WO1993020538A1 - A cryptographic communications method and system - Google Patents
A cryptographic communications method and system Download PDFInfo
- Publication number
- WO1993020538A1 WO1993020538A1 PCT/AU1993/000137 AU9300137W WO9320538A1 WO 1993020538 A1 WO1993020538 A1 WO 1993020538A1 AU 9300137 W AU9300137 W AU 9300137W WO 9320538 A1 WO9320538 A1 WO 9320538A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- key
- smart card
- basis
- secret
- random key
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/10—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
- G07F7/1008—Active credit-cards provided with means to personalise their use, e.g. with PIN-introduction/comparison system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/30—Payment architectures, schemes or protocols characterised by the use of specific devices or networks
- G06Q20/34—Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
- G06Q20/341—Active cards, i.e. cards including their own processing means, e.g. including an IC or chip
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/30—Payment architectures, schemes or protocols characterised by the use of specific devices or networks
- G06Q20/34—Payment architectures, schemes or protocols characterised by the use of specific devices or networks using cards, e.g. integrated circuit [IC] cards or magnetic cards
- G06Q20/355—Personalisation of cards for use
- G06Q20/3552—Downloading or loading of personalisation data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/30—Payment architectures, schemes or protocols characterised by the use of specific devices or networks
- G06Q20/36—Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes
- G06Q20/367—Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes
- G06Q20/3674—Payment architectures, schemes or protocols characterised by the use of specific devices or networks using electronic wallets or electronic money safes involving electronic purses or money safes involving authentication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q20/00—Payment architectures, schemes or protocols
- G06Q20/38—Payment protocols; Details thereof
- G06Q20/40—Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
- G06Q20/409—Device specific authentication in transaction processing
- G06Q20/4097—Device specific authentication in transaction processing using mutual authentication between devices and transaction partners
- G06Q20/40975—Device specific authentication in transaction processing using mutual authentication between devices and transaction partners using encryption therefor
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/10—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means together with a coded signal, e.g. in the form of personal identification information, like personal identification number [PIN] or biometric data
- G07F7/1016—Devices or methods for securing the PIN and other transaction-data, e.g. by encryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
- H04L9/0819—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
- H04L9/0825—Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0861—Generation of secret information including derivation or calculation of cryptographic keys or passwords
- H04L9/0877—Generation of secret information including derivation or calculation of cryptographic keys or passwords using additional device, e.g. trusted platform module [TPM], smartcard, USB or hardware security module [HSM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
- H04L9/3006—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters
- H04L9/302—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy underlying computational problems or public-key parameters involving the integer factorization problem, e.g. RSA or quadratic sieve [QS] schemes
Definitions
- the present invention relates to a cryptographic method and system and, i particular to a smart card and method of initialising a smart card.
- Cryptographic techniques are used to encrypt and decrypt sensitiv communications between two terminals.
- a particular problem exists in ensuring secur communications between credit cards and a central processing station, or host, and th problem becomes more acute with respect to smart cards which are intended to transmi
- European patent publication 138,386 describes a system for smart car
- the pre-assigned code number needs to be stored i the card on manufacture or else it must be placed on the card in a physically secur environment. If the pre-assigned code number PN cannot be transferred in a physicall secure environment, then there is a risk it may become known to someone other than an authorised user. The card could then be used in an unauthorised manner by simply providing an appropriate random number to the card, once the PN and logic used to generated the encryption key are known. It is therefore advantageous to provide a system which could be used for smart cards, and which does not require any third party to be provided with information from which an encryption key can be simply derived or a secure environment within which a pre-assigned code number must be transferred.
- n p.q, p and q are prime numbers and e is a number relatively prime to (p-l)(q-l).
- n is made sufficiently large, such as 512 bits, the primes cannot be efficiently determined from n.
- the RSA method however, i computationally intensive and is primarily suitable for powerful processing systems.
- the present invention provides a cryptographic communications metho comprising: storing a random key on a smart card; encrypting said random key on the basis of a public key and providing th encrypted random key to a central processing station; decrypting said encrypted random key at said central station on the basis of secret key; encrypting data on the basis of said random key and transmitting the encrypte data from said central station to said smart card; and decrypting the encrypted data at said smart card on the basis of said random key
- the present invention also provides a communications system comprising smar card means and a central processing station, said smart card means including: means for storing a random key on a smart card, means for encrypting said random key on the basis of a public key, an means for decrypting data encrypted on the basis of said random key; an said central station including: means for decrypting the encrypted random key on the basis of a secre key, and means for encrypting data on the basis of said random key and transmitting the encrypted data to said smart card.
- the present invention further provides a method of initialising a smart card comprising: generating a random key; storing said random key in a memory area of said smart card which is not externally addressable; encrypting said random key on the basis of a public key; providing a central processing station with the encrypted random key; decrypting said encrypted random key at said central station on the basis of a secret key; encrypting secret data at said central station on the basis of said random key; transmitting the encrypted secret data to said smart card; and decrypting said encrypted secret data at said smart card on the basis of said random key.
- the present invention also provides a smart card comprising: read protected memory for storing a random key and a public key; means for encrypting said random key on the basis of said public key; and means for decrypting encrypted data on the basis of said random key.
- Figure 1 is a block diagram of a preferred communication system according to the present invention.
- a communications system 2 includes a key generation centre 4 and a smart card 6.
- the key generation centre (KGC) 4 is a central host station and includes a processing system 8 connected to a memory storage unit 10.
- the KGC may be implemented by a personal computer 9.
- the processing unit 8 is adapted to be connected to the smart card 6 by a public switched telecommunications network (PSTN) 12 on a telecommunications line 14.
- PSTN public switched telecommunications network
- the KGC 4 stores in the unit 10 information on all of the smart cards 6 which can be connected to the processing system 8, and the information is stored with reference to the serial numbers of the cards 6.
- the smart cards 6 each include an 8 bit microprocessor 16, EEPROM memory 18, a true random number generator 19, and a communications interface 20 for connection to the line 14 or to an intermediary terminal, such as a smart card reader 21, connected to the line 14 and which is able to communicate with the computer 9 of the KGC 4.
- the EEPROM 18 includes an area 23 of read protected memory and another area 25 for the storage of code to be executed from the EEPROM 18.
- the area 25 is also preferably read protected.
- the read protected area 23 cannot be addressed by an external device.
- the card 6 also includes a respective serial number stored therein.
- the card reader 21 may be part of a point-of-sale (POS) terminal.
- the card 6 and the KGC 4 may be associated with a banking system or a mobile telecommunications system wherein mobile telecommunications terminals are provided which can only be used when a smart card 6 with appropriate authenticating data is inserted in a terminal.
- the computer 9 of the KGC 4 and the smart card 6 include software to compute a MonLpower function defined as follows:
- R 512.
- the exponent b for encryption on the smart card 6 is selected to be small and equal to 3.
- the Mont_power function is a variation of the RSA algorithm which improves the performance and program size of the
- the modulo reduction step can be incorporated in a multi-precision multiplication loop to calculate the Mont_power function.
- the modulo reduction step involves setting least significant bits to zero and shifting the resultant bits at each multiplication step. This is particularly advantageous as it removes the need to perform computationally intensive long division.
- the computer 9 also includes software to generate the large composite number, m, which is difficult to factorise, 2 5u ⁇ m ⁇ 2 512 , from the product of two primes, p and q, each of which produces a remainder of 2 when divided by 3, i.e. p mod 3 ⁇ 2, and q mod 3 ⁇ 2, and are such that (p-l)(q-l) is not divisible by 3.
- the EEPROM 18 of the smart card 6 is loaded with executable program code to extend the standard application and communications functions of the card 6 to include the following routines:
- a C2 routine to calculate and output on the communications interface 20 x Mont_power (r,3,m), which is r encrypted by the Mont_power function using an exponent of 3.
- a C3 routine which inputs 512 bits of data and exclusive-ORs the data with r, and stores the result in the read protected area 23. The routine then deletes m, r and routines Cl, C2 and C3.
- the KGC 4 To establish the communications system 2, the KGC 4 generates the two primes, p and q, as discussed previously, such that factorisation of the product of p and q is infeasible.
- the primes are generated for each card 6, or for a batch 22 of cards 6 which would make the manufacturing process simpler.
- Plaintext z encrypted using Mont_power (z,3,m) can then be decrypted using the Mont_power function as follows:
- the RSA encryption algorithm normally utilises large exponents, and the use of a small exponent of 3 is particularly advantageous as it enables the smart card 6 t execute the public encryption function of RSA, using the Mont_power function, in reasonable amount of time with small program size and memory usage, notwithstandin the limited power of the processor 16.
- the KGC 4 provides the serial numbers and the products m to a car manufacturer (CM) who makes a batch 22 of cards 6.
- CM car manufacturer
- the product m is give confidentially to the card manufacturer as it can be used as a basis for determining th authenticity or validity of the card 6 during subsequent communications with the KG 4 at a POS outlet, as discussed hereinafter.
- the primes p and q, ⁇ and the secret key are all kept secret and are stored in the storage unit 10 of the KGC 4 against a serial number of a card 6.
- the card manufacturer stores m in the read protected part 23 of the EEPROM 18 and stores the program code, including the routines Cl, C2 and C3, in the area 25. Execution of the program code may be protected by a requirement that a personal serial number (PIN) be provided for execution to occur.
- PIN personal serial number
- the CM distributes the cards to the point of sale (POS) outlets where a card 6 can be sold to a customer.
- POS point of sale
- the card 6 On having sold a card 6 to a customer, it is connected to a point of sale terminal 21 and the card 6 operates to execute the Cl routine and generate internally a random number r.
- the card 6 then executes the C public key encryption routine and outputs x and the serial number to the KGC 4 on th line 14.
- the KGC 4 then produces an application, master or authentication key Kj as a random value for the card and this is transmitte with any other sensitive and secret information, such as a GSM subscriber identifie number for a GSM digital telecommunications network, to the card 6.
- the applicatio key K j and the other sensitive information are encrypted for transmission to the card on the basis of the random number r.
- the encryption technique is simpl exclusive-ORing r with Kj and the other sensitive data to obtain ciphertext X.
- the application key is used in applications which are loaded on the smart card 6, and can be used as a basis for generation of session keys for subsequent communications.
- routines Cl, C2 and C3 and m and r are erased by the routine C3 after the authentication key and the other data has been stored on the card 6 so as to advantageously allow the card 6 to use the memory space previously occupied by the routines and m and r. Therefore the card 6 which receives the initial secret data only needs to perform the public encryption part of the RSA algorithm and the memory used to execute this part is recovered after the secret data is received. Public key cryptosystems are not conventionally used in this manner.
- the above method of sending the sensitive data from the KGC 4 to the card 6 is also particularly advantageous as the modulus m can be given to the card manufacturer for placement on the card without the manufacturer gaining any additional information which would assist in recovering any secret data to be passed to the card 6.
- the encryption key r is generated and stored internally within the card without requiring the key r to be divulged to any third party, such as the card manufacturer, the personnel at the point of sale outlet or the customer. As r is internally generated and stored it can only be obtained by destroying the integrity of the card 6.
- the card manufacturer can be asked to execute the routines Cl and C2 once the card has been manufactured so as to store the key r in the cards prior to dispatch to POS outlets.
- the cipher value x produced by the routine C2 is sent to the
- the serial numbers and corresponding x values of the cards 6 are placed in a secure file which is protected from modifications and passed to the KGC 4 for storage therein.
- the cards 6 are then distributed, and on connecting the card 6 to a card reader 21 at a POS terminal, the card 6 sends its serial number to the KGC 4.
- Secret information can then be sent to the card 6 by exclusive-ORing the secret data with r, and then receiving and decrypting the secret data using the card routine C3, as discussed previously.
- Information generated internally by the card 6, such as the value x can be used to authenticate the card instead of the modulus m.
- the CM and POS outlets are still not able to obtain the random key r without destroying the integrity of the card 6.
- the CM executes the routine Cl and C2 they may, instead of being executed on the card, be executed on a device connected to the card which has a secure communications environment with the card 6. This, of course, does significantly reduce the security of the system as the random number r is not generated on the card 6.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Security & Cryptography (AREA)
- General Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Finance (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Storage Device Security (AREA)
- Circuits Of Receivers In General (AREA)
- Mobile Radio Communication Systems (AREA)
- Radar Systems Or Details Thereof (AREA)
- Communication Control (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69331006T DE69331006D1 (en) | 1992-03-30 | 1993-03-30 | SECRET TRANSFER METHOD AND SYSTEM |
US08/313,214 US5745571A (en) | 1992-03-30 | 1993-03-30 | Cryptographic communications method and system |
AU38180/93A AU671986B2 (en) | 1992-03-30 | 1993-03-30 | A cryptographic communications method and system |
JP5516900A JPH07505270A (en) | 1992-03-30 | 1993-03-30 | Encrypted communication method and system |
AT93907642T ATE207642T1 (en) | 1992-03-30 | 1993-03-30 | SECRET TRANSMISSION METHOD AND SYSTEM |
EP93907642A EP0634038B1 (en) | 1992-03-30 | 1993-03-30 | A cryptographic communications method and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPL1602 | 1992-03-30 | ||
AUPL160292 | 1992-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993020538A1 true WO1993020538A1 (en) | 1993-10-14 |
Family
ID=3776059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1993/000137 WO1993020538A1 (en) | 1992-03-30 | 1993-03-30 | A cryptographic communications method and system |
Country Status (9)
Country | Link |
---|---|
US (1) | US5745571A (en) |
EP (1) | EP0634038B1 (en) |
JP (1) | JPH07505270A (en) |
AT (1) | ATE207642T1 (en) |
AU (1) | AU671986B2 (en) |
CA (1) | CA2133200C (en) |
DE (1) | DE69331006D1 (en) |
SG (1) | SG46692A1 (en) |
WO (1) | WO1993020538A1 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0725512A2 (en) * | 1995-02-03 | 1996-08-07 | International Business Machines Corporation | Data communication system using public keys |
EP0818762A2 (en) * | 1996-07-08 | 1998-01-14 | Kanekichi Corporation | Coding device, decoding device and IC circuit |
EP0847031A1 (en) * | 1996-12-05 | 1998-06-10 | ODS R. Oldenbourg Datensysteme GmbH & Co. KG | Method for secure further programming of a microprocessor card for an additional application |
WO1998051032A2 (en) * | 1997-05-02 | 1998-11-12 | Certicom Corp. | Two way authentication protocol |
WO1998052158A2 (en) * | 1997-05-15 | 1998-11-19 | Mondex International Limited | Integrated circuit card with application history list |
WO1998052161A2 (en) * | 1997-05-15 | 1998-11-19 | Mondex International Limited | Key transformation unit for an ic card |
US5841866A (en) * | 1994-09-30 | 1998-11-24 | Microchip Technology Incorporated | Secure token integrated circuit and method of performing a secure authentication function or transaction |
EP0889450A1 (en) * | 1997-07-04 | 1999-01-07 | Schlumberger Industries | Method for loading data into a microprocessor card |
WO1999018708A2 (en) * | 1997-10-06 | 1999-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and device in computer networks |
ES2133100A1 (en) * | 1997-05-28 | 1999-08-16 | Univ Madrid Politecnica | Safe system for managing transactions in open networks by means of the use of a card with integrated circuit(s) |
EP0875868A3 (en) * | 1997-03-04 | 1999-11-03 | Pitney Bowes Inc. | Key management system for use with smart cards |
EP0869460A3 (en) * | 1997-03-04 | 1999-11-03 | Pitney Bowes Inc. | Method and apparatus for storing and controlling access to information |
WO1999064996A1 (en) * | 1998-06-05 | 1999-12-16 | Landis & Gyr Communications S.A.R.L. | Preloaded ic-card and method for authenticating the same |
DE19841676A1 (en) * | 1998-09-11 | 2000-03-16 | Giesecke & Devrient Gmbh | Access protected data carrier with semiconductor chip, has operation which is modified prior to its execution, and is supplied with modified input data |
EP0989699A2 (en) * | 1998-09-23 | 2000-03-29 | Siemens Aktiengesellschaft | Key distribution method with reduced key distribution time |
US6108326A (en) * | 1997-05-08 | 2000-08-22 | Microchip Technology Incorporated | Microchips and remote control devices comprising same |
US6166650A (en) * | 1991-05-29 | 2000-12-26 | Microchip Technology, Inc. | Secure self learning system |
EP1076875A1 (en) * | 1998-05-06 | 2001-02-21 | American Express Travel Related Services Company, Inc. | Methods and apparatus for dynamic smartcard synchronization and personalization |
WO2001014974A2 (en) * | 1999-08-23 | 2001-03-01 | Presideo, Inc. | System, method, and article of manufacture for identifying an individual and managing an individual's health records |
US6230267B1 (en) | 1997-05-15 | 2001-05-08 | Mondex International Limited | IC card transportation key set |
EP1098471A2 (en) * | 1999-11-05 | 2001-05-09 | Pitney Bowes Inc. | A cryptographic device having reduced vulnerability to side-channel attack and method of operating same |
WO2001033521A1 (en) * | 1999-11-05 | 2001-05-10 | Beta Research Gmbh | Prevention of reproduction of secrets on a chip card |
US6317832B1 (en) | 1997-02-21 | 2001-11-13 | Mondex International Limited | Secure multiple application card system and process |
US6357665B1 (en) | 1998-01-22 | 2002-03-19 | Mondex International Limited | Configuration of IC card |
EP1435558A1 (en) * | 2003-01-02 | 2004-07-07 | Texas Instruments Incorporated | On-device random number generator |
US20150016603A1 (en) * | 2012-02-09 | 2015-01-15 | Bentel Security S.R.L. | Device and method for managing electronic facilities of buildings |
US10652743B2 (en) | 2017-12-21 | 2020-05-12 | The Chamberlain Group, Inc. | Security system for a moveable barrier operator |
US10862924B2 (en) | 2005-06-30 | 2020-12-08 | The Chamberlain Group, Inc. | Method and apparatus to facilitate message transmission and reception using different transmission characteristics |
US10944559B2 (en) | 2005-01-27 | 2021-03-09 | The Chamberlain Group, Inc. | Transmission of data including conversion of ternary data to binary data |
US10997810B2 (en) | 2019-05-16 | 2021-05-04 | The Chamberlain Group, Inc. | In-vehicle transmitter training |
US11074773B1 (en) | 2018-06-27 | 2021-07-27 | The Chamberlain Group, Inc. | Network-based control of movable barrier operators for autonomous vehicles |
CN114598466A (en) * | 2022-03-08 | 2022-06-07 | 山东云海国创云计算装备产业创新中心有限公司 | Production data processing method and device, computer equipment and storage medium |
US11423717B2 (en) | 2018-08-01 | 2022-08-23 | The Chamberlain Group Llc | Movable barrier operator and transmitter pairing over a network |
Families Citing this family (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2704341B1 (en) * | 1993-04-22 | 1995-06-02 | Bull Cp8 | Device for protecting the keys of a smart card. |
US6324558B1 (en) * | 1995-02-14 | 2001-11-27 | Scott A. Wilber | Random number generator and generation method |
US6038551A (en) | 1996-03-11 | 2000-03-14 | Microsoft Corporation | System and method for configuring and managing resources on a multi-purpose integrated circuit card using a personal computer |
US6055314A (en) * | 1996-03-22 | 2000-04-25 | Microsoft Corporation | System and method for secure purchase and delivery of video content programs |
US6058476A (en) * | 1996-05-22 | 2000-05-02 | Matsushita Electric Industrial Co., Inc. | Encryption apparatus for ensuring security in communication between devices |
CA2177622A1 (en) * | 1996-05-29 | 1997-11-30 | Thierry Moreau | Cryptographic data integrity apparatus and method based on pseudo-random bit generators |
JP3549676B2 (en) * | 1996-07-24 | 2004-08-04 | 富士通株式会社 | Terminal ID automatic assignment method |
DE19629856A1 (en) * | 1996-07-24 | 1998-01-29 | Ibm | Method and system for the secure transmission and storage of protectable information |
DE19633802A1 (en) * | 1996-08-22 | 1998-02-26 | Philips Patentverwaltung | Method and system for writing key information |
BR9809272A (en) * | 1997-05-09 | 2000-06-27 | Connotech Experts Conseils Inc | Initial secret key establishment including facilities for identity verification |
EP1002393B1 (en) * | 1997-08-06 | 2005-09-21 | Infineon Technologies AG | System for generating electronic signatures in absolute security |
WO2000048108A1 (en) | 1999-02-12 | 2000-08-17 | Mack Hicks | System and method for providing certification-related and other services |
US7499551B1 (en) | 1999-05-14 | 2009-03-03 | Dell Products L.P. | Public key infrastructure utilizing master key encryption |
DE19925389A1 (en) * | 1999-06-02 | 2000-12-21 | Beta Res Gmbh | Transferring data onto smart cards involves transmitting encrypted data to card, decrypting in card using different keys, encrypting and decrypting data on basis of specific information in smart card |
US7437560B1 (en) * | 1999-07-23 | 2008-10-14 | Cubic Corporation | Method and apparatus for establishing a secure smart card communication link through a communication network |
US6289455B1 (en) * | 1999-09-02 | 2001-09-11 | Crypotography Research, Inc. | Method and apparatus for preventing piracy of digital content |
US7889052B2 (en) | 2001-07-10 | 2011-02-15 | Xatra Fund Mx, Llc | Authorizing payment subsequent to RF transactions |
US7239226B2 (en) | 2001-07-10 | 2007-07-03 | American Express Travel Related Services Company, Inc. | System and method for payment using radio frequency identification in contact and contactless transactions |
US20020029200A1 (en) | 1999-09-10 | 2002-03-07 | Charles Dulin | System and method for providing certificate validation and other services |
CA2384242A1 (en) * | 1999-09-24 | 2001-04-05 | Mary Mckenney | System and method for providing payment services in electronic commerce |
JP4501197B2 (en) * | 2000-01-07 | 2010-07-14 | ソニー株式会社 | Information portable processing system, information portable device access device and information portable device |
WO2001052474A1 (en) * | 2000-01-14 | 2001-07-19 | Matsushita Electric Industrial Co., Ltd. | Authentication communication device and authentication communication system |
US7172112B2 (en) | 2000-01-21 | 2007-02-06 | American Express Travel Related Services Company, Inc. | Public/private dual card system and method |
JP3587751B2 (en) * | 2000-01-25 | 2004-11-10 | 村田機械株式会社 | Common key generator, encryption communication method, encryption communication system, and recording medium |
AU2001284882A1 (en) * | 2000-08-14 | 2002-02-25 | Peter H. Gien | System and method for facilitating signing by buyers in electronic commerce |
US7072870B2 (en) * | 2000-09-08 | 2006-07-04 | Identrus, Llc | System and method for providing authorization and other services |
US7000105B2 (en) * | 2000-09-08 | 2006-02-14 | Identrus, Llc | System and method for transparently providing certificate validation and other services within an electronic transaction |
US20020066039A1 (en) * | 2000-11-30 | 2002-05-30 | Dent Paul W. | Anti-spoofing password protection |
AU2002222194A1 (en) * | 2000-12-14 | 2002-06-24 | Assendon Limited | An authentication system |
FR2820916B1 (en) * | 2001-02-15 | 2004-08-20 | Gemplus Card Int | IDENTIFICATION MODULE PROVIDED WITH A SECURE AUTHENTICATION CODE |
US7023998B2 (en) * | 2001-03-30 | 2006-04-04 | Lucent Technologies Inc. | Cryptographic key processing and storage |
FR2825495B1 (en) * | 2001-05-31 | 2003-09-26 | Schlumberger Systems & Service | ELECTRONIC PAYMENT TERMINAL, CHIP CARD SUITABLE FOR SUCH A TERMINAL AND METHOD FOR LOADING A SECRET KEY INTO SUCH A TERMINAL |
KR20030001721A (en) * | 2001-06-27 | 2003-01-08 | 주식회사 케이티 | System and method for certificating a smart card over network |
US20040236699A1 (en) * | 2001-07-10 | 2004-11-25 | American Express Travel Related Services Company, Inc. | Method and system for hand geometry recognition biometrics on a fob |
US9024719B1 (en) | 2001-07-10 | 2015-05-05 | Xatra Fund Mx, Llc | RF transaction system and method for storing user personal data |
US8548927B2 (en) * | 2001-07-10 | 2013-10-01 | Xatra Fund Mx, Llc | Biometric registration for facilitating an RF transaction |
US8284025B2 (en) | 2001-07-10 | 2012-10-09 | Xatra Fund Mx, Llc | Method and system for auditory recognition biometrics on a FOB |
US9454752B2 (en) | 2001-07-10 | 2016-09-27 | Chartoleaux Kg Limited Liability Company | Reload protocol at a transaction processing entity |
US8294552B2 (en) * | 2001-07-10 | 2012-10-23 | Xatra Fund Mx, Llc | Facial scan biometrics on a payment device |
US7493288B2 (en) | 2001-07-10 | 2009-02-17 | Xatra Fund Mx, Llc | RF payment via a mobile device |
US7119659B2 (en) | 2001-07-10 | 2006-10-10 | American Express Travel Related Services Company, Inc. | Systems and methods for providing a RF transaction device for use in a private label transaction |
US7746215B1 (en) | 2001-07-10 | 2010-06-29 | Fred Bishop | RF transactions using a wireless reader grid |
US7735725B1 (en) * | 2001-07-10 | 2010-06-15 | Fred Bishop | Processing an RF transaction using a routing number |
US7249112B2 (en) * | 2002-07-09 | 2007-07-24 | American Express Travel Related Services Company, Inc. | System and method for assigning a funding source for a radio frequency identification device |
US7303120B2 (en) | 2001-07-10 | 2007-12-04 | American Express Travel Related Services Company, Inc. | System for biometric security using a FOB |
US7360689B2 (en) | 2001-07-10 | 2008-04-22 | American Express Travel Related Services Company, Inc. | Method and system for proffering multiple biometrics for use with a FOB |
US7705732B2 (en) | 2001-07-10 | 2010-04-27 | Fred Bishop | Authenticating an RF transaction using a transaction counter |
US7249256B2 (en) * | 2001-07-11 | 2007-07-24 | Anoto Ab | Encryption protocol |
SE0102474L (en) * | 2001-07-11 | 2003-01-12 | Anoto Ab | encryption Protocol |
DE10137152A1 (en) * | 2001-07-30 | 2003-02-27 | Scm Microsystems Gmbh | Procedure for the transmission of confidential data |
JP4969745B2 (en) * | 2001-09-17 | 2012-07-04 | 株式会社東芝 | Public key infrastructure system |
US7925878B2 (en) * | 2001-10-03 | 2011-04-12 | Gemalto Sa | System and method for creating a trusted network capable of facilitating secure open network transactions using batch credentials |
US7233663B2 (en) * | 2001-10-29 | 2007-06-19 | Safenet, Inc. | Key generation performance improvement |
CA2465333A1 (en) * | 2001-11-14 | 2003-05-22 | International Business Machines Corporation | Device and method with reduced information leakage |
US20030165242A1 (en) * | 2001-11-19 | 2003-09-04 | Adrian Walker | Confusion encryption |
US7165718B2 (en) * | 2002-01-16 | 2007-01-23 | Pathway Enterprises, Inc. | Identification of an individual using a multiple purpose card |
US6880079B2 (en) * | 2002-04-25 | 2005-04-12 | Vasco Data Security, Inc. | Methods and systems for secure transmission of information using a mobile device |
GB0210692D0 (en) * | 2002-05-10 | 2002-06-19 | Assendon Ltd | Smart card token for remote authentication |
US20040025027A1 (en) * | 2002-07-30 | 2004-02-05 | Eric Balard | Secure protection method for access to protected resources in a processor |
US6805287B2 (en) | 2002-09-12 | 2004-10-19 | American Express Travel Related Services Company, Inc. | System and method for converting a stored value card to a credit card |
KR20040036402A (en) * | 2002-10-25 | 2004-04-30 | 한국전자통신연구원 | On-line system by using the smart card and method for connecting and loading the application program thereof |
EP1596528A1 (en) * | 2003-01-22 | 2005-11-16 | Semiconductores Investigacion Y Diseno S.A. -(SIDSA) | Encryption and copy-protection system based on personalised configurations |
GB2397676A (en) * | 2003-01-23 | 2004-07-28 | Sema Uk Ltd | Privacy enhanced system using fact assertion language |
JP4729839B2 (en) * | 2003-05-20 | 2011-07-20 | 株式会社日立製作所 | IC card |
US20050135622A1 (en) * | 2003-12-18 | 2005-06-23 | Fors Chad M. | Upper layer security based on lower layer keying |
WO2006021178A2 (en) * | 2004-08-26 | 2006-03-02 | Deutsche Telekom Ag | Method and security system for the secure and unambiguous coding of a security module |
WO2006053958A1 (en) * | 2004-11-17 | 2006-05-26 | David Fauthoux | Portable personal mass storage medium and computer system with secure access to a user space via a network |
US8049594B1 (en) | 2004-11-30 | 2011-11-01 | Xatra Fund Mx, Llc | Enhanced RFID instrument security |
DE102005022019A1 (en) * | 2005-05-12 | 2007-02-01 | Giesecke & Devrient Gmbh | Secure processing of data |
EP1748343A1 (en) | 2005-07-29 | 2007-01-31 | STMicroelectronics Limited | Circuit personalisation |
US8050405B2 (en) * | 2005-09-30 | 2011-11-01 | Sony Ericsson Mobile Communications Ab | Shared key encryption using long keypads |
JP4670585B2 (en) | 2005-10-26 | 2011-04-13 | ソニー株式会社 | Setting apparatus and method, and program |
US7699233B2 (en) * | 2005-11-02 | 2010-04-20 | Nokia Corporation | Method for issuer and chip specific diversification |
US7499552B2 (en) | 2006-01-11 | 2009-03-03 | International Business Machines Corporation | Cipher method and system for verifying a decryption of an encrypted user data key |
US8050407B2 (en) * | 2006-04-12 | 2011-11-01 | Oracle America, Inc. | Method and system for protecting keys |
US7971062B1 (en) | 2006-04-12 | 2011-06-28 | Oracle America, Inc. | Token-based encryption key secure conveyance |
US8670564B1 (en) | 2006-08-14 | 2014-03-11 | Key Holdings, LLC | Data encryption system and method |
US7774607B2 (en) * | 2006-12-18 | 2010-08-10 | Microsoft Corporation | Fast RSA signature verification |
KR100840904B1 (en) * | 2007-06-22 | 2008-06-24 | 주식회사 케이티프리텔 | System for supporting over-the-air service and method thereof |
KR100840901B1 (en) * | 2007-06-22 | 2008-06-24 | 주식회사 케이티프리텔 | System for supporting over-the-air service and method thereof |
AU2009205675B2 (en) * | 2008-01-18 | 2014-09-25 | Identrust, Inc. | Binding a digital certificate to multiple trust domains |
DE102010019195A1 (en) * | 2010-05-04 | 2011-11-10 | Giesecke & Devrient Gmbh | Method for personalizing a portable data carrier, in particular a chip card |
US9325677B2 (en) * | 2010-05-17 | 2016-04-26 | Blackberry Limited | Method of registering devices |
EP2426652A1 (en) * | 2010-09-06 | 2012-03-07 | Gemalto SA | Simplified method for customising a smart card and associated device |
EP2761911A4 (en) | 2011-09-26 | 2015-06-03 | Cubic Corp | Personal point of sale |
US9473295B2 (en) | 2011-09-26 | 2016-10-18 | Cubic Corporation | Virtual transportation point of sale |
US10019704B2 (en) | 2011-09-26 | 2018-07-10 | Cubic Corporation | Personal point of sale |
EP2908568A1 (en) * | 2014-02-18 | 2015-08-19 | Gemalto SA | Method of provisioning a server with a group of keys |
FR3034466B1 (en) * | 2015-04-03 | 2018-03-16 | Safran Helicopter Engines | FLOW RESTRICTOR |
AU2018225190B2 (en) * | 2017-02-24 | 2024-01-04 | Dupont Industrial Biosciences Usa, Llc | Process for preparing poly(alkylene furandicarboxylate) |
DE102018123203A1 (en) * | 2018-09-20 | 2020-03-26 | Rheinmetall Electronics Gmbh | Arrangement with a contactless smart card, a garment for an emergency worker with a receiving device for receiving the smart card and with an electronic system and method for operating such an arrangement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0138386A2 (en) * | 1983-09-16 | 1985-04-24 | Kabushiki Kaisha Toshiba | Identification card |
EP0225010A1 (en) * | 1985-09-30 | 1987-06-10 | BRITISH TELECOMMUNICATIONS public limited company | A terminal for a system requiring secure access |
US4811393A (en) * | 1986-07-17 | 1989-03-07 | Bull, S.A. | Method and system for diversification of a basic key and for authentication of a thus-diversified key |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2401459A1 (en) * | 1977-08-26 | 1979-03-23 | Cii Honeywell Bull | PORTABLE INFORMATION MEDIA EQUIPPED WITH A MICROPROCESSOR AND A PROGRAMMABLE DEAD MEMORY |
JPS6084686A (en) * | 1983-10-17 | 1985-05-14 | Toshiba Corp | Recording system of information recording medium |
DE3631797A1 (en) * | 1986-09-18 | 1988-03-31 | Siemens Ag | Method and device for coding useful data |
JPH081950B2 (en) * | 1986-11-21 | 1996-01-10 | 株式会社東芝 | Method for manufacturing semiconductor device |
US5218637A (en) * | 1987-09-07 | 1993-06-08 | L'etat Francais Represente Par Le Ministre Des Postes, Des Telecommunications Et De L'espace | Method of transferring a secret, by the exchange of two certificates between two microcomputers which establish reciprocal authorization |
DK279089D0 (en) * | 1989-06-07 | 1989-06-07 | Kommunedata I S | PROCEDURE FOR TRANSFER OF DATA, AN ELECTRONIC DOCUMENT OR SIMILAR, SYSTEM FOR EXERCISING THE PROCEDURE AND A CARD FOR USE IN EXERCISING THE PROCEDURE |
FR2651347A1 (en) * | 1989-08-22 | 1991-03-01 | Trt Telecom Radio Electr | SINGLE NUMBER GENERATION METHOD FOR MICROCIRCUIT BOARD AND APPLICATION TO COOPERATION OF THE BOARD WITH A HOST SYSTEM. |
JP3114991B2 (en) * | 1990-11-30 | 2000-12-04 | 株式会社東芝 | Data communication system |
JPH04213242A (en) * | 1990-12-07 | 1992-08-04 | Hitachi Ltd | Limited multiple address communication system |
WO1993010509A1 (en) * | 1991-11-12 | 1993-05-27 | Security Domain Pty. Ltd. | Method and system for secure, decentralised personalisation of smart cards |
-
1993
- 1993-03-30 EP EP93907642A patent/EP0634038B1/en not_active Revoked
- 1993-03-30 AT AT93907642T patent/ATE207642T1/en not_active IP Right Cessation
- 1993-03-30 WO PCT/AU1993/000137 patent/WO1993020538A1/en not_active Application Discontinuation
- 1993-03-30 US US08/313,214 patent/US5745571A/en not_active Expired - Lifetime
- 1993-03-30 JP JP5516900A patent/JPH07505270A/en active Pending
- 1993-03-30 AU AU38180/93A patent/AU671986B2/en not_active Ceased
- 1993-03-30 DE DE69331006T patent/DE69331006D1/en not_active Expired - Lifetime
- 1993-03-30 CA CA002133200A patent/CA2133200C/en not_active Expired - Fee Related
- 1993-03-30 SG SG1996008460A patent/SG46692A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0138386A2 (en) * | 1983-09-16 | 1985-04-24 | Kabushiki Kaisha Toshiba | Identification card |
EP0225010A1 (en) * | 1985-09-30 | 1987-06-10 | BRITISH TELECOMMUNICATIONS public limited company | A terminal for a system requiring secure access |
US4811393A (en) * | 1986-07-17 | 1989-03-07 | Bull, S.A. | Method and system for diversification of a basic key and for authentication of a thus-diversified key |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6166650A (en) * | 1991-05-29 | 2000-12-26 | Microchip Technology, Inc. | Secure self learning system |
US5841866A (en) * | 1994-09-30 | 1998-11-24 | Microchip Technology Incorporated | Secure token integrated circuit and method of performing a secure authentication function or transaction |
EP0725512A2 (en) * | 1995-02-03 | 1996-08-07 | International Business Machines Corporation | Data communication system using public keys |
EP0725512A3 (en) * | 1995-02-03 | 1998-07-15 | International Business Machines Corporation | Data communication system using public keys |
EP0818762A3 (en) * | 1996-07-08 | 1999-10-06 | Kanekichi Corporation | Coding device, decoding device and IC circuit |
EP0818762A2 (en) * | 1996-07-08 | 1998-01-14 | Kanekichi Corporation | Coding device, decoding device and IC circuit |
US6163612A (en) * | 1996-07-08 | 2000-12-19 | Kanekichi Corporation | Coding device, decoding device and IC circuit |
EP0847031A1 (en) * | 1996-12-05 | 1998-06-10 | ODS R. Oldenbourg Datensysteme GmbH & Co. KG | Method for secure further programming of a microprocessor card for an additional application |
US7730312B2 (en) | 1997-02-21 | 2010-06-01 | Multos Limted | Tamper resistant module certification authority |
US6317832B1 (en) | 1997-02-21 | 2001-11-13 | Mondex International Limited | Secure multiple application card system and process |
US7669055B2 (en) | 1997-02-21 | 2010-02-23 | Multos Limited | Key transformation unit for a tamper resistant module |
US7689826B2 (en) | 1997-02-21 | 2010-03-30 | Multos Limited | Flexibly loading a tamper resistant module |
US7702908B2 (en) | 1997-02-21 | 2010-04-20 | Multos Limited | Tamper resistant module certification authority |
US7734923B2 (en) | 1997-02-21 | 2010-06-08 | Multos Limited | Key transformation unit for a tamper resistant module |
US7707408B2 (en) | 1997-02-21 | 2010-04-27 | Multos Limited | Key transformation unit for a tamper resistant module |
US7730311B2 (en) | 1997-02-21 | 2010-06-01 | Multos Limited | Key transformation unit for a tamper resistant module |
US7730310B2 (en) | 1997-02-21 | 2010-06-01 | Multos Limited | Key transformation unit for a tamper resistant module |
EP0875868A3 (en) * | 1997-03-04 | 1999-11-03 | Pitney Bowes Inc. | Key management system for use with smart cards |
EP0869460A3 (en) * | 1997-03-04 | 1999-11-03 | Pitney Bowes Inc. | Method and apparatus for storing and controlling access to information |
US6487660B1 (en) | 1997-05-02 | 2002-11-26 | Certicon Corp. | Two way authentication protocol |
WO1998051032A2 (en) * | 1997-05-02 | 1998-11-12 | Certicom Corp. | Two way authentication protocol |
WO1998051032A3 (en) * | 1997-05-02 | 1999-02-04 | Certicom Corp | Two way authentication protocol |
US6985472B2 (en) | 1997-05-08 | 2006-01-10 | Microchip Technology Incorporated | Method of communication using an encoder microchip and a decoder microchip |
US6108326A (en) * | 1997-05-08 | 2000-08-22 | Microchip Technology Incorporated | Microchips and remote control devices comprising same |
WO1998052158A3 (en) * | 1997-05-15 | 1999-01-14 | Mondex Int Ltd | Integrated circuit card with application history list |
US6230267B1 (en) | 1997-05-15 | 2001-05-08 | Mondex International Limited | IC card transportation key set |
WO1998052161A3 (en) * | 1997-05-15 | 1999-05-27 | Mondex Int Ltd | Key transformation unit for an ic card |
WO1998052161A2 (en) * | 1997-05-15 | 1998-11-19 | Mondex International Limited | Key transformation unit for an ic card |
WO1998052158A2 (en) * | 1997-05-15 | 1998-11-19 | Mondex International Limited | Integrated circuit card with application history list |
ES2133100A1 (en) * | 1997-05-28 | 1999-08-16 | Univ Madrid Politecnica | Safe system for managing transactions in open networks by means of the use of a card with integrated circuit(s) |
FR2765709A1 (en) * | 1997-07-04 | 1999-01-08 | Schlumberger Ind Sa | METHOD OF LOADING DATA INTO A MICROPROCESSOR CARD |
EP0889450A1 (en) * | 1997-07-04 | 1999-01-07 | Schlumberger Industries | Method for loading data into a microprocessor card |
AU752541B2 (en) * | 1997-10-06 | 2002-09-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and device in computer networks |
WO1999018708A2 (en) * | 1997-10-06 | 1999-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and device in computer networks |
WO1999018708A3 (en) * | 1997-10-06 | 1999-06-17 | Ericsson Telefon Ab L M | Method and device in computer networks |
US6357665B1 (en) | 1998-01-22 | 2002-03-19 | Mondex International Limited | Configuration of IC card |
EP1076875A1 (en) * | 1998-05-06 | 2001-02-21 | American Express Travel Related Services Company, Inc. | Methods and apparatus for dynamic smartcard synchronization and personalization |
EP1076875A4 (en) * | 1998-05-06 | 2003-03-12 | American Express Travel Relate | Methods and apparatus for dynamic smartcard synchronization and personalization |
WO1999064996A1 (en) * | 1998-06-05 | 1999-12-16 | Landis & Gyr Communications S.A.R.L. | Preloaded ic-card and method for authenticating the same |
DE19841676A1 (en) * | 1998-09-11 | 2000-03-16 | Giesecke & Devrient Gmbh | Access protected data carrier with semiconductor chip, has operation which is modified prior to its execution, and is supplied with modified input data |
EP0989699A3 (en) * | 1998-09-23 | 2003-08-20 | Rohde & Schwarz SIT GmbH | Key distribution method with reduced key distribution time |
EP0989699A2 (en) * | 1998-09-23 | 2000-03-29 | Siemens Aktiengesellschaft | Key distribution method with reduced key distribution time |
WO2001014974A2 (en) * | 1999-08-23 | 2001-03-01 | Presideo, Inc. | System, method, and article of manufacture for identifying an individual and managing an individual's health records |
WO2001014974A3 (en) * | 1999-08-23 | 2002-07-11 | Presideo Inc | System, method, and article of manufacture for identifying an individual and managing an individual's health records |
EP1098471A2 (en) * | 1999-11-05 | 2001-05-09 | Pitney Bowes Inc. | A cryptographic device having reduced vulnerability to side-channel attack and method of operating same |
WO2001033521A1 (en) * | 1999-11-05 | 2001-05-10 | Beta Research Gmbh | Prevention of reproduction of secrets on a chip card |
US6724894B1 (en) | 1999-11-05 | 2004-04-20 | Pitney Bowes Inc. | Cryptographic device having reduced vulnerability to side-channel attack and method of operating same |
EP1098471A3 (en) * | 1999-11-05 | 2002-08-21 | Pitney Bowes Inc. | A cryptographic device having reduced vulnerability to side-channel attack and method of operating same |
EP1435558A1 (en) * | 2003-01-02 | 2004-07-07 | Texas Instruments Incorporated | On-device random number generator |
US11799648B2 (en) | 2005-01-27 | 2023-10-24 | The Chamberlain Group Llc | Method and apparatus to facilitate transmission of an encrypted rolling code |
US10944559B2 (en) | 2005-01-27 | 2021-03-09 | The Chamberlain Group, Inc. | Transmission of data including conversion of ternary data to binary data |
US10862924B2 (en) | 2005-06-30 | 2020-12-08 | The Chamberlain Group, Inc. | Method and apparatus to facilitate message transmission and reception using different transmission characteristics |
US20190058589A1 (en) * | 2012-02-09 | 2019-02-21 | Bentel Security S.R.L. | Device and method for managing electronic facilities of buildings |
US10135617B2 (en) * | 2012-02-09 | 2018-11-20 | Bentel Security S.R.L. | Device and method for managing electronic facilities of buildings |
US10812263B2 (en) | 2012-02-09 | 2020-10-20 | Bentel Security S.R.L. | Device and method for managing electronic facilities of buildings |
US20150016603A1 (en) * | 2012-02-09 | 2015-01-15 | Bentel Security S.R.L. | Device and method for managing electronic facilities of buildings |
US11778464B2 (en) | 2017-12-21 | 2023-10-03 | The Chamberlain Group Llc | Security system for a moveable barrier operator |
US10652743B2 (en) | 2017-12-21 | 2020-05-12 | The Chamberlain Group, Inc. | Security system for a moveable barrier operator |
US12108248B2 (en) | 2017-12-21 | 2024-10-01 | The Chamberlain Group Llc | Security system for a moveable barrier operator |
US11122430B2 (en) | 2017-12-21 | 2021-09-14 | The Chamberlain Group, Inc. | Security system for a moveable barrier operator |
US11074773B1 (en) | 2018-06-27 | 2021-07-27 | The Chamberlain Group, Inc. | Network-based control of movable barrier operators for autonomous vehicles |
US12056971B1 (en) | 2018-06-27 | 2024-08-06 | The Chamberlain Group Llc. | Network-based control of movable barrier operators for autonomous vehicles |
US11763616B1 (en) | 2018-06-27 | 2023-09-19 | The Chamberlain Group Llc | Network-based control of movable barrier operators for autonomous vehicles |
US11869289B2 (en) | 2018-08-01 | 2024-01-09 | The Chamberlain Group Llc | Movable barrier operator and transmitter pairing over a network |
US11423717B2 (en) | 2018-08-01 | 2022-08-23 | The Chamberlain Group Llc | Movable barrier operator and transmitter pairing over a network |
US11462067B2 (en) | 2019-05-16 | 2022-10-04 | The Chamberlain Group Llc | In-vehicle transmitter training |
US10997810B2 (en) | 2019-05-16 | 2021-05-04 | The Chamberlain Group, Inc. | In-vehicle transmitter training |
CN114598466B (en) * | 2022-03-08 | 2024-05-28 | 山东云海国创云计算装备产业创新中心有限公司 | Production data processing method and device, computer equipment and storage medium |
CN114598466A (en) * | 2022-03-08 | 2022-06-07 | 山东云海国创云计算装备产业创新中心有限公司 | Production data processing method and device, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
DE69331006D1 (en) | 2001-11-29 |
EP0634038B1 (en) | 2001-10-24 |
AU671986B2 (en) | 1996-09-19 |
ATE207642T1 (en) | 2001-11-15 |
SG46692A1 (en) | 1998-02-20 |
AU3818093A (en) | 1993-11-08 |
EP0634038A1 (en) | 1995-01-18 |
CA2133200A1 (en) | 1993-10-14 |
CA2133200C (en) | 1998-08-11 |
JPH07505270A (en) | 1995-06-08 |
EP0634038A4 (en) | 2000-04-05 |
US5745571A (en) | 1998-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5745571A (en) | Cryptographic communications method and system | |
EP0202768B1 (en) | Technique for reducing rsa crypto variable storage | |
EP0725512B1 (en) | Data communication system using public keys | |
CA2228958C (en) | Data card verification system | |
EP0950302B1 (en) | Public key cryptographic apparatus and method | |
CA2011396C (en) | Cipher-key distribution system | |
US4876716A (en) | Key distribution method | |
EP1873960B1 (en) | Method for session key derivation in a IC card | |
US6061791A (en) | Initial secret key establishment including facilities for verification of identity | |
EP1330702B1 (en) | Method and system of using an insecure crypto-accelerator | |
KR100971038B1 (en) | Cryptographic method for distributing load among several entities and devices therefor | |
Mohammed et al. | Elliptic curve cryptosystems on smart cards | |
JPH0456501B2 (en) | ||
Hoogendoorn | On a secure public-key cryptosystem | |
Gilbert | Techniques for low cost authentication and message authentication | |
JPH02246640A (en) | Common key delivery system using verification information of management center | |
Herda | Authenticity, Anonymity and Security in Osis: An Open System for Information Services | |
Price | Public Key Cryptosystems, Authentication and Signatures | |
JPH0774934B2 (en) | Encryption device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2133200 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993907642 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08313214 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1993907642 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 1993907642 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993907642 Country of ref document: EP |