WO1991010491A1 - Character animation method and apparatus - Google Patents

Character animation method and apparatus Download PDF

Info

Publication number
WO1991010491A1
WO1991010491A1 PCT/US1991/000363 US9100363W WO9110491A1 WO 1991010491 A1 WO1991010491 A1 WO 1991010491A1 US 9100363 W US9100363 W US 9100363W WO 9110491 A1 WO9110491 A1 WO 9110491A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
animation
drive means
animated
drive
Prior art date
Application number
PCT/US1991/000363
Other languages
French (fr)
Inventor
James Mckeefery
James Sachs
James Fan
Ming Liang
Original Assignee
Worlds Of Wonder, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Worlds Of Wonder, Inc. filed Critical Worlds Of Wonder, Inc.
Priority to EP91903734A priority Critical patent/EP0513143B1/en
Priority to JP91503599A priority patent/JPH05505534A/en
Priority to DE69112200T priority patent/DE69112200T2/en
Priority to BR919105945A priority patent/BR9105945A/en
Priority to AU72335/91A priority patent/AU656130B2/en
Publication of WO1991010491A1 publication Critical patent/WO1991010491A1/en
Priority to HK98107127A priority patent/HK1007973A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/28Arrangements of sound-producing means in dolls; Means in dolls for producing sounds
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H3/00Dolls
    • A63H3/36Details; Accessories
    • A63H3/48Mounting of parts within dolls, e.g. automatic eyes or parts for animation

Definitions

  • the present invention relates to the field of animated toy characters.
  • animated toy characters have been manufactured and sold in accordance with U.S. Patent No. 4,665,640.
  • Such characters include a dual track playback unit, accessible through the back of the character, for receipt and playing of a dual track tape cassette having a voice signal recorded on one track thereof, and an animation control signal recorded on a second track thereof.
  • the voice track of course is in general merely played back through a speaker in the body of the character.
  • the animation control signal as recorded is a pulsed width modulated multi-channel signal having a variable frame time, recorded on the tape without further modulation thereof.
  • one channel is used for the animation of the mouth in synchronism with the voice track, and a second channel is used for animation of the eyes, with additional channels being available for other uses.
  • the animation control track is demodulated and the demodulated signals used to proportionally control the servo motors controlling the animated features .
  • the proportional control coupled with the position feedback on each servo system provides a smooth, fully controllable motion for each of the animated elements.
  • the pulse width modulation signal has a signal dependent frame time, making the repetition rate of the demodulated signal longer than may be desired.
  • the signal dependent frame time makes the editing of the animation control information during the creation of a master tape difficult, as one may not merely re-tailor a segment of the animation or remove and replace a segment and have the new information fit within the exact same playback time as the original segment before modification or replacement.
  • the pulse width demodulation and the multiple servo systems in the character to animate multiple features are more expensive than desired for many toys.
  • the animation control signals are derived directly from the single voice track.
  • Such an arrangement has certain advantages in that the voice track need not even be prerecorded, but rather can be an impromptu voice signal provided through a hidden microphone. It has the disadvantage however, of not providing the flexibility of tailoring the animation, and may provide the appearance of mouth movements, etc., lagging the sound provided.
  • a dual track tape is provided with an audio signal on one track and with a pulse train as an animation control signal on the second track.
  • the pulse train is reproduced and fed to a frequency selector which detects the frequency of each pulse by an appropriate band pass network.
  • the detected signal is amplified and transformed into a DC level control signal which is then applied to -the appropriate input of a multiple self feeding relay inverter .
  • This in turn controls programming motors operating various solenoid switches through cam disks driven by the motors to provide animation through the solenoid operation .
  • one of the purposes of the present invention is to maintain the performance and flexibility of that animation system, while at the same time simplifying both the master tape creating process by simplifying the editing of the animation control signal, and at the same time reducing the cost of the animated character by reducing the complexity of the electronics and electromechanical control therein, all without effecting the animated characters ability to charm and captivate the youngest of children and parents alike .
  • Figure 1 is a view of a typical plush toy incorporating the present invention.
  • Figure 2 is a schematic cross-seciton taken through the head of the plush toy of figure 1.
  • Figure 3 is a schematice cross-section similar to that of figure 2 illustrating the mechanism in the fully mouth- open condition.
  • Figure 4 is a schematic cross-section similar to that of figure 2 showing the mechanism in the mouth-closed, eyes down position.
  • Figure 5 is a circuit diagram for the control circuitry in the plush toy of figure 1.
  • FIG. 1 a view of a typical character which may be animated in accordance with the present invention may be seen.
  • the character in this case in the form of a Teddy Bear type character, contains a tape playback unit accessible through the back thereof, a hidden speaker in the chest region thereof, and a servo motor and drive system in the head assembly for animating the mouth and eyes of the character.
  • FIG. 2 A schematic cross section taken through the head of the character of Figure 1 may be seen in Figure 2.
  • the head is formed of a plastic skull-like structure 20 having a layer of foam 22 thereon for padding, and containing the animation mechanism for the character.
  • a servo motor 24 drives a first pulley 26 by way of a small belt 28.
  • Integral with pulley 26 is a small pulley 30 driving pulley 32 by way of another belt 3 .
  • Integral with pulley 32 is still another pulley 36 driving a further pulley 38 coaxial with pulleys 26 and 30, though rotationally independent thereof, through belt 40.
  • the various pulleys provide a very substantial speed reduction, in the preferred embodiment a reduction of approximately 120 to 1, in a substantially noise free belt drive system.
  • belt tensions, materials, etc. are preferably selected so that the drive system will slip if pulley 38 is restricted from rotation while the servo motor 24 is still operating and/or pulley 38 is forced into rotation other than by the servo motor.
  • Pulley 38 is directly connected to the shaft of a feedback potentiometer so that the feedback signal therefrom is directly indicative of the position of the pulley 38 independent of any prior or contemporaneous belt slippage in the drive system.
  • Integral with pulley 38 are paddle like projections 42 and 44, the function of which shall be subsequently described.
  • a pair of eyes 46 pivotly supported on axis 48 so as to be rotatable in unison thereabout, the eyes being spring loaded to the position shown.
  • a lever 50 projecting downward and somewhat rearward which is used to rotate the eyes about axis 48 as desired.
  • a pair of mouth actuating members Located below the eyes are a pair of mouth actuating members, generally indicated by the numerals 52 and 54, which extend into mouth regions on an outer cover (not shown) over the structure, the outer covering defining no only the mouth and eye openings of the character, but also the other face and head features as desired.
  • the mouth member 54 has a cam like slot 56 therein, with mouth member 52 having a rearward extension 58 having a projection thereon fitting within slot 56 so as to be guided thereby, the mouth members 52 and 54 being pivotly supported on axis 60 and 62, respectively.
  • member 54 is spring loaded to the position shown which automatically brings member 52 to the position shown, the position of the two members corresponding to the mouth closed position.
  • the drive system is shown in the position corresponding the mouth open position.
  • the pulley 38 has been driven counterclockwise so that paddle member 42 has engaged the rearward extending arm on mouth member 54 and moved the same to the position shown, which in turn has caused a corresponding rotation in mouth member 52.
  • pulley 38 has been rotated in the opposite direction so that paddle member 44 has engaged the downward extending arm 50 of the eye assembly to rotate the same downward approximately 60 degrees, as if the eyes were closed or blinking.
  • FIG. 5 a schematic diagram of the electronics in the character may be seen.
  • one channel of the dual channel pre-recorded tape and tape playback unit provides the animation control signal and the other channel provides the audio channel.
  • a pick-up head 64 of the playback unit provides an animation control signal which is amplified by amplifiers 66 and 68 (in the discussion to follow, for purposes of clarity, feedback " circuits, frequency band limiting circuits, etc., are in general not shown unless the same provides special functions or the same relate to the understanding of the operation of the system) .
  • the output of amplifier 68 is coupled through capacitor 70 and resistor 72 to a differential amplifier 74 coupled as a limiter.
  • the positive input of the differential amplifier is coupled to a reference voltage with the output thereof being coupled back to the inverting input of the amplifier 74 through the parallel combination of diode 76 and transistor 78 connected in series with resistor 80.
  • the forward conduction voltage drop of diode 76, as well as the emitter base junction drop of transistor 78 is approximately 0.7 volts, so that no feedback is provided between the output of the differential amplifier 74 and the inverting input thereto if the difference in the output and the inverting input is less than approximately 0.7 volts.
  • the apparent gain of the differential amplifier is essentially the open loop gain thereof.
  • diode 76 When the output of the amplifier exceeds the inverting input thereto, diode 76 will be conducting, providing feedback through resistor 80 to then limit the gain to a relatively nominal value. Similarly, if the output of differential amplifier 74 is more than 0.7 volts lower than the inverting input thereto, transistor 78 will be turned on, with the emitter base junction of the transistor conducting sufficiently to provide feedback through the resistor 80, much like hereinbefore described with respect to the diode 76, again reducing the gain of the amplifier to a relatively nominal value.
  • the.output of the limiter 74 is a substantially symmetrical "square" wave having somewhat rounded tops and having the frequency corresponding to a frequency of the signal recorded on the animation track part of the dual track tape currently being played by the tape playback unit in the character.
  • the circuit shown will hold the differential input to amplifier 74 substantially at zero, so that the inverting input of the amplifier 74 will in general be equal to the reference voltage provided to the non-inverting input thereto.
  • transistor 78 will be conducting approximately 50 percent of the time, charging capacitor 82 through resistor 84. If on the other hand the signal being interpreted as the animation signal is inadequate, transistor 78 will either remain off or have such a low duty cycle as to allow capacitor 82 to discharge through resistor 86, resistor 86 being substantially larger than resistor 84 so as to not effect the charging of the capacitor during the normal operation of the transistor.
  • the differential input to comparator 88 is positive. In the particular comparator used, this gives an open collector or floating output.
  • capacitor 82 will discharge through resistor 86 to a voltage lower than the reference voltage provided to the comparator 88, thereby driving the output of the comparator low (the various reference voltages referred to herein may be different reference voltages as appropriate for each part of the specific circuitry used) .
  • the output of the differential amplifier 88 will be floating so long as the animation signal received is of adequate amplitude to appropriately provide animation control.
  • the output of the limiter 74 is also provided to comparator 90 provided with positive feedback through the combination of resistors 92 and 94.
  • This comparator is of the same type as comparator 88, having a floating output for a positive differential input.
  • the output of the comparator 90 is provided to a circuit comprised of resistors 96, 98, 100, 102, 104, 106, 108, 110, 112 and 134, potentiometer 114, transistors 116, 118, 120, 122 and 124, and capacitors 126, 128, 130 and 132.
  • resistors 96, 98 and 100 act as pull-up resistors for the output of comparator 90, so that the output of the comparator effectively is a square wave ranging substantially from ground to the positive rail at a frequency corresponding to the animation signal received from pickup head 64.
  • transistors 116 and 120 act as a current source depending upon resistor 104 and the setting of potentiometer 114.
  • capacitor 130 charges at a constant rate so long as the output of the comparator remains low. Since the square wave input to comparator 90 has a constant duty cycle of approximately 50 percent, the time period for which the output of comparator 90 will remain low will be inversely proportional to the requency of the signal received from the pickup head 64. Thus, the voltage which will exist on capacitor 130 when the output of comparator 90 goes high will be inversely proportional to the instantaneous frequency of the animation signal recorded on the tape.
  • capacitor 126 pulses transistors 122 and 124 into conduction through resistors 110 and 112 for a short period of time, transferring at least part of the voltage on capacitor 130 through one of the two transistors and resistor 134 to capacitor 132, depending upon the value of resistor 134 and the relative values of capacitors 130 and 132.
  • This essentially provides a sample and hold circuit, updating the voltage on capacitor 132 on every cycle of the signal received from the pickup head 64, though some effective lag is provided as a result of resistor 134 and the fact that capacitor 132 is somewhat larger than capacitor 130.
  • the transistors 122 and 124 are pulsed on only for a short period by capacitor 126, as the same is a relatively small capacitor providing base current to transistors 122 and 124 for only a short per..-" representing a fraction of the duration of half a cycle of even the highest animation control frequency.
  • capacitor 128 charges through resistors 96, 98, 100 and 102. This turns on transistor 118 later in the half cycle, discharging the small capacitor 126 to turn off transistors 122 and 124, and at the same time initiating the discharge of capacitor 130 through resistor 108 and transistor 118, substantially fully discharging the capacitor by the end of the positive half cycle of the animation control signal.
  • capacitor 128 maintains transistor 118 on for a very short period of time, forcing the voltage across capacitor 126 to substantially zero, with the transistor 118 then turning off by the discharge of capacitor 128 through resistor 102 so that capacitor 130 may again begin to charge at the constant rate as hereinbefore described.
  • the voltage on capacitor 132 which, as shall subsequently be seen, is the voltage used to drive the ⁇ servo controlling the animation features of the character, is updated on each cycle of the animation control signal, with the updating being something less than 100 percent based on the circuit parameters chosen, primarily capacitor 130 and the charging circuit therefor, resistor 104 and capacitor 132.
  • capacitor 132 will charge to a voltage determined by the reference voltage applied to resistor 136, a relatively larger resistor, the reference voltage being chosen to drive the servo to a position corresponding to the mouth closed, eyes straight ahead condition illustrated in Figure 1.
  • the voltage on capacitor 132 is coupled to the noninverting input of differential amplifier 134, the output of which is coupled through a power amplifier 136 to drive one lead of the servo motor 24, the other lead being coupled to the midpoint of the battery power supply.
  • the inverting input to differential amplifier 134 is coupled to the output thereof through feedback resistor 138 and to the output of power amplifier 136 through feedback resistor 140, as well as to the feedback potentiometer generally indicated by the numeral 142 providing, as stated before, direct feedback of the position of the pulley 38 through resistor 144.
  • the electronics for the audio track comprising the second pickup head 150 providing the audio signal to the speaker 152 through amplifiers 154 and 156 and power amplifier 158.
  • These circuits may be conventional circuits and accordingly are not described in further detail herein.
  • the power supply comprises four batteries in series with a center tap taken to provide the V B /2 voltage for the servo motor 24 (see Figure 5) .
  • the power supply is provided with three switches, a main on/off switch so that the system may be turned on and off as desired when the tape is in place, a tape engage switch on the tape playback unit which will prevent the same from operating unless the tape cassette is properly loaded and a cassette door is closed, and a third switch for sensing the end of the tape and turning the system off in response thereto.
  • this last switch comprises contacts or feelers which sense a conductor on the tape trailer to trip a bistable circuit to shut off the power to the system at the end of the tape even if the main on/off switch remains on.
  • This bistable circuit is designed to draw substantially no power when off, so as to prevent battery drain in such condition.
  • the main in is a momentary contact switch, itself tripping a fistable circuit for the on and off control.
  • the program recorded on each tape is preferably formatted so that the character completes whatever it is doing by the end of the tape and is silent, with the corresponding animation position being in the dead zone with the eyes looking straight ahead and with the mouth closed. If on the other hand the main on/off switch is tripped off midtape, it is preferred to have the character stop with the mouth and eye positions corresponding to those last commanded by the animation control signal so that the character will be able to start right from where it left off when the on/off switch is again tripped o .
  • a SERVOKILL signal is provided by the power supply to amplifier 136 to immediately disable the amplifier to prevent this from happening. Details of the circuit used for the power supply are not further presented herein as the same are not required for the understanding of the invention.
  • a dual track playback unit preferably a cassette tape playback unit for playing back cassette tapes having recorded on one track thereof an audio signal, and on the other track thereof, an animation control signal synchronized to the audio signal and having a frequency at any given time indicative of the then currently desired animation condition to control the mouth of the animated character in at least one additional animated element such as the eyes as in the preferred embodiment herein is particularly advantageous, as the electronics required to utilize such signals in each character is relatively inexpensive, particularly if reduced to a custom integrated circuit.
  • Such a signal is also relatively easy to generate and edit, the edit function being particularly useful in the creation of master tapes from which the tapes for sale with the characters will be produced.
  • one might create a rough animation control track by having one familiar with the sound track manually control the animation in synchronism with the sound track, such as by way of example, by providing an input to the non-inverting input of amplifier 134 ( Figure 5) by control of a potentiometer connected to a reference voltage, and by digitizing and storing the control signal in a computer at a relatively high rate.
  • the animation control signal in digital form, the same may be played back through a digital to analog converter in synchronism of the sound track directly, locally shifted in time, increased, decreased, sections cut out and regenerated, etc., until the final desired animation synchronized with the sound track is achieved.
  • the digital data may be used to generate the animation control signal for recording in final form such as by way of example, by directly synthesizing the desired signal from the digital data through a digital analog converter and appropriate high frequency filter, or by directly converting the digital data to analog through a digital to analog converter and using that signal to control a voltage controled oscillator.

Abstract

A character animation method and apparatus for the animation of toy characters and the like is disclosed. In accordance with the method, a voice track is recorded on one track of a dual track recording device, typically a tape recorder. On a second track of the recorder an animation signal is recorded characterized by the signal having a frequency at any given time indicative of the then currently desired animation condition. A character is provided having a tape playback unit therein for playing back such prerecorded dual track tapes, the character having an amplifier and speaker for reproducing the audio information, and a servo motor (24) having a drive system for driving the character mouth elements (52, 54) and eyes (46) with the desired animation, the drive system having a feedback device thereon for providing a feedback signal to the servo motor control. The electronics in the character which is responsive to the animation control signal provided by the playback unit to provide the servo motor drive signal effectively updates the servo motor drive signal on each cycle of the animation control signal received from the playback unit.

Description

CHARACTER ANIMATION METHOD AND APPARATUS
RΆΓ Π OUND OF THE TNVF.NTTQN
1. Field of t.hp Tnvsntion.
The present invention relates to the field of animated toy characters.
2. Prior Ar .
In very recent years, animated toy characters have been manufactured and sold in accordance with U.S. Patent No. 4,665,640. Such characters include a dual track playback unit, accessible through the back of the character, for receipt and playing of a dual track tape cassette having a voice signal recorded on one track thereof, and an animation control signal recorded on a second track thereof. The voice track of course is in general merely played back through a speaker in the body of the character. The animation control signal as recorded is a pulsed width modulated multi-channel signal having a variable frame time, recorded on the tape without further modulation thereof. In these characters, one channel is used for the animation of the mouth in synchronism with the voice track, and a second channel is used for animation of the eyes, with additional channels being available for other uses.
On playback, the animation control track is demodulated and the demodulated signals used to proportionally control the servo motors controlling the animated features . The proportional control coupled with the position feedback on each servo system provides a smooth, fully controllable motion for each of the animated elements. However, the pulse width modulation signal has a signal dependent frame time, making the repetition rate of the demodulated signal longer than may be desired. Also, the signal dependent frame time makes the editing of the animation control information during the creation of a master tape difficult, as one may not merely re-tailor a segment of the animation or remove and replace a segment and have the new information fit within the exact same playback time as the original segment before modification or replacement. Finally, the pulse width demodulation and the multiple servo systems in the character to animate multiple features are more expensive than desired for many toys.
Various other animation techniques have been used in the prior art. By way of example, to eliminate the duplication of servo systems within the animated character, a single animation channel has been used to control a single servo system which animated the mouth of the character during one part of its travel and animated the eyes during another part of its travel.
In U.S. Patent No. 4,177,589, the animation control signals are derived directly from the single voice track. Such an arrangement has certain advantages in that the voice track need not even be prerecorded, but rather can be an impromptu voice signal provided through a hidden microphone. It has the disadvantage however, of not providing the flexibility of tailoring the animation, and may provide the appearance of mouth movements, etc., lagging the sound provided.
In U.S. Patent No. 3,912,794, a dual track tape is provided with an audio signal on one track and with a pulse train as an animation control signal on the second track. On playback, the pulse train is reproduced and fed to a frequency selector which detects the frequency of each pulse by an appropriate band pass network. The detected signal is amplified and transformed into a DC level control signal which is then applied to -the appropriate input of a multiple self feeding relay inverter . This in turn controls programming motors operating various solenoid switches through cam disks driven by the motors to provide animation through the solenoid operation . As such, the system does not provide proportional control, and is quite mechanically and electronically complex as a result of the requirement of multiple band pass filters, motors, cam actuated switches, solenoids, and the like . Still other animation systems are disclosed in U .S . Patent Nos . 3, 287, 849 and 4, 139, 968. None of these other systems however provide the flexibility and enchanting animation for animated characters for young children that the first system described hereabove provides because of the proportional control through an animation control signal independent of but. synchronized to the voice signal to provide the animation desired. In that regard, one of the purposes of the present invention is to maintain the performance and flexibility of that animation system, while at the same time simplifying both the master tape creating process by simplifying the editing of the animation control signal, and at the same time reducing the cost of the animated character by reducing the complexity of the electronics and electromechanical control therein, all without effecting the animated characters ability to charm and captivate the youngest of children and parents alike . BRTF.F DESCRIPTION OF THE DRAWINGS
Figure 1 is a view of a typical plush toy incorporating the present invention.
Figure 2 is a schematic cross-seciton taken through the head of the plush toy of figure 1.
Figure 3 is a schematice cross-section similar to that of figure 2 illustrating the mechanism in the fully mouth- open condition.
Figure 4 is a schematic cross-section similar to that of figure 2 showing the mechanism in the mouth-closed, eyes down position.
Figure 5 is a circuit diagram for the control circuitry in the plush toy of figure 1.
mrτaττ,En DESCRIPTION OF THE INVENTION
First referring to Figure 1, a view of a typical character which may be animated in accordance with the present invention may be seen. The character, in this case in the form of a Teddy Bear type character, contains a tape playback unit accessible through the back thereof, a hidden speaker in the chest region thereof, and a servo motor and drive system in the head assembly for animating the mouth and eyes of the character.
A schematic cross section taken through the head of the character of Figure 1 may be seen in Figure 2. The head is formed of a plastic skull-like structure 20 having a layer of foam 22 thereon for padding, and containing the animation mechanism for the character. In particular, a servo motor 24 drives a first pulley 26 by way of a small belt 28. Integral with pulley 26 is a small pulley 30 driving pulley 32 by way of another belt 3 . Integral with pulley 32 is still another pulley 36 driving a further pulley 38 coaxial with pulleys 26 and 30, though rotationally independent thereof, through belt 40. The various pulleys provide a very substantial speed reduction, in the preferred embodiment a reduction of approximately 120 to 1, in a substantially noise free belt drive system. Further, belt tensions, materials, etc., are preferably selected so that the drive system will slip if pulley 38 is restricted from rotation while the servo motor 24 is still operating and/or pulley 38 is forced into rotation other than by the servo motor. Pulley 38 is directly connected to the shaft of a feedback potentiometer so that the feedback signal therefrom is directly indicative of the position of the pulley 38 independent of any prior or contemporaneous belt slippage in the drive system. Integral with pulley 38 are paddle like projections 42 and 44, the function of which shall be subsequently described. Also disposed within the structure 20 are a pair of eyes 46 pivotly supported on axis 48 so as to be rotatable in unison thereabout, the eyes being spring loaded to the position shown. Coupled to the eyes is a lever 50 projecting downward and somewhat rearward which is used to rotate the eyes about axis 48 as desired. Located below the eyes are a pair of mouth actuating members, generally indicated by the numerals 52 and 54, which extend into mouth regions on an outer cover (not shown) over the structure, the outer covering defining no only the mouth and eye openings of the character, but also the other face and head features as desired. The mouth member 54 has a cam like slot 56 therein, with mouth member 52 having a rearward extension 58 having a projection thereon fitting within slot 56 so as to be guided thereby, the mouth members 52 and 54 being pivotly supported on axis 60 and 62, respectively. Finally, member 54 is spring loaded to the position shown which automatically brings member 52 to the position shown, the position of the two members corresponding to the mouth closed position.
Now referring to Figure 3, the drive system is shown in the position corresponding the mouth open position. In this case, the pulley 38 has been driven counterclockwise so that paddle member 42 has engaged the rearward extending arm on mouth member 54 and moved the same to the position shown, which in turn has caused a corresponding rotation in mouth member 52. In Figure 4 on the other hand, pulley 38 has been rotated in the opposite direction so that paddle member 44 has engaged the downward extending arm 50 of the eye assembly to rotate the same downward approximately 60 degrees, as if the eyes were closed or blinking.
It can be seem from Figures 2, 3 and 4 that, with the eyes looking straight ahead, the mouth may be driven from the closed position of Figure 2 to the open position of Figure 3, and of course to any other position therebetween. Alternatively, with the mouth closed, the eyes may be moved downward as shown in Figure 4 or to any position between that shown in Figures 2 and 4, though the eyes and mouth cannot be simultaneously driven from the position shown in Figure 2. It can be seen further in Figure 2 that pulley 38 and of course the feedback potentiometer coupled thereto must be driven through some small but definite angle in either direction before either the eyes or the mouth actuation begins. Thus, there is one range of operation of the drive system for providing animation of the mouth, a second non- overlapping range of operation of the drive system for eye movement, and a dead zone therebetween within which movement of the drive system will not cause either eye or mouth movement. The inability to animate both the mouth and the eyes at the same time is of little consequence, as fairly realistic appearing eye movement can be obtained even by limiting the eye movement to pauses between sentences or phrases of a song, during which no mouth animation is required.
Now referring to Figure 5, a schematic diagram of the electronics in the character may be seen. As shown therein, and as stated hereinbefore, one channel of the dual channel pre-recorded tape and tape playback unit provides the animation control signal and the other channel provides the audio channel. Thus, as shown in the Figure, a pick-up head 64 of the playback unit provides an animation control signal which is amplified by amplifiers 66 and 68 (in the discussion to follow, for purposes of clarity, feedback" circuits, frequency band limiting circuits, etc., are in general not shown unless the same provides special functions or the same relate to the understanding of the operation of the system) . The output of amplifier 68 is coupled through capacitor 70 and resistor 72 to a differential amplifier 74 coupled as a limiter. In particular, the positive input of the differential amplifier is coupled to a reference voltage with the output thereof being coupled back to the inverting input of the amplifier 74 through the parallel combination of diode 76 and transistor 78 connected in series with resistor 80. The forward conduction voltage drop of diode 76, as well as the emitter base junction drop of transistor 78 is approximately 0.7 volts, so that no feedback is provided between the output of the differential amplifier 74 and the inverting input thereto if the difference in the output and the inverting input is less than approximately 0.7 volts. Within this limited range, the apparent gain of the differential amplifier is essentially the open loop gain thereof. When the output of the amplifier exceeds the inverting input thereto, diode 76 will be conducting, providing feedback through resistor 80 to then limit the gain to a relatively nominal value. Similarly, if the output of differential amplifier 74 is more than 0.7 volts lower than the inverting input thereto, transistor 78 will be turned on, with the emitter base junction of the transistor conducting sufficiently to provide feedback through the resistor 80, much like hereinbefore described with respect to the diode 76, again reducing the gain of the amplifier to a relatively nominal value. Thus, the.output of the limiter 74 is a substantially symmetrical "square" wave having somewhat rounded tops and having the frequency corresponding to a frequency of the signal recorded on the animation track part of the dual track tape currently being played by the tape playback unit in the character. In general, the circuit shown will hold the differential input to amplifier 74 substantially at zero, so that the inverting input of the amplifier 74 will in general be equal to the reference voltage provided to the non-inverting input thereto.
From the foregoing description, it may be seen that provided there is an adequate animation signal being picked up by pickup 64, transistor 78 will be conducting approximately 50 percent of the time, charging capacitor 82 through resistor 84. If on the other hand the signal being interpreted as the animation signal is inadequate, transistor 78 will either remain off or have such a low duty cycle as to allow capacitor 82 to discharge through resistor 86, resistor 86 being substantially larger than resistor 84 so as to not effect the charging of the capacitor during the normal operation of the transistor. Thus, when there is an adequate animation signal, the differential input to comparator 88 is positive. In the particular comparator used, this gives an open collector or floating output. If on the other hand the animation signal is inadequate, capacitor 82 will discharge through resistor 86 to a voltage lower than the reference voltage provided to the comparator 88, thereby driving the output of the comparator low (the various reference voltages referred to herein may be different reference voltages as appropriate for each part of the specific circuitry used) . Thus, during normal operation of the system, the output of the differential amplifier 88 will be floating so long as the animation signal received is of adequate amplitude to appropriately provide animation control.
The output of the limiter 74 is also provided to comparator 90 provided with positive feedback through the combination of resistors 92 and 94. This comparator is of the same type as comparator 88, having a floating output for a positive differential input. The output of the comparator 90 is provided to a circuit comprised of resistors 96, 98, 100, 102, 104, 106, 108, 110, 112 and 134, potentiometer 114, transistors 116, 118, 120, 122 and 124, and capacitors 126, 128, 130 and 132. Among other things, resistors 96, 98 and 100 act as pull-up resistors for the output of comparator 90, so that the output of the comparator effectively is a square wave ranging substantially from ground to the positive rail at a frequency corresponding to the animation signal received from pickup head 64.
When the output of comparator 90 goes low, transistors 116 and 120 act as a current source depending upon resistor 104 and the setting of potentiometer 114. Thus capacitor 130 charges at a constant rate so long as the output of the comparator remains low. Since the square wave input to comparator 90 has a constant duty cycle of approximately 50 percent, the time period for which the output of comparator 90 will remain low will be inversely proportional to the requency of the signal received from the pickup head 64. Thus, the voltage which will exist on capacitor 130 when the output of comparator 90 goes high will be inversely proportional to the instantaneous frequency of the animation signal recorded on the tape. When the output of comparator 90 goes high, capacitor 126 pulses transistors 122 and 124 into conduction through resistors 110 and 112 for a short period of time, transferring at least part of the voltage on capacitor 130 through one of the two transistors and resistor 134 to capacitor 132, depending upon the value of resistor 134 and the relative values of capacitors 130 and 132. This essentially provides a sample and hold circuit, updating the voltage on capacitor 132 on every cycle of the signal received from the pickup head 64, though some effective lag is provided as a result of resistor 134 and the fact that capacitor 132 is somewhat larger than capacitor 130. The transistors 122 and 124 are pulsed on only for a short period by capacitor 126, as the same is a relatively small capacitor providing base current to transistors 122 and 124 for only a short per..-" representing a fraction of the duration of half a cycle of even the highest animation control frequency.
Also, when the output of comparator 90 goes high, capacitor 128 charges through resistors 96, 98, 100 and 102. This turns on transistor 118 later in the half cycle, discharging the small capacitor 126 to turn off transistors 122 and 124, and at the same time initiating the discharge of capacitor 130 through resistor 108 and transistor 118, substantially fully discharging the capacitor by the end of the positive half cycle of the animation control signal. When the output of comparator 90 again goes low, capacitor 128 maintains transistor 118 on for a very short period of time, forcing the voltage across capacitor 126 to substantially zero, with the transistor 118 then turning off by the discharge of capacitor 128 through resistor 102 so that capacitor 130 may again begin to charge at the constant rate as hereinbefore described. Thus, the voltage on capacitor 132 which, as shall subsequently be seen, is the voltage used to drive the^ servo controlling the animation features of the character, is updated on each cycle of the animation control signal, with the updating being something less than 100 percent based on the circuit parameters chosen, primarily capacitor 130 and the charging circuit therefor, resistor 104 and capacitor 132.
If the signal received from the pickup head 64 is not adequate, the output of comparator 88 will be held low, maintaining transistors 122 and 124 off at all times. In this case, capacitor 132 will charge to a voltage determined by the reference voltage applied to resistor 136, a relatively larger resistor, the reference voltage being chosen to drive the servo to a position corresponding to the mouth closed, eyes straight ahead condition illustrated in Figure 1.
The voltage on capacitor 132 is coupled to the noninverting input of differential amplifier 134, the output of which is coupled through a power amplifier 136 to drive one lead of the servo motor 24, the other lead being coupled to the midpoint of the battery power supply. The inverting input to differential amplifier 134 is coupled to the output thereof through feedback resistor 138 and to the output of power amplifier 136 through feedback resistor 140, as well as to the feedback potentiometer generally indicated by the numeral 142 providing, as stated before, direct feedback of the position of the pulley 38 through resistor 144.
Also shown in Figure 5 is the electronics for the audio track comprising the second pickup head 150 providing the audio signal to the speaker 152 through amplifiers 154 and 156 and power amplifier 158. These circuits may be conventional circuits and accordingly are not described in further detail herein.
In the preferred embodiment the power supply comprises four batteries in series with a center tap taken to provide the VB/2 voltage for the servo motor 24 (see Figure 5) . In addition, the power supply is provided with three switches, a main on/off switch so that the system may be turned on and off as desired when the tape is in place, a tape engage switch on the tape playback unit which will prevent the same from operating unless the tape cassette is properly loaded and a cassette door is closed, and a third switch for sensing the end of the tape and turning the system off in response thereto. In the preferred embodiment, this last switch comprises contacts or feelers which sense a conductor on the tape trailer to trip a bistable circuit to shut off the power to the system at the end of the tape even if the main on/off switch remains on. This bistable circuit is designed to draw substantially no power when off, so as to prevent battery drain in such condition. The main in is a momentary contact switch, itself tripping a fistable circuit for the on and off control.
In general, the program recorded on each tape is preferably formatted so that the character completes whatever it is doing by the end of the tape and is silent, with the corresponding animation position being in the dead zone with the eyes looking straight ahead and with the mouth closed. If on the other hand the main on/off switch is tripped off midtape, it is preferred to have the character stop with the mouth and eye positions corresponding to those last commanded by the animation control signal so that the character will be able to start right from where it left off when the on/off switch is again tripped o . In either event however, in order to avoid having the animation control system drive the animated element to a random or undesired position as the power supply voltage declines and various circuits become inaccurate or inoperative, a SERVOKILL signal is provided by the power supply to amplifier 136 to immediately disable the amplifier to prevent this from happening. Details of the circuit used for the power supply are not further presented herein as the same are not required for the understanding of the invention.
The use of a dual track playback unit, preferably a cassette tape playback unit for playing back cassette tapes having recorded on one track thereof an audio signal, and on the other track thereof, an animation control signal synchronized to the audio signal and having a frequency at any given time indicative of the then currently desired animation condition to control the mouth of the animated character in at least one additional animated element such as the eyes as in the preferred embodiment herein is particularly advantageous, as the electronics required to utilize such signals in each character is relatively inexpensive, particularly if reduced to a custom integrated circuit. Such a signal is also relatively easy to generate and edit, the edit function being particularly useful in the creation of master tapes from which the tapes for sale with the characters will be produced. In particular, after the voice track has been completed, one might create a rough animation control track by having one familiar with the sound track manually control the animation in synchronism with the sound track, such as by way of example, by providing an input to the non-inverting input of amplifier 134 (Figure 5) by control of a potentiometer connected to a reference voltage, and by digitizing and storing the control signal in a computer at a relatively high rate. Now with the animation control signal in digital form, the same may be played back through a digital to analog converter in synchronism of the sound track directly, locally shifted in time, increased, decreased, sections cut out and regenerated, etc., until the final desired animation synchronized with the sound track is achieved. Thereafter, the digital data may be used to generate the animation control signal for recording in final form such as by way of example, by directly synthesizing the desired signal from the digital data through a digital analog converter and appropriate high frequency filter, or by directly converting the digital data to analog through a digital to analog converter and using that signal to control a voltage controled oscillator.
There has been described herein a new and unique character animation method and apparatus which animates more than one character feature in synchronism with an audio track, which is relatively inexpensive to manufacture, and for which a plurality of different control tapes may be • easily and accurately created therefor. While the preferred embodiment of the present invention has been disclosed and described herein, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.

Claims

1. An animated character comprising: body means defining at least part of a character outline having at least one moveable mouth element and a second element to be animated; a dual track tape playback means within said body means for playing a dual track tape having recorded on a first track thereof an audio signal and on a second track thereof an animation control signal characterized by having an instantaneous frequency indicative of the currently desired animation condition, and for providing first and second signals responsive thereto, respectively; a servo motor responsive to a servo motor drive signal, including drive means cooperatively disposed with respect to said at least one moveable mouth element and said second element to be animated and having a predetermined operating range, said drive means being operative over a first part of its operating range to vary the position of said at least one moveable mouth element responsive to the movement of said drive means and operative over a second part of its operating range to "vary the position of said second element to be animated responsive to the movement of said drive means, said first and second parts of the operating range of said drive means being at least in part different parts of the operating range of said drive means; feedback means coupled to said drive means for providing a feedback signal responsive to the instantaneous position of said drive means; amplifier means and speaker means for amplifying and converting said first signal to sound; means responsive to said second signal for providing an analog control signal responsive to said second signal, including amplifying means for providing a servo drive signal to said servo motor responsive to the difference between said animation control signal and said feedback signal.
2. The animated character of claim 1 wherein said means responsive to said second signal for providing an analog control signal responsive to said second signal is a means for providing analog control signal which is updated on each cycle of said second signal.
3. The animated character of claim 1 wherein said first part of the operating range of said drive means and said second part of the operating range of said drive means are independent parts of the operating range of said drive means separated by a dead zone, whereby movement of said drive means to and within said dead zone will bring said at least one moveable mouth element and said second element to be animated to predetermined positions, control of said drive means in said first part of the operating range of said drive means will cause associated movement of said at least one moveable mouth element without movement of said second element to be animated, and control of said drive means in said second part of the operating range of said drive means will cause associated movement of said second element to be animated without movement of said at least one moveable mouth element.
4. The animated character of claim 1 wherein said servo motor and said drive means are coupled through a slippable friction drive, whereby said friction drive may slip upon a predetermined resistance to movement of either said at least one moveable mouth element or said second element to be animated, and wherein said feedback means is directly connected to said drive means for providing a feedback signal responsive to the instantaneous position of said drive means irrespective of slippage of said friction drive.
5. The animated character of claim 4 wherein said slippable friction drive is a belt drive.
6. The animated character of claim 1 wherein said animation control signal ranges in frequency from approximately 1 Khz to approximately 3 Khz.
PCT/US1991/000363 1990-01-18 1991-01-17 Character animation method and apparatus WO1991010491A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP91903734A EP0513143B1 (en) 1990-01-18 1991-01-17 Character animation apparatus
JP91503599A JPH05505534A (en) 1990-01-18 1991-01-17 Character animation method and device
DE69112200T DE69112200T2 (en) 1990-01-18 1991-01-17 DEVICE FOR EXCITING TOY CHARACTERS.
BR919105945A BR9105945A (en) 1990-01-18 1991-01-17 METHOD AND APPARATUS FOR DOLL ANIMATION
AU72335/91A AU656130B2 (en) 1990-01-18 1991-01-17 Character animation method and apparatus
HK98107127A HK1007973A1 (en) 1990-01-18 1998-06-27 Character animation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US467,252 1990-01-18
US07/467,252 US5074821A (en) 1990-01-18 1990-01-18 Character animation method and apparatus

Publications (1)

Publication Number Publication Date
WO1991010491A1 true WO1991010491A1 (en) 1991-07-25

Family

ID=23854973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1991/000363 WO1991010491A1 (en) 1990-01-18 1991-01-17 Character animation method and apparatus

Country Status (10)

Country Link
US (1) US5074821A (en)
EP (1) EP0513143B1 (en)
JP (1) JPH05505534A (en)
AU (1) AU656130B2 (en)
BR (1) BR9105945A (en)
CA (1) CA2073172A1 (en)
DE (1) DE69112200T2 (en)
ES (1) ES2078508T3 (en)
HK (1) HK1007973A1 (en)
WO (1) WO1991010491A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662331A2 (en) * 1993-12-20 1995-07-12 Fung Seng Industrial Co., Ltd Talking toy doll
US5833513A (en) * 1995-12-27 1998-11-10 Onilco Innovacion S.A. Crawling and movement simulating doll that makes waking up and falling asleep gestures
GB2334133A (en) * 1998-02-06 1999-08-11 Technovation Australia Pty Ltd Electronic interactive puppet
US6850555B1 (en) 1997-01-16 2005-02-01 Scientific Generics Limited Signalling system
EP1786534A2 (en) * 2004-06-02 2007-05-23 Steven Ellman Expression mechanism for a toy, such as a doll, having fixed or movable eyes

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402702A (en) * 1992-07-14 1995-04-04 Jalco Co., Ltd. Trigger circuit unit for operating light emitting members such as leds or motors for use in personal ornament or toy in synchronization with music
US5292275A (en) * 1992-08-17 1994-03-08 Mattel, Inc. Toy vehicle having growling action
US5864626A (en) * 1997-02-07 1999-01-26 Braun; Ori Multi-speaker storytelling system
US5823847A (en) * 1997-02-18 1998-10-20 Pragmatic Designs, Inc. Moving mouth mechanism for animated characters
US6012961A (en) * 1997-05-14 2000-01-11 Design Lab, Llc Electronic toy including a reprogrammable data storage device
JP2001509933A (en) * 1997-09-01 2001-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for synchronizing a computer animation model with audio wave output
US5983542A (en) * 1998-05-05 1999-11-16 Chen; Li-Ching Transmission structure of a decorative tree
US7062073B1 (en) 1999-01-19 2006-06-13 Tumey David M Animated toy utilizing artificial intelligence and facial image recognition
US6068536A (en) * 1999-04-29 2000-05-30 Merriment Inc. Mechanism for animated character
US6807291B1 (en) 1999-06-04 2004-10-19 Intelligent Verification Systems, Inc. Animated toy utilizing artificial intelligence and fingerprint verification
JP4332276B2 (en) 2000-02-28 2009-09-16 株式会社センテクリエイションズ Facial expression change device
US6793553B2 (en) * 2001-02-12 2004-09-21 Mattel, Inc. Compact motion mechanism for an animated doll
US7118443B2 (en) * 2002-09-27 2006-10-10 Mattel, Inc. Animated multi-persona toy
US20050227577A1 (en) * 2004-03-29 2005-10-13 Mcrae Don L Bedtime Teddy
CN2745619Y (en) * 2004-11-01 2005-12-14 许奇峰 Speech synchronous electric toy processing apparatus
US7439699B1 (en) 2005-04-26 2008-10-21 Dreamation, Inc. Animatronics systems and methods
US20060270312A1 (en) * 2005-05-27 2006-11-30 Maddocks Richard J Interactive animated characters
US7508393B2 (en) * 2005-06-07 2009-03-24 Gordon Patricia L Three dimensional animated figures
US20070132290A1 (en) * 2005-12-14 2007-06-14 Stefanos Moshopoulos Head rest cover having facial features
TWI293571B (en) * 2006-08-25 2008-02-21 Benq Corp Device for animating facial expression
EP2121155A1 (en) * 2007-02-12 2009-11-25 IM Smiling B.V. Method for controlling an external device via the usb-port of a personal computer
US8662955B1 (en) 2009-10-09 2014-03-04 Mattel, Inc. Toy figures having multiple cam-actuated moving parts
US9130492B2 (en) * 2013-04-22 2015-09-08 Thermadyne, Inc. Animatronic system with unlimited axes
DE102013214956B4 (en) * 2013-07-31 2018-05-17 Schaeffler Technologies AG & Co. KG Switching device for a transmission
US9474981B1 (en) 2015-11-06 2016-10-25 William Mark Corporation Manually actuated plush toy with mood change
USD801449S1 (en) 2015-11-16 2017-10-31 William Mark Corporation Expression changing toy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665640A (en) * 1985-03-18 1987-05-19 Gray Ventures, Inc. Electromechanical controller
US4775352A (en) * 1986-02-07 1988-10-04 Lawrence T. Jones Talking doll with animated features
US4805328A (en) * 1986-09-29 1989-02-21 Marantz Company Talking doll
US4864607A (en) * 1986-01-22 1989-09-05 Tomy Kogyo Co., Inc. Animated annunciator apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287849A (en) * 1964-12-15 1966-11-29 Life Like Doll Talking doll having synchronized mouth movement
US4139968A (en) * 1977-05-02 1979-02-20 Atari, Inc. Puppet-like apparatus
US4177589A (en) * 1977-10-11 1979-12-11 Walt Disney Productions Three-dimensional animated facial control
GB2178584A (en) * 1985-08-02 1987-02-11 Gray Ventures Inc Method and apparatus for the recording and playback of animation control signals
CA1307336C (en) * 1986-05-28 1992-09-08 Tyco Industries, Inc. Toy which moves in synchronization with an audio source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665640A (en) * 1985-03-18 1987-05-19 Gray Ventures, Inc. Electromechanical controller
US4864607A (en) * 1986-01-22 1989-09-05 Tomy Kogyo Co., Inc. Animated annunciator apparatus
US4775352A (en) * 1986-02-07 1988-10-04 Lawrence T. Jones Talking doll with animated features
US4805328A (en) * 1986-09-29 1989-02-21 Marantz Company Talking doll

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0513143A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0662331A2 (en) * 1993-12-20 1995-07-12 Fung Seng Industrial Co., Ltd Talking toy doll
EP0662331A3 (en) * 1993-12-20 1995-11-02 Fung Seng Ind Co Ltd Talking toy doll.
US5833513A (en) * 1995-12-27 1998-11-10 Onilco Innovacion S.A. Crawling and movement simulating doll that makes waking up and falling asleep gestures
US6850555B1 (en) 1997-01-16 2005-02-01 Scientific Generics Limited Signalling system
US7796676B2 (en) 1997-01-16 2010-09-14 Intrasonics Limited Signalling system
GB2334133A (en) * 1998-02-06 1999-08-11 Technovation Australia Pty Ltd Electronic interactive puppet
US6238262B1 (en) 1998-02-06 2001-05-29 Technovation Australia Pty Ltd Electronic interactive puppet
EP1786534A2 (en) * 2004-06-02 2007-05-23 Steven Ellman Expression mechanism for a toy, such as a doll, having fixed or movable eyes
EP1786534A4 (en) * 2004-06-02 2008-01-23 Steven Ellman Expression mechanism for a toy, such as a doll, having fixed or movable eyes

Also Published As

Publication number Publication date
AU7233591A (en) 1991-08-05
EP0513143A1 (en) 1992-11-19
BR9105945A (en) 1992-10-27
US5074821A (en) 1991-12-24
JPH05505534A (en) 1993-08-19
AU656130B2 (en) 1995-01-27
CA2073172A1 (en) 1991-07-19
DE69112200D1 (en) 1995-09-21
ES2078508T3 (en) 1995-12-16
EP0513143B1 (en) 1995-08-16
DE69112200T2 (en) 1996-01-04
HK1007973A1 (en) 1999-04-30
EP0513143A4 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
EP0513143B1 (en) Character animation apparatus
US4775352A (en) Talking doll with animated features
US4923428A (en) Interactive talking toy
US4949327A (en) Method and apparatus for the recording and playback of animation control signals
US4284279A (en) Phonograph record player
GB2334133A (en) Electronic interactive puppet
US3159942A (en) Talkback or echo doll and apparatus
US3469039A (en) Magnetic recording and reproducing method and apparatus embodied in a mimicking parrot or doll
JPS62286493A (en) Toy moving in synchronous elation to sound source
US4297732A (en) Method and device for locating a sound event on a magnetic tape
US4038691A (en) Still image slide combination with sequentially activated audio channels per slide
US3684840A (en) Magnetic tape recording and reproducing apparatus using a small cycle time endless tape with movable head for replay
JPS5848242A (en) Information reproducer
JPS624765B2 (en)
JPS6226855Y2 (en)
JPS629556Y2 (en)
JPH0413788Y2 (en)
JPS6325549Y2 (en)
JPS5923237Y2 (en) Tape recorder control device
JPH01151066A (en) Tape recorder
JPS6319947Y2 (en)
JPS5947368B2 (en) Recording/playback device
JPS603686B2 (en) Continuous playback device
JP2002045580A (en) Toy control device using contents reproducer
JPS5931779B2 (en) Recording/playback device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH DE DK ES FI GB HU JP KP KR LK LU MC MG MW NL NO PL RO SD SE SU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BF BJ CF CG CH CM DE DK ES FR GA GB GR IT LU ML MR NL SE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2073172

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991903734

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1991903734

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991903734

Country of ref document: EP