WO1991011138A1 - Intravascular pressure posture detector - Google Patents
Intravascular pressure posture detector Download PDFInfo
- Publication number
- WO1991011138A1 WO1991011138A1 PCT/US1991/000416 US9100416W WO9111138A1 WO 1991011138 A1 WO1991011138 A1 WO 1991011138A1 US 9100416 W US9100416 W US 9100416W WO 9111138 A1 WO9111138 A1 WO 9111138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- patient
- pressure sensors
- posture
- changes
- Prior art date
Links
- 230000000747 cardiac effect Effects 0.000 claims abstract description 14
- 210000000748 cardiovascular system Anatomy 0.000 claims abstract description 8
- 210000001631 vena cava inferior Anatomy 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 6
- 230000003247 decreasing effect Effects 0.000 claims abstract description 5
- 102100026827 Protein associated with UVRAG as autophagy enhancer Human genes 0.000 claims description 8
- 101710102978 Protein associated with UVRAG as autophagy enhancer Proteins 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 5
- 230000001225 therapeutic effect Effects 0.000 claims description 3
- 239000003814 drug Substances 0.000 abstract description 3
- 229940079593 drug Drugs 0.000 abstract description 3
- 238000012377 drug delivery Methods 0.000 abstract description 2
- 230000003284 homeostatic effect Effects 0.000 abstract 2
- 230000001684 chronic effect Effects 0.000 abstract 1
- 230000002526 effect on cardiovascular system Effects 0.000 abstract 1
- 238000002513 implantation Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000009530 blood pressure measurement Methods 0.000 description 5
- 230000001052 transient effect Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 3
- 206010011224 Cough Diseases 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000005245 right atrium Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000001144 postural effect Effects 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- 210000001321 subclavian vein Anatomy 0.000 description 1
- 210000002620 vena cava superior Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/0215—Measuring pressure in heart or blood vessels by means inserted into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36542—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body motion, e.g. acceleration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36564—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
- A61B2560/0247—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
- A61B2560/0261—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using hydrostatic pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6869—Heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6876—Blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36535—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by body position or posture
Definitions
- the present invention generally relates to implantable medical devices, and more specifically, relates to chronically implantable devices for determination of the posture of a patient.
- Intravascular pressure sensors are also known in the art.
- U.S. Patent No. 4,407,296 issued to Anderson teaches a chronically implantable pressure transducer suitable for use in the cardiovascular system.
- a pressure transducer with an improved electronic circuit is taught in U.S. Patent No. 4,432,372, issued to Monroe.
- a further improved pressure transducer is taught in U.S. Patent No. 4,485,813, issued to Anderson, et al.
- These pressure sensors have been directed to the control of artificial cardiac pacers using algorithms which convert measurements of pressure or change of pressure into pacing rate.
- the present invention uses at least two pressure sensors which are chronically implanted in the vascular system. These sensors are positioned such that changes in pressure are sensed in response to changes in posture of the patient. To determine the posture of the patient, the sensors are placed to sense differential changes in pressure with changes in posture.
- This differential pressure change results from gravitational effects upon different points within the vascular system. For example, with pressure sensors in the right heart and the inferior vena cava of a supine patient, the pressure measurements are approximately the same. However, when the patient is erect, the sensor in the inferior vena cava will measure a greater pressure than the sensor in the right heart. It is this pressure differential which identifies the patient as erect.
- the sensors measure the actual pressure
- the differential pressure changes continuously from completely supine to completely erect. Therefore, a patient's differential pressure measurement when sitting up can be distinguished from measurements taken when either supine or erect. Other posture variations can be detected as well.
- a further advantage of determining posture with differential pressure is that factors which result in equal pressure changes to all of the sensors are cancelled out and thereby eliminated. Typical of these factors are differences in altitude and atmospheric pressure. Also eliminated in this way are transients such as experienced in coughing or sneezing.
- the posture measurement may be used in a number of ways.
- a typical application is in cardiac pacing.
- the posture determination is readily used to increase pacing rate for patients in the upright posture.
- the posture determination may be used to vary the drug delivery regimen of an implanted drug dispenser, for example, by increasing or initiating the dispensing of a cardiac or other drug.
- the invention may be useful in conjunction with any implantable device which provides a therapeutic treatment to the body, for varying the treatment in response to postural changes.
- FIG. 1 is a schematic diagram showing placement of two pressure sensors in a patient in a supine position
- FIG. 2 is a schematic diagram showing placement of two pressure sensors in a patient in a partially seated position
- FIG. 3 is a schematic diagram showing preferred placement of two pressure sensors in the vascular system of a patient
- FIG. 4 is a block diagram of an implantable pulse generator incorporating circuitry to vary artificial pacing rate with posture changes determined by differential pressure measurement;
- FIG. 5 is a graphic representation of the pressure measured by a single sensor in a patient changing posture
- FIG. 6 is a graphical representation of the pressure measurements taken from two sensors and the resulting differential.
- the present invention utilizes at least two chronically implantable pressure sensors positioned within the cardiovascular system.
- two pressure sensors are used, however, additional sensors may be employed in accordance with the teaching of the present invention.
- the pressure sensor taught in U.S. Patent No. 4,485,813 issued to Anderson, et al. and incorporated herein by reference is the sensor preferred for this application.
- Other suitable sensors are taught in U.S. Patent No. 4,432,372 issued to Monroe and U.S. Patent No. 4,407,296 issued to Anderson, both of which are herein incorporated by reference.
- FIG. 1 is a schematic view of a patient 10 in a supine position.
- the patient 10 has two pressure sensors such as discussed above chronically implanted in the cardiovascular system. The first of these sensors is implanted in the right side of heart 12 using normal implant techniques. The second pressure sensor is implanted in the inferior vena cava at position 14. A linear distance 16 of L units separates the two pressure sensors. If the patient 10 is lying horizontally, the pressure sensed within heart 12 and in the inferior vena cava by the pressure sensor at position 14 will be approximately the same ' .
- FIG. 2 is a schematic view of patient 10 having the same chronically implanted pressure sensors. In this view, however, patient 10 is in a partially seated position. As can be seen in the drawing, the torso of patient 10 is inclined at an angle 18 from the horizontal. This causes the pressure sensor in heart 12 to be higher than the pressure sensor at position 14. The distance in elevation may be computed from the distance L between the sensor (see also Fig. l) and the angle 1 of inclination of the torso. The difference in elevation 20 is L times the sine of angle 18.
- FIG. 3 is a schematic diagram of the two pressure sensors as implanted in the cardiovascular system.
- Heart 12 has pressure sensor 36 implanted within the right atrium as shown. It is coupled via electrical lead 24 through the venous system to implantable pulse generator 22 in the same fashion as with transvenous cardiac pacing applications.
- pressure sensor 32 is positioned in the inferior vena cava (see also Figs. 1 and 2) .
- Pressure sensor 32 is electrically coupled to implantable pulse generator 22 via transvenous lead 30. Both leads 24 and 30 proceed through the subclavian vein 26 from implantable pulse generator 22 after entry at point 34. Entry to the right atrium of heart 12 is via superior vena cava 28.
- implantable pulse generator 22 functions as an artificial cardiac pacer.
- the necessary pacing lead is not shown for clarity. However, this application is -to be understood as typical and not limiting of the scope of the present invention.
- the pressure sensors are located on two separate leads. However, in some cases, it may be desirable to locate both pressure sensors on the same lead. Differential pressure sensing using a single pressure transducer as illustrated in the above cited U.S. Patent No. 4,407,296 rather than two separate pressure sensors may also be desirable in some circumstances.
- FIG. 4 is a block diagram of implantable pulse generator 22.
- Leads 24 and 30 are shown as transferring the signals from pressure sensors 36 and 32, respectively.
- signal processors 102 and 104 amplify and integrate these signals.
- the difference ir pressure experienced by the two pressure sensors is determined by computed pressure differential circuitry 106.
- This circuitry controls the escape interval timer 108 using standard voltage control oscillator circuitry. The greater the pressure diff rential, the shorter the interval produced by escape interval timer 108.
- Fig. 4 is intended to be exemplary of the general type of circuitry to be employed in the present invention. However, alternate circuitry may also be employed.
- signal processors 102, 104 may function as low pass filters, or integration/filtering may be performed after computation of the pressure differential, as in an embodiment employing a single, differential pressure transducer.
- Sense amplifier 110, inhibit logic 112, and stimulation pulse amplifier 114 operate as in a normal demand pacemaker. Sensing and stimulation is provided using a standard transvenous pacing lead 100.
- the pacing output of implantable pulse generator 22 differs from the normal demand pacer only that the underlying artificial pacing rate is decreased as the pressures sensed by the two pressure sensors (i.e. pressure sensors 32 and 36) are more nearly the same and increased as the pressure differential is increased.
- FIG. 5 is a graphical representation 40 of the idealized output of pressure sensor 32 with changes in patient posture.
- the projection along axis 42 is the pressure sensed (and hence voltage output of the pressure sensor) .
- the projection along axis 44 is the time over which a number of posture changes take place.
- the level at 52 shows the measurement when the patient is supine. The patient sits up at 46 resulting in level 48. The patient lies down again at 50 resulting in supine level 52. Notice with this idealized data that posture changes could be monitored with a single pressure sensor.
- FIG. 6 is a graphical representation of the outputs of both pressure sensors and the computed pressure differential along the same time axis showing some typical transient conditions.
- the upper chart shows the pressure level 60 measured by pressure sensor 36 while patient 10 is supine. As the patient rises, the pressure measured by pressure sensor 36 actually decreases to level 62.
- the pressure increases at 64 and 66 are not related to posture changes.
- the increase at 64 is a short term transient such as a sneeze or cough.
- the change beginning at 66 and resulting in level 68 is of longer duration. It may be of physiological causes such as elevated central venous blood pressure or external causes such as a change in altitude (e.g. as in an airplane or elevator) . In either situation, the non-posture change is detected as a pressure change by pressure sensor 36.
- the middle graph shows the output of pressure sensor 32 over the same time period. Notice that the supine level is 70. As the patient 10 rises, it is detected as pressure increase 74 resulting in level 76. Transient pressure rise 78 and non-posture change pressure rise 80 resulting in new pressure level 82 are detected as with pressure sensor 36.
- the bottom graph shows the pressure differential of the two pressure sensors. It corresponds to the output of computed pressure differential 106 (see also Fig. 4) .
- Level 90 shows essentially no pressure differential. It corresponds to the time when patient 10 is in the supine position. In the preferred embodiment this results in the longest escape interval (or the lowest underlying pacing rate) . As the patient rises, the pressure differential is increased at 92 resulting in new level 94. This corresponds to a shorter escape interval.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Hematology (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Electrotherapy Devices (AREA)
- Body Structure For Vehicles (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69101547T DE69101547T2 (en) | 1990-01-31 | 1991-01-18 | Cardiac pacemaker with blood pressure transducers placed in the circulation to display the patient's body position. |
JP91504418A JPH05505322A (en) | 1990-01-31 | 1991-01-18 | Intravascular pressure and posture detector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US473,265 | 1990-01-31 | ||
US07/473,265 US5040536A (en) | 1990-01-31 | 1990-01-31 | Intravascular pressure posture detector |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991011138A1 true WO1991011138A1 (en) | 1991-08-08 |
Family
ID=23878846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1991/000416 WO1991011138A1 (en) | 1990-01-31 | 1991-01-18 | Intravascular pressure posture detector |
Country Status (7)
Country | Link |
---|---|
US (1) | US5040536A (en) |
EP (1) | EP0513182B1 (en) |
JP (1) | JPH05505322A (en) |
AU (1) | AU646841B2 (en) |
CA (1) | CA2074826A1 (en) |
DE (1) | DE69101547T2 (en) |
WO (1) | WO1991011138A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996030080A1 (en) * | 1995-03-30 | 1996-10-03 | Medtronic, Inc. | Medical device employing multiple dc accelerometers for patient activity and posture sensing |
WO1996030079A1 (en) * | 1995-03-30 | 1996-10-03 | Medtronic, Inc. | Rate responsive cardiac pacemaker for discriminating stair climbing from other activities |
Families Citing this family (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3939899A1 (en) * | 1989-11-29 | 1991-06-06 | Biotronik Mess & Therapieg | HEART PACEMAKER |
US5336243A (en) * | 1989-11-29 | 1994-08-09 | Biotronik Mess- Und Therapiegerate Gmbh & Co., Ingenieurburo Berlin | Physiologically controlled pacemaker and pacemaker control system with detection of the spatial position of the patient |
JPH04259447A (en) * | 1991-02-13 | 1992-09-16 | Fukuda Denshi Co Ltd | Method and stand for measuring blood pressure |
DE59209635D1 (en) * | 1991-09-12 | 1999-04-01 | Biotronik Mess & Therapieg | Cardiac therapy system |
DE19757974A1 (en) * | 1997-12-24 | 1999-07-15 | Braun Gmbh | Method and measuring device for determining blood pressure |
US20030036746A1 (en) | 2001-08-16 | 2003-02-20 | Avi Penner | Devices for intrabody delivery of molecules and systems and methods utilizing same |
US6104949A (en) * | 1998-09-09 | 2000-08-15 | Vitatron Medical, B.V. | Medical device |
US6528856B1 (en) * | 1998-12-15 | 2003-03-04 | Intel Corporation | High dielectric constant metal oxide gate dielectrics |
US7429243B2 (en) * | 1999-06-03 | 2008-09-30 | Cardiac Intelligence Corporation | System and method for transacting an automated patient communications session |
US6607485B2 (en) | 1999-06-03 | 2003-08-19 | Cardiac Intelligence Corporation | Computer readable storage medium containing code for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care |
US6312378B1 (en) * | 1999-06-03 | 2001-11-06 | Cardiac Intelligence Corporation | System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care |
US7134996B2 (en) * | 1999-06-03 | 2006-11-14 | Cardiac Intelligence Corporation | System and method for collection and analysis of patient information for automated remote patient care |
US6261230B1 (en) | 1999-06-03 | 2001-07-17 | Cardiac Intelligence Corporation | System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system |
US6270457B1 (en) * | 1999-06-03 | 2001-08-07 | Cardiac Intelligence Corp. | System and method for automated collection and analysis of regularly retrieved patient information for remote patient care |
US6351672B1 (en) * | 1999-07-22 | 2002-02-26 | Pacesetter, Inc. | System and method for modulating the pacing rate based on patient activity and position |
CA2314517A1 (en) * | 1999-07-26 | 2001-01-26 | Gust H. Bardy | System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system |
CA2314513A1 (en) * | 1999-07-26 | 2001-01-26 | Gust H. Bardy | System and method for providing normalized voice feedback from an individual patient in an automated collection and analysis patient care system |
US6221011B1 (en) * | 1999-07-26 | 2001-04-24 | Cardiac Intelligence Corporation | System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system |
US6336903B1 (en) | 1999-11-16 | 2002-01-08 | Cardiac Intelligence Corp. | Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof |
US6368284B1 (en) | 1999-11-16 | 2002-04-09 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof |
US6398728B1 (en) | 1999-11-16 | 2002-06-04 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for diagnosing and monitoring respiratory insufficiency and outcomes thereof |
US6440066B1 (en) | 1999-11-16 | 2002-08-27 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder |
US6411840B1 (en) * | 1999-11-16 | 2002-06-25 | Cardiac Intelligence Corporation | Automated collection and analysis patient care system and method for diagnosing and monitoring the outcomes of atrial fibrillation |
US8369937B2 (en) | 1999-11-16 | 2013-02-05 | Cardiac Pacemakers, Inc. | System and method for prioritizing medical conditions |
JP2002095638A (en) * | 2000-09-25 | 2002-04-02 | Inst Of Physical & Chemical Res | System for controlling information about individual living body and it's method |
US7024248B2 (en) | 2000-10-16 | 2006-04-04 | Remon Medical Technologies Ltd | Systems and methods for communicating with implantable devices |
US6890303B2 (en) * | 2001-05-31 | 2005-05-10 | Matthew Joseph Fitz | Implantable device for monitoring aneurysm sac parameters |
US6662047B2 (en) * | 2001-09-05 | 2003-12-09 | Pacesetter, Inc. | Pacing mode to reduce effects of orthostatic hypotension and syncope |
US7013178B2 (en) | 2002-09-25 | 2006-03-14 | Medtronic, Inc. | Implantable medical device communication system |
US7139613B2 (en) | 2002-09-25 | 2006-11-21 | Medtronic, Inc. | Implantable medical device communication system with pulsed power biasing |
US7226422B2 (en) * | 2002-10-09 | 2007-06-05 | Cardiac Pacemakers, Inc. | Detection of congestion from monitoring patient response to a recumbent position |
US7009511B2 (en) | 2002-12-17 | 2006-03-07 | Cardiac Pacemakers, Inc. | Repeater device for communications with an implantable medical device |
US7319899B2 (en) * | 2003-04-23 | 2008-01-15 | Medtronic, Inc. | Sensing techniques for implantable medical devices |
US8396565B2 (en) | 2003-09-15 | 2013-03-12 | Medtronic, Inc. | Automatic therapy adjustments |
US9033920B2 (en) * | 2003-10-02 | 2015-05-19 | Medtronic, Inc. | Determining catheter status |
US7320676B2 (en) * | 2003-10-02 | 2008-01-22 | Medtronic, Inc. | Pressure sensing in implantable medical devices |
US8323244B2 (en) * | 2007-03-30 | 2012-12-04 | Medtronic, Inc. | Catheter malfunction determinations using physiologic pressure |
US9138537B2 (en) * | 2003-10-02 | 2015-09-22 | Medtronic, Inc. | Determining catheter status |
WO2005046472A1 (en) * | 2003-10-14 | 2005-05-26 | Cardiac Pacemakers, Inc. | Detection of congestion from monitoring patient response to a recumbent position |
US6964641B2 (en) * | 2003-12-24 | 2005-11-15 | Medtronic, Inc. | Implantable medical device with sleep disordered breathing monitoring |
US7286884B2 (en) | 2004-01-16 | 2007-10-23 | Medtronic, Inc. | Implantable lead including sensor |
US8025624B2 (en) | 2004-02-19 | 2011-09-27 | Cardiac Pacemakers, Inc. | System and method for assessing cardiac performance through cardiac vibration monitoring |
US7488290B1 (en) | 2004-02-19 | 2009-02-10 | Cardiac Pacemakers, Inc. | System and method for assessing cardiac performance through transcardiac impedance monitoring |
US7881798B2 (en) | 2004-03-16 | 2011-02-01 | Medtronic Inc. | Controlling therapy based on sleep quality |
US7792583B2 (en) | 2004-03-16 | 2010-09-07 | Medtronic, Inc. | Collecting posture information to evaluate therapy |
US20070276439A1 (en) * | 2004-03-16 | 2007-11-29 | Medtronic, Inc. | Collecting sleep quality information via a medical device |
US7366572B2 (en) * | 2004-03-16 | 2008-04-29 | Medtronic, Inc. | Controlling therapy based on sleep quality |
US7330760B2 (en) * | 2004-03-16 | 2008-02-12 | Medtronic, Inc. | Collecting posture information to evaluate therapy |
US7395113B2 (en) * | 2004-03-16 | 2008-07-01 | Medtronic, Inc. | Collecting activity information to evaluate therapy |
US8725244B2 (en) | 2004-03-16 | 2014-05-13 | Medtronic, Inc. | Determination of sleep quality for neurological disorders |
US7805196B2 (en) * | 2004-03-16 | 2010-09-28 | Medtronic, Inc. | Collecting activity information to evaluate therapy |
US20050209512A1 (en) * | 2004-03-16 | 2005-09-22 | Heruth Kenneth T | Detecting sleep |
US8308661B2 (en) * | 2004-03-16 | 2012-11-13 | Medtronic, Inc. | Collecting activity and sleep quality information via a medical device |
US7717848B2 (en) * | 2004-03-16 | 2010-05-18 | Medtronic, Inc. | Collecting sleep quality information via a medical device |
US8055348B2 (en) | 2004-03-16 | 2011-11-08 | Medtronic, Inc. | Detecting sleep to evaluate therapy |
WO2005089646A1 (en) * | 2004-03-16 | 2005-09-29 | Medtronic, Inc. | Sensitivity analysis for selecting therapy parameter sets |
US7491181B2 (en) * | 2004-03-16 | 2009-02-17 | Medtronic, Inc. | Collecting activity and sleep quality information via a medical device |
EP1755734B1 (en) | 2004-04-14 | 2013-02-27 | Medtronic Inc. | Collecting posture and activity information to evaluate therapy |
US8135473B2 (en) | 2004-04-14 | 2012-03-13 | Medtronic, Inc. | Collecting posture and activity information to evaluate therapy |
US20060025931A1 (en) * | 2004-07-30 | 2006-02-02 | Richard Rosen | Method and apparatus for real time predictive modeling for chronically ill patients |
US7329226B1 (en) | 2004-07-06 | 2008-02-12 | Cardiac Pacemakers, Inc. | System and method for assessing pulmonary performance through transthoracic impedance monitoring |
US7387610B2 (en) | 2004-08-19 | 2008-06-17 | Cardiac Pacemakers, Inc. | Thoracic impedance detection with blood resistivity compensation |
US7335161B2 (en) * | 2004-08-20 | 2008-02-26 | Cardiac Pacemakers, Inc. | Techniques for blood pressure measurement by implantable device |
US20060064133A1 (en) | 2004-09-17 | 2006-03-23 | Cardiac Pacemakers, Inc. | System and method for deriving relative physiologic measurements using an external computing device |
US20060064134A1 (en) * | 2004-09-17 | 2006-03-23 | Cardiac Pacemakers, Inc. | Systems and methods for deriving relative physiologic measurements |
US7813808B1 (en) | 2004-11-24 | 2010-10-12 | Remon Medical Technologies Ltd | Implanted sensor system with optimized operational and sensing parameters |
US8781847B2 (en) * | 2005-05-03 | 2014-07-15 | Cardiac Pacemakers, Inc. | System and method for managing alert notifications in an automated patient management system |
US20100063840A1 (en) * | 2005-05-03 | 2010-03-11 | Hoyme Kenneth P | System and method for managing coordination of collected patient data in an automated patient management system |
US20060253300A1 (en) * | 2005-05-03 | 2006-11-09 | Somberg Benjamin L | System and method for managing patient triage in an automated patient management system |
US9089275B2 (en) * | 2005-05-11 | 2015-07-28 | Cardiac Pacemakers, Inc. | Sensitivity and specificity of pulmonary edema detection when using transthoracic impedance |
US7907997B2 (en) | 2005-05-11 | 2011-03-15 | Cardiac Pacemakers, Inc. | Enhancements to the detection of pulmonary edema when using transthoracic impedance |
WO2006130268A1 (en) * | 2005-06-01 | 2006-12-07 | Medtronic, Inc. | Correlating a non-polysomnographic physiological parameter set with sleep states |
US7742815B2 (en) | 2005-09-09 | 2010-06-22 | Cardiac Pacemakers, Inc. | Using implanted sensors for feedback control of implanted medical devices |
US7899510B2 (en) | 2005-09-29 | 2011-03-01 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
EP2471451A1 (en) | 2005-10-14 | 2012-07-04 | Nanostim, Inc. | Leadless cardiac pacemaker and system |
US9168383B2 (en) | 2005-10-14 | 2015-10-27 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
US20070129641A1 (en) * | 2005-12-01 | 2007-06-07 | Sweeney Robert J | Posture estimation at transitions between states |
US8016776B2 (en) * | 2005-12-02 | 2011-09-13 | Medtronic, Inc. | Wearable ambulatory data recorder |
US7957809B2 (en) | 2005-12-02 | 2011-06-07 | Medtronic, Inc. | Closed-loop therapy adjustment |
US20070142727A1 (en) * | 2005-12-15 | 2007-06-21 | Cardiac Pacemakers, Inc. | System and method for analyzing cardiovascular pressure measurements made within a human body |
US20070156057A1 (en) * | 2005-12-30 | 2007-07-05 | Cho Yong K | Method and system for interpreting hemodynamic data incorporating patient posture information |
EP1998849B1 (en) * | 2006-03-24 | 2014-12-24 | Medtronic, Inc. | Collecting gait information for evaluation and control of therapy |
EP2030643A1 (en) * | 2006-04-06 | 2009-03-04 | Medtronic, Inc. | Systems and methods for identifying catheter malfunctions using pressure sensing |
US7955268B2 (en) | 2006-07-21 | 2011-06-07 | Cardiac Pacemakers, Inc. | Multiple sensor deployment |
US8343049B2 (en) | 2006-08-24 | 2013-01-01 | Cardiac Pacemakers, Inc. | Physiological response to posture change |
US9044537B2 (en) | 2007-03-30 | 2015-06-02 | Medtronic, Inc. | Devices and methods for detecting catheter complications |
US8801636B2 (en) * | 2007-07-19 | 2014-08-12 | Cardiac Pacemakers, Inc. | Method and apparatus for determining wellness based on decubitus posture |
US8260425B2 (en) * | 2007-10-12 | 2012-09-04 | Intelect Medical, Inc. | Deep brain stimulation system with inputs |
EP2242538B1 (en) | 2008-02-11 | 2016-04-06 | Cardiac Pacemakers, Inc. | Methods of monitoring hemodynamic status for ryhthm discrimination within the heart |
US8369960B2 (en) | 2008-02-12 | 2013-02-05 | Cardiac Pacemakers, Inc. | Systems and methods for controlling wireless signal transfers between ultrasound-enabled medical devices |
US9050471B2 (en) | 2008-07-11 | 2015-06-09 | Medtronic, Inc. | Posture state display on medical device user interface |
US8437861B2 (en) | 2008-07-11 | 2013-05-07 | Medtronic, Inc. | Posture state redefinition based on posture data and therapy adjustments |
US8583252B2 (en) | 2008-07-11 | 2013-11-12 | Medtronic, Inc. | Patient interaction with posture-responsive therapy |
US9545518B2 (en) | 2008-07-11 | 2017-01-17 | Medtronic, Inc. | Posture state classification for a medical device |
US8231556B2 (en) | 2008-07-11 | 2012-07-31 | Medtronic, Inc. | Obtaining baseline patient information |
US8708934B2 (en) | 2008-07-11 | 2014-04-29 | Medtronic, Inc. | Reorientation of patient posture states for posture-responsive therapy |
US9440084B2 (en) | 2008-07-11 | 2016-09-13 | Medtronic, Inc. | Programming posture responsive therapy |
US8504150B2 (en) | 2008-07-11 | 2013-08-06 | Medtronic, Inc. | Associating therapy adjustments with posture states using a stability timer |
US8326420B2 (en) | 2008-07-11 | 2012-12-04 | Medtronic, Inc. | Associating therapy adjustments with posture states using stability timers |
US8280517B2 (en) | 2008-09-19 | 2012-10-02 | Medtronic, Inc. | Automatic validation techniques for validating operation of medical devices |
US8591423B2 (en) | 2008-10-10 | 2013-11-26 | Cardiac Pacemakers, Inc. | Systems and methods for determining cardiac output using pulmonary artery pressure measurements |
US8632470B2 (en) | 2008-11-19 | 2014-01-21 | Cardiac Pacemakers, Inc. | Assessment of pulmonary vascular resistance via pulmonary artery pressure |
WO2010088687A1 (en) | 2009-02-02 | 2010-08-05 | Nanostim, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
US9026223B2 (en) | 2009-04-30 | 2015-05-05 | Medtronic, Inc. | Therapy system including multiple posture sensors |
US9327070B2 (en) | 2009-04-30 | 2016-05-03 | Medtronic, Inc. | Medical device therapy based on posture and timing |
US8175720B2 (en) | 2009-04-30 | 2012-05-08 | Medtronic, Inc. | Posture-responsive therapy control based on patient input |
US9956418B2 (en) | 2010-01-08 | 2018-05-01 | Medtronic, Inc. | Graphical manipulation of posture zones for posture-responsive therapy |
US9357949B2 (en) | 2010-01-08 | 2016-06-07 | Medtronic, Inc. | User interface that displays medical therapy and posture data |
US8388555B2 (en) | 2010-01-08 | 2013-03-05 | Medtronic, Inc. | Posture state classification for a medical device |
US8579834B2 (en) | 2010-01-08 | 2013-11-12 | Medtronic, Inc. | Display of detected patient posture state |
US8396563B2 (en) | 2010-01-29 | 2013-03-12 | Medtronic, Inc. | Clock synchronization in an implantable medical device system |
US9566441B2 (en) | 2010-04-30 | 2017-02-14 | Medtronic, Inc. | Detecting posture sensor signal shift or drift in medical devices |
WO2012051237A1 (en) | 2010-10-12 | 2012-04-19 | Nanostim, Inc. | Temperature sensor for a leadless cardiac pacemaker |
US9060692B2 (en) | 2010-10-12 | 2015-06-23 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
WO2012051235A1 (en) | 2010-10-13 | 2012-04-19 | Nanostim, Inc. | Leadless cardiac pacemaker with anti-unscrewing feature |
WO2012082755A1 (en) | 2010-12-13 | 2012-06-21 | Nanostim, Inc. | Pacemaker retrieval systems and methods |
CN103429296A (en) | 2010-12-13 | 2013-12-04 | 内诺斯蒂姆股份有限公司 | Delivery catheter systems and methods |
US9242102B2 (en) | 2010-12-20 | 2016-01-26 | Pacesetter, Inc. | Leadless pacemaker with radial fixation mechanism |
US9872956B2 (en) | 2011-04-29 | 2018-01-23 | Medtronic, Inc. | Limiting pressure in an implanted catheter |
US9511236B2 (en) | 2011-11-04 | 2016-12-06 | Pacesetter, Inc. | Leadless cardiac pacemaker with integral battery and redundant welds |
US9907959B2 (en) | 2012-04-12 | 2018-03-06 | Medtronic, Inc. | Velocity detection for posture-responsive therapy |
US9737719B2 (en) | 2012-04-26 | 2017-08-22 | Medtronic, Inc. | Adjustment of therapy based on acceleration |
US9802054B2 (en) | 2012-08-01 | 2017-10-31 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
JP6610251B2 (en) | 2015-12-28 | 2019-11-27 | オムロンヘルスケア株式会社 | Blood pressure related information display device |
US10835133B2 (en) * | 2016-12-20 | 2020-11-17 | Medtronic, Inc. | Hydrostatic offset adjustment for measured cardiovascular pressure values |
US11596795B2 (en) | 2017-07-31 | 2023-03-07 | Medtronic, Inc. | Therapeutic electrical stimulation therapy for patient gait freeze |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146029A (en) * | 1974-04-23 | 1979-03-27 | Ellinwood Jr Everett H | Self-powered implanted programmable medication system and method |
EP0222681A1 (en) * | 1985-09-17 | 1987-05-20 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Heart pacemaker |
US4691709A (en) * | 1986-07-01 | 1987-09-08 | Cordis Corporation | Apparatus for measuring velocity of blood flow in a blood vessel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4052991A (en) * | 1970-03-24 | 1977-10-11 | Fred Zacouto | Method of stimulating the heart |
US4802481A (en) * | 1984-07-19 | 1989-02-07 | Cordis Leads, Inc. | Apparatus for controlling pacing of a heart in response to changes in stroke volume |
US4566456A (en) * | 1984-10-18 | 1986-01-28 | Cordis Corporation | Apparatus and method for adjusting heart/pacer rate relative to right ventricular systolic pressure to obtain a required cardiac output |
DE3689347D1 (en) * | 1985-09-17 | 1994-01-13 | Biotronik Mess & Therapieg | Pacemaker. |
US4777951A (en) * | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
US4886064A (en) * | 1987-11-25 | 1989-12-12 | Siemens Aktiengesellschaft | Body activity controlled heart pacer |
-
1990
- 1990-01-31 US US07/473,265 patent/US5040536A/en not_active Expired - Lifetime
-
1991
- 1991-01-18 AU AU72539/91A patent/AU646841B2/en not_active Ceased
- 1991-01-18 EP EP91904200A patent/EP0513182B1/en not_active Expired - Lifetime
- 1991-01-18 DE DE69101547T patent/DE69101547T2/en not_active Expired - Fee Related
- 1991-01-18 WO PCT/US1991/000416 patent/WO1991011138A1/en active IP Right Grant
- 1991-01-18 CA CA002074826A patent/CA2074826A1/en not_active Abandoned
- 1991-01-18 JP JP91504418A patent/JPH05505322A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4146029A (en) * | 1974-04-23 | 1979-03-27 | Ellinwood Jr Everett H | Self-powered implanted programmable medication system and method |
EP0222681A1 (en) * | 1985-09-17 | 1987-05-20 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Heart pacemaker |
US4691709A (en) * | 1986-07-01 | 1987-09-08 | Cordis Corporation | Apparatus for measuring velocity of blood flow in a blood vessel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996030080A1 (en) * | 1995-03-30 | 1996-10-03 | Medtronic, Inc. | Medical device employing multiple dc accelerometers for patient activity and posture sensing |
WO1996030079A1 (en) * | 1995-03-30 | 1996-10-03 | Medtronic, Inc. | Rate responsive cardiac pacemaker for discriminating stair climbing from other activities |
Also Published As
Publication number | Publication date |
---|---|
US5040536A (en) | 1991-08-20 |
DE69101547D1 (en) | 1994-05-05 |
JPH05505322A (en) | 1993-08-12 |
AU646841B2 (en) | 1994-03-10 |
CA2074826A1 (en) | 1991-08-01 |
EP0513182B1 (en) | 1994-03-30 |
DE69101547T2 (en) | 1994-09-01 |
EP0513182A1 (en) | 1992-11-19 |
AU7253991A (en) | 1991-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5040536A (en) | Intravascular pressure posture detector | |
JP3770911B2 (en) | Medical device using multiple DC accelerometers for patient activity and posture sensing | |
US5725562A (en) | Rate responsive cardiac pacemaker and method for discriminating stair climbing from other activities | |
US4846195A (en) | Implantable position and motion sensor | |
EP1115350B1 (en) | Posture and device orientation sensing and calibration for implantable medical devices | |
US6915162B2 (en) | Implantable medical device for measuring ventricular pressure | |
US6912420B2 (en) | Cardiac rhythm management system for hypotension | |
US5265601A (en) | Dual chamber cardiac pacing from a single electrode | |
US4858611A (en) | Sensing system and method for sensing minute ventilation | |
WO1998000197A9 (en) | Pacemaker with stair climbing discrimination | |
US7599741B2 (en) | Systems and methods for improving heart rate kinetics in heart failure patients | |
US8428720B2 (en) | Posture-induced changes to physiological parameters | |
EP0426775B1 (en) | Automatically adjustable energy controlled rate-responsive pacemaker | |
LAU et al. | Initial clinical experience with a single pass VDDR pacing system | |
JP3664731B2 (en) | A heart rate pacemaker that distinguishes stairs climbing from other actions | |
Stangl et al. | Combinations of parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2074826 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991904200 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1991904200 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991904200 Country of ref document: EP |