WO1993003399A1 - Ensemble detecteur d'obstacle - Google Patents

Ensemble detecteur d'obstacle Download PDF

Info

Publication number
WO1993003399A1
WO1993003399A1 PCT/SE1992/000544 SE9200544W WO9303399A1 WO 1993003399 A1 WO1993003399 A1 WO 1993003399A1 SE 9200544 W SE9200544 W SE 9200544W WO 9303399 A1 WO9303399 A1 WO 9303399A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
obstacle
robot
signal
light source
Prior art date
Application number
PCT/SE1992/000544
Other languages
English (en)
Inventor
Carl Gustav ÖHMAN
Original Assignee
Aktiebolaget Electrolux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aktiebolaget Electrolux filed Critical Aktiebolaget Electrolux
Publication of WO1993003399A1 publication Critical patent/WO1993003399A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means

Definitions

  • the present invention relates to optical proximity sensors and in particular to a control system for a robot.
  • electronics becomes smaller, lighter, less expensive and more powerful; software becomes more sophisticated; and consumers come to expect more features and more value
  • the market for autonomous appliances such as robot vacuum cleaners, floor scrubbers and polishers increases.
  • robot vacuum cleaners floor scrubbers and polishers
  • In order to keep the cost and complexity of the robot down sensors need to be kept as simple and inexpensive as possible.
  • the present invention provides a simple and low cost obstacle detector that provides excellent obstacle detection.
  • the detector is integrated into a control system that provides foi the avoidance of various obstacles to autonomous operation of a cleaning robot.
  • the obstacle detecting assembly includes a first light source having a narrow beam, a second light source having a wide beam, a light detecting means that provides a signal in response to detected light, and a control means that intermittently activates the light sources, receives the signal when a distant obstacle within the narrow beam reflects light from the first source to the light detecting means and receives the signal when a proximate obstacle within the wide beam reflects light from the second light source to the light detecting means.
  • the assembly may also advantageously include a first light blocking means located between the first light source and the light sensing means.
  • the first light blocking means blocks the light detecting means from the first light source. Also included may be a second light blocking means located between the second light source and the light sensing means. The second light blocking means blocks the light detecting means from the second light source.
  • the robot control system includes a plurality of forward obstacle detection sensors facing in a forward direction. These forward obstacle detection sensors provide an early warning signal indicative of the remote presence of an obstacle. Also included is a forward contact sensor. This sensor provides a contact signal indicative of the robot contacting an obstacle. Also included is a control means adapted to receive the signals from the sensors and a drive means adapted to propel the robot in response to the control means.
  • the robot decelerates to a low speed upon receipt of the early warning signal and continues at the slow speed until the first occurring of receipt of the contact signal or a known distance is traveled.
  • the robot control system may also advantageously include a left obstacle detection sensor facing in a direction of between 25 and 50 degrees left of the forward direction and between 25 and 35 degrees up from the forward direction. The left sensor provides a left overhang signal indicative of an overhanging obstacle. Also included may be a right obstacle detection sensor facing in a direction of between 25 and 50 degrees right of the forward direction and between 25 and 35 degrees up from the forward direction. The right sensor provides a right overhang signal indicative of an overhanging obstacle.
  • the robot decelerates to the low speed upon receipt of either overhang signal and continues at the slow speed until the first occurring of receipt of the contact signal or the known distance is traveled.
  • the obstacle detection sensors may advantageously comprise the obstacle detecting assemblies described above.
  • the system may also advantageously include a drop-off sensor facing in a downward direction.
  • the drop-off sensor provides a drop-off (e.g. , a stair step downward) signal indicative of the presence of a drop-off, wherein the robot stops and reverses direction upon receipt of the drop-off signal .
  • FIG. 1 is a top plan view of an assembly according to the invention.
  • FIG. 2 is a front elevation view of an assembly according to the invention.
  • FIG. 3 is a schematic circuit diagram of an assembly according to the invention.
  • FIG. 4 is a top plan view diagram showing the orientation of the obstacle detection assemblies according to the invention in the forward portion of a vacuum cleaner robot.
  • FIG. 5 is a block diagram of a robot control system according to the invention.
  • FIG. 6 is a flow chart diagram of a robot control system according to the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • a narrow-beam LED 12 having a beam angle A is mounted to a printed-circuit board 14 such that, when energized, the axis of the beam of the LED 12 is projected in a forward and horizontal direction.
  • a wide-beam LED 16 having a beam angle B is mounted to the board 14 such that, when energized, the axis of the beam of the LED 16 is projected in a forward and horizontal direction.
  • the angle A may be 16 degrees and the angle B may be 80 degrees.
  • the LED 12 may be, for example, a Siemens SFH-484 and the LED 16 a Siemens SFH-485P.
  • a light detector 18 is mounted on the board 14 between the LED 12 and the LED 16.
  • the detector 18 has an acceptance angle C about the same as the angle B and an beam axis parallel to those of the LED 12 and the LED 16.
  • the light detector 18 is an integrated package that includes a modulation pulse circuit to control an LED and a demodulation circuit to detect light in synchronism with the pulse circuit while rejecting ambient light.
  • the light detector 18 may be, for example, a Sharp IS441F.
  • a light-blocking wall 20 is mounted on the board 14 between the LED 12 and the light detector 18 to prevent light from the LED 12 from impinging directly on the light detector 18.
  • a light-blocking wall 22 is mounted on the board 14 between the LED 16 and the light detector 18. Referring to FIG. 3, a schematic diagram of the obstacle detecting assembly 10 is shown.
  • the power terminal 24 of the light detector 18 is connected to a power source +V (e.g-. , +5 volts).
  • a capacitor 26 e.g. , 100 microfarads, 10 volts
  • One terminal of a resistor 28 (e.g., 2 ohms) is also connected to +V.
  • the other terminal of the resistor 28 is connected to the anode of the LED 12.
  • the cathode of the LED 12 is connected to the anode of the LED 16.
  • the cathode of the LED 16 is connected to the emitter of a pnp transistor 30.
  • the collector of the transistor 30 is connected to ground.
  • the base of the transistor 30 is connected to one terminal of a resistor 32 (e.g.
  • the other terminal of the resistor 32 is connected to the modulator output terminal 34 of the light detector 18.
  • the common terminal 36 of the light detector is connected to ground.
  • the output of the light detector 18 appears on the detector output terminal 38.
  • the light detector 18 provides a periodic pulse train (e.g. , a few microseconds out of each fraction of a millisecond) from the modulator output terminal 34 to the base of the transistor 30. This briefly turns on the transistor 30, allowing current to flow th. jgh the LEDs 12, 16.
  • the capacitor 26 stores energy from +V during the time the transistor 30 is off, then provides a large current (0.3 amperes ) through the LEDs 12, 16 when the transistor 30 is pulsed.
  • the resistor 28 limits current through the LEDs 12, 16. Because of the low duty cycle of the periodic pulse train from the modulator output terminal 34, the average current through the LEDs 12, 16 is low (e.g., 15 milliamperes) . When current flows through the LEDs 12, 16, they emit light (e.g., at 880 nanometers). The LED 12 emits a narrow beam of light with a relatively large power density. On the other hand, the LED 16 emits a wide beam of light with a relatively small power density. When light from the LEDs 12, 16 strikes an obstacle, a portion of the light is reflected b.;:_k to the light detector 18. When this reflected light is detected by the light detector 18, the light detector 18 provides a voltage on the terminal 38 indicative thereof.
  • the beam from the LED 12 has a greater range than that of the LED 16, but it provides a limited field of view. Conversely, the LED 1 has a shorter range, but a much wider field of view.
  • the LED 12 provides light for detecting distant obstacles and the LED 16 provides light for detecting proximate obstacles in a wide field of view.
  • FIG. 4 the forward portion of a vacuum cleaner robot 100 is shown.
  • a group of four forward obstacle detection sensors 101, 102, 103, 104 are arranged at the front of the robot 100.
  • Each of the sensors 101, 102, 103, 104 has a forward-looking detection axis D, E, F, G, respectively.
  • a left overhang obstacle detection sensor 105 is located at the left front corner of the robot 100.
  • the sensor 105 has a detection axis H of between 25 and 50 degrees (e.g., 40 degrees) left from the forward direction. In addition, the axis H is oriented from 25 to 35 degrees upward (e.g. , 30 degrees) .
  • the sensor 105 detects obstacles that the robot 100 may be turning towards. In addition, the sensor 105 detects when the robot 100 starts under an overhanging obstacle such as a table or bed.
  • a right overhang obstacle detection sensor 106 is located at the right front corner of the robot 100.
  • the sensor 106 has a detection axis I of between 25 and 50 degrees (e.g.
  • the axis I is oriented from 25 to 35 degrees upward (e.g. , 30 degrees).
  • the sensor 106 detects obstacles that the robot 100 may be turning towards. In addition, the sensor 106 detects when the robot 100 starts under an overhanging obstacle such as a table or bed.
  • Each of the sensors 101, '102, 103, 104, 105, 1CT6 comprises an obstacle detecting assembly 10, except that the sensors 105, 106 have reduced sensitivity to allow the robot 100 to run close to objects at its side, such as walls.
  • the sensors 101, 102, 105 are connected to a left early warning signal terminal 108 and the sensors 103, 104, 106 are connected to a right early warning signal terminal 110.
  • the terminals 108, 110 receive the signal from respective detection assembly 10 output terminals 38.
  • the robot 100 may be programmed to steer around obstacles.
  • a left drop-off sensor 116 is also located in the left front of the robot 100 and a right drop-off sensor 118 is also located in the right front of the robot 100.
  • the sensors 116, 118 each have an unshown downward pointing LED and light detector 18. If the robot 100 encounters a downward step or other drop-off, no light is reflected to the light detector 18 and the affected sensors 116, 118 provide a signal to a left drop-off signal terminal 120 and a right drop-off signal terminal 122, respectively. Here, the function is reversed: no light reflected means stop the robot.
  • a left contact sensor 124 is provided on the left forward and "orner edges of the robot 100. When the contact sensor 124 contacts an obstacle, a signal is provided to a contact signal terminal 126.
  • a right contact sensor 125 is provided on the right forward and corner edges of the robot 100. When the contact sensor 125 contacts an obstacle, a signal is provided to a contact signal terminal 127.
  • a CPU 130 controls drive motors 132 under control of a program contained in a memory 134 and in response to the forward sensors 101, 102, 103, 104, the contact sensor 124, the overhang sensors 105, 106 and the drop-off sensors 116, 118.
  • the CPU 130 responds to signals on the terminals 108, 110, 120, 122, 126, 127.
  • FIG. 6 a flow chart diagram of the contr ⁇ Q. system for the robot 100 is provided.
  • the robot 100 is . travelling forward at normal speed (e.g. , 1 foot/second) at the start of the diagram of FIG. 6.
  • the CPU 130 checks the contact sensors 124, 125 and the drop-off sensors 116, 118 for signals indicating physical contact of the robot 100 with an obstacle or an imminent drop-off, respectively. If such a signal is received, the CPU 130 stops the drive motors 132 (and additionally would back up the robot 100 and steer to avoid the problem) .
  • the CPU 130 checks the sensors 101, 102, 103, 104, 105, 106 for early warning of a remote obstacle (or overhang) . If no early warning is received the CPU starts through the check of all the sensors 124, 125, 116, 118, 101, 102, 103, 104, 105, 106 again. If an early warning is received the CPU 130 slows the drive motors 132 to slow speed (e.g., 10 to 15 percent of normal speed) .
  • slow speed e.g. 10 to 15 percent of normal speed
  • the robot 100 then continues at this slow speed until: contact with an obstacle produces a contact signal from either the left contact sensor 124 or the right contact sensor 125; a drop-off is detected by the drop-off sensors 116, 118; or the robot 100 has travelled a distance X (e.g., 1 foot).
  • a distance X e.g. 1 foot.
  • the CPU 130 stops the drive motors 132 (and additionally would back up the robot 100 and steer to avoid the problem) .
  • the operation of the robot 100 at slow speed in the vicinity of obstacles minimize the chance of the robot 100 damaging itself or the obstacle when contact is finally made. This not only allows rapid operation for most of the time, but also allows the robot 100 to clean as close to obstacles as possible (i.e. touching) without damage.

Abstract

Un ensemble détecteur d'obstacle comprend une diode électroluminescente à faisceau étroit, une diode électroluminescente à faisceau large, ainsi qu'un détecteur de lumière. La diode électroluminescente à faisceau étroit permet d'obtenir une portée accrue alors que la diode électroluminescente à faisceau large fournit une couverture étendue à une plus faible distance. Les ensembles sont situés autour de la partie avant d'un robot-aspirateur et produisent des avertissements concernant des obstacles se trouvant sur le chemin du robot. Lorsqu'un obstacle est initialement détecté, le robot réduit sa vitesse et poursuit sa marche jusqu'à ce qu'il entre en contact avec l'obstacle ou jusqu'à ce qu'il ait parcouru une distance fixe. Les ensembles permettent de détecter non seulement des obstacles, mais également des marches et des meubles en surplomb.
PCT/SE1992/000544 1991-08-07 1992-08-07 Ensemble detecteur d'obstacle WO1993003399A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74168391A 1991-08-07 1991-08-07
US741,683 1991-08-07

Publications (1)

Publication Number Publication Date
WO1993003399A1 true WO1993003399A1 (fr) 1993-02-18

Family

ID=24981733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1992/000544 WO1993003399A1 (fr) 1991-08-07 1992-08-07 Ensemble detecteur d'obstacle

Country Status (1)

Country Link
WO (1) WO1993003399A1 (fr)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000038026A1 (fr) * 1998-12-18 2000-06-29 Dyson Limited Ensemble de capteurs
WO2004005956A1 (fr) 2002-07-08 2004-01-15 Alfred Kärcher Gmbh & Co. Kg Dispositif de detection et appareil de nettoyage du sol automoteur comprenant un tel dispositif de detection
EP1265119A3 (fr) * 2001-06-05 2005-03-23 Matsushita Electric Industrial Co., Ltd. Aspirateur autonome
US6885912B2 (en) * 1998-05-11 2005-04-26 F Robotics Acquistions Ltd. Area coverage with an autonomous robot
EP2386877A1 (fr) * 2010-05-11 2011-11-16 Samsung Electronics Co., Ltd. Système capteur et robot mobile doté de celui-ci
CN103890607A (zh) * 2011-08-19 2014-06-25 Sca卫生用品公司 用于检测盥洗室内至少一个待整理物体存在的装置和方法
EP2927768A3 (fr) * 2014-03-31 2015-11-18 Robert Bosch Gmbh Procédé de fonctionnement d'une plate-forme mobile automatique
EP2790079A3 (fr) * 2013-04-11 2017-08-16 Samsung Electronics Co., Ltd. Robot de nettoyage
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9820433B2 (en) 2012-12-28 2017-11-21 Positec Power Tools (Suzhou Co., Ltd.) Auto mowing system
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10045676B2 (en) 2004-06-24 2018-08-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10296007B2 (en) 2014-10-10 2019-05-21 Irobot Corporation Mobile robot area cleaning
US10420447B2 (en) 2001-01-24 2019-09-24 Irobot Corporation Autonomous floor-cleaning robot
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10557936B2 (en) * 2017-06-30 2020-02-11 Gopro, Inc. Target value detection for unmanned aerial vehicles
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
WO2020224782A1 (fr) * 2019-05-09 2020-11-12 Aktiebolaget Electrolux Détection d'objets à l'aide d'un réseau de lignes
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11278173B2 (en) 2002-01-03 2022-03-22 Irobot Corporation Autonomous floor-cleaning robot
US11465293B2 (en) 2018-07-31 2022-10-11 Bissell Inc. Autonomous floor cleaner
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
EP3877792A4 (fr) * 2018-11-07 2022-11-02 SharkNinja Operating LLC Optique d'éclairage pour robot nettoyeur
US11583158B2 (en) 2018-08-01 2023-02-21 Sharkninja Operating Llc Robotic vacuum cleaner
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530056A (en) * 1982-10-28 1985-07-16 Modular Automation Corp. Automated guided vehicle system
WO1988007711A1 (fr) * 1987-03-24 1988-10-06 Fraunhofer Gesellschaft Zur Förderung Der Angewand Procede pour guider un vehicule automoteur et vehicule automoteur
US4996468A (en) * 1987-09-28 1991-02-26 Tennant Company Automated guided vehicle
US5023790A (en) * 1989-02-17 1991-06-11 Whs Robotics Automatic guided vehicle system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530056A (en) * 1982-10-28 1985-07-16 Modular Automation Corp. Automated guided vehicle system
WO1988007711A1 (fr) * 1987-03-24 1988-10-06 Fraunhofer Gesellschaft Zur Förderung Der Angewand Procede pour guider un vehicule automoteur et vehicule automoteur
US4996468A (en) * 1987-09-28 1991-02-26 Tennant Company Automated guided vehicle
US5023790A (en) * 1989-02-17 1991-06-11 Whs Robotics Automatic guided vehicle system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Vol. 9, No. 64, P-343; & JP,A,59 198 377, 10-11-1984, (NIPPON JIDOSHA BUHIN SOGO KENKYUSHO K.K). *

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885912B2 (en) * 1998-05-11 2005-04-26 F Robotics Acquistions Ltd. Area coverage with an autonomous robot
US7155309B2 (en) 1998-05-11 2006-12-26 F Robotics Ltd. Area coverage with an autonomous robot
US6493612B1 (en) 1998-12-18 2002-12-10 Dyson Limited Sensors arrangement
GB2353095B (en) * 1998-12-18 2003-08-20 Notetry Ltd Sensors
WO2000038026A1 (fr) * 1998-12-18 2000-06-29 Dyson Limited Ensemble de capteurs
US10517454B2 (en) 2001-01-24 2019-12-31 Irobot Corporation Autonomous floor-cleaning robot
US10420447B2 (en) 2001-01-24 2019-09-24 Irobot Corporation Autonomous floor-cleaning robot
US10433692B2 (en) 2001-01-24 2019-10-08 Irobot Corporation Autonomous floor-cleaning robot
EP1265119A3 (fr) * 2001-06-05 2005-03-23 Matsushita Electric Industrial Co., Ltd. Aspirateur autonome
US6901624B2 (en) 2001-06-05 2005-06-07 Matsushita Electric Industrial Co., Ltd. Self-moving cleaner
US11278173B2 (en) 2002-01-03 2022-03-22 Irobot Corporation Autonomous floor-cleaning robot
US7225500B2 (en) 2002-07-08 2007-06-05 Alfred Kaercher Gmbh & Co. Kg Sensor apparatus and self-propelled floor cleaning appliance having a sensor apparatus
WO2004005956A1 (fr) 2002-07-08 2004-01-15 Alfred Kärcher Gmbh & Co. Kg Dispositif de detection et appareil de nettoyage du sol automoteur comprenant un tel dispositif de detection
US10893787B2 (en) 2004-06-24 2021-01-19 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US10045676B2 (en) 2004-06-24 2018-08-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8794367B2 (en) 2010-05-11 2014-08-05 Samsung Electronics Co., Ltd. Sensing system and moving robot having the same
CN102288969B (zh) * 2010-05-11 2015-01-14 三星电子株式会社 感测系统和具有该感测系统的移动机器人
CN102288969A (zh) * 2010-05-11 2011-12-21 三星电子株式会社 感测系统和具有该感测系统的移动机器人
EP2386877A1 (fr) * 2010-05-11 2011-11-16 Samsung Electronics Co., Ltd. Système capteur et robot mobile doté de celui-ci
US9875634B2 (en) 2011-08-19 2018-01-23 Sca Hygiene Products Ab Means and method for detecting the presence of at least one object to be tidied in a washroom
US20180102040A1 (en) * 2011-08-19 2018-04-12 Sca Hygiene Products Ab Means and method for detecting the presence of at least one object to be tidied in a washroom
CN103890607A (zh) * 2011-08-19 2014-06-25 Sca卫生用品公司 用于检测盥洗室内至少一个待整理物体存在的装置和方法
US10803725B2 (en) 2011-08-19 2020-10-13 Essity Hygiene And Health Aktiebolag Means and method for detecting the presence of at least one object to be tidied in a washroom
US20140211591A1 (en) * 2011-08-19 2014-07-31 Sca Hygiene Products Ab Means and method for detecting the presence of at least one object to be tidied in a washroom
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10555456B2 (en) 2012-12-28 2020-02-11 Positec Power Tools (Suzhou) Co., Ltd. Auto mowing system
US9820433B2 (en) 2012-12-28 2017-11-21 Positec Power Tools (Suzhou Co., Ltd.) Auto mowing system
EP2790079A3 (fr) * 2013-04-11 2017-08-16 Samsung Electronics Co., Ltd. Robot de nettoyage
US9918603B2 (en) 2013-04-11 2018-03-20 Samsung Electronics Co., Ltd. Sensor module and robot cleaner having the same
US11103115B2 (en) 2013-04-11 2021-08-31 Samsung Electronics Co., Ltd. Sensor module and robot cleaner having the same
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
EP2927768A3 (fr) * 2014-03-31 2015-11-18 Robert Bosch Gmbh Procédé de fonctionnement d'une plate-forme mobile automatique
EP2927768B1 (fr) 2014-03-31 2020-09-02 Robert Bosch GmbH Procédé de fonctionnement d'une plate-forme mobile automatique
US9637123B2 (en) 2014-03-31 2017-05-02 Robert Bosch Gmbh Method for operating a self-propelled mobile platform
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US11385653B2 (en) 2014-10-10 2022-07-12 Irobot Corporation Mobile robot area cleaning
US10296007B2 (en) 2014-10-10 2019-05-21 Irobot Corporation Mobile robot area cleaning
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11933891B2 (en) 2017-06-30 2024-03-19 Gopro, Inc. Target value detection for unmanned aerial vehicles
US10557936B2 (en) * 2017-06-30 2020-02-11 Gopro, Inc. Target value detection for unmanned aerial vehicles
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
US11465293B2 (en) 2018-07-31 2022-10-11 Bissell Inc. Autonomous floor cleaner
US11583158B2 (en) 2018-08-01 2023-02-21 Sharkninja Operating Llc Robotic vacuum cleaner
EP3877792A4 (fr) * 2018-11-07 2022-11-02 SharkNinja Operating LLC Optique d'éclairage pour robot nettoyeur
WO2020224782A1 (fr) * 2019-05-09 2020-11-12 Aktiebolaget Electrolux Détection d'objets à l'aide d'un réseau de lignes
JP2022537248A (ja) * 2019-05-09 2022-08-25 アクチエボラゲット エレクトロルックス ラインアレイを用いた物体の検出
CN113841098A (zh) * 2019-05-09 2021-12-24 伊莱克斯公司 使用线阵列检测物体

Similar Documents

Publication Publication Date Title
WO1993003399A1 (fr) Ensemble detecteur d'obstacle
US20210145234A1 (en) Navigational control system for a robotic device
EP2455776B1 (fr) Module de capteur à infrarouges
US20190223674A1 (en) Debris sensor for cleaning apparatus
US4849731A (en) Scanning obstacle detection apparatus
US11453123B2 (en) Robotic device with time-of-flight proximity sensing system
US20100049364A1 (en) Navigational Control System for a Robotic Device
JPS6294288A (ja) 衝突防止装置
US4958068A (en) Dual bumper-light curtain obstacle detection sensor
GB2225221A (en) Nozzle arrangement on robot vacuum cleaning machine
JP2839128B2 (ja) 移動ロボット
US4823901A (en) Apparatus and method for detecting faults in an obstacle detection system
US20230341528A1 (en) Optical time of flight sensor for navigation systems in robotic applications
US11921205B2 (en) Method for eliminating misjudgment of reflective lights and optical sensing system
GB2208433A (en) Detecting water droplets on a vehicle window and controlling windscreen wiper in response thereto
KR20220021980A (ko) 청소 로봇 및 그 제어 방법
KR20060099831A (ko) 일원화된 바닥감지 기능과 장애물감지 기능을 가지는이동로봇
EP0377680A1 (fr) Appareil de detection d'obstacles par balayage
US20180239022A1 (en) Distance measuring device and distance measuring method
JPH07248824A (ja) 搬送装置
US4853532A (en) Specular surface inhibit
KR100648417B1 (ko) 자율이동로봇의 접촉센싱장치 및 그 제어방법
JPS6196484A (ja) 光反射型物体検出装置
JP2001264011A (ja) 光学式タッチパネル装置
JP3132871B2 (ja) ビームセンサシステム

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992917736

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992917736

Country of ref document: EP