WO1993014916A1 - Injection molding of plastic article having hollow rib - Google Patents
Injection molding of plastic article having hollow rib Download PDFInfo
- Publication number
- WO1993014916A1 WO1993014916A1 PCT/US1992/010864 US9210864W WO9314916A1 WO 1993014916 A1 WO1993014916 A1 WO 1993014916A1 US 9210864 W US9210864 W US 9210864W WO 9314916 A1 WO9314916 A1 WO 9314916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- plastic
- article
- rib portion
- mold cavity
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/0055—Moulds or cores; Details thereof or accessories therefor with incorporated overflow cavities
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/1703—Introducing an auxiliary fluid into the mould
- B29C45/1704—Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
- B29C45/1711—Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles and removing excess material from the mould cavity by the introduced fluid, e.g. to an overflow cavity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/1703—Introducing an auxiliary fluid into the mould
- B29C45/1704—Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
- B29C2045/1729—Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles fluid venting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/1703—Introducing an auxiliary fluid into the mould
- B29C45/1704—Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
- B29C2045/173—Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles using a plurality of fluid injection nozzles
Definitions
- This invention relates to plastic injection molding and, more particularly, to plastic injection molding wherein an article having a hollow rib portion is produced thereby.
- pressurized fluid is typically nitrogen gas which is introduced into the mold cavity at or near the completion of the plastic injection.
- the pressurized fluid serves several purposes. First, it allows the article so formed to have hollow interior portions which correspond to weight and material savings. Second, the pressurized fluid within the mold cavity applies outward pressure to force the plastic against the mold surfaces while the article solidifies. Third, the cycle time is reduced as the gas migrates through the most fluent inner volume of the plastic and replaces the plastic in these areas which would otherwise require an extended cooling cycle. Fourth, the gas pressure pushes ' the plastic against the mold surfaces, thereby obtaining the maximum coolant effect from the mold.
- the gas must do more work to migrate through the volume of the mold cavity to assist in setting up the article within the cavity. If the pressure of the gas is too great as it enters the mold cavity, there is a risk that it may rupture or blow out the plastic within the mold cavity, i.e. , the gas is not contained within the plastic. Thus/ there have been practical limitations in the adaptation of gas injection in the plastic molding field. It is important to ensure that the maximum gas flow length in a channel is obtained so that permeation, shadow marks or sinkage are minimized.
- One aspect of the present invention is a method and apparatus for injection molding and a hollow plastic article formed thereby with pressurized gas which provides for displacement by the gas of a portion of plastic from a channel of the mold cavity into a flow coupled spill cavity.
- This feature enables a plastic article having a hollow reinforcing rib to be successfully molded wit the advantages of established gas injection molding techniques. More specifically, the process involves the initial injection of a quantity of fluent plastic into a mold cavity including a channel having a shape defining a rib portion of the plastic article to be molded. At or near the completion of the plastic injection, a charge of pressurized gas is introduced into the channel of the mold cavity to displace a portion of the still fluent plastic from the channel.
- the displaced plastic typically flows through a passage from the channel into a connected spill cavity or reservoir.
- a longer gas passage is formed in the rib portion.
- the gas passage extends along substantially the entire length of the rib portion and has a substantially constant cross section therealong.
- the injected plastic is then permitted to solidify.
- the gas is vented from the mold cavity and the plastic article is removed from the mold.
- Apparatus are also provided to perform the process.
- the reservoir may alternatively serve as (i) an appendage of the. complete article; (ii) a separate article; or (iii) a cavity to receive spilled plastic for regrinding.
- the plastic which is displaced is generally the hottest and most fluent.
- the introduction of the charge of pressurized gas into the mold cavity can be timed to modulate the amount of plastic displaced, i.e., the longer the delay in introduction, the cooler and less fluent the plastic in the mold cavity.
- a tapered rib or channel design is provided to eliminate sinkage while not producing permeation.
- the center of mass of the rib where it joins the wall must produce a gas channel opening where the top of the gas opening leaves a wall equal to or significantly thicker than the surface wall thickness. This will substantially reduce the permeation and shadow marks.
- the present invention admits to molding of thin-walled solid plastic articles having hollow reinforcing ribs for use in diverse product fields.
- FIGURE 1 is a flow chart indicating the basic steps involved in practice of the process of the present invention.
- FIGURE 2 is a schematic side view of a plastic injection molding apparatus adapted to carry out the process of the parent application as well as the present invention
- FIGURE 3 is a top plan view of the apparatus of FIGURE 2;
- FIGURE 4 is another schematic view of a plastic injection molding apparatus illustrating an alternative arrangement for practicing the process of the parent application as well as the present invention
- FIGURE 5 is a side view, partially broken away and in cross section, illustrating a hollow article formed by a prior art gas-assisted process
- FIGURE 6 is a sectional view taken along lines 6-6 in FIGURE 5 of the moulding
- FIGURE 7 is a side view, partially broken away and in cross section, of a mold cavity including a channel portion and a spill cavity in a mold;
- FIGURE 8 is an end view of the channel portion and a space defining at least one wall portion of the article.
- FIGURES 9 and 10 are end views, partially broken away and in cross section, which interconnect two adjacent wall portions and which illustrate two types of internal rib configurations.
- FIGURE 1 is a flow chart of the steps involved in practicing the process of the present invention.
- a quantity of molten plastic is injected from an injection molding machine into a mold cavity.
- the mold cavity of the present invention includes a channel having a shape defining a rib portion of the article to be molded.
- the plastic is any thermoplastic and works particularly well with glass or mineral filled thermoplastic polyester, commonly known by the trademark Valox of General Electric Company.
- the quantity is sufficient to provide the mass of the article to be molded, but desirably less than the quantity which would completely fill the mold cavity.
- step 12 a charge of pressurized gas is introduced into the mold upon substantial completion of the injection of the quantity of molten plastic.
- step 14 the gas flow into the mold is maintained in pressure and duration in amount and time sufficient to displace a controlled quantity of plastic from the channel of the mold cavity into a spill cavity which is flow coupled to the channel.
- the gas tends to displace the hottest, most fluent plastic in the central portion of the channel. Consequently, a rib portion of the molded plastic article has a hollow interior where the most viscous plastic has been displaced.
- the presence of the gas affords savings in weight and material usage.
- Added benefits include enhanced surface quality due to the outward pressure exerted by the gas, reduced cycle time due to displacement of the relatively. hot plastic from the central portion of the rib portion of the article and substantially strain free moldings.
- step 16 the article is permitted to solidify within the mold cavity while the internal gas pressure is maintained.
- step 18 the pressurized gas is vented from the interior of the rib portion of the molded article preparatory to opening the mold.
- Numerous ways of venting are possible such as described in the U.S. Patent to Friederich 4,101,617, or as described in U.S. Patent No. 4,781,554 noted above.
- step 20 the plastic article is removed from the mold.
- step 22 the purged or displaced plastic is removed from the spill cavity or reservoir.
- steps 20 and 22 can be the common operation of ejecting the moldings so formed from the article cavity and the spill cavity.
- FIGURES 2 and 3 are schematic side and plan views, respectively, of a plastic injection molding apparatus, generally indicated at 24, adapted to carry out the process of the parent application as well as the present invention.
- a nozzle 26 of the plastic injection molding machine is brought into registering position with a modified sprue bushing 28 associated with a mold.
- the sprue bushing 28 may be of the type disclosed in the above-noted U.S. Patent No. 4,855,094.
- the sprue bushing 28 has a plastic flow path 30 formed at its center to permit the passage of molten plastic through a sprue 34 into a mold cavity 36.
- the modified sprue bushing also includes a gas path 32 to permit the introduction and venting of a charge of pressurized gas.
- the mold cavity 36 is flow coupled through a runner segment 38 to a spill cavity 40.
- the volume of the spill cavity 40 may be varied by any well- known means to control the quantity of displaced plastic such as by a lead screw 42.
- a molded article 46 includes an interior void 44 formed by the presence and influence of the pressurized gas.
- the spill cavity 40 may be formed to mold an integral appendage of the article 46, or a separate article, or simply scrap for regrinding.
- FIGURE 4 is another schematic view of a plastic injection molding apparatus, generally indicated at 50,. illustrating an alternative arrangement for practicing the process of the parent application as well as the present invention.
- the apparatus 50 employs first and second spill cavities 54 and 56 which are flow coupled through runners 58 and 60, respectively, to a mold volume 52.
- a nozzle 26 from an injection molding machine registers with the sprue bushing 28 to inject a quantity of molten plastic into the mold cavity.
- a charge of pressurized gas flows along the gas path 32 in the modified sprue busing 28 and into the cavity 52 to displace the most viscous plastic from the mold cavity 52 into the first and second spill cavities 54 and 56.
- This process when performed in accordance with the steps of FIGURE 1, will yield a molded article 64 having a central void 62 due to the displacement of plastic by the pressurized gas.
- FIGURE 7 is a schematic view of tapered channel 66 of a mold cavity, generally indicated at 68 in FIGURE 8.
- the channel 66 helps to overcome the resulting sinkage problem illustrated in FIGURES 5 and 6 by being tapered sufficient to permit the charge of pressurized gas to travel substantially the entire length of the channel 66.
- the angle is .25 degrees. The angle will vary depending on the type of plastic injected, the pressure of the gas in the channel, the dimensions of the channel, etc.
- a gas passage 70 which has a relatively uniform diameter is formed in a plastic rib portion
- a spill cavity 73 receives molten plastic from the channel 66 during gas flow into the channel 66.
- the mold cavity 68 also includes a space 74 which defines at least one solid wall portion of the article and which is flow coupled to the channel.
- the channel 66 extends from a bottom surface 76 of the mold which also defines the bottom surface of the solid wall portion of the article.
- the thickness of the channel 66, y is preferably at least twice as large as the thickness of the space, x, along the entire length of the channel 66 so that the thickness of the solid wall portion of the article immediately above the rib portion 72 is substantially equal to the thickness of the rest of the solid wall portion
- This feature substantially eliminates permeation and sinkage marks in the top surface of the article immediately above the rib portion 72.
- FIGURES 9 and 10 show wall portions 78 and 80 of articles, generally indicated at 82 and 84, respectively, which have interconnecting internal rib portions 86 and 88, respectively.
- the quantity of fluid plastic is pressurized and the process further includes the step of depressurizing the plastic after plastic injection to facilitate the displacement of plastic from the channel to the spill cavity 73.
- This depressurization step is best described in the above- noted Patent No. 5,028,377.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR9207068A BR9207068A (en) | 1992-01-28 | 1992-12-15 | Process and apparatus for injection molding a hollow plastic article and article |
EP93901277A EP0625089B2 (en) | 1992-01-28 | 1992-12-15 | Injection molding of plastic article having hollow rib |
KR1019940702609A KR0164909B1 (en) | 1992-01-28 | 1992-12-15 | Injection molding of plastic article having hollow rib |
DE69219157T DE69219157T3 (en) | 1992-01-28 | 1992-12-15 | INJECTION MOLDING OF PLASTIC ITEMS THAT HAVE HOLLOW-RIBBED RIBS |
CA002129009A CA2129009C (en) | 1992-01-28 | 1992-12-15 | Injection molding of plastic article having hollow rib |
AU33222/93A AU668124B2 (en) | 1992-01-28 | 1992-12-15 | Process for injection molding a hollow plastic article |
NO942786A NO303972B1 (en) | 1992-01-28 | 1994-07-27 | Method and apparatus for injection molding a hollow plastic article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/826,865 US5225141A (en) | 1988-07-11 | 1992-01-28 | Process for injection molding a hollow plastic article |
US826,865 | 1992-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993014916A1 true WO1993014916A1 (en) | 1993-08-05 |
Family
ID=25247728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1992/010864 WO1993014916A1 (en) | 1992-01-28 | 1992-12-15 | Injection molding of plastic article having hollow rib |
Country Status (12)
Country | Link |
---|---|
US (2) | US5225141A (en) |
EP (1) | EP0625089B2 (en) |
KR (1) | KR0164909B1 (en) |
CN (1) | CN1041809C (en) |
AU (1) | AU668124B2 (en) |
BR (1) | BR9207068A (en) |
CA (1) | CA2129009C (en) |
DE (2) | DE69219157T3 (en) |
ES (1) | ES2103074T3 (en) |
GB (1) | GB2264449B (en) |
NO (1) | NO303972B1 (en) |
WO (1) | WO1993014916A1 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9114324D0 (en) * | 1991-07-03 | 1991-08-21 | Kontor Moulding Systems Ltd | Injection moulding of thermoplastic polymers |
US5968446A (en) * | 1992-10-28 | 1999-10-19 | Toyoda Gosei Co., Ltd. | Molded resin body and method for producing the same |
DE69421803T2 (en) * | 1993-03-09 | 2000-06-21 | Stevens, Smith & Bartlett Pty. Ltd. | METHOD FOR PRODUCING NEEDLES |
DE4336243C2 (en) * | 1993-10-23 | 1996-05-15 | Hydac Technology Gmbh | Process for the injection molding of hollow plastic bodies and device for carrying out the process |
US5436779A (en) * | 1994-03-31 | 1995-07-25 | Read-Rite Corporation | Integrated yoke magnetoresistive transducer with magnetic shunt |
JPH089294A (en) * | 1994-06-17 | 1996-01-12 | Sony Corp | Television cabinet |
EP0950493A1 (en) * | 1995-01-27 | 1999-10-20 | Koninklijke Philips Electronics N.V. | Method for injection-moulding of a product |
GB2299966B (en) * | 1995-04-12 | 1998-07-15 | Rover Group | A dashboard for a motor vehicle |
DE19518964C2 (en) * | 1995-05-23 | 1998-04-09 | Eldra Kunststofftechnik Gmbh | Method and device for injection molding hollow-blown plastic bodies |
DE19518963C2 (en) * | 1995-05-23 | 1998-04-09 | Eldra Kunststofftechnik Gmbh | Method and device for injection molding hollow-blown plastic bodies |
DE19543944C2 (en) * | 1995-11-25 | 1998-04-09 | Battenfeld Gmbh | Process for the manufacture of plastic objects |
DE19607992A1 (en) * | 1996-03-04 | 1997-09-11 | Battenfeld Gmbh | Process for producing an injection molded part made of thermoplastic and injection molded part |
SE508096C2 (en) * | 1996-12-04 | 1998-08-24 | Volvo Lastvagnar Ab | Gas injection molded hollow plastic detail and method and apparatus for its manufacture |
US5788917A (en) * | 1997-05-27 | 1998-08-04 | General Motors Corporation | Method of making a plastic article |
US5997797A (en) * | 1997-06-24 | 1999-12-07 | Jac Products, Inc. | Injection mold internal pressure equalization system and method |
DE19750523B4 (en) * | 1997-11-14 | 2007-08-02 | Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der RWTH Aachen | Process for the production of finned components according to the gas injection technique |
US6037038A (en) * | 1998-03-30 | 2000-03-14 | Textron Automotive Company Inc. | Vehicle interior trim member having integrally molded hollow assist handle |
US6322865B1 (en) | 1998-07-13 | 2001-11-27 | Patent Holding Company | Hollow plastic article formed by a gas-assisted injection molding system |
US6119406A (en) * | 1998-12-16 | 2000-09-19 | Patent Holding Company | Door trim panel assembly and plastic inner panel for use therein |
US6364346B1 (en) | 1999-02-10 | 2002-04-02 | Patent Holding Company | Motor vehicle trim assembly including a hollow plastic panel for a side impact inflatable air bag system |
US6386849B1 (en) | 1999-12-06 | 2002-05-14 | Caco Pacific Corporation | Multi-component mold |
EP1129839B1 (en) | 2000-02-29 | 2004-11-03 | Kyoraku Co.,Ltd. | Hollow blow-moulded article, method of manufacturing such an article, and apparatus therefor |
US6669301B1 (en) * | 2000-11-28 | 2003-12-30 | Steelcase Development Corporation | Furniture article having panel and integral perimeter frame |
US6821100B2 (en) | 2002-09-06 | 2004-11-23 | Caco Pacific Corporation | Multi-component mold with rotatable mandrels |
USD530478S1 (en) | 2005-09-19 | 2006-10-17 | Target Brands, Inc. | Shopping cart |
US7416194B2 (en) * | 2005-09-19 | 2008-08-26 | Target Brands, Inc. | Shopping cart base |
JP5114950B2 (en) * | 2006-02-13 | 2013-01-09 | 日産自動車株式会社 | Battery module, assembled battery, and vehicle equipped with these batteries |
US7766347B2 (en) | 2006-11-09 | 2010-08-03 | Traget Brands, Inc. | Seat assembly for a shopping cart |
US7780902B2 (en) * | 2007-01-05 | 2010-08-24 | Target Brands, Inc. | Method of molding a shopping cart |
DE102012011173A1 (en) | 2012-06-06 | 2013-12-12 | Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der Rhein.-Westf. Technischen Hochschule Aachen e.V. | Method for manufacturing multi-component body, particularly multicomponent compact mold portions and hollow bodies, involves driving displacement body from polymeric material component by another polymeric material component |
DE102013010541A1 (en) | 2013-06-25 | 2015-01-08 | Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der Rhein.-Westf. Technischen Hochschule Aachen e.V. | Process for producing polymeric hollow bodies by means of rocket injection technology (RIT) |
US9293160B1 (en) | 2015-02-06 | 2016-03-22 | HGST Netherlands B.V. | Magnetic stabilization and scissor design for anomalous hall effect magnetic read sensor |
US10759099B2 (en) | 2018-03-05 | 2020-09-01 | Ford Global Technologies, Llc | Water-assisted injection molded cross-car beam |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101617A (en) * | 1975-01-15 | 1978-07-18 | Rohm Gmbh | Method for injection molding of hollow shaped bodies from thermoplastic resins |
US4923666A (en) * | 1987-04-28 | 1990-05-08 | Cinpres Limited | Method of injection moulding |
US5069859A (en) * | 1987-12-16 | 1991-12-03 | Milad Limited Partnership | Method of injection molding with pressurized-fluid assist |
US5098637A (en) * | 1988-07-11 | 1992-03-24 | Milad Limited Partnership | Process for injection molding and hollow plastic article produced thereby |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3044118A (en) * | 1958-06-23 | 1962-07-17 | Du Pont | Molding method and apparatus |
US4136220A (en) * | 1976-07-14 | 1979-01-23 | Union Carbide Corporation | Process for the molding of plastic structural web and the resulting articles |
US4935191A (en) * | 1986-10-16 | 1990-06-19 | Thomas W. Johnson | Process of insection molding with pressurized gas assist |
US4781554A (en) * | 1987-07-09 | 1988-11-01 | Michael Ladney | Apparatus for the injection molding of thermoplastics |
US4855094A (en) * | 1987-09-21 | 1989-08-08 | Michael Ladney | Method for the injection molding of plastic articles using fluid pressure |
DE321117T1 (en) † | 1987-12-16 | 1993-09-02 | Ladney jun., Michael, Grosse Pointe Shores, Mich. | METHOD AND SYSTEM FOR INJECTION MOLDING ASSISTED BY LOCAL FLUIDIUM AND BODY PRODUCED BY IT. |
EP0321819B2 (en) * | 1987-12-23 | 2002-06-19 | Bruker Daltonik GmbH | Method for the massspectrometric analysis of a gas mixture, and mass sprectrometer for carrying out the method |
DE3913109C5 (en) * | 1989-04-21 | 2010-03-18 | Ferromatik Milacron Maschinenbau Gmbh | Method for injection molding of fluid-filled plastic body and device for carrying out the method |
JPH03290216A (en) * | 1989-12-25 | 1991-12-19 | Sekisui Chem Co Ltd | Mold for gas force feed molding |
JP2677437B2 (en) * | 1989-12-29 | 1997-11-17 | 積水化学工業株式会社 | Gas press-fitting mold |
US5028377A (en) * | 1990-03-05 | 1991-07-02 | Michael Ladney | Method for injection molding plastic article with gas-assistance |
US5044924A (en) * | 1990-06-08 | 1991-09-03 | Loren Norman S | Gas assisted injection molding apparatus |
JP2788670B2 (en) * | 1990-07-20 | 1998-08-20 | 本田技研工業株式会社 | Resin hollow molding |
US5110533A (en) * | 1990-11-07 | 1992-05-05 | Milad Limited Partnership | Method for the use of gas assistance in the molding of plastic articles to enhance surface quality |
US5186884A (en) * | 1991-06-06 | 1993-02-16 | Milad Limited Partnership | Method of injection molding with pressurized fluid assist |
-
1992
- 1992-01-28 US US07/826,865 patent/US5225141A/en not_active Expired - Fee Related
- 1992-12-15 ES ES93901277T patent/ES2103074T3/en not_active Expired - Lifetime
- 1992-12-15 DE DE69219157T patent/DE69219157T3/en not_active Expired - Fee Related
- 1992-12-15 WO PCT/US1992/010864 patent/WO1993014916A1/en active IP Right Grant
- 1992-12-15 AU AU33222/93A patent/AU668124B2/en not_active Ceased
- 1992-12-15 BR BR9207068A patent/BR9207068A/en not_active IP Right Cessation
- 1992-12-15 CA CA002129009A patent/CA2129009C/en not_active Expired - Fee Related
- 1992-12-15 KR KR1019940702609A patent/KR0164909B1/en not_active IP Right Cessation
- 1992-12-15 EP EP93901277A patent/EP0625089B2/en not_active Expired - Lifetime
-
1993
- 1993-01-09 DE DE4300397A patent/DE4300397C2/en not_active Expired - Fee Related
- 1993-01-27 GB GB9301643A patent/GB2264449B/en not_active Expired - Fee Related
- 1993-01-28 CN CN93100391A patent/CN1041809C/en not_active Expired - Fee Related
- 1993-04-26 US US08/053,991 patent/US5324189A/en not_active Expired - Lifetime
-
1994
- 1994-07-27 NO NO942786A patent/NO303972B1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101617A (en) * | 1975-01-15 | 1978-07-18 | Rohm Gmbh | Method for injection molding of hollow shaped bodies from thermoplastic resins |
US4923666A (en) * | 1987-04-28 | 1990-05-08 | Cinpres Limited | Method of injection moulding |
US4923666B1 (en) * | 1987-04-28 | 1995-02-14 | Cinpres Ltd | Method of injection moulding |
US5069859A (en) * | 1987-12-16 | 1991-12-03 | Milad Limited Partnership | Method of injection molding with pressurized-fluid assist |
US5098637A (en) * | 1988-07-11 | 1992-03-24 | Milad Limited Partnership | Process for injection molding and hollow plastic article produced thereby |
Non-Patent Citations (2)
Title |
---|
Compress - A New Plastic Process: Rigid, Smooth and Stress-Free Mouldings, Peerless PLC brochure published sometime before 01 August 1985, see the entire document. * |
See also references of EP0625089A4 * |
Also Published As
Publication number | Publication date |
---|---|
CA2129009C (en) | 2002-06-25 |
NO942786L (en) | 1994-08-30 |
AU668124B2 (en) | 1996-04-26 |
DE69219157T2 (en) | 1997-11-13 |
EP0625089B1 (en) | 1997-04-16 |
GB9301643D0 (en) | 1993-03-17 |
DE69219157T3 (en) | 2004-11-25 |
KR0164909B1 (en) | 1999-03-20 |
US5225141A (en) | 1993-07-06 |
NO303972B1 (en) | 1998-10-05 |
CN1041809C (en) | 1999-01-27 |
GB2264449A (en) | 1993-09-01 |
NO942786D0 (en) | 1994-07-27 |
DE69219157D1 (en) | 1997-05-22 |
BR9207068A (en) | 1995-12-05 |
EP0625089A4 (en) | 1995-05-03 |
AU3322293A (en) | 1993-09-01 |
EP0625089A1 (en) | 1994-11-23 |
DE4300397C2 (en) | 1996-07-11 |
ES2103074T3 (en) | 1997-08-16 |
DE4300397A1 (en) | 1993-07-29 |
CA2129009A1 (en) | 1993-08-05 |
CN1076887A (en) | 1993-10-06 |
GB2264449B (en) | 1996-08-14 |
EP0625089B2 (en) | 2004-04-21 |
KR950700157A (en) | 1995-01-16 |
US5324189A (en) | 1994-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU668124B2 (en) | Process for injection molding a hollow plastic article | |
US5098637A (en) | Process for injection molding and hollow plastic article produced thereby | |
US5607640A (en) | Method for injection molding of plastic article | |
AU660434B2 (en) | Method for the use of gas assistance in the molding of plastic articles to enhance surface quality | |
EP0493447A1 (en) | Method for the use of gas assistance in the molding of plastic articles. | |
US5484563A (en) | Injection molding process using a resin reservoir containing a retractable piston | |
US5417916A (en) | Injection molding method utilizing primary and secondary resin flow paths | |
US5885518A (en) | Method for injection molding utilizing a variable volume spill area within an article-defining mold cavity and article produced thereby | |
US5061415A (en) | Process for improving the quality of injection moulded parts | |
JPH01168425A (en) | Manufacture of hollow molded article | |
WO2002014047A2 (en) | Molded article having hollow rim portion and process for producing such articles | |
CA1332863C (en) | Process for injection molding and hollow plastic article produced thereby | |
CN111016105B (en) | Insert molding method and device | |
JPH03138115A (en) | Injection molding method for hollow molded product with uneven struction section | |
JPH11300774A (en) | Manufacture of bathtub of thermoplastic resin | |
Eckardt | Gas-assisted injection moulding: avoiding sink marks in thick-walled parts | |
WO1997020675A1 (en) | Method and system for injection molding utilizing a variable volume spill area within an article-defining mold cavity and article produced thereby | |
JPH09207155A (en) | Hollow injection molding apparatus and method | |
JPH06143316A (en) | Injection molding method for blow molded form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR CA JP KR NO |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1993901277 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2129009 Country of ref document: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1993901277 Country of ref document: EP |
|
EX32 | Extension under rule 32 effected after completion of technical preparation for international publication | ||
LE32 | Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b) | ||
WWG | Wipo information: grant in national office |
Ref document number: 1993901277 Country of ref document: EP |