautery device 7 is inserted over the shaft 8 of the balloon occluder assembly 15 and into the cautery sheath 30. As can be seen in FIG. 13, the check valve assembly 20, located at the proximal end of the shaft 8, is small enough in diameter to thread the cautery device 7 over it. The markings on the balloon shaft 8 and the cautery sheath 30 provide a means for placing the cautery device 7 at a predetermined distance from the puncture site.

The thumb rest 32 on the cautery device 7 is then depressed, causing the spring 28 to actuate the forceps 50 ^IG. 14) . Upon actuation, the forceps 50 extend beyond the tubular retaining housing 38 and expand slightly due to the lack of radial compression provided by the retaining housing 38. The balloon occluder assembly is withdrawn slightly so as to bring the vascular tissue into proper position. The serrated gripping portion 52 of the forceps 50 grasps the vascular tissue surrounding the puncture at spaced points (FIG. 14) . The balloon 14 provides, among other things, a backstop against which the vascular tissue is grasped. Referring to FIG. 15, the thumb rest 32 is released, causing the forceps 50 to retract or withdraw into the retaining housing 38, thus pulling the grasped tissue together until stopped by the balloon occluder assembly 15.

As shown in detail in FIG. 15A, the vessel wall 5 is made of three layers. The innermost layer is the intima 16, which is the most delicate and important layer for vessel health and healing. It is preferred that any heat conducted to or generated in the vessel wall be limited to the other layers so that the intima layer is not substantially heated so as to preserve the cells in the intima layer. The second layer is the media 17. The media is dense and will resist being pulled by the forceps 50. The outer layer is the adventitia 18. The adventitia is fibrous and somewhat loose. It is easier to grasp and is more flexible and elastic than the other layers. If the forceps 50 anchor in the adventitia layer 18, the adventitia can be pulled closed without drawing the media layer 17 together.

Preferably the forceps 50 penetrate through the vascular sheath 21 and anchor in the adventitia layer 18 as shown in FIG. 15A. The balloon 14 is then deflated by putting the hub 10 back onto the end of the check valve assembly 20 (FIG. 16) . The deflated balloon passes through the grasped tissue. The entire balloon occluder assembly 15 is fully withdrawn from the cautery device 7. The forceps 50 continue to grasp the tissue, pulling the vascular sheath 21 and adventitia layer 18 surrounding the puncture together (FIG. 16) .

The radio frequency power supply (not shown) is then activated and the electrodes are energized. In the first preferred method, a thumb or foot switch is used to activate the power. The tissue in between the forceps 50, which serve as electrodes, acts as a high resistance conductor. It will be understood that the parameters of the electrical energy applied to the vascular tissue surrounding the puncture site must be selected to thermally fuse the puncture without causing widespread damage to the tissue or coagulating blood in the vessel. The frequency of the alternating electrical energy can be anywhere in the radio frequency range (10 kHz to 300 GHz) . For medical reasons, the frequency should be above 25 kHz. For most applications, a high frequency energy range, generally 300 kHz to 1,000 kHz, may be used, with the frequency preferably being in the range of 300 kHz to 600 kHz, more preferably between 450 kHz and 550 kHz, and most preferably 500 kHz. In other applications, frequencies in the short wave range (10 MHz to 100 MHz), or in the microwave range (1 GHz to 300 GHz), will be more useful. A duration of application of the energy will generally be between about one and ten seconds. It has been found preferable to start the cauterization procedure before the forceps 50 get too close to one another to prevent shorting out between them. In fact, it may be preferable to energize the electrodes while the balloon occluder assembly 15 is still between the forceps 50. The vascular tissue is instantaneously heated as the current passes from one electrode to the other. It is believed that the generated heat denatures or melts the collagen in the tissue, causing the tissue to fuse together and close the puncture. In addition, the heat generated may cause thrombosis or coagulation of blood which seals the puncture. After the vascular tissue has been thermally fused, the electrodes are deenergized.

FIG. 17A shows in detail how a puncture may be sealed if the forceps 50 are anchored as shown in FIG. 15A. The tissue from the femoral sheath 21 and adventitia 18 is drawn together and fused. The fused tissue forms a cap or plug over the puncture. The plug may include a weld 19 of the sheath 21 as well as a weld 29 of the adventitia layer 18, or the cap may be a homogenous mass of fused collagen. The gap between the media layers 17 is quickly closed with an arterial clot, and the intima layer 16 starts to grow closed a short time later.

If the forceps 50 only grasp the arterial sheath 21, it is possible that a cap or weld 19 of the sheath will only occur in the sheath, but that a plug will form below the sheath 21 and above the opening in the vessel wall to seal the puncture. Also, even though current may flow only between grasped portions of sheath 21, heat generated thereby may be conducted to the vessel wall 5 to also heat and fuse the adventitia layer 18.

After the seal has been formed, the thumb rest 32 is depressed once again, causing the forceps 50 to expand slightly, thus releasing the vascular tissue (FIG. 17). The cautery device 7, followed by the cautery sheath 30, are removed from the body, leaving the vascular puncture hemostatically sealed (FIG. 18) .

Additional preferred embodiments of the actuator element of the cautery device 7 are shown in FIGS. 6 - 8. FIG. 6 illustrates a cautery device 107 comprising a gripping handle 126, which pivots about a screw, causing a portion of the gripping handle to compress a spring and actuate the forceps 50. Similarly, FIG. 7 illustrates an additional preferred embodiment of the cautery device 207 comprising a rack and pinion mechanism 226 for actuating or moving the forceps 50 from a first position to a second position. FIG. 8 shows another preferred embodiment of the cautery device 307 wherein the gripping handle comprises a wedge which acts against an inclined plane 326 and compresses a spring when squeezed, actuating the forceps 50. Also contemplated by this invention are cautery devices comprising additional suitable mechanisms for actuating the forceps 50.

In addition to the balloon occluder assembly of the first preferred embodiment, the present invention contemplates the use of any other device, assembly or mechanism which will provide a backstop for the tissue surrounding the vascular puncture. The backstop element, the distal portion of which is located inside the puncture, essentially functions as an anchor or a positioning mechanism to provide positioning support and to help guide a hemostatic device to the puncture site.

In an additional preferred embodiment, the backstop element is a T-shaped occluder 114 adapted to be inserted into the vessel lumen 6 to provide positioning support for the tissue surrounding the vascular puncture and to temporarily occlude the puncture (FIGS. 19A & 19B) . The purpose of providing positioning support to the tissue surrounding the vascular puncture is to allow the forceps to more easily grasp the vascular tissue and to grasp only the proper tissue, i.e., to prevent the cautery forceps from grasping and sealing the entire vessel. The purpose of temporarily occluding the puncture is obviously to prevent blood or fluid loss.

The backstop element may be connected to a guiding shaft, such as the guiding shaft 108 as shown in FIGS. 19A & 19B. The guiding shaft 108, similar to the balloon shaft 8, allows the backstop element to be manipulated and controlled from outside the body and also provides a means for determining the depth of the puncture.

The T-shaped occluder 114 is made of a flexible, springy material. It may be either plastic pre-bent into a T shape or a coiled wire similar to that of conventional guide wires. The T-shaped occluder may have more horizontally extending legs than just the two shown. Prior to insertion (FIG. 19A) , the T-shaped occluder is disposed in the guiding shaft 108 similar to the balloon shaft 8 of the first preferred embodi¬ ment. The radial compression of the guiding shaft 108 causes the horizontal portion of the T-shaped occluder to fold up. The folded-up horizontal portion forms the distal end of the T-shaped occluder. In use, the distal end of the occluder is pushed out of the guiding shaft 108, causing the folded-up portion to unfold and contact the interior surface of the vessel wall immediately proximate the puncture (FIG. 19B) . The perpendicular vertical portion of the occluder extends out from the vessel lumen 6 through the puncture, into the guiding shaft 108 and to the skin surface. A spring 112 is used to move the T-shaped occluder from a first position to a second position. A locking mechanism 120 particularly a locking pin 122, is used to keep the T-shaped occluder in its first or second position. Although it is preferable to use a backstop element which functions to provide positioning support and to temporarily occlude the puncture, it is not necessary. That is, another aspect of the present invention provides a method of sealing a vascular puncture wherein the introducer sheath is withdrawn from the vascular puncture, a cautery sheath is inserted and the distal end of the cautery device is then inserted into the cautery sheath and activated as previously described. If no backstop element is used, however, digital pressure may be required to temporarily stop the bleeding from the puncture.

In additional preferred embodiments, the means for forcing together biological tissue may include any conventional system or mechanism suitable for pulling, pushing or causing tissue to come together. In addition to forceps, one such means may be a vacuum system. In a vacuum system, the force of the suction causes the vascular tissue to be pulled into a contacting position. Other mechanical systems which push the tissue together may also be used.

In some methods of the invention, the tissue may not need to be grasped, or at least not pulled all the way together. It has been found that as heat is generated in, or thermally conducted to, the tissue surrounding the puncture, the tissue undergoes a sphinctering effect, closing upon itself to seal the artery. Depending on the size of the puncture, a radio frequency cautery device could be percutaneously inserted such that its electrode or electrodes were proximate the puncture site and then the radio frequency energy would cause this sphinctering effect and thrombosis of the blood to seal the opening. In this method, pressure would be applied to the vessel to restrict blood flow therethrough while the cauterization was performed. Bipolar electrodes are preferred, although monopolar electrodes are also contemplated by the present invention. One of the prongs of the forceps 50 may thus comprise a monopolar electrode, or a separate monopolar electrode may be located proximate to the forceps, such that radio frequency energy can be applied to the biological tissue which is held in a contacting position by the forceps. When a monopolar electrode is used, the patient is grounded using a grounding pad. Alternately, a monopolar electrode may be placed in the center of the forceps 50, or used without the forceps 50 where the tissue can be treated without being grasped. When a monopolar electrode is used, most of the energy is concentrated, and most of the heat generation occurs, in the tissue contacting the electrode. However, energy is transmitted to deeper layers (such as through the arterial sheath 21 and into the vessel wall 5) as the current dissipates and moves toward the grounding pad, and this current then produces heating at the sites near the electrode where the current density is still sufficiently high.

Since the use of heat is the operative element in the process, the invention also contemplates delivering heat to the tissue by thermal conduction from a heated probe. Thus the energy that is directly conducted to the tissue may be electrical energy (either alternating current or direct current, including pulsed direct current) or thermal energy. Microwave energy may also be used to generate heat in the tissue, particularly if a probe is constructed with a microwave source or receptor at its operative tip.

Depending on how the heat is conducted to or generated in the tissue, and whether the tissue is grasped together, the heat will fuse the tissue in a variety of mechanisms, including fusing and cross- linking of collagen, coagulation of blood, and combinations thereof. An additional preferred embodiment of the present invention contemplates the use of an internal plunger mechanism as a means for inflating the balloon 14. The internal plunger mechanism would fit within the shaft 8 and would use the air already present in the shaft to inflate the balloon. The mechanism would incorporate a check valve to keep the balloon inflated and would thus alleviate the need for the removable hub 10, syringe 12 and check valve assembly 20 which comprise the inflation means of the first preferred embodiment.

The present invention incorporates an assembly for temporarily occluding a vascular puncture, as discussed above, which, when used with a hemostatic device or composition, effectively and efficiently seals a vascular or other percutaneous puncture. Additional aspects of the present invention include the use of any suitable hemostatic device or composition known in the art in conjunction with the occluding assembly mentioned above. Although the preferred hemostatic means of the present invention is the cautery device 7, additional devices or compositions which are capable of hemostatically sealing a vascular puncture, such as a tissue adhesive, a thrombolic agent, a vascular clip, sutures or a suturing device, are contemplated for use with the occluder assembly.

Another aspect of the present invention is to provide an assembly adapted to guide a hemostatic means to a puncture site. The first preferred embodiment disclosed the use of a balloon occluder assembly. Any assembly, however, comprising an elongated shaft having a positioning mechanism at the distal end thereof and a means for controlling or manipulating the positioning mechanism at the proximal end thereof, wherein the distal end of the elongated shaft is insertable into the lumen of a vessel and the positioning mechanism is configured to anchor the distal end of the assembly inside the vessel is contemplated. Any such assembly should further prevent entry of the hemostatic means into the vessel through the puncture site. Preferred embodiments of such an assembly include the balloon occluder assembly and the T-shaped occluder device.

Another aspect of the present invention is to provide an assembly adapted to determine the depth of a percutaneous vascular puncture comprising an elongated shaft having markings thereon and a positioning mechanism at the distal end thereof. Any such assembly adapted to measure the depth of a percutaneous vascular puncture from the level of the skin when the distal end of the elongated shaft is inserted into the lumen of the vessel and the positioning mechanism is anchored in the vessel is acceptable.

An additional aspect of the present invention is to provide a method of sealing a vascular puncture which does not require the use of a cautery sheath or dilator. Instead, the original introducer sheath may be used in place of the cautery sheath if it is withdrawn slightly from the puncture site so that it is not in the vessel lumen 6.

It should be appreciated that the apparatus and methods of the present invention are capable of being incorporated in the form of a variety of embodiments, only a few of which have been illustrated and described above. The invention may be embodied in other forms without departing from its spirit or essential characteristics. In some aspects of the invention, other energy sources could be used to generate heat in the tissue or cause thrombosis of the blood to seal the puncture. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by all the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

WE CLAIM:
1. A method of sealing a vascular opening comprising the steps of: a) percutaneously inserting a probe adjacent to the vascular opening; b) conducting energy from said probe directly to tissue adjacent the probe in an amount sufficient to cauterize said tissue to thereby close said vascular opening; and c) removing said probe.
2. The method of Claim 1 wherein the probe transfers energy to the tissue by thermal conduction.
3. The method of Claim 1 wherein the probe conducts electrical energy to the tissue, and the tissue is heated due to its electrical resistance.
4. The method of Claim 1 wherein the probe conducts alternating current electrical energy to the tissue.
5. The method of Claim 4 wherein the alternating current conducted to the tissue is radio frequency energy.
6. The method of Claim 4 wherein the alternating current conducted to the tissue has a frequency between 25 kHz and 1,000 kHz.
7. The method of Claim 4 wherein the probe transfers microwave energy to cauterize the tissue.
8. The method of Claim 3 wherein the probe conducts direct current electrical energy to the tissue.
9. The method of Claim 8 wherein the direct current energy is provided in pulsed form.
10. The method of Claim 1 further comprising the step of spreading subcutaneous tissue above the vascular opening.
11. An apparatus for sealing a vascular opening comprising: a) a probe sized to be percutaneously inserted adjacent the vascular opening; and b) a connector for connecting the probe to an energy supply source; c) the probe being configured to conduct energy directly to tissue adjacent the probe to cause heating of tissue surrounding the vascular opening to close said opening.
12. The apparatus of Claim 11 further comprising a guide to direct the probe to the vascular opening.
13. A method of sealing a vascular opening comprising the step of: a) delivering energy to the vascular wall, resulting in local heating of bodily material external to the intima layer of the vessel to achieve hemostasis without substantially heating the intima layer of the vessel.
14. The method of Claim 13 wherein collagen present in the heated material fuses to seal the vascular opening.
15. The method of Claim 13 wherein the bodily material comprises tissue.
16. The method of Claim 13 wherein collagen and blood in the heated material is heated resulting in fusion of the collagen and coagulation of the blood to seal the vascular opening.
17. The method of Claim 13 wherein blood present in the heated material coagulates to seal the vascular opening.
18. An apparatus for sealing a vascular opening comprising an electrical conductor connectable to an electrical current and configured to deliver said electrical current through subcutaneous tissue to effect closing of the opening in the vessel wall.
19. A method of sealing an opening in a vessel wall comprising the step of delivering electrical current to the vascular tissue around the opening, said current effecting closure of the vessel wall to seal said opening.
20. The method of Claim 19 wherein the current is delivered by at least one electrode which is in direct contact with the vascular tissue that closes to seal said opening.
21. The method of Claim 19 wherein the vessel wall is surrounded by a vascular sheath and the current is delivered by at least one electrode that penetrates the vascular sheath to contact the vascular wall.
22. The method of Claim 19 wherein the vessel wall is surrounded by a vascular sheath and the current is delivered by an electrode that contacts and delivers energy to the vascular sheath.
23. The method of Claim 19 wherein heat is generated from delivery of the current and closure is effected by thermal conduction of said heat to the vessel wall.
24. A method of sealing an opening in a vessel wall surrounded by an arterial sheath having an opening therethrough above the opening in the vessel wall comprising the steps of: a) effecting a seal of the opening of the arterial sheath and b) creating an adhering plug to seal the opening in the vessel wall.
25. The method of Claim 24 wherein the plug is created below the arterial sheath and above the opening.
26. The method of Claim 24 wherein the plug is created on the arterial sheath.
27. A method of sealing an opening in a vessel wall surrounded by an arterial sheath comprising the step of delivering energy through the arterial sheath to the vessel wall sufficient to cauterize the vessel wall to seal the opening.
28. The method of Claim 27 wherein the energy comprises electrical current.
29. The method of Claim 28 wherein the electrical current is delivered by an electrode which is in contact with the arterial sheath.
30. The method of Claim 27 wherein the electrical current is delivered by an electrode which is in contact with the vessel wall.
31. An apparatus for sealing an opening in a vessel wall comprising: a) an energy delivery probe for conducting energy directly to tissue surrounding said opening, and b) means for spreading the subcutaneous tissue superficial to the surface of the vessel wall, said spreading means being capable of spreading the tissue to an opening dimension that is both larger than the opening in the vessel wall and larger than the dimension of the portion of the energy delivery probe used to contact the tissue surrounding the opening.
32. A method of sealing an opening in a vessel wall comprising the step of delivering energy to the vascular tissue, causing the vascular tissue to contract upon itself resulting in a sphinctering effect causing closure of said opening.
33. An apparatus for the percutaneous medical treatment of biological tissue, said apparatus comprising: a) a plurality of electrodes connectable to a radio frequency power source, said electrodes adapted to engage biological tissue at spaced points; and b) a lumen connected to the electrodes for guiding the electrodes to the biological tissue at said spaced points, said apparatus adapted to thermally fuse together said biological tissue.
34. An apparatus for the medical treatment of a percutaneous vascular puncture with an electrical current comprising: a) a cautery device comprising: i) a means for forcing together biological tissue surrounding a percutaneous vascular puncture; and ii) at least one electrode connectable to a radio frequency power source such that an electrical current may flow through the tissue, thermally fusing the tissue together.
35. The apparatus of Claim 34 wherein the means for forcing together the tissue comprises at least two forceps adapted to grasp and pull the tissue together.
36. The apparatus of Claim 35 wherein one of the forceps comprises the at least one electrode.
37. The apparatus of Claim 34 wherein the at least one electrode comprises a monopolar electrode.
38. The apparatus of Claim 34 wherein the at least one electrode comprises two bipolar electrodes.
39. The apparatus of Claim 34 further comprising an activating switch element wherein said switch element activates the electrical current flow to the at least one electrode.
40. The apparatus of Claim 34 wherein the radio frequency power source provides energy in the range of 300 kHz to 1,000 kHz.
41. The apparatus of Claim 34 wherein the cautery device is disposable.
42. The apparatus of Claim 34 further comprising a backstop element which provides positioning support to the vascular tissue surrounding a vascular puncture.
43. The apparatus of Claim 42 wherein the backstop element comprises a balloon occluder assembly comprising a balloon shaft having a balloon at the distal end thereof.
44. The apparatus of Claim 35 wherein the backstop element comprises an inverted T-shaped element adapted to be inserted into the lumen of the vessel, the horizontal portion of the T-shaped element being adapted for contacting with the interior surface of the lumen immediately proximate the puncture and the per¬ pendicular vertical portion of the T-shaped element being adapted to extend from the lumen of the vessel out through the skin.
45. The apparatus of Claim 35 wherein the forceps have gripping portions at the distal end thereof, said forceps comprising electrodes, and the device further comprises: a) a retaining tubular housing; b) a gripping handle; and c) an actuator element to move said metal forceps from a first position to a second position.
46. The apparatus of Claim 45 wherein the actuating element comprises a spring on the proximal end of the gripping handle and a thumb rest disposed at the proximal end of the spring.
47. The apparatus of Claim 45 wherein the gripping handle and actuating element comprise a pivoting element whereby a portion of the gripping handle actuates the forceps.
48. The apparatus of Claim 45 wherein the gripping handle and actuating element comprise a rack and pinion mechanism for actuating the metal forceps.
49. The apparatus of Claim 45 wherein the gripping handle and actuating element comprise a wedge which acts against an inclined plane to actuate the metal forceps.
50. The apparatus of Claim 42 further comprising a guiding shaft connected to the back stop element and a dilator and a cautery sheath, said dilator and cautery sheath adapted to be inserted over the guiding shaft.
51. The apparatus of Claim 43 wherein the balloon occluder assembly further comprises a balloon protector around the balloon.
52. The apparatus of Claim 43 wherein the balloon occluder assembly further comprises a check
valve assembly at the proximal end of the balloon shaft.
53. The apparatus of Claim 43 wherein the balloon occluder assembly further comprises a removable hub.
54. The apparatus of Claim 43 further comprising a means for inflating said balloon.
55. A cautery device for cauterizing a puncture in a vessel within the body of a patient comprising: a) a gripping handle; b) a tubular retaining housing; c) metal forceps comprising electrodes disposed within said tubular retaining housing at a first position and extending beyond the distal end of said tubular retaining housing at a second position; d) an actuator element to move said metal forceps from said first to said second position; e) a connector element adapted to connect the forceps to a radio frequency power source; and f) a lumen associated with said tubular retaining housing for guiding said forceps to said puncture.
56. The device of Claim 55 wherein the connector element comprises detachable electrical leads.
57. The device of Claim 55 wherein the metal forceps are insulated except at the distal tip, said distal tip further comprising a gripping portion of a shape that is advantageous for gripping biological tissue.
58. The device of Claim 55 wherein the lumen extends through the gripping handle and the tubular retaining housing.
59. The device of Claim 55 wherein the lumen and the tubular retaining housing are formed together as a triple lumen tube.
60. The device of Claim 55 wherein the metal forceps comprise bipolar electrode elements.
61. An assembly for temporarily occluding a vascular puncture comprising an elongated shaft having markings thereon to determine the depth of the puncture from the surface of the skin and a balloon at the distal end thereof and a means at the proximal end of the shaft for inflating said balloon, said inflated balloon being sized and shaped to occluder the vascular puncture from within the vessel.
62. The assembly of Claim 61 further comprising a check valve assembly to prevent deflation of the balloon.
63. The assembly of Claim 62 wherein the diameter of the check valve assembly is less than 3 mm.
64. An assembly adapted to guide a hemostatic means to a puncture site, said assembly comprising an elongated shaft having markings thereon to determine the depth of the puncture from the surface of the skin and having a positioning mechanism at the distal end thereof, the distal end of said elongated shaft being insertable into the lumen of a vessel, the positioning mechanism being configured to anchor the distal end of the assembly inside the vessel and to prevent entry of the hemostatic means into the vessel through the puncture site.
65. The assembly of Claim 64 wherein the positioning mechanism comprises a balloon.
66. The assembly of Claim 64 wherein the positioning mechanism comprises a T-shaped occluder.
67. An assembly adapted to determine the depth of a percutaneous vascular puncture comprising an elongated shaft having markings thereon, a positioning mechanism at the distal end thereof, the assembly adapted to measure the depth of a percutaneous vascular puncture from the level of the skin when said distal end of said elongated shaft is inserted into the lumen of a vessel and said positioning mechanism is anchored in the vessel.
68. A method for closing and sealing a vascular opening comprising: a) holding the vascular tissue surrounding a vascular opening in a contacting position; and b) applying energy to the vascular tissue immediately proximate the opening, said energy being sufficient to thermally fuse the tissue and seal the vascular opening.
69. The method of Claim 68 wherein the steps are performed after a medical device has been removed from a vascular puncture.
70. The method of Claim 68 wherein the method is performed percutaneously.
71. The method of Claim 68 wherein the energy is radio frequency energy.
72. The method of Claim 71 wherein said radio frequency energy is sufficient to thermally fuse the tissue and seal the opening while avoiding coagulating the fluid in the vessel.
73. The method of Claim 68 wherein the method comprises grasping and bringing into a contacting position the vascular tissue surrounding the vascular opening.
74. The method of Claim 73 wherein two or more forceps are used to grasp the tissues surrounding the vascular opening.
75. The method of Claim 68 wherein the method comprises keeping the interior surfaces of the vascular tissue separated.
76. A method of closing and sealing a vascular puncture comprising: a) guiding a device comprising a cautery probe tip to the site of a puncture; b) grasping together the tissues immediately proximate the puncture site into a contacting position; and c) generating a cauterizing discharge from said probe tip to the tissues immediately proximate the puncture site, said cauterizing discharge being sufficient to thermally fuse the puncture.
77. The method of Claim 76 wherein the step of guiding a device to the site of a puncture includes the step of advancing the device through a cautery sheath.
78. The method of Claim 76 wherein positioning support is provided to the tissue immediately proximate the puncture.
79. The method of Claim 78 wherein a balloon occluder assembly is used to provide positioning support to the tissue.
80. The method of Claim 78 wherein a T- shaped occluder is used to provide positioning support to the tissue.
81. A method for medical treatment of a vascular puncture comprising the steps of: a) advancing an elongated cautery probe having two or more forceps at its distal end to a vascular puncture site, said forceps comprising electrodes; b) causing the forceps to grip and pull together the tissue surrounding the puncture; and c) establishing a current flow between said electrodes, whereby said tissue surrounding the vascular puncture is electrically heated by said current flow thereby thermally fusing the tissue together.
82. A method of treating a percutaneous opening in a vessel wall comprising the steps of: a) advancing a shaft having an inflatable balloon at the distal end thereof through a catheter introducer sheath wherein the distal end of the shaft extends through the opening into the lumen of the vessel; b) inflating said balloon to a size sufficiently large to occlude the opening; c) retracting said balloon and introducer sheath until the balloon abuts the tissue surrounding the opening in the vessel, thereby occluding the opening; d) removing the introducer sheath from the vessel; e) inserting the distal end of a cautery device into the body; f) grasping and pulling together the tissue surrounding the opening with the metal forceps, the inflated balloon providing a back stop for the forceps; g) deflating the balloon and withdrawing the shaft from the vessel after the tissue has been grasped and pulled together by the forceps; and h) applying radio frequency energy to the tissue surrounding the opening, said energy being sufficient to thermally fuse and seal the tissue together.
83. The method of Claim 82 wherein the balloon shaft is used to guide the cautery device to the opening.
84. The method of Claim 82 wherein a dilator and a cautery sheath are introduced into the skin after the introducer sheath has been removed, the dilator being removed prior to the insertion of the cautery device.
85. The method of Claim 82 wherein the balloon shaft and the cautery sheath both contain a series of markings for determining the distance from the surface of the skin to the site of the vascular opening.
86. A method of using radio frequency energy to close a vascular puncture comprising the steps of: a) guiding a cautery device to the site of the vascular puncture, said cautery device having forceps at the distal end thereof and an actuating mechanism for causing the forceps to grasp the tissue surrounding the puncture; b) causing the forceps to grasp and pull together the tissues surrounding the puncture, said forceps comprising electrodes connected to a radio frequency energy source; c) activating the radio frequency energy source, thereby causing the tissue surrounding the puncture to fuse together; and d) removing the cautery device from the body.
87. The method of Claim 86 wherein the cautery device is guided to the site of the vascular puncture through a cautery sheath.
88. A method of using radio frequency energy to percutaneously close a vascular puncture comprising the steps of: a) applying pressure to the vessel to restrict blood flow therethrough; b) percutaneously inserting an electrode to a position proximate the puncture site; and c) using radio frequency energy to cause thrombosis of the blood to seal the opening.
89. The method of Claim 88 further comprising the step of forcing the vascular tissue surrounding the puncture site towards a closed position prior to using the radio frequency energy.
90. A method of temporarily occluding a vascular puncture comprising advancing a shaft having markings thereon to determine the depth of the puncture from the surface of the skin and an inflatable balloon at its distal end into the lumen of a vessel, inflating the balloon and retracting the inflated balloon until it abuts the puncture, thereby preventing fluid loss from the puncture.
91. A method of guiding a device for sealing vascular punctures to the site of a vascular puncture comprising advancing a shaft having a positioning mechanism at its distal end into the lumen of a vessel, anchoring the positioning mechanism so that it abuts the puncture, thereby locating and identifying the puncture site, and using the shaft to guide the sealing device to the puncture site.
92. A method for determining the depth of a percutaneous vascular puncture comprising the steps of advancing a shaft having markings thereon to determine the depth of the puncture from the surface of the skin and a positioning mechanism at its distal end into the lumen of a vessel, said shaft having on it a system for measuring length, anchoring the positioning mechanism so that it abuts the puncture, said system providing an indication of the depth of the vascular puncture from the surface of the skin.
PCT/US1993/003849 1992-04-23 1993-04-23 Apparatus and method for sealing vascular punctures WO1993021844A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US87395592 true 1992-04-23 1992-04-23
US07/873,955 1992-04-23

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
CA 2134071 CA2134071C (en) 1992-04-23 1993-04-23 Apparatus and method for sealing vascular punctures
JP51940993A JPH07506991A (en) 1992-04-23 1993-04-23
EP19930910765 EP0637226A4 (en) 1992-04-23 1993-04-23 Apparatus and method for sealing vascular punctures.
CA 2161099 CA2161099C (en) 1993-04-23 1993-10-22 Apparatus and method for sealing vascular punctures
DE1993633783 DE69333783D1 (en) 1993-04-23 1993-10-22 Equipment for close of vascular punctures
DE1993633783 DE69333783T2 (en) 1993-04-23 1993-10-22 Equipment for close of vascular punctures
PCT/US1993/010202 WO1994024948A1 (en) 1992-04-23 1993-10-22 Apparatus and method for sealing vascular punctures
JP52421394A JPH08509147A (en) 1993-04-23 1993-10-22 Apparatus and method for sealing a vascular puncture
EP19940900385 EP0697839B1 (en) 1993-04-23 1993-10-22 Apparatus for sealing vascular punctures

Publications (1)

Publication Number Publication Date
WO1993021844A1 true true WO1993021844A1 (en) 1993-11-11

Family

ID=25362678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/003849 WO1993021844A1 (en) 1992-04-23 1993-04-23 Apparatus and method for sealing vascular punctures

Country Status (5)

Country Link
US (1) US5507744A (en)
JP (1) JPH07506991A (en)
CA (1) CA2134071C (en)
EP (1) EP0637226A4 (en)
WO (1) WO1993021844A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734228A4 (en) * 1992-10-13 1996-05-15 Howard Taymor-Luria Percutaneous vascular sealing apparatus and method
EP0818178A2 (en) * 1996-07-09 1998-01-14 Cardiologics, L.L.C. Anchoring device for sealing percutaneous punctures in vessels
US6398782B1 (en) 1992-10-13 2002-06-04 Edwards Lifesciences Corporation Bipolar vascular sealing apparatus and methods
US7008441B2 (en) 2001-03-14 2006-03-07 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
US7115127B2 (en) 2003-02-04 2006-10-03 Cardiodex, Ltd. Methods and apparatus for hemostasis following arterial catheterization
JP2008539989A (en) * 2005-05-12 2008-11-20 アルスタシス,インコーポレーテッド Access and occlusion device and method
WO2012043066A1 (en) * 2010-09-29 2012-04-05 テルモ株式会社 Medical device

Families Citing this family (357)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810810A (en) 1992-04-23 1998-09-22 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US20020095164A1 (en) * 1997-06-26 2002-07-18 Andreas Bernard H. Device and method for suturing tissue
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US6355050B1 (en) 1992-12-10 2002-03-12 Abbott Laboratories Device and method for suturing tissue
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5658282A (en) * 1994-01-18 1997-08-19 Endovascular, Inc. Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment
WO1995032671A1 (en) * 1994-06-01 1995-12-07 Perclose, Inc. Method and device for providing vascular hemostasis
US6743248B2 (en) 1996-12-18 2004-06-01 Neomend, Inc. Pretreatment method for enhancing tissue adhesion
US20040176801A1 (en) * 1997-03-12 2004-09-09 Neomend, Inc. Pretreatment method for enhancing tissue adhesion
US6302898B1 (en) 1994-06-24 2001-10-16 Advanced Closure Systems, Inc. Devices for sealing punctures in body vessels
US6325798B1 (en) * 1998-02-19 2001-12-04 Curon Medical, Inc. Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions
FR2726571B1 (en) * 1994-11-03 1997-08-08 Izoret Georges biological adhesive, process for the preparation and application device for biological adhesive, and curing agents for biological glue
US5976130A (en) * 1994-12-13 1999-11-02 Symbiosis Corporation Bipolar push rod assembly for a bipolar endoscopic surgical instrument and instruments incorporating the same
US6235021B1 (en) * 1995-05-01 2001-05-22 Scimed Life Systems, Inc. Ablation sheath
WO1996039946A1 (en) * 1995-06-07 1996-12-19 Raychem Corporation Wound closure device
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5810846A (en) * 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
US5651773A (en) * 1996-01-19 1997-07-29 Perry; Larry C. Skin protector for ultrasonic-assisted liposuction and accessories
US6482224B1 (en) 1996-08-22 2002-11-19 The Trustees Of Columbia University In The City Of New York Endovascular flexible stapling device
US6063061A (en) * 1996-08-27 2000-05-16 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US8603511B2 (en) 1996-08-27 2013-12-10 Baxter International, Inc. Fragmented polymeric compositions and methods for their use
US7871637B2 (en) 1996-08-27 2011-01-18 Baxter International Inc. Dry hemostatic compositions and methods for their preparation
US6066325A (en) * 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US8303981B2 (en) 1996-08-27 2012-11-06 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US6494848B1 (en) * 1996-12-19 2002-12-17 St. Jude Medical Puerto Rico B.V. Measuring device for use with a hemostatic puncture closure device
US8323305B2 (en) * 1997-02-11 2012-12-04 Cardiva Medical, Inc. Expansile device for use in blood vessels and tracts in the body and method
US6033401A (en) 1997-03-12 2000-03-07 Advanced Closure Systems, Inc. Vascular sealing device with microwave antenna
US6733515B1 (en) 1997-03-12 2004-05-11 Neomend, Inc. Universal introducer
WO1998040017A3 (en) 1997-03-12 1998-10-22 Advanced Closure Systems Inc Vascular sealing device
US20030191496A1 (en) * 1997-03-12 2003-10-09 Neomend, Inc. Vascular sealing device with microwave antenna
US6562037B2 (en) * 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6097976A (en) * 1998-02-27 2000-08-01 Ep Technologies, Inc. Catheter distal end assemblies with bonded surface coatings
US6221039B1 (en) * 1998-10-26 2001-04-24 Scimed Life Systems, Inc. Multi-function surgical instrument
US6254601B1 (en) 1998-12-08 2001-07-03 Hysterx, Inc. Methods for occlusion of the uterine arteries
US6224593B1 (en) * 1999-01-13 2001-05-01 Sherwood Services Ag Tissue sealing using microwaves
US7252666B2 (en) * 2000-02-14 2007-08-07 Sherwood Services Ag Arterial hole closure apparatus
US6248124B1 (en) 1999-02-22 2001-06-19 Tyco Healthcare Group Arterial hole closure apparatus
US6964668B2 (en) * 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US20040092964A1 (en) 1999-03-04 2004-05-13 Modesitt D. Bruce Articulating suturing device and method
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US6143252A (en) * 1999-04-12 2000-11-07 The Perkin-Elmer Corporation Pipetting device with pipette tip for solid phase reactions
US6554851B1 (en) 1999-05-07 2003-04-29 Scimed Life Systems, Inc. Methods of sealing an injection site
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
WO2001013810A1 (en) * 1999-08-20 2001-03-01 Miracle Medical/Surgical Technologies Inc. Method and system for laser tissue welding
US6293946B1 (en) 1999-08-27 2001-09-25 Link Technology, Inc. Non-stick electrosurgical forceps
US6190396B1 (en) 1999-09-14 2001-02-20 Perclose, Inc. Device and method for deploying and organizing sutures for anastomotic and other attachments
US6358258B1 (en) 1999-09-14 2002-03-19 Abbott Laboratories Device and method for performing end-to-side anastomosis
US6562019B1 (en) * 1999-09-20 2003-05-13 Stereotaxis, Inc. Method of utilizing a magnetically guided myocardial treatment system
US6391049B1 (en) 1999-10-06 2002-05-21 Board Of Regents The University Of Texas System Solid biodegradable device for use in tissue repair
EP1229839A4 (en) * 1999-10-25 2005-12-07 Therus Corp Use of focused ultrasound for vascular sealing
US20050240170A1 (en) * 1999-10-25 2005-10-27 Therus Corporation Insertable ultrasound probes, systems, and methods for thermal therapy
US7306598B2 (en) * 2000-11-24 2007-12-11 Dfine, Inc. Polymer matrix devices for treatment of vascular malformations
US6458127B1 (en) * 1999-11-22 2002-10-01 Csaba Truckai Polymer embolic elements with metallic coatings for occlusion of vascular malformations
US6626855B1 (en) * 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
JP2004512856A (en) * 1999-12-23 2004-04-30 シーラス、コーポレイションTherus Corporation Imaging and therapeutic ultrasound transducer
US8758400B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Closure system and methods of use
US6461364B1 (en) 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US6391048B1 (en) 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US6547806B1 (en) * 2000-02-04 2003-04-15 Ni Ding Vascular sealing device and method of use
US6550482B1 (en) 2000-04-21 2003-04-22 Vascular Control Systems, Inc. Methods for non-permanent occlusion of a uterine artery
US7223279B2 (en) * 2000-04-21 2007-05-29 Vascular Control Systems, Inc. Methods for minimally-invasive, non-permanent occlusion of a uterine artery
US20030120306A1 (en) * 2000-04-21 2003-06-26 Vascular Control System Method and apparatus for the detection and occlusion of blood vessels
US6558399B1 (en) 2000-06-30 2003-05-06 Abbott Laboratories Devices and method for handling a plurality of suture elements during a suturing procedure
US8551134B2 (en) * 2000-09-01 2013-10-08 Medtronic Vascular, Inc. Wound site management and wound closure device
US6533762B2 (en) * 2000-09-01 2003-03-18 Angiolink Corporation Advanced wound site management systems and methods
US6767356B2 (en) * 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
DE60143324D1 (en) 2000-09-08 2010-12-02 Abbott Vascular Inc An apparatus for locating a punctured blood vessel
US6626918B1 (en) 2000-10-06 2003-09-30 Medical Technology Group Apparatus and methods for positioning a vascular sheath
US6730102B1 (en) 2000-11-06 2004-05-04 Abbott Laboratories Systems, devices and methods for deploying needles
US7029481B1 (en) * 2000-11-06 2006-04-18 Abbott Laboratories Systems, devices and methods for suturing patient tissue
US6635065B2 (en) * 2000-11-16 2003-10-21 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
US6638286B1 (en) 2000-11-16 2003-10-28 Vascular Control Systems, Inc. Doppler directed suture ligation device and method
US7569626B2 (en) * 2003-06-05 2009-08-04 Dfine, Inc. Polymer composites for biomedical applications and methods of making
US6623510B2 (en) 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US6896692B2 (en) 2000-12-14 2005-05-24 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US6623509B2 (en) * 2000-12-14 2003-09-23 Core Medical, Inc. Apparatus and methods for sealing vascular punctures
US6846319B2 (en) * 2000-12-14 2005-01-25 Core Medical, Inc. Devices for sealing openings through tissue and apparatus and methods for delivering them
US6890343B2 (en) * 2000-12-14 2005-05-10 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US8083768B2 (en) * 2000-12-14 2011-12-27 Ensure Medical, Inc. Vascular plug having composite construction
US20030120286A1 (en) * 2001-03-28 2003-06-26 Vascular Control System Luminal clip applicator with sensor
US7354444B2 (en) * 2001-03-28 2008-04-08 Vascular Control Systems, Inc. Occlusion device with deployable paddles for detection and occlusion of blood vessels
EP1377223A2 (en) 2001-03-28 2004-01-07 Vascular Control Systems, Inc. Method and apparatus for the detection and ligation of uterine arteries
WO2002098302A1 (en) 2001-06-07 2002-12-12 Christy Cummins Surgical staple
US20020193851A1 (en) * 2001-06-14 2002-12-19 Silverman David E. Energy treatment apparatus for treating gastrointestinal tract and method for using same
US7435425B2 (en) * 2001-07-17 2008-10-14 Baxter International, Inc. Dry hemostatic compositions and methods for their preparation
EP1420702B1 (en) * 2001-08-31 2005-04-20 Boston Scientific Limited Percutaneous pringle occlusion device
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US6685730B2 (en) 2001-09-26 2004-02-03 Rice University Optically-absorbing nanoparticles for enhanced tissue repair
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US6736822B2 (en) * 2002-02-20 2004-05-18 Mcclellan Scott B. Device and method for internal ligation of tubular structures
US6749621B2 (en) 2002-02-21 2004-06-15 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US7207996B2 (en) * 2002-04-04 2007-04-24 Vascular Control Systems, Inc. Doppler directed suturing and compression device and method
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7670623B2 (en) 2002-05-31 2010-03-02 Materials Modification, Inc. Hemostatic composition
CA2488688A1 (en) 2002-06-04 2003-12-11 Christy Cummins Blood vessel closure clip and delivery device
US7172603B2 (en) * 2002-11-19 2007-02-06 Vascular Control Systems, Inc. Deployable constrictor for uterine artery occlusion
US20040097961A1 (en) * 2002-11-19 2004-05-20 Vascular Control System Tenaculum for use with occlusion devices
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US7108710B2 (en) * 2002-11-26 2006-09-19 Abbott Laboratories Multi-element biased suture clip
US7160309B2 (en) 2002-12-31 2007-01-09 Laveille Kao Voss Systems for anchoring a medical device in a body lumen
US8202293B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8398656B2 (en) 2003-01-30 2013-03-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US7404821B2 (en) * 2003-01-30 2008-07-29 Vascular Control Systems, Inc. Treatment for post partum hemorrhage
US7905900B2 (en) 2003-01-30 2011-03-15 Integrated Vascular Systems, Inc. Clip applier and methods of use
US7857828B2 (en) 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US7223266B2 (en) * 2003-02-04 2007-05-29 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
US7651511B2 (en) * 2003-02-05 2010-01-26 Vascular Control Systems, Inc. Vascular clamp for caesarian section
US8021359B2 (en) * 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US7257450B2 (en) * 2003-02-13 2007-08-14 Coaptus Medical Corporation Systems and methods for securing cardiovascular tissue
US7322976B2 (en) * 2003-03-04 2008-01-29 Cardiva Medical, Inc. Apparatus and methods for closing vascular penetrations
US7007972B1 (en) 2003-03-10 2006-03-07 Materials Modification, Inc. Method and airbag inflation apparatus employing magnetic fluid
US7293562B2 (en) * 2003-03-27 2007-11-13 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US6939348B2 (en) * 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
WO2004087235A3 (en) * 2003-03-27 2005-01-06 Cierra Inc Methods and apparatus for treatment of patent foramen ovale
US8021362B2 (en) * 2003-03-27 2011-09-20 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US7165552B2 (en) * 2003-03-27 2007-01-23 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
CN100584286C (en) 2003-03-27 2010-01-27 泰尔茂株式会社 Energy based devices for treatment of patent foramen ovale
US7367975B2 (en) 2004-06-21 2008-05-06 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US7186251B2 (en) 2003-03-27 2007-03-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US7972330B2 (en) 2003-03-27 2011-07-05 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US7333844B2 (en) 2003-03-28 2008-02-19 Vascular Control Systems, Inc. Uterine tissue monitoring device and method
US20040202694A1 (en) * 2003-04-11 2004-10-14 Vascular Control Systems, Inc. Embolic occlusion of uterine arteries
US6982501B1 (en) 2003-05-19 2006-01-03 Materials Modification, Inc. Magnetic fluid power generator device and method for generating power
US7488340B2 (en) * 2003-06-02 2009-02-10 Vascular Solutions, Inc. Vascular access closure system
US8834864B2 (en) * 2003-06-05 2014-09-16 Baxter International Inc. Methods for repairing and regenerating human dura mater
US7311701B2 (en) * 2003-06-10 2007-12-25 Cierra, Inc. Methods and apparatus for non-invasively treating atrial fibrillation using high intensity focused ultrasound
US7094214B2 (en) * 2003-06-27 2006-08-22 Codman & Shurtleff, Inc. System and method for clearing an implanted catheter that is connected to a shunt
US7200956B1 (en) 2003-07-23 2007-04-10 Materials Modification, Inc. Magnetic fluid cushioning device for a footwear or shoe
US7927626B2 (en) 2003-08-07 2011-04-19 Ethicon, Inc. Process of making flowable hemostatic compositions and devices containing such compositions
US8137364B2 (en) 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
DE202004021944U1 (en) 2003-09-12 2013-07-16 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US7789891B2 (en) * 2003-09-23 2010-09-07 Boston Scientific Scimed, Inc. External activation of vaso-occlusive implants
US20050065501A1 (en) * 2003-09-23 2005-03-24 Scimed Life Systems, Inc. Energy activated vaso-occlusive devices
US7462188B2 (en) 2003-09-26 2008-12-09 Abbott Laboratories Device and method for suturing intracardiac defects
US7448389B1 (en) 2003-10-10 2008-11-11 Materials Modification, Inc. Method and kit for inducing hypoxia in tumors through the use of a magnetic fluid
US8852229B2 (en) * 2003-10-17 2014-10-07 Cordis Corporation Locator and closure device and method of use
US7361183B2 (en) * 2003-10-17 2008-04-22 Ensure Medical, Inc. Locator and delivery device and method of use
US8128652B2 (en) * 2003-11-13 2012-03-06 St. Jude Medical Puerto Rico Llc Method and apparatus for sealing an internal tissue puncture incorporating a block and tackle
US7325546B2 (en) * 2003-11-20 2008-02-05 Vascular Control Systems, Inc. Uterine artery occlusion device with cervical receptacle
US7686817B2 (en) * 2003-11-25 2010-03-30 Vascular Control Systems, Inc. Occlusion device for asymmetrical uterine artery anatomy
US7621937B2 (en) 2003-12-03 2009-11-24 St. Jude Medical Puerto Rico LC Vascular sealing device with high surface area sealing plug
US7597705B2 (en) * 2003-12-03 2009-10-06 St. Jude Medical Puerto Rico Llc Vascular puncture seal anchor nest
US7390328B2 (en) * 2003-12-19 2008-06-24 Abbott Laboratories Device and method for suturing of internal puncture sites
US7449024B2 (en) 2003-12-23 2008-11-11 Abbott Laboratories Suturing device with split arm and method of suturing tissue
EP1701764A2 (en) 2003-12-30 2006-09-20 Vasogen Ireland Limited Valve assembly
JP2007519498A (en) * 2004-01-30 2007-07-19 エヌエムティー メディカル, インコーポレイティッド Device for closing cardiac openings, systems, and methods
US7976539B2 (en) * 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
US9017374B2 (en) * 2004-04-09 2015-04-28 Cardiva Medical, Inc. Device and method for sealing blood vessels
US20050267520A1 (en) 2004-05-12 2005-12-01 Modesitt D B Access and closure device and method
US20050267521A1 (en) * 2004-05-13 2005-12-01 St. Jude Medical Puerto Rico B.V. Collagen sponge for arterial sealing
US8590760B2 (en) 2004-05-25 2013-11-26 Abbott Vascular Inc. Surgical stapler
US7572274B2 (en) 2004-05-27 2009-08-11 Cardiva Medical, Inc. Self-tensioning vascular occlusion device and method for its use
US7993366B2 (en) 2004-05-27 2011-08-09 Cardiva Medical, Inc. Self-tensioning vascular occlusion device and method for its use
US20050283149A1 (en) * 2004-06-08 2005-12-22 Thorne Jonathan O Electrosurgical cutting instrument
US7678133B2 (en) * 2004-07-10 2010-03-16 Arstasis, Inc. Biological tissue closure device and method
US20060058844A1 (en) * 2004-09-13 2006-03-16 St. Jude Medical Puerto Rico B.V. Vascular sealing device with locking system
US7473252B2 (en) * 2004-10-07 2009-01-06 Coaptus Medical Corporation Systems and methods for shrinking and/or securing cardiovascular tissue
US7875036B2 (en) * 2004-10-27 2011-01-25 Vascular Control Systems, Inc. Short term treatment for uterine disorder
CA2587228A1 (en) 2004-11-22 2006-05-26 Cardiodex Ltd. Techniques for heat-treating varicose veins
US7731712B2 (en) * 2004-12-20 2010-06-08 Cytyc Corporation Method and system for transcervical tubal occlusion
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US8197472B2 (en) 2005-03-25 2012-06-12 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
US7988706B2 (en) 2005-04-11 2011-08-02 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with automatic torque sensing tamping system
US7250057B2 (en) * 2005-04-11 2007-07-31 St. Jude Medical Puerto Rico B.V. Tissue puncture closure device with automatic torque sensing tamping system
US20060271089A1 (en) * 2005-04-11 2006-11-30 Cierra, Inc. Methods and apparatus to achieve a closure of a layered tissue defect
US7713283B2 (en) * 2005-04-11 2010-05-11 St. Jude Medical Puerto Rico, Llc Tissue puncture closure device with magazine fed tamping system
US7618436B2 (en) * 2005-04-12 2009-11-17 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with scroll gear transmission tamping system
US8926654B2 (en) * 2005-05-04 2015-01-06 Cordis Corporation Locator and closure device and method of use
US8088144B2 (en) * 2005-05-04 2012-01-03 Ensure Medical, Inc. Locator and closure device and method of use
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US20070088293A1 (en) 2005-07-06 2007-04-19 Fangrow Thomas F Jr Medical connector with closeable male luer
US20070194658A1 (en) * 2005-07-13 2007-08-23 Jimin Zhang Systems and methods for performing acoustic hemostasis of deep bleeding trauma in limbs
US8267947B2 (en) 2005-08-08 2012-09-18 Abbott Laboratories Vascular suturing device
US7883517B2 (en) 2005-08-08 2011-02-08 Abbott Laboratories Vascular suturing device
US8083754B2 (en) 2005-08-08 2011-12-27 Abbott Laboratories Vascular suturing device with needle capture
US20070060895A1 (en) 2005-08-24 2007-03-15 Sibbitt Wilmer L Jr Vascular closure methods and apparatuses
US8758397B2 (en) * 2005-08-24 2014-06-24 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US20070049973A1 (en) * 2005-08-29 2007-03-01 Vascular Control Systems, Inc. Method and device for treating adenomyosis and endometriosis
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
WO2007030433B1 (en) * 2005-09-06 2007-08-23 David J Callaghan Jr Removable intracardiac rf device
US20070088388A1 (en) * 2005-09-19 2007-04-19 Opolski Steven W Delivery device for implant with dual attachment sites
US20070100324A1 (en) * 2005-10-17 2007-05-03 Coaptus Medical Corporation Systems and methods for applying vacuum to a patient, including via a disposable liquid collection unit
WO2007047993A3 (en) * 2005-10-20 2007-08-30 Thomas Anderson System and methods for sealing a vascular opening
US7691127B2 (en) * 2005-12-13 2010-04-06 Cardiva Medical, Inc. Drug eluting vascular closure devices and methods
US8911472B2 (en) 2005-12-13 2014-12-16 Cardiva Medical, Inc. Apparatus and methods for delivering hemostatic materials for blood vessel closure
US9179897B2 (en) 2005-12-13 2015-11-10 Cardiva Medical, Inc. Vascular closure devices and methods providing hemostatic enhancement
US8382794B2 (en) * 2006-01-04 2013-02-26 St. Jude Medical Puerto Rico Llc Balloon insertion apparatus and method of sealing a tissue puncture
CN102028539B (en) 2006-02-24 2013-04-03 泰尔茂株式会社 Pfo closing device
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US7850710B2 (en) * 2006-05-23 2010-12-14 St. Jude Medical Puerto Rico Llc Puncture closure apparatuses, sealing plugs, and related methods
EP2021045B1 (en) * 2006-05-31 2016-03-16 Baxter International Inc. Collagen for use in prevention of peridural fibrosis formation after spinal surgery
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
CN101594890A (en) 2006-08-02 2009-12-02 巴克斯特国际有限公司;巴克斯特健康护理股份有限公司 Rapidly acting dry sealant and methods for use and manufacture
US7842048B2 (en) 2006-08-18 2010-11-30 Abbott Laboratories Articulating suture device and method
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US7749248B2 (en) * 2006-09-18 2010-07-06 St. Jude Medical Puerto Rico Llc Flexible tamping device
US20080119846A1 (en) * 2006-10-11 2008-05-22 Rioux Robert F Methods and apparatus for percutaneous patient access and subcutaneous tissue tunneling
WO2008049084A3 (en) 2006-10-18 2008-08-07 Minnow Medical Inc Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
JP5559539B2 (en) 2006-10-18 2014-07-23 べシックス・バスキュラー・インコーポレイテッド System to induce the temperature desired effect on the body tissue
US20080140069A1 (en) * 2006-12-07 2008-06-12 Cierra, Inc. Multi-electrode apparatus for tissue welding and ablation
US20080154303A1 (en) 2006-12-21 2008-06-26 Cardiva Medical, Inc. Hemostasis-enhancing device and method for its use
US20080312645A1 (en) 2007-02-05 2008-12-18 Boston Scientific Scimed, Inc. Vascular Sealing Device and Method Using Clot Enhancing Balloon and Electric Field Generation
US7998134B2 (en) 2007-05-16 2011-08-16 Icu Medical, Inc. Medical connector
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
DE602008002644D1 (en) * 2007-06-25 2010-11-04 Terumo Corp The medical device
US8574244B2 (en) 2007-06-25 2013-11-05 Abbott Laboratories System for closing a puncture in a vessel wall
US8128592B2 (en) 2007-07-11 2012-03-06 Apollo Endosurgery, Inc. Methods and systems for performing submucosal medical procedures
US20100217151A1 (en) * 2007-07-11 2010-08-26 Zach Gostout Methods and Systems for Performing Submucosal Medical Procedures
US8929988B2 (en) 2007-07-11 2015-01-06 Apollo Endosurgery, Inc. Methods and systems for submucosal implantation of a device for diagnosis and treatment of a body
US8317771B2 (en) * 2007-07-11 2012-11-27 Apollo Endosurgery, Inc. Methods and systems for performing submucosal medical procedures
US8066689B2 (en) 2007-07-11 2011-11-29 Apollo Endosurgery, Inc. Methods and systems for submucosal implantation of a device for diagnosis and treatment with a therapeutic agent
WO2009023866A1 (en) * 2007-08-15 2009-02-19 Cardiodex Ltd. Systems and methods for puncture closure
US8568445B2 (en) * 2007-08-21 2013-10-29 St. Jude Medical Puerto Rico Llc Extra-vascular sealing device and method
JP2009050588A (en) * 2007-08-28 2009-03-12 Terumo Corp Pfo closing device
JP2009050589A (en) * 2007-08-28 2009-03-12 Terumo Corp Pfo closing device
EP2184019B1 (en) * 2007-08-28 2015-12-09 Terumo Kabushiki Kaisha Device for opening/closing biological tissue
US20090084386A1 (en) * 2007-10-01 2009-04-02 Mcclellan Annette M L Tubal ligation
US8308763B2 (en) * 2007-10-05 2012-11-13 Coaptus Medical Corporation Systems and methods for transeptal cardiac procedures, including separable guidewires
US20090105744A1 (en) * 2007-10-17 2009-04-23 Modesitt D Bruce Methods for forming tracts in tissue
US8790698B2 (en) 2007-10-30 2014-07-29 Baxter International Inc. Use of a regenerative biofunctional collagen biomatrix for treating visceral or parietal defects
WO2009058999A3 (en) * 2007-10-31 2009-08-13 Texas Heart Inst Method and apparatus for vascular access
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US20090157101A1 (en) 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US7841502B2 (en) 2007-12-18 2010-11-30 Abbott Laboratories Modular clip applier
US8840640B2 (en) 2007-12-31 2014-09-23 St. Jude Medical Puerto Rico Llc Vascular closure device having an improved plug
US8333787B2 (en) 2007-12-31 2012-12-18 St. Jude Medical Puerto Rico Llc Vascular closure device having a flowable sealing material
US9282953B2 (en) * 2007-12-31 2016-03-15 St. Jude Medical Puerto Rico Llc Systems and methods for locating and closing a tissue puncture
JP5569398B2 (en) 2008-02-29 2014-08-13 フェッローサン メディカル ディバイス エー/エス Apparatus for facilitating hemostasis and / or wound healing
US20090281476A1 (en) * 2008-05-08 2009-11-12 Loiterman David A Method, Tool, and Kit for Making a Subcutaneous Pocket
US20090287045A1 (en) 2008-05-15 2009-11-19 Vladimir Mitelberg Access Systems and Methods of Intra-Abdominal Surgery
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US9402679B2 (en) 2008-05-27 2016-08-02 Maquet Cardiovascular Llc Surgical instrument and method
US20100168767A1 (en) * 2008-06-30 2010-07-01 Cardiva Medical, Inc. Apparatus and methods for delivering hemostatic materials for blood vessel closure
US20100016810A1 (en) * 2008-07-21 2010-01-21 Arstasis. Inc., Devices and methods for forming tracts in tissue
WO2010011695A1 (en) * 2008-07-21 2010-01-28 Arstasis, Inc. Devices, methods, and kits for forming tracts in tissue
EP2330981B1 (en) * 2008-08-26 2013-11-27 St. Jude Medical, Inc. System for sealing percutaneous punctures
US8398676B2 (en) 2008-10-30 2013-03-19 Abbott Vascular Inc. Closure device
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
EP2355737A4 (en) 2008-11-17 2013-01-16 Vessix Vascular Inc Selective accumulation of energy with or without knowledge of tissue topography
US8679090B2 (en) * 2008-12-19 2014-03-25 Icu Medical, Inc. Medical connector with closeable luer connector
US9168366B2 (en) 2008-12-19 2015-10-27 Icu Medical, Inc. Medical connector with closeable luer connector
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US20100179589A1 (en) 2009-01-09 2010-07-15 Abbott Vascular Inc. Rapidly eroding anchor
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US9486191B2 (en) 2009-01-09 2016-11-08 Abbott Vascular, Inc. Closure devices
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US20100185234A1 (en) 2009-01-16 2010-07-22 Abbott Vascular Inc. Closure devices, systems, and methods
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US20110125178A1 (en) * 2009-05-15 2011-05-26 Michael Drews Devices, methods and kits for forming tracts in tissue
US9039783B2 (en) * 2009-05-18 2015-05-26 Baxter International, Inc. Method for the improvement of mesh implant biocompatibility
KR101699992B1 (en) * 2009-06-16 2017-01-26 백스터 인터내셔널 인코포레이티드 Sponge for hemostasis
US8252022B2 (en) * 2009-07-13 2012-08-28 Vascular Solutions, Inc. Metal vascular aperture closure device
US20110034886A1 (en) * 2009-08-06 2011-02-10 Angiodynamics, Inc. Implantable medical device tool and method of use
US20110046439A1 (en) * 2009-08-21 2011-02-24 Maquet Cardiovascular Llc Cleaning system for imaging devices
US20110054492A1 (en) 2009-08-26 2011-03-03 Abbott Laboratories Medical device for repairing a fistula
JP2013505114A (en) * 2009-09-22 2013-02-14 アルスタシス,インコーポレイテッドArstasis,Inc. Apparatus for forming a tube in tissue, methods, and kits
US8308723B2 (en) * 2009-10-09 2012-11-13 Coaptus Medical Corporation Tissue-penetrating guidewires with shaped tips, and associated systems and methods
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US20110092880A1 (en) 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8469953B2 (en) * 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
JP2013514093A (en) * 2009-12-16 2013-04-25 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Hemostatic sponge
US20110213412A1 (en) 2010-02-26 2011-09-01 ProMed, Inc. Apparatus for vessel access closure
US8303624B2 (en) 2010-03-15 2012-11-06 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
US8703170B2 (en) 2010-04-07 2014-04-22 Baxter International Inc. Hemostatic sponge
KR20130108067A (en) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
CA2798470A1 (en) 2010-05-06 2011-11-10 Icu Medical, Inc. Medical connector with closeable luer connector
US8940335B2 (en) 2010-06-01 2015-01-27 Baxter International Inc. Process for making dry and stable hemostatic compositions
CA2801116A1 (en) 2010-06-01 2011-12-08 Baxter International Inc. Process for making dry and stable hemostatic compositions
US9408945B2 (en) 2010-06-01 2016-08-09 Baxter International Inc. Process for making dry and stable hemostatic compositions
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US9370353B2 (en) 2010-09-01 2016-06-21 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US8663252B2 (en) 2010-09-01 2014-03-04 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US8617184B2 (en) 2011-02-15 2013-12-31 Abbott Cardiovascular Systems, Inc. Vessel closure system
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US9414822B2 (en) 2011-05-19 2016-08-16 Abbott Cardiovascular Systems, Inc. Tissue eversion apparatus and tissue closure device and methods for use thereof
EP2734259B1 (en) 2011-07-20 2016-11-23 Boston Scientific Scimed, Inc. Percutaneous device to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
WO2013053759A3 (en) 2011-10-11 2013-11-07 Baxter International Inc. Hemostatic compositions
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
WO2013059202A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
KR20140082841A (en) 2011-10-27 2014-07-02 백스터 인터내셔널 인코포레이티드 Hemostatic compositions
WO2013070724A1 (en) 2011-11-08 2013-05-16 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096919A1 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Expandable balloon or an electrode pad with a heat sensing device
CN104135958B (en) 2011-12-28 2017-05-03 波士顿科学西美德公司 There are new methods and apparatus with an ablation catheter ablation element becomes transferred polymer nerve
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US8721680B2 (en) * 2012-03-23 2014-05-13 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US8864778B2 (en) 2012-04-10 2014-10-21 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US8858573B2 (en) 2012-04-10 2014-10-14 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US9241707B2 (en) 2012-05-31 2016-01-26 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
EP2825216B1 (en) 2012-06-12 2015-08-19 Ferrosan Medical Devices A/S Dry haemostatic composition
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9364209B2 (en) 2012-12-21 2016-06-14 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9131932B2 (en) * 2013-02-01 2015-09-15 St. Jude Medical Puerto Rico Llc Dual lumen carrier tube with retractable sleeve and methods
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2967734A1 (en) 2013-03-15 2016-01-20 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
CA2912357A1 (en) 2013-06-21 2014-12-24 Ferrosan Medical Devices A/S Vacuum expanded dry composition and syringe for retaining same
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
CN105358084A (en) 2013-07-01 2016-02-24 波士顿科学国际有限公司 Medical devices for renal nerve ablation
CN105592778A (en) 2013-10-14 2016-05-18 波士顿科学医学有限公司 High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
JP2015181705A (en) * 2014-03-24 2015-10-22 テルモ株式会社 Treatment device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929137A (en) * 1973-11-12 1975-12-30 Dentsply Res & Dev Sonic warning for electrosurgical device
US3978863A (en) * 1974-06-06 1976-09-07 Bruce E. Fettel Expanding tip embolectomy catheter with indicator balloon
US4016881A (en) * 1973-07-04 1977-04-12 Centre De Recherche Industrielle Du Quebec Instrument for use in laparoscopic tubal cauterization
US4198957A (en) * 1967-11-09 1980-04-22 Robert F. Shaw Method of using an electrically heated surgical cutting instrument
US4230119A (en) * 1978-12-01 1980-10-28 Medical Engineering Corp. Micro-hemostat
US4716897A (en) * 1985-07-15 1988-01-05 Olympus Optical Co., Ltd. Electrosurgical apparatus
US4938761A (en) * 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US5013312A (en) * 1990-03-19 1991-05-07 Everest Medical Corporation Bipolar scalpel for harvesting internal mammary artery
US5078743A (en) * 1990-04-19 1992-01-07 Abraham Mikalov Method of placing an esophageal voice prosthesis in a laryngectomized person

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1731069A (en) * 1929-10-08 Surgical instrument
US33925A (en) * 1861-12-17 Improvement in fastenings for shoulder-straps
US1596004A (en) * 1923-04-04 1926-08-17 Bengoa Miguel Becerro De Hypodermic syringe
US1983669A (en) * 1933-04-19 1934-12-11 Gen Electric X Ray Corp Electrode
US2808833A (en) * 1952-12-06 1957-10-08 Birtcher Corp Gas blanketed clotting instrument
US2790442A (en) * 1955-09-06 1957-04-30 Donaldson John Shearman Cannular surgical instrument
US3176114A (en) * 1962-07-16 1965-03-30 Richard F Kneisley Device for removing nasal hair
US3302635A (en) * 1963-09-19 1967-02-07 Fred E Pittman Semi-rigid device for marking internal bleeding
US3301258A (en) * 1963-10-03 1967-01-31 Medtronic Inc Method and apparatus for treating varicose veins
US3636943A (en) * 1967-10-27 1972-01-25 Ultrasonic Systems Ultrasonic cauterization
US3494364A (en) * 1967-11-09 1970-02-10 Weck & Co Inc Edward Handle component for electro-surgical instrument
US3532095A (en) * 1968-06-21 1970-10-06 Weck & Co Inc Edward Electrosurgical instrument
US3613682A (en) * 1970-02-05 1971-10-19 Concept Disposable cauteries
US3858586A (en) * 1971-03-11 1975-01-07 Martin Lessen Surgical method and electrode therefor
US3699967A (en) * 1971-04-30 1972-10-24 Valleylab Inc Electrosurgical generator
US3801800A (en) * 1972-12-26 1974-04-02 Valleylab Inc Isolating switching circuit for an electrosurgical generator
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3963030A (en) * 1973-04-16 1976-06-15 Valleylab, Inc. Signal generating device and method for producing coagulation electrosurgical current
DE2324658B2 (en) * 1973-05-16 1977-06-30 Probe to coagulate by body tissues
CA1018419A (en) * 1973-07-04 1977-10-04 Gerald Turp Instrument for laparoscopic tubal cauterization
US3886944A (en) * 1973-11-19 1975-06-03 Khosrow Jamshidi Microcautery device
DE2513868C2 (en) * 1974-04-01 1982-11-04 Olympus Optical Co., Ltd., Tokyo, Jp
JPS5710740B2 (en) * 1974-06-17 1982-02-27
US4043342A (en) * 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
DE2442605B2 (en) * 1974-09-05 1977-05-05 A bipolar coagulation
US4054143A (en) * 1975-04-26 1977-10-18 Richard Wolf Gmbh Single-pole coagulation forceps
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4359052A (en) * 1976-01-26 1982-11-16 Concept Inc. Removable tip cautery
US4051855A (en) * 1976-02-06 1977-10-04 Ipco Hospital Supply Corporation, Whaledent International Division Electrosurgical unit
US4122853A (en) * 1977-03-14 1978-10-31 Spectra-Med Infrared laser photocautery device
US4168708A (en) * 1977-04-20 1979-09-25 Medical Engineering Corp. Blood vessel occlusion means suitable for use in anastomosis
US4900303A (en) * 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4273127A (en) * 1978-10-12 1981-06-16 Research Corporation Method for cutting and coagulating tissue
US4418692A (en) * 1978-11-17 1983-12-06 Guay Jean Louis Device for treating living tissue with an electric current
JPS5753566Y2 (en) * 1979-02-20 1982-11-19
US4271847A (en) * 1979-06-28 1981-06-09 Medtronic, Inc. Temporary adjustable bipolar lead
US4269174A (en) * 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
JPH0134064B2 (en) * 1980-02-27 1989-07-17 Nato Gyuntaa
US4522205A (en) * 1980-09-03 1985-06-11 The University Court Of The University Of Edinburgh Therapeutic device and method of inducing thrombosis in a blood vessel
US4390018A (en) * 1980-09-15 1983-06-28 Zukowski Henry J Method for preventing loss of spinal fluid after spinal tap
US4411266A (en) * 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4353371A (en) * 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
US4476862A (en) * 1980-12-08 1984-10-16 Pao David S C Method of scleral marking
US4370980A (en) * 1981-03-11 1983-02-01 Lottick Edward A Electrocautery hemostat
US5116332A (en) 1981-03-11 1992-05-26 Lottick Edward A Electrocautery hemostat
US4404971A (en) * 1981-04-03 1983-09-20 Leveen Harry H Dual balloon catheter
US4520823A (en) * 1981-04-03 1985-06-04 Leveen Harry H Catheter with separable balloons
US4483338A (en) * 1981-06-12 1984-11-20 Raychem Corporation Bi-Polar electrocautery needle
EP0075860A3 (en) 1981-09-24 1984-12-27 James Robert Morris Microsurgical laser
US4424833A (en) * 1981-10-02 1984-01-10 C. R. Bard, Inc. Self sealing gasket assembly
US4470415A (en) * 1982-08-19 1984-09-11 The Johns Hopkins University Sutureless vascular anastomosis means and method
US4498475A (en) * 1982-08-27 1985-02-12 Ipco Corporation Electrosurgical unit
US4492231A (en) * 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
US4548207A (en) * 1982-11-17 1985-10-22 Mentor O & O, Inc. Disposable coagulator
US4854320A (en) * 1983-10-06 1989-08-08 Laser Surgery Software, Inc. Laser healing method and apparatus
US4672969A (en) * 1983-10-06 1987-06-16 Sonomo Corporation Laser healing method
US5002051A (en) * 1983-10-06 1991-03-26 Lasery Surgery Software, Inc. Method for closing tissue wounds using radiative energy beams
GB2161081B (en) * 1983-12-21 1987-02-25 Kh Nii Obschei Neotlozh Khirur Bipolar electrocoagulator
GB2161082B (en) * 1984-01-30 1986-12-03 Kh Nii Obschei Neot Khirurg Bipolar electric surgical instrument
CA1221596A (en) * 1984-03-09 1987-05-12 David Evans Surgical needle
USRE33925E (en) 1984-05-22 1992-05-12 Cordis Corporation Electrosurgical catheter aned method for vascular applications
JPH0454460B2 (en) * 1984-07-25 1992-08-31 Fuji Photo Optical Co Ltd
DE3546697C2 (en) * 1984-09-13 1992-02-06 Olympus Optical Co., Ltd., Tokio/Tokyo, Jp
DE3532621A1 (en) * 1984-09-13 1986-03-20 Olympus Optical Co Kauterisations-hemostatic device
US4848339A (en) * 1984-09-17 1989-07-18 Xintec Corporation Laser heated intravascular cautery cap assembly
US4994060A (en) * 1984-09-17 1991-02-19 Xintec Corporation Laser heated cautery cap with transparent substrate
US4717381A (en) * 1985-05-13 1988-01-05 Kos Medical Technologies, Ltd. Hydrodynamically propelled catheter
DK165547C (en) * 1985-10-04 1993-04-26 Basem Nashef A probe for the treatment of hollow bodies with electric current;
US4801293A (en) * 1985-10-09 1989-01-31 Anthony Jackson Apparatus and method for detecting probe penetration of human epidural space and injecting a therapeutic substance thereinto
US4735201A (en) * 1986-01-30 1988-04-05 The Beth Israel Hospital Association Optical fiber with detachable metallic tip for intravascular laser coagulation of arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
DE3610419A1 (en) * 1986-03-27 1987-10-01 Pfrimmer Viggo Gmbh Co Kg Catheter for percutaneous gastrostomy
JPH0522551B2 (en) * 1986-04-09 1993-03-29 Terumo Corp
DE3683647D1 (en) * 1986-07-17 1992-03-05 Erbe Elektromedizin High-frequency chirurgiegeraet for the thermal coagulation of biological tissue.
US4760847A (en) * 1986-08-18 1988-08-02 Vincent Vaillancourt Depth measuring device
US4765331A (en) * 1987-02-10 1988-08-23 Circon Corporation Electrosurgical device with treatment arc of less than 360 degrees
US4852568A (en) * 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
US4890612A (en) * 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4744364A (en) * 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
DE3722142C2 (en) 1987-06-17 1989-07-06 S & T Spingler-Tritt Chirurgische Nadeln Gmbh, 7893 Jestetten, De
US4943290A (en) * 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4836204A (en) * 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US4850960A (en) * 1987-07-08 1989-07-25 Joseph Grayzel Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
US4790819A (en) * 1987-08-24 1988-12-13 American Cyanamid Company Fibrin clot delivery device and method
US4953559A (en) * 1987-11-16 1990-09-04 Consiglio Nazionale Delle Ricerche Catheter for endocardial biopsy, which can also be used for identifying the point of origin of ventricular arrhythmia
US5035695A (en) * 1987-11-30 1991-07-30 Jaroy Weber, Jr. Extendable electrocautery surgery apparatus and method
DE3743578C2 (en) 1987-12-22 1991-07-18 Andreas Dr. 7800 Freiburg De Zeiher
US4921478A (en) * 1988-02-23 1990-05-01 C. R. Bard, Inc. Cerebral balloon angioplasty system
US5053046A (en) 1988-08-22 1991-10-01 Woodrow W. Janese Dural sealing needle and method of use
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5159925A (en) 1988-09-09 1992-11-03 Gynelab, Inc. Cauterizing apparatus and method for laparoscopic cholecystostomy, gallbladder ablation and treatment of benign prostate hypertrophy
US4929246A (en) * 1988-10-27 1990-05-29 C. R. Bard, Inc. Method for closing and sealing an artery after removing a catheter
DE3838840C2 (en) 1988-11-17 1997-02-20 Leibinger Gmbh Hochfrequenzkoagulationsvorrichtung for surgical purposes
US4960133A (en) * 1988-11-21 1990-10-02 Brunswick Manufacturing Co., Inc. Esophageal electrode
US5257635A (en) 1988-11-25 1993-11-02 Sensor Electronics, Inc. Electrical heating catheter
US5230349A (en) 1988-11-25 1993-07-27 Sensor Electronics, Inc. Electrical heating catheter
US4961729A (en) * 1988-12-13 1990-10-09 Vaillancourt Vincent L Catheter insertion assembly
US4946463A (en) * 1989-04-10 1990-08-07 Pioneering Technologies, Inc. Vessel occluder
US4979948A (en) * 1989-04-13 1990-12-25 Purdue Research Foundation Method and apparatus for thermally destroying a layer of an organ
DE3915636C1 (en) * 1989-05-12 1990-04-26 Sass, Wolfgang, Dr.
US5151102A (en) 1989-05-31 1992-09-29 Kyocera Corporation Blood vessel coagulation/stanching device
US5049148A (en) 1989-06-29 1991-09-17 Mehl Thomas L Radio frequency hair removal tweezer
US5009656A (en) * 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
US5057105A (en) 1989-08-28 1991-10-15 The University Of Kansas Med Center Hot tip catheter assembly
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US5226908A (en) 1989-12-05 1993-07-13 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5131394A (en) 1990-03-28 1992-07-21 Gehlbach Steve M Ultrasonic guided needle
US5122137A (en) 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5021059A (en) * 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5080660A (en) 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
US5188634A (en) 1990-07-13 1993-02-23 Trimedyne, Inc. Rotatable laser probe with beveled tip
US5151098A (en) 1990-07-23 1992-09-29 Hanspeter Loertscher Apparatus for controlled tissue ablation
US5282799A (en) 1990-08-24 1994-02-01 Everest Medical Corporation Bipolar electrosurgical scalpel with paired loop electrodes
US5108421A (en) 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5192300A (en) 1990-10-01 1993-03-09 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5141515A (en) 1990-10-11 1992-08-25 Eberbach Mark A Apparatus and methods for repairing hernias
DE4032471C2 (en) 1990-10-12 1997-02-06 Delma Elektro Med App The electrosurgical device
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
US5147316A (en) 1990-11-19 1992-09-15 Castillenti Thomas A Laparoscopic trocar with self-locking port sleeve
US5085659A (en) 1990-11-21 1992-02-04 Everest Medical Corporation Biopsy device with bipolar coagulation capability
US5129882A (en) 1990-12-27 1992-07-14 Novoste Corporation Wound clotting device and method of using same
US5221259A (en) 1990-12-27 1993-06-22 Novoste Corporation Wound treating device and method of using same
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5156613A (en) 1991-02-13 1992-10-20 Interface Biomedical Laboratories Corp. Collagen welding rod material for use in tissue welding
US5147357A (en) 1991-03-18 1992-09-15 Rose Anthony T Medical instrument
US5217460A (en) 1991-03-22 1993-06-08 Knoepfler Dennis J Multiple purpose forceps
US5133714A (en) 1991-05-06 1992-07-28 Kirwan Surgical Products, Inc. Electrosurgical suction coagulator
US5207675A (en) 1991-07-15 1993-05-04 Jerome Canady Surgical coagulation device
US5217459A (en) 1991-08-27 1993-06-08 William Kamerling Method and instrument for performing eye surgery
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5222974A (en) 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5158561A (en) 1992-03-23 1992-10-27 Everest Medical Corporation Monopolar polypectomy snare with coagulation electrode
US5217024A (en) 1992-03-27 1993-06-08 Dorsey Denis P Tissue sampling device with visual and tactile indicator
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5217458A (en) 1992-04-09 1993-06-08 Everest Medical Corporation Bipolar biopsy device utilizing a rotatable, single-hinged moving element
US5221281A (en) 1992-06-30 1993-06-22 Valleylab Inc. Electrosurgical tubular trocar
US5292332A (en) 1992-07-27 1994-03-08 Lee Benjamin I Methods and device for percutanceous sealing of arterial puncture sites
US5258006A (en) 1992-08-21 1993-11-02 Everest Medical Corporation Bipolar electrosurgical forceps
US5306254A (en) 1992-10-01 1994-04-26 Kensey Nash Corporation Vessel position locating device and method of use
US5415657A (en) 1992-10-13 1995-05-16 Taymor-Luria; Howard Percutaneous vascular sealing method
US5304117A (en) 1992-11-27 1994-04-19 Wilk Peter J Closure method for use in laparoscopic surgery
US5320639A (en) 1993-03-12 1994-06-14 Meadox Medicals, Inc. Vascular plug delivery system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198957A (en) * 1967-11-09 1980-04-22 Robert F. Shaw Method of using an electrically heated surgical cutting instrument
US4016881A (en) * 1973-07-04 1977-04-12 Centre De Recherche Industrielle Du Quebec Instrument for use in laparoscopic tubal cauterization
US3929137A (en) * 1973-11-12 1975-12-30 Dentsply Res & Dev Sonic warning for electrosurgical device
US3978863A (en) * 1974-06-06 1976-09-07 Bruce E. Fettel Expanding tip embolectomy catheter with indicator balloon
US4230119A (en) * 1978-12-01 1980-10-28 Medical Engineering Corp. Micro-hemostat
US4716897A (en) * 1985-07-15 1988-01-05 Olympus Optical Co., Ltd. Electrosurgical apparatus
US4938761A (en) * 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US5013312A (en) * 1990-03-19 1991-05-07 Everest Medical Corporation Bipolar scalpel for harvesting internal mammary artery
US5078743A (en) * 1990-04-19 1992-01-07 Abraham Mikalov Method of placing an esophageal voice prosthesis in a laryngectomized person

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0637226A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734228A4 (en) * 1992-10-13 1996-05-15 Howard Taymor-Luria Percutaneous vascular sealing apparatus and method
EP0734228A1 (en) * 1992-10-13 1996-10-02 TAYMOR-LURIA, Howard Percutaneous vascular sealing apparatus and method
US6398782B1 (en) 1992-10-13 2002-06-04 Edwards Lifesciences Corporation Bipolar vascular sealing apparatus and methods
EP0818178A2 (en) * 1996-07-09 1998-01-14 Cardiologics, L.L.C. Anchoring device for sealing percutaneous punctures in vessels
EP0818178A3 (en) * 1996-07-09 1998-12-09 X-Site, L.L.C. Anchoring device for sealing percutaneous punctures in vessels
US7008441B2 (en) 2001-03-14 2006-03-07 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
US7115127B2 (en) 2003-02-04 2006-10-03 Cardiodex, Ltd. Methods and apparatus for hemostasis following arterial catheterization
JP2008539989A (en) * 2005-05-12 2008-11-20 アルスタシス,インコーポレーテッド Access and occlusion device and method
WO2012043066A1 (en) * 2010-09-29 2012-04-05 テルモ株式会社 Medical device
US9358025B2 (en) 2010-09-29 2016-06-07 Terumo Kabushiki Kaisha Medical device

Also Published As

Publication number Publication date Type
US5507744A (en) 1996-04-16 grant
JPH07506991A (en) 1995-08-03 application
CA2134071C (en) 1999-04-27 grant
EP0637226A4 (en) 1995-06-14 application
EP0637226A1 (en) 1995-02-08 application
CA2134071A1 (en) 1993-11-11 application

Similar Documents

Publication Publication Date Title
US6890343B2 (en) Plug with detachable guidewire element and methods for use
US5159925A (en) Cauterizing apparatus and method for laparoscopic cholecystostomy, gallbladder ablation and treatment of benign prostate hypertrophy
US5746755A (en) Method and device for providing hemostasis at vascular penetration sites
US5403278A (en) Device and method for treating hematomas and false aneurysms
US6296658B1 (en) Vascular sealing apparatus
US5330445A (en) Sheath for wound closure caused by a medical tubular device
US6623509B2 (en) Apparatus and methods for sealing vascular punctures
US5310407A (en) Laparoscopic hemostat delivery system and method for using said system
US5645566A (en) Apparatus and method for percutaneous sealing of blood vessel punctures
US7008435B2 (en) Surgical stapling device and method
US6126675A (en) Bioabsorbable device and method for sealing vascular punctures
US5496332A (en) Wound closure apparatus and method for its use
US5350399A (en) Percutaneous arterial puncture seal device and insertion tool therefore
US6949107B2 (en) Injection method for locating vessel lumen
US5782860A (en) Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US20050228443A1 (en) Device and method for sealing blood vessels
US20060241581A1 (en) Energy based devices and methods for treatment of patent foramen ovale
US20050085854A1 (en) Locator and closure device and method of use
EP0476178A1 (en) Device for placing styptic material on perforated blood vessels
US20060241583A1 (en) Energy based devices and methods for treatment of patent foramen ovale
US6277140B2 (en) Vascular sheath with puncture site closure apparatus and methods of use
US6743248B2 (en) Pretreatment method for enhancing tissue adhesion
US6302898B1 (en) Devices for sealing punctures in body vessels
US20070270904A1 (en) Apparatus and Methods for Providing Tactile Feedback while Delivering a Closure Device
US20070060950A1 (en) Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase in:

Ref country code: CA

Ref document number: 2134071

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2134071

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993910765

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993910765

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993910765

Country of ref document: EP