WO1993002219A1 - Procede pour la purification du minerai de cuivre ou de son alliage - Google Patents

Procede pour la purification du minerai de cuivre ou de son alliage Download PDF

Info

Publication number
WO1993002219A1
WO1993002219A1 PCT/JP1992/000358 JP9200358W WO9302219A1 WO 1993002219 A1 WO1993002219 A1 WO 1993002219A1 JP 9200358 W JP9200358 W JP 9200358W WO 9302219 A1 WO9302219 A1 WO 9302219A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
copper
slag
oxide
raw material
Prior art date
Application number
PCT/JP1992/000358
Other languages
English (en)
French (fr)
Inventor
Takashi Nakamura
Kenji Osumi
Kiyomasa Oga
Motohiro Arai
Ryukichi Ikeda
Eiji Yoshida
Hirofumi Okada
Ryusuke Hamanaka
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19998591A external-priority patent/JP2636985B2/ja
Priority claimed from JP30853491A external-priority patent/JP2561986B2/ja
Priority claimed from JP30853591A external-priority patent/JP2561987B2/ja
Priority claimed from JP30853691A external-priority patent/JP2515071B2/ja
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to DE69229387T priority Critical patent/DE69229387T2/de
Priority to US07/988,960 priority patent/US5364449A/en
Priority to EP92907624A priority patent/EP0548363B1/en
Priority to CA002091677A priority patent/CA2091677C/en
Publication of WO1993002219A1 publication Critical patent/WO1993002219A1/ja
Priority to FI931112A priority patent/FI104268B/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0052Reduction smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining

Definitions

  • the present invention relates to a method for purifying copper or a copper alloy from a copper raw material containing copper or a copper alloy, and more particularly, to Pb, Ni, Sb, S, Bi, As, or Fe, Sn, Z.
  • the present invention relates to a method for purifying a copper or copper alloy raw material containing an impurity element such as n by efficiently removing the impurity element.
  • copper has excellent thermal and electrical conductivity, and is widely and widely used in heat exchangers, electricity, materials for compress parts, materials, and the like. Copper is less expensive than iron, etc., and is expensive. Therefore, from the viewpoint of effective use of resources, used copper or copper alloy scrap or copper or copper alloy scrap generated after processing (hereinafter referred to as the Is sometimes simply referred to as copper scraps) and collected for reuse.
  • copper scrap contains a large amount of impurity components such as dissimilar metal materials, metal, solder, plating, and insulators, and as such, is unsuitable for components and its use is severely restricted.
  • the copper chips are manually sorted before dissolving, and the impurities are removed by performing magnetic separation and the like.
  • this method is dependent on humans, there are limitations on the sorting ability, throughput, etc.
  • the elements for example, t ⁇ ⁇ i, Sb, S-7-i3i, ⁇ ⁇ or e, 'n, Zn, etc.
  • the method which is considered to be relatively effective is the method disclosed in Japanese Patent Application Laid-Open No. 61-217538.
  • this method a small amount of phosphorus is added to the copper scrap after melting, and the impurity is floated and separated by oxidation treatment together with a part of the phosphorous oxide, and then the molten metal is kept in a highly oxidized state. After removing residual phosphorus by oxidation, it is subjected to a reduction treatment to remove oxygen.
  • Fe, Sn, Zn, etc. can be removed relatively efficiently, but Pb, Ni, Sb, S, Bi, or As is difficult to remove.
  • there is a problem that a considerable amount of P is mixed in the purified copper.
  • the present invention has been made in view of the above circumstances, and its purpose is to dissolve and refine a raw material containing copper or copper alloy scraps or a copper raw material called a blister before purification. To efficiently separate and remove Pb, N ⁇ , Sb, S, Bi, As or Sn, Fe, Zn contained in the copper raw material and recover it as high-quality copper. To provide a possible purification method Things. B month
  • the configuration of the refining method according to the present invention is used for refining a copper or copper alloy raw material containing at least one of Pb, Ni, Sb, S, Bi, and As.
  • Step 1 Step of melting copper or copper alloy raw material
  • Step 2 While increasing the oxygen concentration in the molten metal,
  • At least i selected from the group consisting of Fe, Fe oxide, Mn, and Mn oxide is added, and Pb, Ni, Sb, S, Bi, and As in the molten metal are converted to Fs. e and / or slag as a composite oxide of Mn,
  • Step 3 a step of removing generated slag
  • Step 4 a step of subjecting the moisture to a source treatment
  • copper or copper alloy contains at least one of Pb, Ni, Sb, S, Bi, As and at least one of Sn, Fe, and Zn,
  • Step 1 Step of melting copper or copper alloy raw material
  • Step 2a A step of oxidizing Sn, Fe, and Zn in the molten metal by increasing the oxygen concentration in the molten metal to form a slag.
  • Step 2b Fe, Fe oxidation of the molten metal. At least one selected from the group consisting of oxides, Mn and Mri oxides, and Pb, Ni, Sb, S, Bi, and As in the molten metal are Fe. And slag as a composite oxide of Mn and Mn,
  • Step 3 a step of removing generated slag
  • Step 4 Step of reducing the molten metal
  • step 2a by adjusting the oxygen concentration in the molten metal to be not less than 500 ⁇ , the Sn, Fe, and ⁇ can be more efficiently slagged and separated by flotation.
  • step 2 or 2b at least one of Fe, Fe oxide, Mn, and Mn oxide (more preferably, Fe and / or Fe oxide) is added to the weight of the molten metal. 10 to 50,000 ppm, and as a method of addition, a method of spraying on the surface of the molten metal is adopted, and the molten metal is stirred by inert gas publishing or the like, and the resulting composite oxide is turned into slag on the surface of the molten metal. By floating, Pb, Ni, Sb, S, Bi, and As in the molten metal can be more efficiently removed.
  • Si0 2 - sediment thereto by adding A 0 3 based flux It is better to remove it after attaching it.
  • Si0 used 2 - A1 2 0 3 based fluxes are, when the Si0 2 and A1 2 0 3 100 parts by weight of the total amount of, Si0 2: 70 to 90 parts by weight of A1 2 0 3: 30 ⁇
  • the amount is preferably in the range of 10 parts by weight, and the amount of addition is preferably in the range of 0.005 to 0.10% based on the total weight of the molten metal.
  • the addition of the solid or gaseous reducing agent (preferably, the solid reducing agent) and the blowing of the inert gas are performed in parallel.
  • FIG. 1 is a graph showing the relationship between the oxygen concentration of the molten metal after the oxidation treatment in step 2a and the impurity metal element concentration in the molten metal.
  • FIG. 2 is a graph showing, in comparison, the Sn concentration in the molten metal when the oxidation treatment in step 2a was performed in an induction melting furnace and a reflection furnace.
  • FIG. 3 is a graph showing the relationship between the oxygen concentration in the melt and the Pb concentration of the melt in step 2a.
  • FIG. 4 is a graph showing the Ni concentration in the molten metal in which only the oxidation treatment in step 2a was performed, and in the case where the composite oxide formation processing in step 2 or 2b was performed thereafter. is there.
  • FIG. 5 is a graph showing the relationship between the amount of Fe added and the Ni concentration in the molten metal in step 2 or 2b.
  • FIG. 6 is a graph showing the relationship between the oxygen concentration in the melt and the Ni fishing rate in the melt in step 2 or 2b.
  • FIG. 7 is a graph showing the effect of the Fe oxide addition form on the effect of removing Ni from the molten metal when performing step 2 or 2b.
  • FIG. 8 is a graph showing the relationship between the Fe concentration in the molten metal and the method of adding the Fe oxide in Step 2 or 2b.
  • FIG. 9 is a graph showing the relationship between the presence or absence of Ar blowing in step 2 or 2b and the effect of removing the impurity metal element.
  • FIG. 10 is a graph showing the relationship between the effect of removing impurity metal elements and the amount of Fe oxide sprayed in step 2 or 2b.
  • FIG. 11 shows that the addition form of Fe in step 2 or 2b 4 is a graph showing shadow hairs affecting the removal effect of P b and Ni.
  • FIG. 12 is a graph showing a change in the concentration of the impurity metal element in the molten metal due to the retention after the complex oxide forming treatment in step 2 or 2b.
  • FIG. 13 is a graph showing the relationship between the number of repetitions and the amount of impurity elements in the molten metal when the composite oxide forming treatment of step 2 or 2b is repeated a plurality of times.
  • FIG. 14 is a graph showing the relationship between the temperature of the molten metal and the concentration of impurity elements in the molten metal at the time of removing the slag in step 3.
  • the first FIG. 5 is a C u 2 0 and S i 0 2 state diagram.
  • the first 6 figure, C u O (and C u0 2) and A 1 - is a state diagram of 0 3.
  • FIG. 17 is a graph showing the relationship between the reduction treatment time in step 4 and the gas concentration on the surface of the molten metal.
  • FIG. 18 is a graph showing the relationship between the reduction treatment time in step 4 and the gas concentration on the surface of the molten metal.
  • FIG. 19 is a schematic diagram showing the state of the molten metal interface before the reduction treatment in step 4.
  • FIG. 20 is a schematic diagram showing the state of the molten metal interface at the time of the source processing in step 4.
  • FIG. 21 is a graph showing the relationship between the injection or time of Ar gas injection during the reduction treatment in step 4 and the oxygen concentration in the molten metal.
  • Fig. 22 is a graph showing the relationship between the Ar gas injection or blowing time and oxygen concentration in the molten metal during the reduction treatment in step 4. It is rough.
  • FIG. 23 is a graph showing the relationship between the reduction treatment time in step 4 and the amount of oxygen in the molten metal.
  • FIG. 24 is a graph showing the relationship between the reduction treatment time in step 4 and the amount of oxygen in the molten metal.
  • Sn, Fe, and Zn can be easily obtained by supplying a gaseous oxygen source (oxygen gas, air, etc.) or a solid oxygen source (eg, CuO, etc.) to the dissolved raw material. Since it is oxidized and floats on the surface of the molten metal as oxide, it can be easily removed.
  • a gaseous oxygen source oxygen gas, air, etc.
  • a solid oxygen source eg, CuO, etc.
  • the method comprises one selected from the group consisting of Fe, Fe oxide, Mn, and M n oxide.
  • Fe (Mn) -based flux Using flux (hereinafter sometimes referred to as Fe (Mn) -based flux), Pb, Ni, Sb, S, Bi, and As are removed as a composite oxide of Fe and / or Mn. The step of removing is added.
  • step 1 oxygen is removed by reducing the molten metal to obtain copper from which impurity elements have been removed. And the processing of them, Fe, When Sn and Zn are not contained, the above steps 1, 2, 3, and 4 are carried out in this order, while Pb, Ni, Sb, S, Bi, As When Fe, Sn, and Zn are included together with at least one of the above, the steps are performed in the order of step 1, step 2a, step 2b, step 3, and step 4.
  • This step is a step of dissolving the copper raw material as the first step of the purification method according to the present invention.
  • Copper raw materials include copper incineration wire scraps produced by incinerating the resin coating on the surface of compress wires, Ni-plated copper wire scraps, fin materials, plate materials, pipe materials, etc. obtained from waste materials such as mature exchangers.
  • Various copper scraps such as J1 or blisters generated by cutting of products or blisters are used, and these may be mixed with remaining hot water of refined copper or remaining hot water that may be generated in the manufacturing process. It can also be used.
  • As the melting furnace a known furnace such as a reflection furnace or an induction melting furnace may be used.
  • This step is used when the raw material contains one or more of Fe, Sn, and Zn, and supplies a solid, Z, or gaseous oxygen source to the molten metal.
  • the oxygen concentration is increased, and the Sn, Fe, and Zn contained in the molten metal are turned into slag as oxides. That is, Sn, Fe, and Zn in the molten metal can be relatively easily removed because they are easily oxidized by the oxidation treatment of the molten metal to form slag and float on the surface of the molten metal. .
  • Oxygen or air (generally, air) is used as a source of oxygen in the form of oxygen, and a gaseous oxidant such as air is more preferable as the oxidant.
  • a gaseous oxidant such as air is more preferable as the oxidant.
  • most of Zn tends to be oxidized after evaporating to the surface of the molten metal. It is desirable to use.
  • the solid oxygen source may be sprayed on the surface of the melt or blown into the melt together with the carrier gas, but the most efficient method is to blow into the melt.
  • the gaseous oxygen source is supplied by a method of blowing upward toward the surface of the molten metal or a method of blowing the molten oxygen into the molten metal, and a more preferable method is a method of blowing into the molten metal.
  • This oxidation step may be performed using only one of the solid oxygen source and the gaseous oxygen source, or both may be used together.
  • the solid oxygen source may be applied to the surface of the molten metal.
  • a method of spraying and blowing a gaseous oxygen source into the molten metal, a method of blowing a solid oxygen source together with the gaseous oxygen source into the molten metal, and the like can be employed.
  • the supply amount of the solid oxygen source or gaseous oxygen source should be adjusted so that the oxygen concentration in the molten metal is 500 ppm or more. It is desirable to control.
  • Fig. 1 shows a high-frequency induction melting furnace with a capacity of 3 tons, and a copper raw material (Cu-1 wt% Fe-1 wt% Sn-1 wt% Zn-1 wt% Pb).
  • a copper raw material Cu-1 wt% Fe-1 wt% Sn-1 wt% Zn-1 wt% Pb.
  • Fe and Zn can be sufficiently reduced by setting it to 500 ⁇ or more.
  • Fig. 3 shows the result of examining the relationship between the oxygen concentration and the Pb concentration in the molten metal by the oxidation treatment in the same experiment as above, and the Pb in the molten metal was removed by simple oxidation treatment alone. Unfortunately, a large amount of oxygen must be supplied. This tendency was the same for Ni, and it was confirmed that Ni was more difficult to remove by oxidation than Pb.
  • This oxidation step is performed to remove Fe, Sn, and Zn contained in the raw materials. ⁇ If you use raw materials that do not contain elements, you do not need to perform this step.
  • the slag generated in this step may be removed once before moving to the next step, or the next step may be carried out while leaving it on the surface of the molten metal, and may be removed at once in step 3. .
  • At least one selected from the group consisting of Fe, Fe oxide, Mn, and Mn oxide is added to the molten metal, and Pb, Ni, Sb, S, Bi in the molten metal are added. , As are removed.
  • Pb, Ni, Sb, S, Bi, As in the molten metal are oxidized as compared with Fe, Sn, Zn. Difficult, cannot be successfully removed by simply oxidizing the molten metal.
  • one or more of Fe, Fe oxide, Mn, and Mn oxide are added to the molten metal, and Pb, Ni, Sb, S, Bi, As are expressed as Fe and / or Mn. It was confirmed that when the composite oxide was used, the composite oxide floated on the surface of the molten metal as slag and could be easily removed.
  • Fig. 4 shows the results when the lump copper melt containing lOOOOppra Ni was used.
  • Fig. 5 shows the result of examining the relationship between the amount of Fe added to remove Ni and the Ni concentration in the molten copper raw material (however, the treatment temperature was set to 1200 and the oxygen concentration was set to 100000ppffl). It can be seen that, in order to efficiently remove Ni from the molten metal, it is necessary to add Fe at least twice the amount of Ni in the molten metal.
  • FIG. 6 is Ru der shows the results of examining the oxygen concentration of the copper material in the molten metal and (0 2 ZN i ratio) the relationship between N i concentration in the melt.
  • the molten metal temperature was 1200
  • the amount of Fe added was 4 times the Ni concentration in the molten metal
  • the oxygen concentration was adjusted by the amount of air blown.
  • Ni in the molten metal can be efficiently removed if the oxygen concentration in the molten metal is set to at least twice the Ni concentration.
  • Ni (or Pb) is a complex oxide with Fe (or Mn) [Ni (or Pb) adheres to the Fe (or Mn) oxide. , Including the melted state].
  • the method 3 is the most preferable in increasing the removal efficiency of Ni (or Pb, Sb, S, Bi, As), and the method 2 is the next.
  • the method (1) does not provide a sufficient Ni (or Pb, Sb, S, Bi, As) removal effect
  • the method (2) also has a considerably superior Ni (or Pb, Sb).
  • b, S, B i, A s) The removal effect can be obtained.
  • the most preferable method is the method (1). The following experiments were conducted to confirm these trends. Show data.
  • Results First Figure 7 is the N i initial concentration use the copper raw material melt is Iotaomikuron'omikuronroroita, the case where the treatment temperature was set to 1200'C, examined the relationship between the addition form of Fe 2 0 3 and N i removal efficiency It is shown. As is evident from this figure, the most effective method is to use both Fe 2 O 3 spray and Fe 2 O 3 Ar injection in order to increase the Ni removal efficiency. induction ⁇ of Fe 2 0 3 scatter and molten metal properly is simultaneously blown method, the most bad is Fe 2 0 s and a r to use a a r public ring.
  • the Figure 8 is shows the results of examining the ⁇ of F e 3 ⁇ 4 of the Fe 2 0 3 amount in the melt for the case where various changed Fe 2 0 3 addition form, from FIG. obvious that as the Fe 2 0 3 the blown method is adopted to increase the F e concentration of the melt is markedly into the molten metal, it can be seen that rather inhibits purification effect. In contrast the case where a method of spraying a Fe a (to the melt surface, F e concentration in the melt even when increasing the Fe 2 0 3 added pressure amount does not go N ⁇ .
  • Figure 9 is use the copper alloy melt containing respectively iOOppm a P b and N i, at a treatment temperature of 1200 * C, spraying of Fe 2 0 3 only, there have the Fe 2 0 3 scatter and A r public
  • This figure shows the results of examining the relationship between the processing time and the concentrations of Ni and Pb in the molten metal in the case of using the alloying together.
  • the effect of the melt agitation by A r blowing was not observed almost, N i and P b in the molten metal can be sufficiently removed by simply spraying the Fe 2 0 3 You can see that.
  • F e relative solution water 2000ppm
  • Fe 2 O a 2 wt%
  • Fe 3 0 4 The result of examining the effect of removing Ni and Pb when 2% by weight was sprayed on a hot water surface and left for 3 minutes was shown.
  • the F e oxide as is also clear from this figure is the most effective Fe 2 0 a, Fe a 0 4 and F e even considerable N i (or P b) to obtain the removal effect I can do it.
  • the molten metal after treatment may be static depending on the particle size of the generated oxide or composite oxide. Floating fine granular products by placing and calming Is considered to be effective. Therefore, a molten copper raw material containing lOOppra each of Fe, Sn, Zn, Ni, and Pb was used.
  • step 2a the oxygen concentration was increased to lOOOOppm by air publishing to produce Without removing the oxides that form, as step 2b, Fe 2 O 3 was sprayed at 2% by weight based on the weight of the molten metal, and the impurity metal concentration immediately after induction stirring for 15 minutes, and then Induction The search was stopped and the melt was calmed down. After 1 hour, the impurity element concentration was examined. The results shown in Fig. 12 were obtained.
  • Step 2a and Step 2b are performed successively, the oxides of F e, Sn, and Zn generated in the oxidation step of Step 2a are fine, Even during the treatment in step 3, a part of the oxide is dispersed in the molten metal, but by calming the molten metal, these fine oxides float on the surface of the molten metal, and the F The contents of e, Sn and Zn are considerably reduced.
  • the portability of Pb and Ni hardly changed before and after quenching, and therefore composite oxides such as Pb and Ni would be floated and separated on the molten metal surface immediately. Seem.
  • the preferred addition amount of Fe, Mn and their oxides added in step 2b based on the weight of the molten metal is in the range of 10 to 50.000 PPM per step. That is, this step 2b may be performed only once when the amount of the impurity metal element to be removed is relatively small, but it is often performed a plurality of times when the amount of the impurity metal element to be removed is large. In this case, it is desirable that the amounts of Fe, Mn, and their oxides added in each step be within the above ranges.
  • Fig. 1.3 shows how Ni and Pb are reduced when the process 2b is repeated several times, using a copper melt containing lOppm each as Ni and Pb. It can be seen that as the number of repetitions increases, the amount of impurity elements decreases.
  • the treatment temperature is set to, for example, about 1200 to 1230 * C, preferably about 1100 to 1200 so that the slag generated in step 2 or 2b becomes a sticky solid or semi-molten state.
  • the control is preferable because oxides and composite oxides floating on the surface of the molten metal are well captured by the slag.
  • step 2 the slag floating on the surface of the molten metal after the completion of step 2 or 2b is removed. It is advisable to remove the slag according to the usual method, but it is preferable to add the following measures at the time of the slag removal, because the workability is improved and the Cu loss can be suppressed to increase the Cu yield. .
  • the slag floating on the surface of the molten metal at the end of the step 2 or 2b contains a large amount of impurities generated in the oxidation step together with the oxides of the impurity elements and the composite oxides with Fe and Mn as described above.
  • Copper oxide (especially Cu 20 ) is contained.
  • copper oxide is used as a matrix component and floats on the surface of the molten metal in a state where the oxides of the above-mentioned impurity elements and composite oxides are dispersed. are doing. Therefore, if this slag is removed from the molten metal surface without any contrivance, an equivalent amount of copper oxide is taken out together with the impurity metal component, and the Cu loss may increase so that Cu loss cannot be neglected.
  • the temperature of the molten metal is raised to a temperature higher than the temperature at which the copper oxide dissolves in the molten metal.
  • This is a method of removing some of the slag after returning to the molten metal, and the preferred temperature at this time is in the range of 1225 to 00.
  • step 14 shows that after the copper alloy containing lOOppm each of Fe, Sn, Ni, and Pb was dissolved in the atmosphere, the oxygen concentration was increased to 10,000 ppm by blowing air in step 2a, and in subjected to induction ⁇ the Fe 2 0 3 double against molten metal weight was sprayed on soluble water surface, then in the case of performing the skimming after raising the melt temperature to 1200-1400, skimming
  • the relationship between the temperature of the previous molten metal and the weight of the removed slag weight ratio when the weight of the removed slag is 100 when the temperature of the molten metal is 1200
  • the impurity element concentration of the obtained molten metal are examined. It is shown.
  • the amount of the removed slag can be reduced to about 1/10, and the copper discharged together with the impurity metal oxide can be reduced. It can be seen that the amount of oxide can be significantly reduced. Moreover the heating temperature 1400 e C or less, do it suppressed Ri certainty below 1370'C good, impure elements there is no possibility to return to the melt Te cowpea to raise the temperature.
  • the temperature of the molten metal at the time of removing slag should be set in the range of 1230-1370 . Then as a good or correct means for increasing the efficiency of removal of slag, Si0 2 on the surface of the molten metal - adding A1 2 0 3 based flux, the slag is above floating on the molten metal surface were allowed to adhere to the flux There is a method of removing.
  • This method facilitates the removal of slag by attaching the slag to a flux that has poor wettability with respect to the molten copper and has good wettability with respect to the slag floating on the surface of the molten metal.
  • action of SiO a and [alpha] 1 2 0 3 in said Si0 2 ⁇ ⁇ 1 8 ⁇ 3 based flux can and described child as follows.
  • the copper melt has the effect of wettability adsorbs good slag and slag of poor yet melt surface wettability, reaction of Cu 2 0 and Si0 2 which is a main component of slag of the following It is on the street. That first 5 Figure Cu 2 0 - indicates Si0 2 system equilibrium diagram, the melting point of Cu 2 0 is Ru 1230 der. Therefore, at a normal temperature of 1100 to 1200 at which the copper raw material is melted, Cu 20 exists in a semi-molten state.
  • Si0 2 has a melting point of about 1700, the Te dissolution temperature odor copper are present in a solid state, because the eutectic point is present in the Si0 2 8% in Cu 2 0- Si0 2 system, Si0 As 2 increases by more than 8%,
  • the Cu 2 0 * A1 2 0 3 Cu 2 0 and A1 2 0 3 are more stable compound at a temperature in the vicinity of 1200 Generate.
  • the Cu 2 0'Al 2 0 s may be easily broken, and also has a work is A1 2 0 3 for adsorbing slag because they exist in solid and A1 3 0, copper Since the separability from the molten metal is also good, the workability and efficiency of removing the slag can be significantly improved.
  • the viscosity of the slag on the surface of the molten metal is low.
  • the amount of the flux is preferably in the range of 0.005 to 0.10% based on the weight of the molten metal, based on the experimental results shown in Table 2 below.
  • the hula Tsu box is pure Si0 2 and A1 2 0 3 other but were mixed at a predetermined ratio, and out naturally occurring as a Si0 2 source and A1 2 0 3 source
  • CaAl 2 SiO e (Anorthite) ⁇ NaAlSiaOe (Albite), KAl 2 (Si 3 Al) 0, o (OH. F) 2 (Muscorite) , or the like can be a child to be used as the raw material.
  • Raw material Electric copper ingot 80% Commercial copper scrap 20%
  • Step 4 (reduction step):
  • the oxygen taken in the molten metal in the step 2, 2a or 2b of removing the impurity metal element is removed. That is, in Steps 2, 2a and 2b, a considerable amount of oxygen (or air) is blown or an oxide is added to oxidize and remove the impurity element components.
  • the molten metal contains a large amount of oxygen (usually over 100 ppm).
  • a reduction process to reduce the oxygen concentration to less than about 200 ppm is essential to meet the copper alloy specifications.
  • This reduction can, of course, be performed according to a conventional method, but the oxygen concentration of the molten copper after steps 1 to 3 is extremely high as described above. Therefore, in order to reduce the oxygen concentration of the molten copper to the target level in a short time, it is desired to employ the following reduction method. That is, as a preferable reduction method to be carried out as the step 4, a reducing agent is added to the surface of the copper melt, and at the same time, an inert gas is blown into the melt and an inert gas is blown into Z or the melt surface. A reduction is made by attaching a tag.
  • C 0 gas such as 2 and CO generated, some of which are part while being dispersed release upwardly dissolves into the melt. And it crowded only soluble to the melt of oxygen present in these C 0 2 and CO gas and molten metal is thus trapped in the partial pressure difference into the inert gas bubbles blown into the molten metal, the molten metal with an inert gas Dissipated outside. At this time, if the inert gas is also sprayed onto the surface of the molten metal, oxygen floating on the surface of the molten metal is quickly dissipated into the upper space without dissolving into the molten metal again. That is, reduction can be performed more efficiently.
  • C 0 gas such as 2 and CO generated
  • a solid reducing agent such as charcoal and a gaseous reducing agent such as hydrogen and C 0 can be used, and a powdery solid reducing agent such as charcoal is more preferable.
  • Oxygen present as oxide is Cu 2 0 + C—2 Cu + C0 T
  • Oxygen dissolved in the molten metal as a gas is as follows: 0 2 + 2C-2C0 Cu Cu 20 and 02 in the molten metal are reduced by C of charcoal and released as CO gas.
  • the reduction reaction is expected to proceed mainly by the following reaction. That is, when a reducing agent such as charcoal is sprayed on the surface of the molten metal,
  • FIG. 17 shows the change in gas intensity just above the surface of the molten metal by gas chromatography, and when charcoal (C) was added to the surface of the molten metal, O 2 gas and CO 2 gas were rapidly generated. The amount of these gases generated hardly changes over time. On the other hand, almost no CO gas was generated immediately after the addition of charcoal (C), and the amount generated did not change over time.
  • Fig. 18 shows the change in gas concentration in the molten metal by the partial pressure equilibrium method.
  • 02 gas and CO 2 gas were rapidly generated immediately after the charcoal (C) was added, and even when the time had elapsed, these gases There is almost no change in the concentration of.
  • C0 gas is hardly generated even after charcoal is added, and the amount generated does not change much with the lapse of time.
  • the first 9 figure is a conceptual diagram showing a situation in the vicinity of soluble water surface prior to spray charcoal (C) on the surface of the melt, the melt surface are present 0 2 gas and N 2 gas, the molten metal Contains a large amount of oxides such as Cu 20 .
  • Fig. 20 is a conceptual diagram showing the situation immediately after the charcoal (C) was sprayed and covered on the surface of the molten metal.
  • 0 2 gas and C 0 2 gas ⁇ is high, also the amount of dissolved 0 2 gas and C 0 2 gas in the molten metal of the molten metal table surface vicinity also has a multi-in. It is considered that the amount of oxides such as Cu 20 in the molten metal was reduced.
  • step 4 of the present invention the oxygen concentration in the molten metal is reduced in a short time by adding a reducing agent and blowing an inert gas into the molten metal and / or by spraying the molten gas onto the surface of the molten metal.
  • a reducing agent blowing an inert gas into the molten metal and / or by spraying the molten gas onto the surface of the molten metal.
  • the copper melt was reduced under the following conditions, and the results shown in Fig. 23 were obtained.
  • Fig. 24 shows the results of a similar study of the relationship between the amount of oxygen in the molten copper and the treatment time.
  • the amount of oxygen which was It was found that it decreased to about 250 ppm after one minute, and to almost zero after 40 minutes.
  • Oxidizing means air blowing
  • Oxygen concentration in molten metal after treatment 400 ⁇
  • Step 2 b composite oxide treatment
  • Raw material used Commercial copper scrap 100% blended (JIS No.2 copper wire scrap level)
  • Oxidizing means air spray
  • Oxygen concentration in molten metal after treatment 4000 ppm Process 2b (composite oxide treatment)
  • Ar gas is used for 10 J ⁇ Z using 20 mm0 (3 pieces) X
  • Impurity metal elements Fe, Sn, Zn, Pb.Ni: 20 ppm or less Oxygen concentration: 1 90 ppra
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Oxidizing means air spray
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppm or less
  • Oxygen port 190 ppm
  • Raw material used Commercial copper scrap 100% blended (JIS No.2 copper wire scrap
  • Process 1 (dissolution) Melting furnace: 5 ton heavy oil fired reverberatory furnace
  • Oxygen concentration in molten metal after treatment 400 O ppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 2 O ppm or less Oxygen concentration: 200 ppm
  • Raw material used Commercial copper scrap 100% blended (JIS No. 2 copper wire scrap level)
  • Oxidizing means air blowing
  • Oxygen concentration in molten metal after treatment 400 ppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: each less than 20 ppra Oxygen concentration: 200 ppm
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Oxidizing means air blowing
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppm or less Oxygen concentration: 200 ppffl
  • Raw material used Commercial copper scrap 100% blended (JS No.2 copper wire scrap level)
  • Process 1 (dissolution) Melting furnace: 5-ton heavy oil fired reverberatory furnace
  • Oxidizing means Oxygen spray
  • Oxygen concentration in molten metal after treatment 400 Oppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppm or less for each oxygen content: 180 ppm
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Oxygen concentration during melting after treatment 400 Oppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ⁇ or less Oxygen concentration: 180 ppm
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Oxidizing means oxygen injection and spraying Oxygen concentration in molten metal after treatment: 800 ppra
  • Step 2 b composite oxide treatment
  • Charcoal was added to the surface of the molten metal at 1% by weight based on the weight of the molten metal, and then Ar gas was applied at 8 £ / min using two bolus plugs (MP-70) 20 mm (2 pieces) made of Isolite. Inject 0 minutes.
  • Impure metal elements Fe, Sn, Zn, Pb, Ni: 20 ppra or less
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Process 1 (dissolution) Melting furnace: 3-ton high-frequency grooved induction melting furnace
  • Oxidation means: Oxygen spray and Cu0 addition
  • Oxygen concentration in molten metal after treatment 800 Oppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: each less than 20 ppra Oxygen concentration: 190 ppm
  • Raw material used Commercial copper scrap 100% blended (JIS No. 2 copper wire scrap level)
  • Oxidizing means Inject Cu 0 with air 'Oxygen concentration in molten metal after treatment: 8000 ppra
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni
  • Oxygen concentration 200 ⁇
  • Raw material used Commercial copper scrap 100% blended (JIS No.2 copper wire scrap level)
  • Oxidizing means oxygen injection
  • Oxygen concentration in molten metal after treatment 800 ppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppm or less Oxygen concentration: 200 ppm
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Process 1 (dissolution) Melting furnace: 3 ton high-frequency grooved induction melting furnace
  • Oxidizing means oxygen injection
  • Oxygen concentration in molten metal after treatment 800 Oppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: less than 20 ppm each Oxygen concentration: 200 ppm
  • Raw material used Commercial copper scrap 100% blended (JIS No.2 copper wire scrap level)
  • Oxidizing means oxygen injection
  • Oxygen concentration in molten metal after treatment 800 Oppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppra or less Oxygen vacancy: 200 ppm
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Oxidizing means oxygen injection and spraying
  • Oxygen concentration in molten metal after treatment 800 Oppm
  • Step 2 b composite oxide treatment
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppni or less Each oxygen content: 190 ppm
  • Raw material used Commercial copper scrap 100% compounded (JIS No. 2 copper wire scrap level)
  • Oxygen concentration in molten metal after treatment 800 Oppra Process 2b (composite oxide treatment)
  • Impurity metal elements Fe, Sn, Zn, Pb, Ni: 20 ppm or less Oxygen concentration: 190 ppm
  • Example 1 3 In step 2 b in L 6, except for using F e O, F e 3 C , a Mn O or Mn 0 2 in place of the F e 2 0 3 is in the same manner The results were similar was gotten. Uffl nature of production
  • the present invention is configured as described above.
  • Pb, Ni, Sb, S, Bi, and A contained in copper or copper alloy chips are removed.
  • s or F ; e, Sn, and Zn can be efficiently removed and the final reduction treatment can be performed, and copper or copper alloy scrap can be used industrially effectively as a recycled material. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

明 細 書 銅または銅合金原料の精製方法
本発明は銅または銅合金を含む銅原料から銅または銅合金 を精製する方法に関し、 より詳しく は、 P b , N i , S b , S , B i , A sあるいは F e, S n , Z n等の不純元素を含 む銅または銅合金原料からこれらの不純元素を効率良く除去 して精製する方法に関するものである。
一般に銅は優れた熱伝導性と電気伝導性を有しており、 熱 交換器や電気 · 罨子部品用 ·.材料等をはじめと して広く且つ大 量に使用されている。 そして銅は鉄等に比べて埋蔵量が少な く高価であるため、 資源有効利用の観点から、 使用済の銅ま たは銅合金屑あるいは加工後に発生する銅または銅合金屑 (以下、 本明細書においては単に銅屑という こ とがある) は 回収して再利用に供されている。 しかし銅屑には異種金属材 料、 ノ、ンダ、 めっき、 絶縁物等の不純成分が多量に混入して いるので、 そのままでは成分的に不適格となり使用が著しく 制限される。
そこで銅屑に混入してく る不純物の低減対策と して、 銅屑 を溶解する前に人手によ り選別してから、 磁力選別等を行つ て不純物を除去している。 しかし、 この方法は人手に依存し ているため選別能力および処理量等に制限があり、 しかも銅 屑中に合金成分あるいはハンダゃめっき材等として混入した 元素 (たとえ t ~ ~i , S-b , S-7-i3 i, Αττ~¾る いは e , ' n, Z n等) は除云できない。 そのため锏屑を —旦溶解してから酸化もしくは還元し、 あるいは滓化材を加 えて不純元素等をスラグ化して除去する溶解精製法が提案さ れ (たとえば特開昭 51-133125 号、 特公昭 54-12409号、 特公 昭 56-43094号、 特開昭 58-27939号、 同 59-211541 号、 同 59- 226131号、 同 61- 217538号等) 、 その後も改良研究が積極的 に進められている。
これらのうち比較的有効な方法と思われるのは特開昭 61- 217538号公報に開示された方法である。 この方法は、 銅屑を 融解してからこれに少量のりんを添加し、 酸化処理すること により不純元素をりん酸化物の一部と共に浮上分離させ、 次 いで溶湯を高酸化状態に保持して残留りんを酸化除去した 後、 還元処理して酸素を除去するものである。 しかしながら この方法では、 不純元素のうち F e, S n, Z n等は比較的 効率良く除去できるが、 P b , N i, S b, S , B i , ある いは A sは除去し難く、 しかも精製銅中に相当量の Pが混入 してく るという問題がある。
本発明は上記の様な事情に着目 してなされたものであつ て、 その目的は、 銅または銅合金の屑を含む原料、 あるいは ブリスターと呼ばれる精鍊前の銅原料を溶解精製するに当た り 、 該銅原料中に含まれる P b , N ί , S b, S , B i , A sあるいは S n, F e , Z nを効率良く分離除去し高品質 の銅と して回収することのできる精製方法を提供しよう とす るものである。 B月の
本発明に係る精製方法の構成は、 P b , N i, S b , S, B i , A sの 1種以上を含む銅または銅合金原料を精製する に当たり、
工程 1 : 銅または銅合金原料を溶解する工程、
工程 2 : 該溶湯中の酸素濃度を高めると共に、 該溶湯に
F e , F e酸化物, Mn, Mn酸化物よ りなる群 から選択される i種以上を添加し、 該溶湯中の P b , N i , S b , S , B i , A sを F eおよ び/または M nの複合酸化物と して滓化するェ 程、
工程 3 : 生成した滓を除去する工程、
工程 4 : 溶濕を通元処理する工程、
を順次実施するところの要旨を有するものである。
また、 銅または銅合金中に P b, N i, S b , S , B i , A sの 1種以上と共に S n, F eおよび Z nの 1種以上が含 まれる塌合は
工程 1 : 銅または銅合金原料を溶解する工程、
工程 2 a : 該溶湯中の酸素濃度を髙めることによ り溶湯中 の S n, F e, Z nを酸化して滓化する工程、 工程 2 b : 溶湯に F e , F e酸化物, M n , M ri酸化物よ りなる群から選択される 1種以上を添加し、 該溶 湯中の P b , N i , S b, S, B i, A sを F e およびノまたは M nの複合酸化物と して滓化する 工程、
工程 3 : 生成した滓を除去する工程、
工程 4 : 溶湯を還元処理する工程、
を順次実施する方法が採用される。
尚上記工程 2 aでは、 溶湯中の酸素濃度が 500ρρπι以上とな る様に調節することによって、 S n , F e , Ζ ηをよ り効率 良く滓化して浮上分離することができる。 また上記工程 2 ま たは 2 bでは、 F e, F e酸化物, M n , M n酸化物の 1種 以上 (よ り好ましく は F eおよび または F e酸化物) を溶 湯重量に対して 10〜50000ppm添加し、 またその添加法と して は溶湯表面へ散布する方法を採用すると共に、 溶湯を不活性 ガスパブリ ング等によって攪拌し、 生成する複合酸化物を滓 と して溶湯表面に浮上させることによ り、 溶湯中の P b , N i , S b , S , B i , A sをより効率良く除去できる。
また上記工程 3では、 複合酸化物の生成後溶湯を鎮静化 してから除滓を行なうのがよ く 、 また除滓に当たっては、 Si02 - A 03 系フラックスを添加してこれに滓を付着させて から除去するのがよい。 ここで使用される Si02— A1203 系フ ラックスは、 Si02と A1203 の総量を 100 重量部と したとき、 Si02: 70〜90重量部と A1203 : 30〜: 10重量部の範囲のものが よ く 、 またその添加量は溶湯全重量に対して 0. 005 〜0. 10% の範囲が好ましい。 また前記工程 4の還元工程では、 固体状 もしく は気体状の還元剤 (好ましくは固体状還元剤) の添加 と不活性ガス吹込みを併行して行なうのがよい。 図面の簡単な説明
第 1 図は、 工程 2 aの酸化処理後における溶湯の酸素濃度 と溶湯中の不純金属元素濃度の関係を示すグラフである。 第 2図は、 工程 2 aの酸化処理を誘導溶解炉および反射炉 で行なった場合の、 溶湯中の S n濃度を対比して示すグラフ である。
第 3図は、 工程 2 aにおける溶溻中の酸素濃度と溶湯の P b濃度の関係を示すグラフである。
第 4図は、 工程 2 aの酸化処理しか行なっていない溶湯 と、 その後工程 2 または 2 bの複合酸化物生成処理を行なつ た場合との溶湯中の N i濃度を対比して示すグラフである。 第 5図は、 工程 2または 2 bにおける F e添加量と溶湯中 の N i濃度の関係を示すグラフである。
第 6図は、 工程 2 または 2 bにおける溶湯中の酸素濃度と 溶湯中の N i漁度との関係を示すグラフである。
第 7図は、 工程 2 または 2 bを実施する際における溶湯か らの N i除去効果の及ぼす F e酸化物添加形態の影響を示す グラフである。
第 8図は、 工程 2または 2 bにおける溶湯中の F e濃度と F e酸化物の添加方法の関係を示すグラフである。
第 9図は、 工程 2 または 2 bにおける A r吹込みの有無と 不純金属元素除去効果の関係を示すグラフである。
第 1 0図は、 工程 2 または 2 bにおける不純金属元素除去 効果と F e酸化物散布量との関係を示すグラフである。
第 1 1図は、 工程 2 または 2 bにおける F eの添加形態が P b , N iの除去効果に及ぼす影簪を示すグラフである。 第 1 2図は、 工程 2または 2 bによる複合酸化物形成処理 後の保持による溶湯中の不純金属元素濃度の変化を示すグラ フである。
第 1 3図は、 工程 2または 2 bの複合酸化物形成処理を複 数回繰り返して実施した場合における、 繰り返し数と溶湯中 の不純元素量との関係を示すグラフである。
第 1 4図は、 工程 3の除滓時における溶湯温度と溶湯中の 不純元素濃度の関係を示すグラフである。
第 1 5図は、 C u2 0と S i 02 状態図である。
第 1 6図は、 C u O (及び C u02 ) と A 1 - 03 の状態 図である。
第 1 7図は、 工程 4における還元処理時間と溶湯表面上の ガス饞度の関係を示すグラフである。
第 1 8図は、 工程 4における還元処理時間と溶湯表面上の ガス濃度の関係を示すグラフである。
第 1 9図は、 工程 4における還元処理前の溶湯界面の状況 を示す模式図である。
第 20図は、 工程 4の遣元処理時における溶湯界面の状況 を示す模式図である。
第 2 1図は、 工程 4の還元処理時における A rガスの吹込 み若しく は吹付けの時間と溶湯中の酸素澳度の関係を示すグ ラフである。
第 22図は、 工程 4の還元処理時における A rガスの吹込 み若しく は吹付けの時間と溶湯中の酸素濃度の関係を示すグ ラフである。
第 2 3図は、 工程 4における還元処理時間と溶湯中の酸素 量の関係を示すグラフである。
第 24図は、 工程 4における還元処理時間と溶湯中の酸素 量の関係を示すグラフである。 発明を実施するための最良の形態
銅屑等を溶解原料と して使用する際において、 成分不良の 原因となる主な元素としては P b, N i , S b , S, B i . A s , F e , Z n等が挙げられる。 これらの内 S n, F eお よび Z nは、 溶解原料に気体状の酸素源 (酸素ガスや空気 等) あるいは固体状の酸素源 (たとえ C u O等) を供紿する ことによって容易に酸化され、 酸化物と して溶湯表面に浮上 するので容易に除去することができる。
一方、 P b , N i , S b, S , B i , A sは溶解原料を酸 化処理するだけでは容易に除去することができず、 上記以外 の除去手段を講じる必要がある《 そこで本発明では、 上記 S n , F e , Z nの酸化除去工程とは別の工程と して、 F e , F e酸化物、 Mn, M n酸化物よりなる群から選択さ れる 1種からなるフラックス [以下、 F e (Mn) 系フラ ッ クスという ことがある】 を使用し、 P b, N i, S b, S , B i , A sを F eおよび または Mnの複合酸化物として除 去する工程を付加する。 そして最終工程で溶湯を還元処理す るこ とによって酸素を除去し、 不純元素成分の除去された銅 を得るものである。 そしてそれらの処理は、 原料中に F e, S n , Z nが含まれていない場合は 前記工程 1、 工程 2、 工程 3および工程 4の順序で実施され、 一方原料中に P b , N i , S b , S, B i, A sの 1種以上と共に F e, S n, Z nが含まれている場合は、 前記工程 1、 工程 2 a、 工程 2 b , 工程 3および工程 4の順序で実施される。
以下、 各工程毎に順を追って詳述する。
工程 1 :
この工程は、 本発明に係る精製法の第 1工程として銅原料 を溶解する工程である。 銅原料としては、 罨線等の表面の樹 脂被覆を焼却してなる銅焼線屑、 N iめっき銅線屑、 熟交換 器などの廃材から得たフィ ン材、 板材、 管材等、 銅製品の切 削加工等で生じた切 J1等の様々の銅屑あるいはブリスター等 が使用され、 これらは場合によつては精鍊銅の残り湯あるい は铸造工程で生じることのある残り湯と混合して使用するこ ともできる。 また溶解炉としては反射炉や誘導溶解炉など公 知のものを使用すればよい。
工程 2 a :
この工程は、 原料中に F e , S nおよび Z nの 1種以上が 含まれている場合に採用される工程であり、 溶湯に固体状お よび Zもしく は気体状の酸素源を供給して酸素澳度を高め、 溶湯中に含まれる S n, F e, Z nを酸化物と して滓化させ る工程である。 即ち溶湯中の S n, F e , Z nは該溶湯を酸 化処理するこ とによつて容易に酸化され滓化して湯面上に浮 上するので、 比較的簡単に除去することができる。 このとき 使用される固体状酸素源と しては C uO等が使用され、 気体 状酸素源としては酸素もしぐは空気 (一般的には空気) が使 用されるが、 酸化剤と してよ り好ましいのは空気等の気体状 酸化剤である。 特に上記不純元素のうち Z nは、 大部分が溶 湯表面に蒸発してから酸化される傾向があるので、 ガス状 Z nをう ま く酸化して滓化するには、 気体状酸化剤を使用す ることが望まれる。
固体状酸素源は溶溻表面に散布する方法、 あるいは溶湯内 へキヤ リヤーガスと共に吹込む方法のどちら採用してもよい が、 最も効率が良いのは溶溻内へ吹込む方法である。 また気 体状酸素源は溶湯表面に向けて上吹きする方法あるいは溶湯 内へ吹込む方法よつて供給されるが、 よ り好ましいのは溶湯 内へ吹込む方法である。 この酸化工程は、 固体状酸素源およ び気体状酸素源の一方のみを用いて行なってもよ く 、 あるい は両者を併用するこ とも可能であり、 たとえば固体状酸素源 を溶湯表面に散布して気体状酸素源を溶湯内へ吹込む方法、 あるいは固体状酸素源を気体状酸素源と共に溶湯内へ吹込む 方法等を採用することができる。
この酸化 ' 滓化工程で S n , F e , Z nを溶湯から効率良 く除去するには、 溶湯中の酸素濃度が 500ppm以上どなる様に 固体状酸素源や気体状酸素源の供給量をコン トロールするこ とが望まれる。
ちなみに第 1図は、 3 ト ン容量の高周波誘導溶解炉を使用 し、 銅原料 ( C u— 1 wt% F e - 1 wt% S n - 1 wt% Z n— 1 wt% P b ) を大気溶解した後、 空気吹込みによ り溶湯中の 酸素濃度を変えた場合の該酸素濃度と溶湯中の不純金属元素 度の関係を調べた結果を示したものであり、 酸素濃度を
500ρρπι以上にすることによって F eおよび Z nを十分に低減 し得るこ とが分かる。
尚第 1図からも明らかである様に S nについては、 酸素濃 度を 600ppmにした時点で約 lOOOppra まで低減し、 それ以上酸 素濃度を高めてもそれ以上 S n濃度は低下しない。 これは酸 化処理により生成する S n酸化物 (SnO や Sn02 ) が非常に傲 細 (数 m 以下) であり、 髙周波誘導溶解炉の様に溶湯の搰 拌が激しい場合は溶湯表面に浮上し難く、 溶湯内へ分散状態 で残存しているためと思われる。 そこで微細な S n酸化物を 溶湯表面にうまく浮上させるため、 酸化処理後に溶湯を静止 状態で保持することを試みた。'
結果は第 2図に示す通りであり、 酸化処理 (空気吹込み) 後溶湯を静止状態でしばらく保持すると、 溶湯中の S n濃度 は更に低減し、 約 1時間の保持で S n濃度を F eや Z nとほ ぽ同レベルの l Oppm 以下にまで低減し得るこ とが確認され た。
また第 3図は、 上記と同様の実験で酸化処理による溶湯中 の酸素濃度と P b濃度の関係を調べた結果を示したものであ り、 溶湯中の P bは単なる酸化処理だけでは除去しにく く 、 大量の酸素源を供給しなければならないことが分かる。 こう した傾向は N i についても同様であり、 むしろ N i の方が P bよ り も酸化除去し難いことが確認された。
尚、 この酸化工程は、 原料中に含まれる F e, S n, Z n を除去するために行われるものであるから、 これらの不純金 厲元素を含まない原料を使用する場合はこの工程を実施する 必要はない。
またこの工程で生成する滓は、 次工程に移る前に一旦除去 してもよく 、 或はそのまま湯面上に残したままで次工程の処 理を行ない、 工程 3で一括して除く こともできる。
工程 2または 2 b :
この工程では、 溶湯に F e , F e酸化物、 Mn, Mn酸化 物よ り なる群から選択される 1種以上を添加し、 溶湯中の P b, N i , S b, S , B i , A sの除去が行なわれる。 即 ち本発明者らが種々研究を行なったところによると、 溶湯中 の P b , N i , S b , S , B i , A sは前記 F e, S n , Z nに比べると酸化され難く、 単に溶湯を酸化処理するだけ ではう まく除去できない。 ところが、 溶湯に F e , F e酸化 物, M n , M n酸化物の 1種以上を添加し、 P b , N i , S b , S , B i , A sを F eおよび もしくは Mnとの複合 酸化物と してやれば、 該複合酸化物は滓となって溶湯表面に 浮上し容易に除去できることが確認された。
ちなみに第 4図は、 lOOOppra の N iを含む銅屑溶湯を使用 した場合において
①溶湯に空気を吹込み溶湯中の酸素濃度を lOOOOppmにした とき、 および
②溶湯に F eを添加した後空気を吹込んで酸素濃度を
10000 ppm にしたとき
における N iの除去効果を比較したものである。
この図からも明らかである様に溶湯中に空気を吹込むだけ では N iは殆ん除去できないが、 溶湯に F eを添加してから 空気を吹込むと N iを効率良く除去できることが分かる。
また第 5図は、 N i除去に必要な F e添加量と銅原料溶湯 中の N i濃度の関係を調べた結果を示したものであり (但し 処理温度は 1200 、 酸素濃度は lOOOOppfflに設定) 、 溶湯から N iを効率良く除去するには溶湯中の N i濃度に対して 2倍 量以上の F eを添加すればよいことがわかる。
更に第 6図は、 銅原料溶湯中の酸素濃度 (02 ZN i比) と溶湯中の N i濃度との関係を調べた結果を示したものであ る。 但し溶湯温度は 1200で、 F e添加量は溶湯中の N i濃度 に対して 4倍一定と し、 酸素濃度は空気吹込み量によって調 整した。 この図からも明らかである様に、 溶湯中の酸素濃度 を N i澳度の 2倍以上にしてやれば、 溶湯中の N iを効率良 く除去し得ることが分かる。
尚上記第 4〜β図に示した様な傾向は、 溶湯中の P bを除 去する場合、 および F eに代えて Mnを使用した場合もほぽ 同様であった。 この工程で生成するノ ロの分析結果では、 N i (または P b ) は F e (または Mn) との複合酸化物 [F e (または Mn) 酸化物に N i (または P b) が付着 , 溶解した状態を含む] と して溶湯表面に浮上分離されている ことが確認された。
上記では溶湯に F eまたは Mnを添加した後空気を吹込ん で酸化処理し、 N i または P bを F e又は M nとの複合酸化 物として除去する場合について説明したが、 F eまたは Mn の代わ り にそれらの酸化物を使用した場合でも上記と同様 の N i (または P b ) 除去効果を得るこ ができる。 また S b, S, B i , A sを除去する場合についてもほぼ同様の 結果が得られる。
この場合、 F e (または Mn) 酸化物を使用する場合の処 理形態としては、
①溶湯表面に F e (または Mn) 酸化物を散布する方法、
②溶湯表面に F e (または Mn) 酸化物を散布し、 溶湯を 誘導搜拌もしく は不活性ガス (A r等) パブリ ングによ つて攬拌する方法、
③溶湯表面に F e (または Mn) 酸化物の一部を散布して おき、 残りの F e (または Mn) 酸化物を不活性ガスと 共に溶湯内へ吹込む方法、
④溶湯内へ F e (または Mn) 酸化物の全てを不活性ガス と共に吹込む方法、
が考えられる。
上記処理形態の う ち、 N i (または P b, S b , S, B i , A s ) の除去効率を髙めるうえで最も好ましいのは③ の方法、 その次は②であり、 意外なことに④の方法では十分 な N i (または P b, S b, S , B i , A s ) 除去効果が得 られず、 また①の方法でもかなり優れた N i (または P b , S b , S, B i , A s ) 除去効果を得ることができる。 但し 上記②, ③の方法では、 F e (または Mn) 酸化物の一部が F e (または M n) と して溶湯内へ溶解し、 精製の目的がか えって阻害される。 従って最も好ましいのは前記①の方法で ある。 以下、 こ う した傾向を確認するために行なった実験 データを示す。
まず第 7図は N i初期濃度が ΙΟΟρρηである銅原料溶湯を使 用し、 処理温度を 1200'Cとした場合について、 Fe203 の添加 形態と N i 除去効率の関係を調べた結果を示したものであ る。 この図からも明らかである様に、 N i除去効率を高める 意味から好ましい順番をつけると、 最も有効なのは Fe203 散 布と Fe203 の A r吹込みを併用する方法、 次は Fe203 散布と 溶湯の誘導搜拌もしく は A rパブリ ングを併用する方法、 最 も悪いのが Fe20s と A rを同時に吹込む方法である。
また第 8図は、 Fe203 添加形態を種々変えた場合について 溶湯中の F e ¾度と Fe203 添加量の閧係を調べた結果を示し たものであり、 この図からも明らかである様に Fe203 を溶湯 内へ吹込む方法を採用すると溶湯の F e濃度の増大が著し く 、 かえって精製効果を阻害することが分かる。 これに対し 溶湯面に Fea( を散布する方法を採用した場合は、 Fe203 添 加量を増大した場合でも溶湯中の F e濃度は殆ん上がらな い。
第 9図は P bと N i を夫々 iOOppm含有する銅合金溶湯を使 用し、 処理温度を 1200*Cとして、 Fe203 の散布のみ、 あるい は Fe203 散布と A rパブリ ングを併用した場合について、 処 理時間と溶湯中の N i および P b濃度の関係を調べた結果を 示したものである。 この図からも明らかである様に、 A r吹 込みによる溶湯攪拌の効果は殆んど認められず、 溶湯中の N i および P bは Fe203 を散布するだけで十分に除去し得る ことが分かる。 第 1 0図は、 同じく N i と P bを夫々 lOOppm含有する銅原 料を大気溶解した後、 処理温度を 1200'Cに設定して Fe203 散 布量を種々変えた場合について、 3分処理後における溶湯中 の N i, P b , F eおよび酸素の各濃度に与える影響を調べ た結果を示したものである。 この図からも明らかである様 に、 Fe20a 散布法を採用する と、 溶湯の F e濃度を増大さ せることなく N i および P bを大幅に低減し得るこ とが分か る。
第 1 1 図は、 同じ く N i と P bを夫々 l OOppm含有する銅 原料を大気溶解した後、 該溶湯に対して F e : 2000ppm , Fe2Oa : 2重量%または Fe304 : 2重量%を湯面上に散布し 3 分間放置した場合について、 N iおよび P bの除去効果を調 ベた結果を示したものである。 この図からも明らかである様 に F e酸化物と しては Fe20a が最も有効であるが、 Fea04 や F eでも相当の N i (または P b ) 除去効果を得ることがで きる。
また上記第 4〜 1 1図に示した様な F e酸化物による N i (および P b ) の除去効果は、 F e酸化物に代えて M n酸化 物を使用した場合もほぼ同様に発揮されるこ とが確認され た。 また、 原料溶湯から S b , S , B i または A sを除去す る場合についてもほぽ同様の結果が得られる。
ところで前記第 2図でも説明した様に、 銅原料溶湯中の不 純金属成分を酸化物と して除去しょう とする場合、 生成する 酸化物あるいは複合酸化物の粒径によっては処理後溶湯を静 置し鎮静化するこ とによ り微細な粒状生成物を浮上させるこ とが有効と考えられる。 そこで F e, S n, Z n , N i , P bを夫々 lOOppra含有する銅原料溶湯を使用し、 これを工程 2 aと して空気パブリ ングによ り酸素濃度を lOOOOppmに高 め、 生成する酸化物を除去することなく引き続いて工程 2 b と して Fe203 を溶湯重量に対して 2重量%散布し、 1 5分間 誘導攒拌を行なった直後の不純金属元素濃度と、 その後誘導 搜拌を止めて溶湯を鎮静化し 1時間経過した後の不純金属元 素濃度を調べたところ、 第 1 2図に示す結果が得られた。
この図からも明らかな様に、 工程 2 aと工程 2 bを引き続 いて実施する場合、 工程 2 aの酸化工程で生成する F e , S n, Z nの酸化物は微細であるため、 工程 3の処理時にお いても当該酸化物の一部は溶湯中に分散しているが、 溶湯を 鎮静化することによつてそれらの微細な酸化物は溶湯表面に 浮上し、 溶湯中の F e , S n, Z nの各含有量はかなり低減 する。 これに対し P bおよび N iの港度は鎮静化の前後で殆 んど変わっておらず、 従って P bや N i等の複合酸化物はす みやかに溶湯表面に浮上分離されるものと思われる。
この工程 2 bで添加される F e, Mnおよびそれらの酸化 物の溶湯重量基準の好ましい添加置は、 1工程当たり 1 0〜 50.000PPM の範囲である。 即ちこの工程 2 bは、 除去すべき 不純金属元素量が比較的少ない場合は 1回だけでもよいが、 除去すべき不純金属元素量が多い場合は複数回繰り返して実 施するのがよ く 、 この場合は各工程当 りの F e, Mnおよ びそれらの酸化物の添加量を上記範囲にするこ とが望まれ る。 尚第 1. 3図は、 N i , P bを夫々 l OOOppm 含有する銅溶湯 を原料と し、 この工程 2 bを数回繰り返した場合の N i , P bの低減状況を示したものであり、 繰り返し数を増やすに つれて不純元素量は少なくなつていることがわかる。
また、 この工程 2 または 2 bで生成する滓が粘着性を有す る固形状もしく は半溶融状となる様に、 処理温度をたとえば 1200〜 1230*C、 好ましくは 1100〜1200て程度にコ ン トロール してやれば、 溶湯表面に浮上してきた酸化物や複合酸化物が 滓にうまく捕捉されるので好ましい。
工程 3 :
この工程では、 工程 2 または 2 bの終了後溶湯表面に浮上 している滓の除去が行なわれる。 除滓は常法に従って行なえ ばよいが、 除滓時に次の様な工夫を加えれば作業性が高めら れると共に C uロスが抑えられて C u歩留を髙めることがで きるので好ましい。
即ち前記工程 2 または 2 bの終了時点で溶湯表面に浮上し ている滓は、 前述の様な不純元素の酸化物や F e , M nとの 複合酸化物と共に、 酸化工程で生成する多量の銅酸化物 (特 に Cu20) が含まれており、 通常は銅酸化物をマ 卜 リ ックス成 分としこれに前記不純元素の酸化物や複合酸化物が分散した 状態で溶湯表面に浮上している。 従ってこの滓を何らの工夫 もなく そのまま湯面から除去すると、 不純金属成分と共に相 当量の銅酸化物が持ち出され、 C uロスが軽視できなく なる ほど多く なる恐れがある。
そこで除滓を容易にすると共に C uロスを可及的に少なく するための手段として、 次の様な方法を採用することが有効 となる。
まず C 11ロスを低減するための手段としては、 前記工程 2 または 2 bの終了後除滓するに先立って溶湯を銅酸化物が溶 湯中に溶解する温度以上に昇温し、 銅酸化物の一部を溶湯に 戻してから除滓する方法であり 、 このときの好ま しい温度 は 1225〜; 00での範囲である。 ちなみに第 1 4図は F e , S n , N i , P bを夫々 lOOppm含有する銅合金を大気溶解し た後、 工程 2 aで空気吹込みにより酸素濃度を 10000 ppm に 高め、 工程 2 bでは溶湯重量に対して 2重 の Fe203 を溶 湯表面に散布して誘導授拌を行ない、 次いで溶湯温度を 1200 〜 1400 に昇温してから除滓を行なった場合において、 除滓 前の溶湯温度と除去される滓の重量 (溶湯温度が 1200でであ る場合の除滓重量を 100 としたときの重量比率) と得られる 溶湯の不純元素瀵度の関係を調べた結果を示したものであ る。
この図からも明らかである様に、 除滓時における溶湯温度 を 1225 以上にすると、 除去される滓の量を約 1/10に低減す ることができ、 不純金属酸化物と共に排出される銅酸化物の 量を大幅に低減し得ることが分かる。 しかも加熱温度を 1400 eC以下、 よ り確実には 1370'C以下に抑えてやれば、 昇温に よつて不純元素が溶湯内へ戻る恐れもない。 しかし加熱温度 が 1400 以上になると不純金属元素のうち特に N iや F eが 溶湯中に戻る傾向が現れてく るので、 除滓時の溶湯温度は 1230〜1370での範囲に設定するのがよい。 次に滓の除去効率を高めるための好ま しい手段と しては、 溶湯表面に Si02 - A1203 系フラックス添加し、 溶湯表面に浮 上している滓を該フラックスに付着させてから除去する方法 が挙げられる。 この方法は、 銅溶湯に対しては濡れ性が悪く 且つ湯面に浮遊している滓とは濡れ性の良好なフラックスに 滓を付着させることによ り除滓を容易にするものであり、 該 Si02 ~ Α18 θ 3 系フラックスにおける SiOaおよび Α1203 の作用 は次の様に説明するこ とができる。
まず Si02は、 銅溶湯とは濡れ性が悪く しかも溶湯表面の滓 とは濡れ性が良好で滓を吸着する作用があり、 滓の主成分で ある Cu20と Si02 の反応は次の通りである。 即ち第 1 5図は Cu20 - Si02系平衡状態図を示し、 Cu20の融点は 1230 であ る。 従って銅原料を溶解する際の通常の温度である 1100〜 1200 においては、 Cu20は半溶融状態で存在している。
また、 Si02は融点が約 1700 であり、 銅の溶解温度におい ては固体状態で存在しており、 Cu20— Si02系においては Si02 8 %に共晶点が存在するので、 Si02が 8 %よ り増大するに 従って、
Cu20 + Si02→Si02 ( Solid ) +Cu80 ( Liquid)
となり、 固体 (Solid ) Si02と Cua0 ( Liquid) とが共存でき る状態となる。
しかし実操業においては、 銅溶湯表面が大気に解放されて いるため、 溶湯表面に存在 · 浮遊している滓の温度は溶湯温 度よ り も若干低く 、 固体 Si02に半溶融の Cu20が付着し易い状 態となつている。 そして、 Si02は Cu20に対する濡れ性が良好 く 、 銅溶湯に対する濡れ性は悪いので、 このような滓は銅溶 湯表面から容易に除去することができる。
但 し、 Si02を銅溶湯表面に添加する と [SiD2+ Cu20 (Liquid)] の融点が著しく上昇するので、 溶湯表面に浮遊し ている滓は硬い板状のようになり、 処理炉の壁等に付着する と取り除く のが困難になる。 そのため、 滓の破壊を容易にし て滓除去の作業性を向上させることができる成分を併用する ことが望まれる。
そこでこ う した観点から更に研究を進めた結果、 A1203 を銅溶湯表面に添加することが有効であることを知った。 即 ち第 1 6図の状態図からも明らかである様に、 Cu20と A1203は 1200で近傍の温度で反応してより安定な化合物である Cu20* A1203 を生成する。 この Cu20'Al20sは容易に破壊することが でき、 また A1203 は固体で存在しているから滓を吸着する作 用も有しており、 且つ A130, は銅溶湯との分離性も良好であ るから滓の除去作業性および除去効率を著しく高めることが できる。
かく して Si02— A1S03 系フラックスを使用すれば、 Si02お よび Al20a が滓を吸着すると共に、 破壊が容易で且つ銅溶湯 に対して濡れ性の悪い複合酸化物を生成するので、 銅溶湯表 面からの滓の除去を極めて容易に行なうことができる様にな る。
上記 Si02— A1203 系フラックスにおける Si02と A1203 の好 ましい配合比率は、 Si02 :70 〜90%ZAl2Oa:10〜30%であり その設定根拠は下記第 1表に示す通りである。 Si02 Alzos 除 滓 性 判定 (%) (%)
1 0 90
溶湯表面の滓の粘性およ
2 0 80 び破壊強度が髙く除滓が 不良 比 困難である。
3 0 70 較 40 60
溶湯表面の滓の粘性が髙
5 0 50 く、 滓の除去が困難であ 不良 る。
60 40 適 70 30
正 溶湯表面の滓の粘性およ 配 80 20 び破壊強度は共に適切 良好 合 であり、 除去作業性が良 例 9 0 1 0 好である。 比 溶湯表面の滓の粘性が髙 較 1 00 0 く、 滓の除去が困難であ 不良 る。 フラックスの溶湯への添加量 : 溶湯重量の 0.2 %
また該フラ ッ クスの添加量は、 下記第 2表の実験結果か ら、 溶湯重量に対して 0.005 〜0.10%の範囲が好ましい。
第 2 表
Figure imgf000024_0001
使用フラッ クス : Si02:80 %/Α1203 :20%
フラックス添加量 : 対溶湯重量%
(温度 : 1210 ) 尚このフラ ッ クスは、 純粋な Si02と A1203 を所定の比率 で混合したもののほか、 Si02源や A1203 源と して天然に産 出する CaAl2SiOe ( Anorthite) ^ NaAlSiaOe (Albite) 、 KAl2(Si3Al)0,o (OH. F) 2 (Muscorite)等を原料として使用する こ ともできる。
下記実験例 1 , 2は、 上記 Si02— Ala0a 系フラックスの添 加効果を確認するために行なった実験結果を示したものであ り、 好ま しい配合組成の Si02— A1203 系フラ ッ クスを適量添 加することによって、 除滓性を向上すると共に C uロスを極 端に低減し得ることが分かる。
実験例 1
原料 : 電気銅地金 80% 市販銅屑 20%
溶解条件 :
溶解炉 5 トン重油焚反射炉
溶解温度 1200±20
溶解雰囲気 大気
溶湯中の酸素滴度 5000ppm
除滓条件 :
フラッ クス : Si02 70%、 A1,03 30%
: SiOz 90%、 A1203 10% フラ ッ クス添加量 : 溶湯重量の 0.1 % (添加後攪拌) 除滓時の C uロス率および除滓作業性を第 3表に示す。 第 3 表
Figure imgf000026_0001
莠験例 2
原料 : 市販屑 100 %
溶解条件 :
溶解炉 3 トン髙周波溝型誘導炉
溶解温度 1200土 15で
溶解雰囲気 大気
溶湯中の 0 z 濃度 lOOOOppm
除滓条件 :
フラ ッ クス Si02 70%、 A1203 30%
Si02 90%、 Ai208 10% フラックス添加量 溶湯重量の 0. 005 % (添加後攪拌) 結果を第 4表に示す, 第 4 表
Figure imgf000027_0001
第 3, 4表からも明らかである様に、 適正な配合組成の Si02- Al20a 系フラ ックスを適量添加するこ とによって、 除 滓性が高められると共に除滓時の C uロスを大幅に低減し得 ることが分かる。
工程 4 (還元工程) :
この工程では、 上記工程 2 , 2 aまたは 2 bの不純金属元 素除去工程で溶湯中に取り込まれた酸素の除去が行なわれ る。 即ち上記工程 2 , 2 a, 2 bでは、 不純元素成分を酸化 除去するため相当量の酸素 (または空気) の吹込みあるいは 酸化物の添加が行なわれるので、 工程 3の除滓を終えた銅 溶湯内には多量の酸素 (通常 lOOOppm 以上) が含まれてい る。
従って銅合金と しての規格を満たすには、 酸素濃度を 200 ppm 程度以下にまで低減するための還元工程が必須となる。 この還元は常法に従って行なうことも勿論可能であるが、 ェ 程 1〜 3を終えた銅溶湯の酸素濃度は前述の如ぐ非常に高い ので、 該銅溶湯の酸素濃度を短時間で目標レベルにまで低減 するには、 下記の様な還元法を採用することが望まれる。 即ち工程 4と して実施される好ましい還元法と しては、 銅 溶湯表面に還元剤を添加すると共に、 溶湯中への不活性ガス の吹込み及び Z又は溶湯表面への不活性ガスの吹付けを行な う ことによつて還元を行なう。
即ち溶湯表面に還元剤を添加すると、 湯面で還元反応が起 こって C 0 2 や C O等のガスが生成し、 その一部は上方に放 散されると共に一部は溶湯内へ溶け込む。 そして溶湯内へ溶 け込んだこれらの C 0 2 や C Oガスおよび溶湯中に存在する 酸素は、 溶湯内へ吹込まれる不活性ガス気泡内へ分圧差に よって捕集され、 不活性ガスと共に溶湯外へ放散される。 このとき不活性ガスの溶湯表面への吹付けを併せて実施すれ ば、 溶湯表面に浮上した酸素が再び溶湯内へ溶解することな く すみやかに上部空間へ放散されるので、 溶湯の脱酸、 即ち 還元をより効率良く行なう ことができる。
尚還元剤としては、 木炭等の固体還元剤および水素や C 0 などの気体還元剤を使用できるが、 より好ましいのは木炭な どの粉末状固体還元剤である。
ところで従来例で銅溶湯の還元を行なう場合、 銅溶湯中に おける酸素の存在形態としては、 ①酸化物 (Cu 20 ) および② 溶湯内への溶存という 2つの形態が考えられ、 還元剤と して 例えば、 木炭を溶湯に添加すると、 下記の様に (木炭は C と して示す)
酸化物として存在する酸素は、 Cu20+C— 2 Cu+C0 T ガスとして溶湯中に溶存している酸素は、 02 + 2C —2C0 ΐ 溶湯中の Cu20および 02 は木炭の Cにより還元され、 C Oガ スと して放出される。
ところが、 本発明において前記工程 1 〜 3を経た銅溶湯中 に存在する酸素の挙動を実測することによ り酸素の存在形態 を調べたところ、 従来とは異なった結果が得られた。 即ち、 銅溶湯中に含有されている酸素を、 分解平衡法を利用した測 定法 {特開昭 62-272380号 (特開平 01-113625 号公報) 参 照 } によ り実測したところ、 還元反応前の前記銅溶湯中に含 まれる酸素は全て酸化物 (CuO 、 Cu20その他) であり、 溶湯 中に溶解した 02 ガスは認められなかった。
従ってこの実測結果よ り、 還元反応は下記の反応が主体と なって進行するものと予測される。 即ち溶湯表面に木炭等の 還元剤を散布すると、
2Cu20 + C -»4Cu + 02 T + C
C + 0 2 ■→ C02 T
の様に、 主として溶湯中の CuO 或は Cu20 が C (木炭) によ り還元される反応だけが生じ、 この反応により生じた 02 ガ スおよびこの 02 ガスが C (木炭) と反応した C 02 ガスと して存在することが考えられる。 これを裏付けるため溶湯中 のガス成分を上記の方法により改めて測定したと ころ、 従来 から通説とされていた C 0ガスは殆んど認められず、 02 ガ スおよび C O 2 ガスが認められ、 こう した存在形態は溶湯表 面においても同様であった。
このこ とから、 銅溶湯の通元を行ゥ場合に所期の効果が得 られない主な原因は、 還元反応により新たに発生した 02 ガ スが溶湯内または溶湯表面直上に残存するため、 丁度 02 ガ スが溶湯を被覆するような状態となり、 新たに発生した 02 含有ガス等が放出されるのを妨害しているものと考えられ た。
こう した傾向を第 1 7, 1 8 , 1 9および 2 0図によって 説明する。 まず第 1 7図は、 ガスクロマトグラフによる溶湯 表面直上のガス漢度の変化を示しており、 木炭 (C) を溶湯 表面に添加した時点では、 02 ガスおよび C O 2 ガスが急激 に発生し、 その後時間が経過してもこれらのガスの発生量は 殆んど変わらない。 これに対し C Oガスは木炭 (C) 添加直 後も殆ど発生しておらず、 時間が経過しても発生量は変わら ない。
第 1 8図は分圧平衡法による溶湯中のガス濃度変化を示し たものであり、 木炭 (C) 添加直後に 02 ガスおよび C O 2 ガスが急激に発生し、 時間が経過してもこれらガスの濃度に はほとんど変化がない。 これに対し C 0ガスは木炭添加後も 殆ど発生せず、 時間が経過しても発生量は く変わっていな い。
第 1 9図は溶湯表面に木炭 (C) を散布する前における溶 湯表面付近の状況を示す概念図であり、 溶湯表面には 02 ガ スと N 2 ガスが存在しており、 溶湯中には Cu20等の酸化物が 多量に存在している。
これに対し第 2 0図は、 溶湯表面に木炭 (C) を散布 · 被 覆した直後の状況を示す概念図であり、 この場合は溶湯表面 における 0 2 ガスおよび C 0 2 ガス澳度は高く 、 また溶湯表 面近傍の溶湯内の 0 2 ガスおよび C 0 2 ガスの溶解量も多 い。 そして、 溶湯内における Cu 20等の酸化物の量は少なく なっているものと思われる。
従って、 工程 4で銅溶湯の還元を行う際には、 逸元反応に よ り発生した 0 2 ガスおよび C O 2 ガスを溶湯内および溶湯 表面直上から速やかに系外に放出する必要があり、 この放出 手段と して溶湯内への不活性ガスの吹込み及び Zもしく は溶 湯表面への不活性ガスの吹付けを行ない、 溶湯表面を覆った 0 2 ガスや C O 2 ガスを除去すると共に、 酸素分圧の差によ り溶湯中の 0 2 ガスを不活性ガス中に捕集して系外に放出す るのである。
次に溶湯内へ吹込まれる不活性ガスおよび溶湯表面に吹付 けられる不活性ガスの効果について、 実験例を挙げて説明す る。
電気銅地金 1 00 %を 1 ト ン溶解炉により 1200て ± 20 の温 度で溶解し、 次いで、 この銅溶湯に対して 1重量%の木炭を 溶湯表面に散布して被覆した後、 A rガスを溶湯内に 3 mm Φ 径のランスにより 30 N £ /分の速度で吹込み、 あるいは、 溶 湯表面に 30 N 分の速度で A rガスを吹付けた場合につい て、 得られる溶湯の酸素饞度 ( 0 2 ガス +酸化物) と処理時 間との関係を調べた。
結果は第 2 1 図に示す通りであり、 A r処理を行わない場 合は、 処理時間を長く しても酸素攘度の変化は殆んど認めら れない。 これに対し A rガスを溶湯中に吹込んだ場合および 溶湯表面に吹付けた場合は、 いずれの場合も時間の経過と共 に酸素濃度は急激に低下しており、 また A rガスの溶溻内吹 込みと溶湯表面への吹付けを併用すると、 酸素濃度は更に急 激な低下傾向を示している。
また、 C u— F e系合金屑 ( K L F— 194 ) 100 %を 1 ト ン溶解炉で 1200"C i 20*Cの温度で溶解し、 溶解後溶湯重量の 1 96の木炭を溶湯表面に散布して被覆し、 次いで溶湯中に径 3 πιιη φのランスにより 30 Ν 分の速度で不活性ガスの吹込 みあるいは溶湯表面に 30 Ν /分の速度で不活性ガスの吹付 けを行なった場合について、 同様に溶湯中の酸素濃度 ( 0 2 ガス +酸化物) と時間との関係を調べた。
結果は第 2 2図に示す通りであり、 A r処理を行なわない 場合は、 処理時間を長く しても酸素濃度の変化は殆んど認め られない。 これに対し A rガスを溶湯中に吹込んだ場合およ び溶湯表面に吹付けた場合は、 いずれの場合も時間の経過と 共に酸素濃度は低下しており、 また A rガスの溶湯内吹込み と溶湯表面への吹付けを併用すると、 酸素濃度は更に急激に 低下している。
即ち本発明における工程 4では、 還元剤の添加と、 不活性 ガスの溶湯内への吹込み及び または溶湯表面への吹付けを 採用することによって、 溶湯中の酸素濃度を短時間で低レべ ルに低減することが可能となる。 尚こうした還元法を採用し た場合の効果をより明確にするため、 下記の条件で銅溶湯の 還元処理を行ない、 第 2 3図に示す結果を得た。
[実験条件] 銅溶湯量 250 kg
溶解温度 1 250Ό
木炭量 5 kg
不活性ガス量 10〜13 «G /分 (アルゴンガス · バブラ 銅溶湯酸素量調整-大気溶解 + C U 0添加
第 2 3図からも明らかである様に、 還元初期においては酸 素量が 5200ppm であったものが、 上記条件で還元を行なう こ とによ り脱酸速度 252PpmZ分の速度で脱酸が進行し、 20分後 の酸素量は 1 55ppfflに低下し、 さらに、 40分後には 19ppm にま で低下している。 しかし、 その後更に時間が経過すると、 60 分後には 20pPrn 、 90分後には 27ppm と酸素饞度は若干増加す る傾向が見られる。 従って実操業においては酸素量が最低に なる時間で還元を停止することが望まれる。
また第 2 4図は、 銅溶湯中の酸素量と処理時間との関係を 同様の方法で調べた結果を示したものであり、 この場合は、 還元初期に 8000ppra であった酸素量が、 20分後には略 250ppm 程度にまで低下しており、 40分経過後は殆んど零にまで低下 していることがわかった。
次に実施例を挙げて本発明をよ り具体的に説明するが、 本 発明は勿論下記実施例に制限されるわけではなく 、 前記した 本発明の特徴を疎外しない範囲で適当に変更を加えて実施す るこ とも勿論可能であり、 それらはいずれも本発明の技術的 範囲に含まれる。
II施例 1 使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 mし
[精製条件]
工程 1 (溶解)
溶解炉 : . 5 卜 ン重油焚反射炉
溶解量 : 4 トン
溶解温度 : 1 200で ± 20*0
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 空気吹きつけ
処理後の溶湯中酸素濃度: 400 Ορρπ
工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 )
2 0 πιπιφ ( 3本) を用いて A rガスを 1 0 分 X
3 0分吹込み。
[実験結果]
溶湯品質 : 不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素濃度 : 1 9 0 ppm
除滓性 : C uロス率 3 %
総合判定 .· 合格 莠旆例 2
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ペル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 5 ト ン重油焚反射炉
溶解量: 4 ト ン
溶解温度 : 1 200*C± 2 0で
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 空気吹付け
処理後の溶湯中酸素濃度 : 4000 ppm 工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : Si02 : 80¾, Al203 : 20¾
対溶湯 0. 1重量%添加 工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ポーラスプラグ (M P— 7 0 )
2 0 mm0 ( 3本) を用いて A rガスを 1 0 J¾Z分 X
30分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb.Ni) : 各 2 0 ppm 以下 酸素濃度 : 1 90 ppra
除滓性 : C uロス率 2 %
総合判定 : 合格 莠施例 3
使用原料 : 市販銅屑 1 00%配合 ( J I S 2号銅線屑レ ベル)
原料前処理 し
[精製条件]
工程 1 (溶解)
溶解炉 : 5 ト ン重油焚反射炉
溶解量 : 4 ト ン
溶解温度 : 1 200 ^± 20·Ο
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 空気吹付け
処理後の溶湯中酸素激度 : 4000 ppm 工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : A r 4ramランスによ り
15 £Z分 X 1 0分間
工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ポーラスプラグ (M P— 7 0 )
2 0 πιιηφ ( 3本) を用いて A rガスを 1 0 Ζ分 X
30分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素港度 : 1 90 ppm
除滓性 : C uロス率 2 %
総合判定 : 合格 実施例 4
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ
ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解) 溶解炉 : 5 トン重油焚反射炉
溶解量 : 4 ト ン
溶解温度 : 1 2 0 0 ·Ο ± 2 0 ·Ο
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : C u O添加
処理後の溶湯中酸素濃度 : 40 0 O ppm
工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶溻重量の 0. 1重量%
不活性ガス吹込み : A r 4 ランスによ り 15JG/分
X 1 0分間
工程 3 (除滓)
除滓剤 : Si02 :80%,Al203 :20%
対溶湯 0. 1重量%添加
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ ( M P — 7 0 )
2 0 πιιηφ ( 3本) を用いて A rガスを 1 0 £ Ζ分 X
3 0分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 O ppm 以下 酸素濃度 : 2 0 0 ppm
除滓性 : C uロス率 2 % 総合判定 : 合格 また上記実施例 1〜4において、 工程 2 bで F eに代えて M nを使用した以外は全く同様にして実験を行ったところ同 様の結果が得られた。 実施例 5
使用原料 : 市販銅屑 1 0 0 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 5 ト ン重油焚反射炉
溶解量: 4 ト ン
溶解温度 : 1 2 0 0 *C ± 2 0
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 空気吹き込み
処理後の溶湯中酸素饞度 : 4 0 0 O ppm
工程 2 b (複合酸化物処理)
添加剤 : F e 2 0 a (工業用原料)
添加量 : 溶溻重量の 2重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : 無し 工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 )
2 0 πιιπΦ ( 3本) を用いて A rガスを 1 0 ·βΖ分 X
30分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppra 以下 酸素濃度 : 2 0 0 ppm
除滓性 : C uロス率 3 %
総合判定 : 合格 実施例 6
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件〗
工程 1 (溶解)
溶解炉 : 5 トン重油焚反射炉
溶解量 : 4 ト ン
溶解温度 : 1 2 00" ± 20て
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段: 空気吹き込み
処理後の溶湯中酸素濃度 : 4000 ppm 工程 2 b (複合酸化物処理)
添加剤 : F e 2 03 (工業用原料)
添加置 : 溶湯重量の 2重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : Si02 :80%, Al203 :20%
対溶湯 重量%添加
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ポーラスプラグ (M P— 7 0 )
2 0 ιηιηφ ( 3本) を用いて A rガスを 1 0 /分 X
3 0.分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素濃度 : 2 00 ppffl
除滓性 : C u dス率 2 %
総合判定 : 合格 実施例 7
使用原料 : 市販銅屑 1 00 %配合 ( J S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解) 溶解炉 : 5 ト ン重油焚反射炉
溶解量 : 4 ト ン
溶解温度 : 1 2 00で ± 2 0 *C
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段: 酸素吹きつけ
処理後の溶湯中酸素濃度 : 400 Oppm
工程 2 b (複合酸化物処理)
添加剤 : F e 2 03 (工業用原料)
添加量 : 溶湯重量の 2重量%
不活性ガス吹込み : A r 4 mnランスにより 15£Ζ分
1 0分間
工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ポーラスプラグ (M P— 7 0 )
2 0 mm ( 3本) を用いて A rガスを 1 0 £ /分 X
3 0分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素溏度: 1 80 ppm
除滓性 : C u口ス率 3 %
総合判定 : 合格 実施例 8
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉: 5 ト ン重油焚反射炉
溶解量 : 4 ト ン
溶解温度 : 1 200 *C± 2 0eC
溶解棼囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : C u O添加
処理後の溶揚中酸素濃度: 400 Oppm
工程 2 b (複合酸化物処理)
添加剤 : F e 2 0 a (工業用原料)
添加量 .: 溶攝重量の 2重量%
不活性ガス吹込み : A r 4mmランスによ り 15£ 分
X 1 0分間
工程 3 (除滓)
除滓剤 : Si02 :80%,Al203 : 20
対溶湯 重量%添加
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 ィ ゾライ ト製ボーラスプラグ (M P — 7 0 ) 2 0 ιηπφ ( 3本) を用いて A rガスを I O JG Z分 x
30分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 20 ρρπ 以下 酸素濃度 : 1 80 ppm
除滓性 : C uロス率 2%
総合判定 : 合格 また、 上記実施例 5〜8における工程 3で、 F e 2 03 に 代えて F e3 04 , F e O, Mn 02 または Mn Oを使用し た場合も殆ど同様の結果が得られた。 莠施例 9
使用原料 : 市販銅屑 1 00%配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 3 トン髙周波溝型誘導溶解炉
溶解量: 2 トン
溶解温度 : 1 200*C± 20°C
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 酸素の吹込みと吹付け 処理後の溶湯中酸素濃度 : 80 0 0 ppra
工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 ) 2 0 mm ( 2本) を用いて A rガスを 8 £/分 X 3 0 分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppra 以下 酸素濃度 : 1 9 0 ppm
除滓性 : C uロス率 2 %
総合判定 : 合格 実施例 1 0
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解) 溶解炉 : 3 卜ン高周波溝型誘導溶解炉
溶解量 : 2 ト ン
溶解温度 : 1 2 00。C± 2 0eC
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 酸素吹きつけと C u 0添加
処理後の溶湯中酸素濃度 : 800 Oppm
工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : Si02 :80¾,Al203 :20¾
対溶湯 0. 1重量%添加
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 ) 20 mm0 ( 2本) を用いて A rガスを 8 £ Z分 x 3 0 分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppra 以下 酸素濃度 : 1 9 0 ppm
除滓性 : C u口ス率 1. 5 %
総合判定 : 合格 実施例 1 1
使用原料 : 市販銅屑 1 0 0 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 3 卜 ン髙周波溝型誘導溶解炉
溶解量 : 2 ト ン
溶解温度 : l S O OTJi S O ^C
溶解雰翻気: 大気
工程 2 a (酸化処理)
酸化手段 : C u 0を空気と共に吹込み ' 処理後の溶湯中酸素濃度 : 8000 ppra
工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : A r 4 ランスによ り 10£ 分
X 1 0分間
工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ポーラスプラグ (M P— 7 0 ) 2 0 ram Φ ( 2本) を用いて A rガスを 8 ノ分 x 3 0 分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) 各 2 0 ppra 以下 酸素濃度 : 2 0 0 ρριπ
除滓性 : C uロス率 2 %
総合判定 : 合格 実施例 1
使用原料 : 市販銅屑 1 0 0 %配合 ( J I S 2号銅線屑レ ペル)
原料前処理: 無し
= [精製条件]
工程 1 (溶解)
溶解炉 : 3 ト ン高周波溝型誘導溶解炉
溶解量 : 2 ト ン
溶解温度 : 1 2 0 0 ± 2 0
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 酸素吹込み
処理後の溶湯中酸素濃度 : 8 0 0 O ppm
工程 2 b (複合酸化物処理)
添加剤 : F e
添加量 : 溶湯重量の 0. 1重量%
不活性ガス吹込み : A r 4 mmランスによ り IOJ& Z分 x 1 o分間
工程 3 (除滓)
除滓剤 : Si02 : 80¾. A1203 : 20%
対溶湯 0. 1重量%添加
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 ) 2 0 ιηπι ( 2本) を用いて A rガスを 8 分 X 3 0 分吹込み。
[実験結果〕
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素濃度 : 2 00 ppm
除滓性 : C uロス率 1. 5 %
総合判定 : 合格 また、 前記実施例 9〜 1 2における工程 3で、 F eに代え て Mnを使用した場合もほぼ同様の結果が得られた。 実施例 1 3
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解) 溶解炉 : 3 卜 ン高周波溝型誘導溶解炉
溶解量 : 2 トン
溶解温度 : 1 200 '〇± 2 0^
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 酸素吹込み
処理後の溶湯中酸素濃度 : 800 Oppm
工程 2 b (複合酸化物処理)
添加剤 : F e 2 03 (工業用原料)
添加量 : 溶湯重量の 2重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ポーラスプラグ (M P— 7 0 ) 20ππηφ ( 2本) を用いて A rガスを 8 Ζ分 X 3 0 分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素濃度 : 2 00 ppm
除滓性 : C uロス率 2 %
総合判定 : 合格 実施例 1 4
使用原料 : 市販銅屑 1 00 %配合 (J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 3 ト ン髙周波溝型誘導溶解炉
溶解量 : 2 ト ン
溶解温度 : 1 2 00*C± 20eC
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 酸素吹込み
処理後の溶湯中酸素濃度 : 800 Oppm
工程 2 b (複合酸化物処理)
添加剤 : F e 2 03 (工業用原料)
添加量 : 溶湯重量の 2重量%
不活性ガス吹込み : 無し
工程 3 (除滓)
除滓剤 : Si02:80%, Al203 :20%
対溶湯 0. 1重量%
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 ) 2 0 ram Φ ( 2本) を用いて A rガスを 8 £ /分 X 3 0 分吹込み。 [実験結果]
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppra 以下 酸素漠度 : 2 0 0 ppm
除滓性 : C uロス率 1. 5%
総合判定 : 合格 実施例 1 5
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 3 トン高周波溝型誘導溶解炉
溶解量 : 2 ト ン
溶解温度 : 1 200で± 20。C
溶解雰囲気 : 大気
工程 2 a (酸化処理)
酸化手段 : 酸素の吹込みと吹付け
処理後の溶湯中酸素濃度 : 800 Oppm
工程 2 b (複合酸化物処理)
添加剤 : F e 2 03 (工業用原料)
添加量 : 溶湯重量の 2重量%
不活性ガス吹込み : A r 4πππランスによ り 10£Z分
X 1 0分間 工程 3 (除滓)
除滓剤 : 無し
工程 4 (還元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 ) 2 0 mm^ ( 2本) を用いて A rガスを 8 Z分 x 3 0 分吹込み。
[実験結果〗
溶湯品質 :
不純金属元素 (Fe,Sn,Zn,Pb,Ni) : 各 2 0 ppni 以下 酸素澳度 : 1 90 ppm
除滓性 : C uロス率 2 %
総合判定 : 合格 実施例 1 6
使用原料 : 市販銅屑 1 00 %配合 ( J I S 2号銅線屑レ ベル)
原料前処理 : 無し
[精製条件]
工程 1 (溶解)
溶解炉 : 3 ト ン髙周波溝型誘導溶解炉
溶解量 : 2 ト ン
溶解温度 : 1 200で± 2 0
溶解雰囲気 : 大気
工程 2 a (酸化処理) 酸化剤 :
処理後の溶湯中酸素澳度 : 800 Oppra 工程 2 b (複合酸化物処理)
添加剤 : F e 2 03 (工業用原料)
添加量: 溶湯重量の 2重量%
不活性ガス吹込み : A r 4mmランスにより 10 分
X 1 0分間
工程 3 (除滓)
除滓剤 : Si02 :80%. Al203 : 20
対溶湯 0. 1重量%
工程 4 (速元処理)
木炭を溶湯重量に対して 1重量%溶湯表面に添加し た後、 イ ソライ ト製ボーラスプラグ (M P— 7 0 ) 2 ΟπιηΦ ( 2本) を用いて A rガスを 8 £ /分 X 3 0 分吹込み。
[実験結果]
溶湯品質 :
不純金属元素 (Fe, Sn,Zn,Pb,Ni) : 各 2 0 ppm 以下 酸素濃度 : 1 9 0 ppm
除滓性: C uロス率 1. 5 %
総合判定 : 合格 また、 実施例 1 3〜: L 6における工程 2 bで、 F e 2 03 に代えて F e O , F e 3 C , Mn Oまたは Mn 02 を使用 した以外は同様にして実験を行ったところ、 ほぽ同様の結果 が得られた。 産 .卜.の禾 Uffl 性
本発明は以上の様に構成されてお り 、 前記工程 1〜4を 順次実施するこ とによって、 銅または銅合金屑中に含まれる P b , N i , S b , S , B iおよび A s、 或いは F ;e, S n および Z nの除去と最終的還元処理を効率よ く行うことがで き、 銅または銅合金屑を再生原料として工業的に有効に活用 し得ることになつた。

Claims

請求の範囲
1 . P b, N i , S b , S, B iおよび A sの 1種以上を 含む銅または銅合金原料を精製するに当たり、
工程 1 : 銅または銅合金原料を溶解する工程、
工程 2 : 該溶湯中の酸素漠度を高めると ともに、 溶湯に
F e, F e酸化物, Mn, Mn酸化物よりなる群 から選択される 1種以上を添加し、 該溶湯中の P b , N i , S b , S , B i , A sを F eおよ び Zまたは M nの複合酸化物と して滓化するェ 程、
工程 3 : 生成した滓を除去する工程、
工程 4 : 溶湯を還元処理する工程、
を順次実施するこ とを特徴とする銅または銅合金の精製方 ο
2. S n , F eおよび Z nの 1種以上と、 P b , N i , S b , S , B iおよび A sの 1種以上を含む銅または銅合金 原料を精製するに当たり、
工程 1 : 銅または銅合金原料を溶解する工程、
工程 2 a : 該溶湯中の酸素濃度を高めるこ とによ り溶湯中 の S n, F e , Z nを酸化して滓化する工程、 工程 2 b : 溶湯に F e , F e酸化物, Mn, Mn酸化物よ りなる群から選択される 1種以上を添加し、 該溶 湯中の P b, N i , S b , S , B i , A sを F e および または M nの複合酸化物と して滓化する 工程、
工程 3 : 生成した滓を除去する工程、
工程 4 : 溶湯を還元処理する工程、
を順次実施することを特徴とする銅または銅合金原料の精製 方法。
3. 工程 2 , 2 aまたは 2 bにおいて、 溶湯中の酸素澳度 を 50 Oppm 以上に調整する請求の範囲第 1 または 2項に記 載の精製方法。
4. 工程 2 または 2 bにおいて、 F e , F e酸化物, n, M n酸化物の 1種以上を溶溻重量に対し 1工程当たり 10〜50,000ppm 添加する請求の範囲第 1 または 2項に記載の 精製方法。
5 . 工程 2 または 2 bにおいて、 F e , F e酸化物, Mn , Mn酸化物を溶湯表面へ添加する請求の範囲第 4項に 記載の精製方法。
6. 工程 2または 2 bにおいて、 溶湯を搜拌する請求の範 囲第 5項に記載の精製方法。
7. 工程 2 または 2 bにおいて、 F e, F e酸化物, Mn, M n酸化物を溶湯内へ吹込む請求の範囲第 4項に記載 の精製方法。
8. 工程 2または 2 bにおいて、 複合酸化物を固体状も し く は半溶融状態の滓と して溶湯表面に浮上させる請求の範囲 第 4〜 7項のいずれかに記載の精製方法。
9. 工程 2または 2 bにおける複合酸化物の生成後溶湯を 鎮静化し、 しかる後工程 3の除滓を行う請求の範囲 6〜8項 のいずれかに記載の精製方法。
1 0. 工程 3の除滓を行うに際し、 滓の温度を C U 2 0の 溶融温度以上に高めて滓中の C U 2 0を C uとして溶湯中に 戻してから除滓を行う請求の範囲 1または 2.項に記載の精製 力 ά。
1 1. 工程 3の除滓を行うに際し、 Si02-Al20»系フラック スを添加し、 該フラックスに滓を付着させてから除去する請 求の範囲第 1 または 2項に記載の精製方法。
1 2. Si02-Al20»系フラックスが、 Si02と A1203 の総量を 100 重量部としたとき、 それらの比が Si02: 70〜90重量部と A1208 : 30〜; 10重量部である請求の範囲第 1 1項に記載の精 製方法。
1 3 . Si02-Al203系フラ ッ クスを溶湯全重量に対して 0.005 〜0.10%添加する請求の範囲第 1 1または 1 2項に記 截の精製方法。
1 4. 工程 4において、 溶湯表面に還元剤を添加すると共 に、 溶湯内への不活性ガス吹込み及び/若しく は溶湯表面へ の不活性ガス吹付けを行なって還元を行なう特許請求の範囲 第 1 または 2項に記載の精製方法。
1 5. 還元剤と して固体還元剤を使用する請求の範囲第 1 4項に記載の精製方法。
PCT/JP1992/000358 1991-07-15 1992-03-25 Procede pour la purification du minerai de cuivre ou de son alliage WO1993002219A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69229387T DE69229387T2 (de) 1991-07-15 1992-03-25 Verfahren zum reinigen von kupferrohmaterial für kupfer oder seine legierungen
US07/988,960 US5364449A (en) 1991-07-15 1992-03-25 Process for refining crude material for copper or copper alloy
EP92907624A EP0548363B1 (en) 1991-07-15 1992-03-25 Process for refining raw material for copper or its alloys
CA002091677A CA2091677C (en) 1991-07-15 1992-03-25 Process for refining crude material for copper or copper alloy
FI931112A FI104268B (fi) 1991-07-15 1993-03-12 Menetelmä kuparin tai kuparilejeeringin raakamateriaalin puhdistamiseksi

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP19998591A JP2636985B2 (ja) 1991-07-15 1991-07-15 銅または銅合金溶湯の還元法
JP3/199985 1991-07-15
JP3/308536 1991-10-28
JP3/308534 1991-10-28
JP30853491A JP2561986B2 (ja) 1991-10-28 1991-10-28 NiめっきCu−Fe系合金屑の溶解方法
JP3/308535 1991-10-28
JP30853591A JP2561987B2 (ja) 1991-10-28 1991-10-28 銅屑の溶解方法
JP30853691A JP2515071B2 (ja) 1991-10-28 1991-10-28 銅の溶解法

Publications (1)

Publication Number Publication Date
WO1993002219A1 true WO1993002219A1 (fr) 1993-02-04

Family

ID=27475989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000358 WO1993002219A1 (fr) 1991-07-15 1992-03-25 Procede pour la purification du minerai de cuivre ou de son alliage

Country Status (6)

Country Link
US (1) US5364449A (ja)
EP (1) EP0548363B1 (ja)
CA (1) CA2091677C (ja)
DE (1) DE69229387T2 (ja)
FI (1) FI104268B (ja)
WO (1) WO1993002219A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714117A (en) * 1996-01-31 1998-02-03 Iowa State University Research Foundation, Inc. Air melting of Cu-Cr alloys
JP3040768B1 (ja) * 1999-03-01 2000-05-15 株式会社 大阪合金工業所 鋳造欠陥、偏析および酸化物の含有を抑制した銅合金鋳塊の製造方法
US6395059B1 (en) * 2001-03-19 2002-05-28 Noranda Inc. Situ desulfurization scrubbing process for refining blister copper
US6478847B1 (en) 2001-08-31 2002-11-12 Mueller Industries, Inc. Copper scrap processing system
JP4593397B2 (ja) * 2005-08-02 2010-12-08 古河電気工業株式会社 回転移動鋳型を用いた連続鋳造圧延法による無酸素銅線材の製造方法
CN111961878B (zh) * 2020-09-03 2022-09-09 宁波长振铜业有限公司 一种降低废杂铜中高熔点杂质元素的方法
CN111961877B (zh) * 2020-09-03 2022-09-09 宁波长振铜业有限公司 一种净化废杂铜熔体的方法
CN113897508B (zh) * 2021-09-27 2022-03-11 宁波金田铜业(集团)股份有限公司 一种锡青铜用清渣剂及其使用方法
CN113652564B (zh) * 2021-10-19 2021-12-14 北京科技大学 一种利用返回料冶炼高温合金的方法
CN114645138B (zh) * 2022-03-16 2023-11-21 杭州富通集团有限公司 铜杆的加工方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162737A (ja) * 1984-02-03 1985-08-24 Nippon Steel Corp 粗銅精錬法
JPS61217538A (ja) * 1985-03-25 1986-09-27 Furukawa Electric Co Ltd:The 銅の連続溶解鋳造法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE346807B (ja) * 1969-12-23 1972-07-17 Boliden Ab
US3682623A (en) * 1970-10-14 1972-08-08 Metallo Chimique Sa Copper refining process
HU169980B (ja) * 1975-04-16 1977-03-28
JPS52146718A (en) * 1976-06-01 1977-12-06 Kobe Steel Ltd Method and raw material for smelting copper scrap
JPS5412409A (en) * 1977-06-30 1979-01-30 Fuji Electric Co Ltd Transformer for converter
SE7909179L (sv) * 1979-11-06 1981-05-07 Boliden Ab Forfarande for rening av icke-jernmetallsmeltor fran fremmande element
US4318737A (en) * 1980-10-20 1982-03-09 Western Electric Co. Incorporated Copper refining and novel flux therefor
JPS5827939A (ja) * 1981-08-13 1983-02-18 Sumitomo Electric Ind Ltd 電線用銅材の製造方法
JPS59211541A (ja) * 1983-05-18 1984-11-30 Nippon Mining Co Ltd 粗銅の真空精製方法
SU1105512A1 (ru) * 1983-05-20 1984-07-30 Предприятие П/Я А-7155 Флюс дл рафинировани черновой меди
JPS59226131A (ja) * 1983-06-06 1984-12-19 Nippon Mining Co Ltd 粗銅の真空精製装置
SE445361B (sv) * 1984-12-12 1986-06-16 Boliden Ab Forfarande for upparbetning av sekundera metalliska smeltmaterial innehallande koppar
SU1735410A1 (ru) * 1990-07-04 1992-05-23 Луганский Центр Научно-Технического Творчества Молодежи "Союз" Способ плавки меди и ее сплавов
HU209327B (en) * 1990-07-26 1994-04-28 Csepel Muevek Femmueve Process for more intensive pirometallurgic refining primere copper materials and copper-wastes containing pb and sn in basic-lined furnace with utilizing impurity-oriented less-corrosive, morestaged iron-oxide-based slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60162737A (ja) * 1984-02-03 1985-08-24 Nippon Steel Corp 粗銅精錬法
JPS61217538A (ja) * 1985-03-25 1986-09-27 Furukawa Electric Co Ltd:The 銅の連続溶解鋳造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0548363A4 *

Also Published As

Publication number Publication date
CA2091677C (en) 2000-10-24
FI104268B1 (fi) 1999-12-15
FI931112A (fi) 1993-04-08
FI931112A0 (fi) 1993-03-12
DE69229387T2 (de) 2000-03-23
EP0548363A1 (en) 1993-06-30
US5364449A (en) 1994-11-15
CA2091677A1 (en) 1993-01-16
FI104268B (fi) 1999-12-15
EP0548363A4 (ja) 1994-01-12
EP0548363B1 (en) 1999-06-09
DE69229387D1 (de) 1999-07-15

Similar Documents

Publication Publication Date Title
US11992903B2 (en) Solder and method for producing high purity lead
WO1993002219A1 (fr) Procede pour la purification du minerai de cuivre ou de son alliage
CN114134352B (zh) 一种废料熔炼黄铜用清渣剂以及黄铜熔炼的方法
EP3768869A1 (en) Method for the selective recovery of tin and a reactor for use in said method
US20120227544A1 (en) Process for refining lead bullion
KR20220104808A (ko) 니켈, 망간 및 코발트를 회수하기 위한 건식 야금 방법
JP4751100B2 (ja) 浮遊選鉱による銅の回収方法
CN115927842A (zh) 一种废钨渣中有价金属的回收方法
EP3918098B1 (en) Improved co-production of lead and tin products
JP3473025B2 (ja) 銅または銅合金原料の精製方法
EP0034236B1 (en) Separation of chromium from scrap
KR20230018308A (ko) 백금족 원소의 회수 방법
EP3701053B1 (en) Process for the recovery of metals from cobalt-bearing materials
JP2000045087A (ja) 高純度ビスマスの製造方法
JPH0368792A (ja) カルシウム及び窒素をリチウムから分離する方法
JP2004307885A (ja) 金属の不純物低減方法
JP3747852B2 (ja) 廃棄物処理物からの高純度銅の回収方法
KR101779347B1 (ko) 붕소 화합물을 통한 귀금속 농축 회수방법 및 시멘트용 슬래그 제조방법
US1837432A (en) Purification of metals and alloys
RU2164256C2 (ru) Способ переработки сплавов, содержащих благородные и цветные металлы
JP2515071B2 (ja) 銅の溶解法
JP2006028545A (ja) 銅合金から不純物金属を除去する方法及びそれを利用したスラグフューミング方法
JP2003313619A (ja) 低品位銅原料からの銅の回収方法
Bryukvin Interaction of metallic copper melts with stream-air gas mixes.
JPS60169530A (ja) 粗銅中の有価元素の回収法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA FI US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 931112

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: 2091677

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1992907624

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992907624

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992907624

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 931112

Country of ref document: FI