WO1991009994A1 - Method of forming material layer - Google Patents

Method of forming material layer Download PDF

Info

Publication number
WO1991009994A1
WO1991009994A1 PCT/JP1989/001307 JP8901307W WO9109994A1 WO 1991009994 A1 WO1991009994 A1 WO 1991009994A1 JP 8901307 W JP8901307 W JP 8901307W WO 9109994 A1 WO9109994 A1 WO 9109994A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
layer
material layer
base material
carbon
Prior art date
Application number
PCT/JP1989/001307
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Nakata
Original Assignee
Shindaigo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindaigo Co., Ltd. filed Critical Shindaigo Co., Ltd.
Priority to PCT/JP1989/001307 priority Critical patent/WO1991009994A1/en
Priority to JP2090117A priority patent/JPH03197389A/en
Publication of WO1991009994A1 publication Critical patent/WO1991009994A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • the present invention relates to a method for forming a substance layer for forming a substance, for example, diamond-like carbon, on a surface of an object to be treated in a layered manner.
  • the base material is irradiated with laser light, and ions in the plasma generated by the irradiation are fixed and crystallized on the object to be processed.
  • the laser light used at this time is pulsed. To irradiate.
  • a diamond-like carbon layer can be formed on an object to be treated even in a normal pressure atmosphere.
  • the formation speed is remarkably higher than that of the above-mentioned prior art. It is not always clear why the method according to the invention of pulsing and irradiating laser light makes this possible. However, under the condition of a rather probable guess, the following can be considered.
  • a high density and high speed plasma of ions called "ablat ion plume" can be generated from the base material. Due to its high density and high speed, the abrasion plummet has a "push-off effect" against air, that is, it is almost completely eliminated, so that it does not mix with air even in air. An effect is exhibited, whereby a high-density and high-purity state of ions for forming a layer can be obtained. In other words, by forming an abrasion plume by irradiating a pulse of laser light, the effect of air can be almost completely eliminated, and therefore, it is possible even in air.
  • the laser beam is irradiated with a pulse that is a square wave with a rise time of 0.5 msec (500 ⁇ sec) or less and a pulse width of 100 msec or less. To do Is preferred.
  • This method of forming the material layer is more preferable when a solid material is used as the base material. That is, the abrasion plum can be generated more efficiently because the base material is a solid material.
  • This material layer can be formed by using a transparent material for laser light as a processing target, and irradiating the base material with laser light by transmitting the transparent processing target. It will be efficient. The reason is considered to be as follows under the same conditions as in the above-described laser beam pulsing.
  • the laser light transmitted through the object to be processed acts to maintain the plasma temperature by reheating the ablation plume coming toward the object to be processed, and is fixed and crystallized on the object to be processed. Heating the substance acts to promote its crystal growth, and such a double operation results in excellent production efficiency.
  • a diamond-like carbon layer can be formed by using a high-purity carbon plate as a base material.
  • FIG. 1 is a diagram showing an irradiation state of laser light in a method of forming a material layer according to the present invention
  • FIG. 2 is a schematic diagram of a plum
  • FIG. 3 is a process in a state where a seed crystal is fixed.
  • FIG. 4 is a diagram of a processing object in a state where a material layer is formed
  • FIG. 5 is an explanatory diagram of a relationship between a pulse and a phenomenon
  • FIG. 6 is a diagram of the object.
  • FIG. 7 is a view of an object to be processed in a state in which a material layer having a file-like surface is formed.
  • FIG. 7 is a view showing a laser beam irradiation state according to another embodiment;
  • the figures each show a diamond formed by the method of the present invention. It is a photograph of the crystal structure of a Mondo-like carbon layer.
  • a YAG laser (wavelength: 1.06 im) was used as a laser beam, and the laser beam was irradiated in a pulsed manner.
  • the pulse is preferably a square wave having a rise time of 0.5 msec (500 ⁇ sec) or less and a pulse width (pulse duration) of 100 msec or less.
  • the processing object used is a glass plate, which is transparent to the YAG laser.
  • the base material is a solid plate made of calcined carbon with a purity of 99%.
  • a laser beam 1 from a laser oscillator (not shown) is condensed by a lens 2, and the laser beam 1 is transmitted through a glass plate 3, which is an object to be processed, and is irradiated on the surface of a base material 4. At this time, the laser beam 1 is focused on the surface of the base material 4 as far as possible.
  • ablation plume (hereinafter simply referred to as “plume”) is generated at each rising edge of each pulse.
  • This plume 5 is ejected at high speed from the base material 4 by a phenomenon called “ablation” generated by irradiation of the pulsed laser light 1, and is composed of carbonized plasma and carbon ions ( C +, C ", etc.) at a high density and high purity.
  • the base material 4 is a hard solid material in order to efficiently produce the plum (see FIG.
  • the base material 4 is irradiated with the laser beam 1 so that the plum 5 is generated in a direction opposite to the irradiation direction of the laser beam 1, so that the generated plum 5 can always be heated by the laser beam 1. Is a more favorable condition.
  • the carbon ions in the plume 5 collide with the glass plate 3 and first form a seed crystal 7 (FIG. 3) on the surface of the glass plate 3. Since the seed crystal 7 has poor transmittance of the laser beam 1, it absorbs the laser beam 1 passing through the glass plate 3, and is heated by the laser beam 1 to form a uniform crystal 8, that is, a diamond-like carbon layer 8. And grow (Fig. 4).
  • the uniform crystal 8 transmits the laser light 1, so that “plum 5 generation ⁇ seed crystal 7 formation on crystal 8—addition of uniform crystal 8 This phenomenon is repeated for each pulse, and the diamond-like carbon layer 8 having a desired thickness is grown and formed. .
  • the size of the crystal formed per pulse With its thickness of about 1 7 / m before and after the area of about 3 mm 2 rarely before and after.
  • a major advantage of this method is that a layer of material, such as a diamond-like carbon layer, can be formed easily and at a much higher speed in conventional atmospheres than conventional methods.
  • a layer of material such as a diamond-like carbon layer
  • the distance between the glass plate 3 and the base material 4 is involved in the growth and formation of the diamond-like carbon layer while correlating with the pulse width, pulse power, pulse energy, and the like.
  • a result of 1.5 to 3 cm is preferred, but this is naturally due to differences in pulse width and the like. Will change. This is probably because the distance between the glass plate 3 and the base material 4 is related to the temperature of the plume 5 colliding with the glass ⁇ 3, the concentration and purity of the carbon ions at that time.
  • Adjustment of the pulse width also affects the growth and formation of the diamond-like carbon layer. Specifically, if the pulse width is too narrow, the efficiency of growth and formation will be poor, and if it is too wide, the pulsing effect will decrease. For these reasons, the upper limit of the pulse width is about 100 msec, and the lower limit is about 0.2 msec. .
  • Adjustment of the energy level of the laser beam also affects the state of formation of the crystal (material layer).
  • the size and the state can be arbitrarily controlled to some extent.
  • Preferred energy levels include 1 to 100 joule nopulses.
  • this method has the elements of pulsing laser light, reheating the plum, and growing the seed crystal by laser light heating. These elements are not always realized only in the configuration as in the above embodiment. In other words, as shown in Fig. 7, this can also be realized by using a plurality of laser beams 1 and using each of the laser beams 1 to generate the plume 5, reheat the plume 5, and heat the seed crystal. It is possible. Of course, in this case, it is sufficient to pulse only the laser light for generating the plume.
  • the advantage of such a configuration is that a material layer can be formed on the processing object 9 that is not transparent to the laser beam 1.
  • a YAG laser is used as a laser beam, but other laser beams can of course be used.
  • C 0 2 lasers because it has a pair permeabilized in silicon crystal or germanium crystals, such as chromatic advantage for processing of semiconductor substrates.
  • carbon was used as the base material, and the diamond-like carbon layer was formed on the object to be processed.
  • the method of the present invention is not limited to this, and an appropriate base material may be used. Of course, depending on the choice, it can be applied to various substances.
  • the present invention is characterized in that the treatment can be performed in the atmospheric pressure atmosphere, but this does not necessarily mean that the treatment is performed in the atmospheric pressure atmosphere. That is, the method Combining with a reduced-pressure atmosphere or a specific gas atmosphere that is less affected by air enables formation of a higher-quality material layer.
  • the method according to the present invention also has a feature that a necessary material layer can be formed while precisely controlling its forming range and thickness.
  • Such features provide enormous advantages when applied to, for example, semiconductor manufacturing.
  • the following method can be applied. That is, first, an insulating layer composed of a diamond-like carbon layer as described above is formed using a carbon solid plate as a base material. Next, using a solid plate of arsenic (A s) in addition to a carbon solid plate as a base material, carbon plasma and arsenic plasma are generated in a mixed state, and a diamond-like carbon layer containing arsenic as an impurity is formed as an N layer. I do.
  • a gallium (Ga) solid plate is used as a base material in addition to a carbon solid plate, and carbon plasma and gallium plasma are generated in a mixed state, and a diamond-like carbon layer containing gallium as an impurity is formed as a P layer. I do.
  • a slit member for controlling a range (area) of the plum reaching the substrate (the object to be processed) is appropriately used, and a range of the material layer fixed and crystallized on the object to be processed is used.
  • the PN junction is formed by controlling arbitrarily.
  • the method of forming a material layer according to the present invention is to irradiate a laser beam into a base material by pulsing a laser beam.
  • the processing means itself is simpler than the conventional technology, and the formation speed of the diamond-like carbon layer is much higher than that of the conventional technology. This greatly contributes to the industrial use of diamond-like carbon layers, which are expected to be used in various applications, including carbon dioxide.

Abstract

This invention relates to a method of forming a layered material. It aims at forming a material layer such as diamond carbon without the necessity of the ''reduced pressure and vacuum'' conditions. For this purpose, the ''ablation plume'' generated by irradiating the base material with a pulsed laser beam is fixed and crystallized on a material to be processed. The effect of the air is removed by the ''push-out effect'' of the ''ablation plume'' against the air, presumably making it possible to form a material layer in the open air of ordinary pressure. This method is suited for forming, for example, a diamond carbon layer.

Description

明 細 書  Specification
物質層の形成方法  Method of forming material layer
〔技術分野〕 〔Technical field〕
この発明は、 ある処理対象物の表面にある物質、 例えばダイヤ モンド状炭素を層状に形成する物質層の形成方法に関する。  The present invention relates to a method for forming a substance layer for forming a substance, for example, diamond-like carbon, on a surface of an object to be treated in a layered manner.
〔背景技術〕  (Background technology)
このような物質層の形成方法としては、 従来より種々のものが 知られている。 例えば、 電解メ ツキ、 真空蒸着、 さらにはケミ力 ルベーバーデポジッシヨ ン (C V D ) 等である。  Various methods for forming such a material layer have been conventionally known. For example, electrolytic plating, vacuum deposition, and chemical vapor deposition (CVD).
このような種々の従来技術の中からダイヤモンド状炭素の薄膜 形成に関する技術をみると、 例えば、 特公昭 5 8 - 2 5 0 4 1号、 特公昭 6 2 - 7 2 6 2号、 特開昭 5 7 - 6 1 6 4 4号、 特開昭 6 Looking at the technology related to the formation of a diamond-like carbon thin film from among such various conventional technologies, for example, Japanese Patent Publication No. 58-25041, Japanese Patent Publication No. 62-7262, 5 7-6 1 6 4 4
1 - 2 0 1 6 9 3号、 特開昭 6 2 - 2 7 0 4 9 5号、 特開昭 6 3No. 1-201, 693, JP-A-62-27095, JP-A-63
- 2 8 8 6 5号、 特開昭 6 3 - 1 1 2 4 9 7号、 特開平 1 - 8 ' 7-2 8 8 65, JP-A-63-111 2497, JP-A 1-8'7
7 7 6号等により多くのものが知られている。 Many are known, such as 7776.
ところで、 これらの従来技術は、 何れも、 真空という条件、 あ るいはレーザ光等のエネルギー源による処理とイオンビーム等に よる再処理という複数の異手段の組合せといつた条件等を必要と しているものである。 しかし、 このような種々の条件は、 何れも、 その技術の工業的実用化について大きな制約となってくるもので あ Q  By the way, all of these conventional techniques require a vacuum condition, or a combination of a plurality of different means such as treatment with an energy source such as a laser beam and reprocessing with an ion beam or the like. Is what it is. However, each of these various conditions is a major constraint on the industrial application of the technology.
このような従来の事情に鑑み、 本発明者は、 常圧大気中でも物 質層、 具体的にはダイヤモンド状炭素層を処理対象物に形成する ことの可能性について研究を重ねてきた。 そして、 その結果、 得 られたのがここに提供する発明である。 〔発明の開示〕 In view of such conventional circumstances, the present inventor has repeatedly studied the possibility of forming a material layer, specifically, a diamond-like carbon layer, on an object to be treated even under atmospheric pressure. And the result is the invention provided here. [Disclosure of the Invention]
この発明による物質層の形成方法は、 母材にレーザ光を照射し、 この照射により発生したプラズマ中のイオンを処理対象物に定着 •結晶化させるものとし、 この際に用いるレーザ光をパルス化し て照射するようにしている。  In the method of forming a material layer according to the present invention, the base material is irradiated with laser light, and ions in the plasma generated by the irradiation are fixed and crystallized on the object to be processed. The laser light used at this time is pulsed. To irradiate.
この方法によると常圧大気中でも、 例えばダイャモンド状炭素 層を処理対象物に形成することができる。 しかも、 その形成速度 は前記した従来技術のものに比べ格段と言える程に速いものであ る。 レーザ光をパルス化して照射するという本発明による方法が このようなことを可能としている理由は、 必ずしも明らかでない。 ただ、 かなりありそうな推測という条件付ではあるが、 以下のよ うに考えることができる。  According to this method, for example, a diamond-like carbon layer can be formed on an object to be treated even in a normal pressure atmosphere. In addition, the formation speed is remarkably higher than that of the above-mentioned prior art. It is not always clear why the method according to the invention of pulsing and irradiating laser light makes this possible. However, under the condition of a rather probable guess, the following can be considered.
すなわち、 レーザ光をパルス化して照射することにより "アブ レーシヨ ンプルム (ab l at ion p lume ) " というイオンが高密度且 つ高速であるプラズマを母材から発生させることができる。 この アブレーシヨ ンプルムは、 その高密度性及び高速性故に、 空気に 対する "押し除け効果" つまり空気を略完全に押し除けることに より空気中においても空気と混合することのないような状態とな る効果を発揮し、 これにより層形成のためのイオンについて高密 度且つ高純度の状態が得られる。 つまり、 レーザ光のパルス照射 にてアブレーンョンプルムを形成させることにより空気の影響を 略完全に排除できるということであり、 したがって空気中でも可 能となるということである。  That is, by pulsing and irradiating a laser beam, a high density and high speed plasma of ions called "ablat ion plume" can be generated from the base material. Due to its high density and high speed, the abrasion plummet has a "push-off effect" against air, that is, it is almost completely eliminated, so that it does not mix with air even in air. An effect is exhibited, whereby a high-density and high-purity state of ions for forming a layer can be obtained. In other words, by forming an abrasion plume by irradiating a pulse of laser light, the effect of air can be almost completely eliminated, and therefore, it is possible even in air.
このようなアブレーションプルムを効率よく発生させるために は、 立上り時間が 0. 5 msec ( 5 0 0 ^ sec ) 以下でパルス幅が 1 0 0 msec以下の方形波であるパルスにしてレーザ光を照射するの が好ましい。 In order to efficiently generate such ablation plumes, the laser beam is irradiated with a pulse that is a square wave with a rise time of 0.5 msec (500 ^ sec) or less and a pulse width of 100 msec or less. To do Is preferred.
この物質層の形成方法は、 母材として固形材を用いることでよ り好ましいものとなる。 すなわち、 アブレーシヨンプルムは母材 が固形材であることでより効率よく発生させることができる。  This method of forming the material layer is more preferable when a solid material is used as the base material. That is, the abrasion plum can be generated more efficiently because the base material is a solid material.
この物質層の形成方法は、 処理対象物としてレーザ光に対し透 明のものを用い、 この透明の処理対象物を透過させてレーザ光を 母材に照射するようにするようにすれば、 より効率のよいものと なる。 その理由は、 前述のレーザ光のパルス化と同様の条件付で 以下のようなものと考えられる。  This material layer can be formed by using a transparent material for laser light as a processing target, and irradiating the base material with laser light by transmitting the transparent processing target. It will be efficient. The reason is considered to be as follows under the same conditions as in the above-described laser beam pulsing.
すなわち、 処理対象物を透過して来るレーザ光は、 処理対象物 に向かって来るアブレーションプルムを再加熱することによりそ のプラズマ温度の維持に作用すると共に、 処理対象物に定着 ·結 晶化した物質を加熱することによりその結晶成長を促進するのに 作用し、 このような二重の作甩により秀れた生成効率が得られる ということである。  In other words, the laser light transmitted through the object to be processed acts to maintain the plasma temperature by reheating the ablation plume coming toward the object to be processed, and is fixed and crystallized on the object to be processed. Heating the substance acts to promote its crystal growth, and such a double operation results in excellent production efficiency.
この物質層の形成方法は、 母材として高純度の炭素板を用いる ことにより、 ダイヤモンド状炭素層を形成することができる。 〔図面の簡単な説明〕  In the method of forming this material layer, a diamond-like carbon layer can be formed by using a high-purity carbon plate as a base material. [Brief description of drawings]
第 1図は、 本発明による物質層の形成方法におけるレーザ光の 照射状態を示す図であり、 第 2図は、 プルムの模式図であり、 第 3図は、 種結晶が定着した状態の処理対象物の図であり、 第 4図 は、 物質層が形成された状態の処理対象物の図であり、 第 5図は、 パルスと現象の関係についての説明図であり、 第 6図は、 ヤスリ 状の表面を持つ物質層が形成された状態の処理対象物の図であり、 第 7図は、 他の実施例によるレーザ光の照射状態を示す図であり、 第 8図〜第 1 0図は、 各々、 本発明の方法にて形成されたダイヤ モンド状炭素層の結晶構造の写真である。 FIG. 1 is a diagram showing an irradiation state of laser light in a method of forming a material layer according to the present invention, FIG. 2 is a schematic diagram of a plum, and FIG. 3 is a process in a state where a seed crystal is fixed. FIG. 4 is a diagram of a processing object in a state where a material layer is formed, FIG. 5 is an explanatory diagram of a relationship between a pulse and a phenomenon, and FIG. 6 is a diagram of the object. FIG. 7 is a view of an object to be processed in a state in which a material layer having a file-like surface is formed. FIG. 7 is a view showing a laser beam irradiation state according to another embodiment; The figures each show a diamond formed by the method of the present invention. It is a photograph of the crystal structure of a Mondo-like carbon layer.
〔発明を実施するための形態〕  [Mode for Carrying Out the Invention]
以下、 この発明による物質層の形成方法の一実施例を説明する, レーザ光としては Y A Gレーザ (波長; 1. 0 6 i m ) を用い、 これをパルス化して照射した。 ここでパルスは、 立上り時間が 0. 5 msec ( 5 0 0 ^ sec ) 以下でパルス幅 (パルス持続時間) が 1 0 0 msec以下の方形波とすることが好ましい。 使用した処理対象 物は、 ガラス板で、 Y A Gレーザに対して透明である。 母材は、 純度 9 9 %の焼成炭素の固形板を用いている。  Hereinafter, an embodiment of the method for forming a material layer according to the present invention will be described. A YAG laser (wavelength: 1.06 im) was used as a laser beam, and the laser beam was irradiated in a pulsed manner. Here, the pulse is preferably a square wave having a rise time of 0.5 msec (500 ^ sec) or less and a pulse width (pulse duration) of 100 msec or less. The processing object used is a glass plate, which is transparent to the YAG laser. The base material is a solid plate made of calcined carbon with a purity of 99%.
以上のような条件による加工方法は第 1図に示すようなもので ある。  The processing method under the above conditions is as shown in FIG.
すなわち、 図示せぬレーザ発振器からのレーザ光 1をレンズ 2 で集光し、 このレーザ光 1を処理対象物であるガラス板 3を透過 させて母材 4の表面に照射する。 この際、 レーザ光 1の焦点が出 来るだけ母材 4の表面に合うようにする。  That is, a laser beam 1 from a laser oscillator (not shown) is condensed by a lens 2, and the laser beam 1 is transmitted through a glass plate 3, which is an object to be processed, and is irradiated on the surface of a base material 4. At this time, the laser beam 1 is focused on the surface of the base material 4 as far as possible.
レーザ光 1が照射された母材 4からは、 各パルスの立上り毎に "アブレーシヨ ンプルム (ab l at ion p lume ) " 〔以下、 単に "プ ルム" という〕 が発生する。 このプルム 5は、 パルス化されたレ 一ザ光 1の照射で生じる "縮爆 (アブレーシヨン) " という現象 により母材 4から高速で噴出するもので、 プラズマ化した炭素よ りなり、 炭素イオン (C + 、 C "、 等) を高密度且つ高純度 で含むものである。 ここで、 プルム 5をより高速化させるために は、 "縮爆" をより効率よく生じさせるのがよく、 "縮爆" を効 率よく生じさせるには母材 4は固い固形材であることが好ましい ( 第 2図は、 コンピュータ処理して得られたプルム 5の画像を模 式化して示すもので、 濃淡 (ハッチングの粗密) は温度に対応す るが、 これから分かるように、 濃く現れる高温部分が上下方向に 複数か所存在する。 これは、 母材 4の表面から発生した高温のプ ルム 5が上昇中に一旦冷えた後、 レーザ光 1により再加熱され再 び高温になる、 という状態を示しているものと考えられる。 この ように、 プルム 5をレーザ光 1にて再加熱し、 後述のようにガラ ス板 3に種結晶を定着させる際に、 出来るだけプルム 5の高温状 態を維持するようにすることが、 結晶生成にとってより好ましい 結果をもたらす。 換言すれば、 プルム 5がレーザ光 1の照射方向 に対し逆向きに発生するようにレーザ光 1を母材 4に対し照射し、 発生したプルム 5を常にレーザ光 1で加熱できるような状態とす ることがより好ましい条件であるということである。 From the base material 4 irradiated with the laser beam 1, "ablation plume" (hereinafter simply referred to as "plume") is generated at each rising edge of each pulse. This plume 5 is ejected at high speed from the base material 4 by a phenomenon called “ablation” generated by irradiation of the pulsed laser light 1, and is composed of carbonized plasma and carbon ions ( C +, C ", etc.) at a high density and high purity. Here, in order to make the Plum 5 faster, the" explosion "should be generated more efficiently. It is preferable that the base material 4 is a hard solid material in order to efficiently produce the plum (see FIG. 2 which schematically shows an image of the plume 5 obtained by computer processing, (Coarse and dense) corresponds to temperature However, as you can see, there are several hot spots that appear darker in the vertical direction. This is considered to indicate a state in which the high-temperature plume 5 generated from the surface of the base material 4 once cools down while rising, is re-heated by the laser beam 1, and becomes high in temperature again. In this way, when the plum 5 is reheated with the laser beam 1 and the seed crystal is fixed to the glass plate 3 as described later, it is necessary to maintain the high-temperature state of the plum 5 as much as possible. Produces more favorable results for crystal formation. In other words, the base material 4 is irradiated with the laser beam 1 so that the plum 5 is generated in a direction opposite to the irradiation direction of the laser beam 1, so that the generated plum 5 can always be heated by the laser beam 1. Is a more favorable condition.
プルム 5中の炭素イオンはガラス板 3に衝突し、 ガラス板 3の 表面に先ず種結晶 7 (第 3図) を形成する。 この種結晶 7は、 レ 一ザ光 1の透過性が悪いため、 ガラス板 3を透過して来るレーザ 光 1を吸収し、 これにより加熱され、 均一な結晶 8つまりダイヤ モンド状炭素層 8へと成長する (第 4図) 。  The carbon ions in the plume 5 collide with the glass plate 3 and first form a seed crystal 7 (FIG. 3) on the surface of the glass plate 3. Since the seed crystal 7 has poor transmittance of the laser beam 1, it absorbs the laser beam 1 passing through the glass plate 3, and is heated by the laser beam 1 to form a uniform crystal 8, that is, a diamond-like carbon layer 8. And grow (Fig. 4).
この間の現象とパルスとの関係は、 パルスの立上りにおいてプ ルム 5が発生し、 パルスの持続中にプルム'再加熱及び種結晶加熱 を行うものと考えられる (第 5図) 。  The relationship between the phenomena and the pulse during this period is thought to be that plume 5 occurs at the rise of the pulse, and reheating and seed crystal heating are performed during the duration of the pulse (Fig. 5).
パルス化されたレーザ光 1をさらに照射し続けると、 均一な結 晶 8はレーザ光 1を透過させるので、 「プルム 5の発生→結晶 8 上への種結晶 7の形成—均一結晶 8の上乗せ成長」 という現象が 生じ、 各パルス毎にこれが繰り返され、 所望の厚みのダイヤモン ド状炭素層 8が成長 ·形成されてゆく。 .  If the pulsed laser light 1 is further irradiated, the uniform crystal 8 transmits the laser light 1, so that “plum 5 generation → seed crystal 7 formation on crystal 8—addition of uniform crystal 8 This phenomenon is repeated for each pulse, and the diamond-like carbon layer 8 having a desired thickness is grown and formed. .
パルス幅が 9 ms e cでエネルギーが 2 5ジュールノパルスである レーザ光において、 パルス 1個当たりで形成される結晶のサイズ は、 その厚みが約 1 7 / m前後で、 その面積が約 3 m m 2 前後で めった。 In laser light with a pulse width of 9 ms ec and an energy of 25 Joule pulses, the size of the crystal formed per pulse , With its thickness of about 1 7 / m before and after the area of about 3 mm 2 rarely before and after.
ここで、 結晶 8の成長を適度な状態に止め、 第 6図に示すよう なヤスり状の表面を持ったダイヤモンド状炭素層 8 sを形成する ことも可能である。 このようなダイヤモンド状炭素層 8 sは切削 工具等に好適なものとなる。  Here, it is also possible to stop the growth of the crystal 8 in an appropriate state and form a diamond-like carbon layer 8s having a file-like surface as shown in FIG. Such a diamond-like carbon layer 8 s is suitable for a cutting tool or the like.
この方法の大きな長所は、 常圧大気中でダイヤモンド状炭素層 のような物質層を簡単にしかも従来のものに比べ格段に高速で形 成できるということである。 しかし、 これが可能となる理由につ いては、 前述の説明の域をでない。 ただ、 経験則的には以下のよ うな点が言える。  A major advantage of this method is that a layer of material, such as a diamond-like carbon layer, can be formed easily and at a much higher speed in conventional atmospheres than conventional methods. However, the reasons why this is possible are beyond the scope of the preceding explanation. However, empirically, the following points can be said.
ガラス板 3 と母材 4 との距離が、 パルス幅、 パルスパワー、 パ ルスエネルギー等と相関しつつダイャモンド状炭素層の成長 ·形 成に関与する。 一応、 パルス幅が 9 msecでエネルギーが 2 5ジュ ール Zパルスの場合には 1. 5〜 3 c mが好ましいという結果が得 られているが、 これは当然にパルス幅等が異なることによつて変 化することになる。 これは、 ガラス板 3と母材 4との距離が、 ガ ラス扳 3に衝突するプルム 5の温度、 その際の炭素イオンの濃度、 純度等に関係するからと考えられる。  The distance between the glass plate 3 and the base material 4 is involved in the growth and formation of the diamond-like carbon layer while correlating with the pulse width, pulse power, pulse energy, and the like. For the time being, for a pulse width of 9 msec and an energy of 25 joules, a result of 1.5 to 3 cm is preferred, but this is naturally due to differences in pulse width and the like. Will change. This is probably because the distance between the glass plate 3 and the base material 4 is related to the temperature of the plume 5 colliding with the glass 扳 3, the concentration and purity of the carbon ions at that time.
パルス幅の調整もダイヤモンド状炭素層の成長 ·形成に関与す る。 具体的には、 パルス幅が余り狭いと成長 ·形成の効率が悪く なり、 また余り広くなるとパルス化効果が減少してしまう。 この ような理由からパルス幅は上限として 1 0 0 msec程度の値が挙げ られ、 下限としては 0. 2 msec程度の値が挙げられる。 .  Adjustment of the pulse width also affects the growth and formation of the diamond-like carbon layer. Specifically, if the pulse width is too narrow, the efficiency of growth and formation will be poor, and if it is too wide, the pulsing effect will decrease. For these reasons, the upper limit of the pulse width is about 100 msec, and the lower limit is about 0.2 msec. .
レーザ光のエネルギーレベルの調整も結晶 (物質層) の生成状 態に影響するので、 これらを適宜に制御することにより、 結晶の 大きさや状態をある程度任意に制御することが可能である。 好ま しいエネルギーレベルとしては、 1〜 1 0 0ジュールノパルスが 挙げられる。 Adjustment of the energy level of the laser beam also affects the state of formation of the crystal (material layer). The size and the state can be arbitrarily controlled to some extent. Preferred energy levels include 1 to 100 joule nopulses.
以上の説明から分かるように、 この方法は、 レーザ光のパルス 化、 プルムの再加熱、 種結晶のレーザ光加熱による結晶成長、 と いう要素を持っている。 これらの要素は、 必ずしも以上の実施例 のような構成においてのみ実現されるものであるとは限らない。 すなわち、 第 7図に示すように、 複数のレーザ光 1を用い、 それ ぞれのレーザ光 1をプルム 5の発生、 プルム 5の再加熱、 種結晶 の加熱に用いるようにすることによっても実現可能である。 勿論、 この場合には、 プルム発生用のレーザ光だけをパルス化すれば足 ることになる。 このような構成の長所は、 レーザ光 1に対し透明 でない処理対象物 9にも物質層を形成することができるというこ とである。  As can be seen from the above description, this method has the elements of pulsing laser light, reheating the plum, and growing the seed crystal by laser light heating. These elements are not always realized only in the configuration as in the above embodiment. In other words, as shown in Fig. 7, this can also be realized by using a plurality of laser beams 1 and using each of the laser beams 1 to generate the plume 5, reheat the plume 5, and heat the seed crystal. It is possible. Of course, in this case, it is sufficient to pulse only the laser light for generating the plume. The advantage of such a configuration is that a material layer can be formed on the processing object 9 that is not transparent to the laser beam 1.
尚、 以上の実施例は、 レーザ光として Y A Gレーザを用いてい るが、 勿論その他のレーザ光を用いることも可能である。 特に、 C 0 2 レーザの場合には、 シリ コン結晶やゲルマニウム結晶に対 し透過性を持っているので、 例えば半導体基板の処理について有 利である。 In the above embodiment, a YAG laser is used as a laser beam, but other laser beams can of course be used. Particularly, in the case of C 0 2 lasers, because it has a pair permeabilized in silicon crystal or germanium crystals, such as chromatic advantage for processing of semiconductor substrates.
また、 以上の実施例は、 母材として炭素を用い、 ダイヤモンド 状炭素層を処理対象物に形成する例であつたが、 この発明の方法 は、 これに限られず、 母材として適宜のものを選択することによ り、 各種の物質について適用できることは勿論である。  In the above embodiments, carbon was used as the base material, and the diamond-like carbon layer was formed on the object to be processed. However, the method of the present invention is not limited to this, and an appropriate base material may be used. Of course, depending on the choice, it can be applied to various substances.
また、 この発明は常圧大気中での処理が可能という点に特徴を 持っているものであるが、 このことは必ずしも常圧大気中での処 理に限定することを意味するものではない。 すなわち、 本方法を 空気による影響のより少ない減圧雰囲気や特定のガス雰囲気と組 み合わせるようにすれば、 より高品質の物質層の形成が可能とな る。 Further, the present invention is characterized in that the treatment can be performed in the atmospheric pressure atmosphere, but this does not necessarily mean that the treatment is performed in the atmospheric pressure atmosphere. That is, the method Combining with a reduced-pressure atmosphere or a specific gas atmosphere that is less affected by air enables formation of a higher-quality material layer.
' 以上の説明から理解できるように、 この発明による方法は、 必 要な物質層をその形成範囲及び厚みを正確に制御しながら形成で きるという特徴も持っている。 このような特徵は、 例えば半導体 の製造に応用することにより非常に大きな利点をもたらす。 その ためには、 例えば以下のような方法で応用することができる。 すなわち、 先ず母材として炭素固形板を用い前述のようなダイ ャモン ド状炭素層よりなる絶縁層を形成する。 次いで、 母材とし て炭素固形板の他に砒素 (A s ) の固形板を用い、 炭素プラズマ と砒素プラズマを混合状態で発生させ、 不純物として砒素が含ま れるダイヤモンド状炭素層を N層として形成する。 そして更に、 母材として炭素固形板の他にガリウム (G a ) の固形板を用い、 炭素プラズマとガリゥムプラズマを混合状態で発生させ、 不純物 としてガリゥムが含まれるダイヤモンド状炭素層を P層として形 成する。 そして、 これらの各層の形成に際しては、 プルムが基板 (処理対象物) に到達する範囲 (面積) を制御するためのスリ ツ ト部材を適宜に用い処理対象物に定着 ·結晶する物質層の範囲を 任意に制御することにより P N接合を形成する。  'As can be understood from the above description, the method according to the present invention also has a feature that a necessary material layer can be formed while precisely controlling its forming range and thickness. Such features provide enormous advantages when applied to, for example, semiconductor manufacturing. For that purpose, for example, the following method can be applied. That is, first, an insulating layer composed of a diamond-like carbon layer as described above is formed using a carbon solid plate as a base material. Next, using a solid plate of arsenic (A s) in addition to a carbon solid plate as a base material, carbon plasma and arsenic plasma are generated in a mixed state, and a diamond-like carbon layer containing arsenic as an impurity is formed as an N layer. I do. Furthermore, a gallium (Ga) solid plate is used as a base material in addition to a carbon solid plate, and carbon plasma and gallium plasma are generated in a mixed state, and a diamond-like carbon layer containing gallium as an impurity is formed as a P layer. I do. In forming each of these layers, a slit member for controlling a range (area) of the plum reaching the substrate (the object to be processed) is appropriately used, and a range of the material layer fixed and crystallized on the object to be processed is used. The PN junction is formed by controlling arbitrarily.
〔産業上の利用可能性〕  [Industrial applicability]
この発明による物質層の形成方法は、 レーザ光をパルス化して 母材に照射するようにしているものであり、 これにより常圧大気 中でも、 例えば古くよりその実用化技術が模索されてきているダ ィャモン ド状炭素層の形成を可能とする。 しかも、 単に常圧大気 中で可能とすることにより工業化における制約条件を軽減すると ' a—— The method of forming a material layer according to the present invention is to irradiate a laser beam into a base material by pulsing a laser beam. Thus, even in a normal-pressure atmosphere, for example, a technology for practical use has been sought for a long time. It enables the formation of a diamond-like carbon layer. Moreover, reducing the constraints on industrialization simply by enabling it in atmospheric pressure atmosphere 'a——
いうだけでなく 、 その処理手段自体も従来の技術に比べより単純 化され、 さらにダイヤモン ド状炭素層の形成速度が従来のものに 比べ格段に向上したものとなっており、 半導体への応用等を含め て種々の用途に大きな期待を持たれているダイヤモン ド状炭素層 の工業的利用へ大きく寄与できる。 Needless to say, the processing means itself is simpler than the conventional technology, and the formation speed of the diamond-like carbon layer is much higher than that of the conventional technology. This greatly contributes to the industrial use of diamond-like carbon layers, which are expected to be used in various applications, including carbon dioxide.

Claims

請求の範囲 The scope of the claims
(1). 母材にレーザ光を照射し、 この照射により発生したプラズマ 中のイオンを処理対象物に定着 ·結晶化させてなる物質層の形成 方法であって、 レーザ光をパルス化して照射することを特徴とす る物質層の形成方法。 (1). A method of forming a material layer by irradiating a base material with laser light and fixing and crystallizing ions in the plasma generated by the irradiation on an object to be processed. Forming a material layer.
(-2). パルスは、 立上り時間が 0. 5 msec ( 5' 0 0 z sec ) 以下でパ ルス幅が 1 0 0 msec以下の方形波であることを特徴とする請求の 範囲 (1)記載の物質層の形成方法。  (2). Claims characterized in that the pulse is a square wave with a rise time of 0.5 msec (5 '0 zsec) or less and a pulse width of 100 msec or less (1). The method for forming a material layer according to the above.
(3) . 母材が固形材であることを特徴とする請求の範囲 (1)記載の物 質層の形成方法。  (3). The method according to claim 1, wherein the base material is a solid material.
(4) . 処理対象物としてレーザ光に対し透明のものを用い、 この透 明な処理対象物を透過させてレーザ光を母材に照射させることを 特徵とする請求の範囲 (1)記載の物質層の形成方法。  (4). The method according to claim 1, wherein the object to be processed is transparent to laser light, and the base material is irradiated with laser light by transmitting the transparent object to be processed. The method for forming the material layer.
(5) . 母材が高純度の炭素固形材であり、 形成される物質層がダイ ャモンド状炭素層であることを特徴とする請求の範囲 (1)〜請求の 範囲 (4)何れか記載の物質層の形成方法。  (5) The claim according to any one of claims (1) to (4), wherein the base material is a high-purity carbon solid material, and the substance layer formed is a diamond-like carbon layer. Method of forming a material layer.
PCT/JP1989/001307 1989-12-26 1989-12-26 Method of forming material layer WO1991009994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1989/001307 WO1991009994A1 (en) 1989-12-26 1989-12-26 Method of forming material layer
JP2090117A JPH03197389A (en) 1989-12-26 1990-04-06 Formation of material layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1989/001307 WO1991009994A1 (en) 1989-12-26 1989-12-26 Method of forming material layer

Publications (1)

Publication Number Publication Date
WO1991009994A1 true WO1991009994A1 (en) 1991-07-11

Family

ID=13959010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001307 WO1991009994A1 (en) 1989-12-26 1989-12-26 Method of forming material layer

Country Status (2)

Country Link
JP (1) JPH03197389A (en)
WO (1) WO1991009994A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170819B2 (en) * 1991-09-24 2001-05-28 住友電気工業株式会社 Surface acoustic wave device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761644A (en) * 1980-10-02 1982-04-14 Seiko Epson Corp Cover glass having diamond coating layer and its preparation
JPS5825041B2 (en) * 1979-08-03 1983-05-25 日本電信電話株式会社 Method for manufacturing diamond-like carbon film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825041A (en) * 1982-07-29 1983-02-15 Nec Corp Valve for display tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825041B2 (en) * 1979-08-03 1983-05-25 日本電信電話株式会社 Method for manufacturing diamond-like carbon film
JPS5761644A (en) * 1980-10-02 1982-04-14 Seiko Epson Corp Cover glass having diamond coating layer and its preparation

Also Published As

Publication number Publication date
JPH03197389A (en) 1991-08-28

Similar Documents

Publication Publication Date Title
EP1847632B1 (en) Apparatus and process for the preparation of p-type semiconductor zinc oxide films
US4751193A (en) Method of making SOI recrystallized layers by short spatially uniform light pulses
KR20100105606A (en) Systems and methods for preparation of epitaxially textured thick films
US20110027928A1 (en) PULSED LASER DEPOSITION OF HIGH QUALITY PHOTOLUMINESCENT GaN FILMS
WO1991009994A1 (en) Method of forming material layer
JPH0360026A (en) Manufacture of crystalline silicon film
JP4129528B2 (en) Thin film containing β-FeSi2 crystal particles and light emitting material using the same
Gyorgy et al. Role of laser pulse duration and gas pressure in deposition of AlN thin films
JPS623089A (en) Production apparatus for semiconductor
JP2003303771A (en) Vacuum deposition method and apparatus
JP3203706B2 (en) Method for annealing semiconductor layer and method for manufacturing thin film transistor
JPS623095A (en) Crystal growth
JP4158926B2 (en) Method for producing β-FeSi2 using laser annealing
JPH0319218A (en) Formation process and device of soi substrate
JP2020533807A (en) How to process the target material
JPH02221120A (en) Production of superconducting thin film
JP2719409B2 (en) Method for manufacturing Si crystal film
JPS5943815B2 (en) epitaxial growth method
JPS63119220A (en) Manufacture of thin-film
JPS5897835A (en) Semiconductor substrate and manufacture thereof
RU2006996C1 (en) Process of production of crystalline buffer layers
JPS5994412A (en) Manufacture of semiconductor element
Hess et al. Laser‐annealing behavior of deposited and implant‐produced amorphous Si layers on Si substrates
JPH0380337B2 (en)
JPS58114420A (en) Formation of single crystal silicon film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LU NL SE