WO1990012405A1 - Accelerated phosphor plate and accelerated phosphor reader - Google Patents

Accelerated phosphor plate and accelerated phosphor reader Download PDF

Info

Publication number
WO1990012405A1
WO1990012405A1 PCT/JP1990/000434 JP9000434W WO9012405A1 WO 1990012405 A1 WO1990012405 A1 WO 1990012405A1 JP 9000434 W JP9000434 W JP 9000434W WO 9012405 A1 WO9012405 A1 WO 9012405A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
light
photostimulable
photostimulable phosphor
hole
Prior art date
Application number
PCT/JP1990/000434
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Takeda
Fumihiro Namiki
Yuuichi Sugiyama
Nobuhiro Iwase
Shinji Tadaki
Nagaaki Koshino
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8425389A external-priority patent/JPH02262100A/en
Priority claimed from JP1130739A external-priority patent/JPH02308238A/en
Priority claimed from JP13557389A external-priority patent/JPH032599A/en
Priority claimed from JP14434989A external-priority patent/JPH039300A/en
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP90905637A priority Critical patent/EP0426865B1/en
Priority to DE69024610T priority patent/DE69024610T2/en
Publication of WO1990012405A1 publication Critical patent/WO1990012405A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention further ⁇ about the excitation light or excitation light and bright ⁇ light in the photostimulable ⁇ light body plate using the scatter preventing means against its read-device, speaking
  • Radiation images are often used for disease diagnosis and the like.
  • the X-rays that have passed through the subject are irradiated onto the phosphor layer (fluorescent screen) to generate visible light, which is then converted into silver salt.
  • a so-called radiographic image is used, which is developed by irradiating a film using a so-called photographic film, and the conventional silver salt sensitizer is directly or indirectly applied to the film coated on the sheet.
  • a high-sensitivity, high-resolution X-ray imaging system has been developed as a system that can replace the X-ray imaging device that records two-dimensional G-ray images. Background technology
  • the fluorophores used in this system are sources of radiation such as X-rays. When it receives ruggy, it stores some of its energy. This condition is relatively stable and can be maintained for a long time or for a long time.
  • the phosphor in this state is irradiated with the first light that acts as the excitation light, the stored energy is emitted as the second light.
  • the first light is not limited to visible light, but light of a wide wavelength range from infrared rays to ultraviolet rays is used. However, the choice depends on the phosphor material used.
  • the second'lights also vary from infrared to ultraviolet. The difference also depends on the fluorescent material used.
  • This second electromagnetic wave is received, converted into an electric signal by a photoelectric converter, and then converted into a digital signal to obtain digital image information.
  • the photostimulable phosphor layer that has been conventionally used. Was not transparent to the first light, that is, the excitation light, or to the second light, that is, the stimulated emission light, and showed a strong scattering phenomenon. Therefore, even if the excitation light flux of the same size as or less than one pixel is applied to the photostimulable phosphor layer, the excitation light flux is scattered very widely, and, for example, a phosphor with a thickness of 0.3% is used.
  • the surface opposite to the irradiation surface has a diameter of 1 yr or more and, in some cases, a diameter of 3 yr or more. ..
  • the present invention was created in view of such technical problems, and an object of the present invention is to provide a photostimulable phosphor body that does not scatter excitation light and photostimulable light.
  • micro holes 2 6 in which a photostimulable phosphor 6 is embedded in a hole forming part 2 which is processed to be opaque to excitation light and has almost the same size are intersected.
  • the hole forming part 2 is provided at each intersecting position in the difference direction, and the exciting light is impermeable to each other at each intersecting position in the intersecting direction.
  • Each of the hole forming positions of the substrate which is a regularly arranged position in which the hole forming positions are displaced by a predetermined value necessary to bring them closer to each other, has substantially the same size, and the inner wall surface 2 thereof is Micro holes 26 that are opaque to excitation light are provided, and photostimulable phosphors are embedded in each of the micro holes 26, and the hole forming positions for at least the eye contact are predetermined.
  • Microholes 26 that are approximately equal in size and whose inner wall surface 2 is processed to be opaque to excitation light at each hole formation position of the substrate that is displaced by a value and has a regular array position, and the microholes.
  • 2 6 A light-transmissive sealing material 4 arranged on the light-transmitting side surface of the forming substrate, and a sealing material 5 arranged on the surface opposite to the light-transmitting side surface of the 6-forming substrate. This is achieved by providing a photostimulable phosphor 6 filled in the minute holes 26 sealed by the light transmissive sealing material 4 and the sealing material 5.
  • the micro holes 16 are arranged in a grid pattern, and the micro holes 16 are arranged in the sub-scanning direction of the excitation light scanning, and in the main scanning direction.
  • the read line pitch which is the size of the pixel in the secondary scanning direction, and the scanning efficiency of the excitation light scan? ?
  • a latent image of the subject is formed as an energy distribution pattern using X-ray energy on the photoluminescent plate 105, and the latent image is read using excitation light.
  • a stimulable phosphor is formed in the hole forming part 2 which is processed to the excitation light opaque substrate with the same size.
  • One pixel of the subject image is formed in each of the corresponding integer holes of 1 or more of the photostimulable phosphor plate formed by forming the embedded micro holes 2 at each intersection position. Stored in an integer number of small holes This is achieved by reading out each of the stacked pixels and reproducing them.
  • a digital X-ray device that uses X-ray energy to form a latent image energy distribution pattern of the subject on the photoluminescent body 105 and reads the latent image using excitation light is used.
  • the hole forming part (2) processed to be opaque to the excitation light there is a micro hole in which a photostimulable phosphor is embedded, and the plate surface other than the micro hole is reflective to the excitation light.
  • Fluorescence condensing means Fluorescence condensing means, reflection excitation light condensing means for condensing the light in which the excitation light is reflected from the photostimulable phosphor plate, and a signal obtained from the reflection excitation light condensing means
  • Excitation light irradiation period determination means for determining the period during which the excitation light is irradiated to the microhole in which the photostimulable phosphor is embedded; and the excitation light irradiation period determination means for determining the period during which the excitation light irradiation period is determined.
  • the purpose is achieved by sampling the photostimulable light obtained by the light collecting means as pixel information.
  • Figure 1 is an illustration of excitation light scattering in a conventional photostimulable phosphor
  • FIG. 2 is a cross-sectional view of the photostimulable phosphor of the present invention
  • FIG. 3 is an explanatory diagram of excitation light scattering in the photostimulable phosphor of the present invention
  • FIG. 4A is a diagram showing a manufacturing process of the photostimulable phosphor of the present invention.
  • FIG. 4B is a diagram showing a manufacturing process of the photostimulable phosphor of the present invention.
  • Fig. 5 is a diagram of a photostimulable phosphor plate with circular microholes
  • Fig. 6 is a diagram showing various planar shapes of microholes
  • Fig. 7 is a diagram showing various cross-sectional shapes of microholes
  • Fig. 8 is a circle.
  • FIG. 9 shows the photostimulable phosphor plate of the third embodiment
  • Fig. 10 is a block diagram of a digital X-ray reader.
  • Fig. 11 is a diagram showing the pixel formation form and the number of minute holes in it.
  • Fig. 12 shows the configuration of the digital X-ray that synchronizes the reflected excitation light.
  • Figure 13 is a circuit diagram for synchronizing the reflection excitation light
  • Figure 14 is a timing chart of the circuit diagram for synchronizing the reflection excitation light.
  • FIG. 2 shows the first embodiment of the present invention
  • FIG. 2A shows that the photostimulable phosphor 6 is embedded in the hole forming portion 2 which is processed to be opaque to excitation light and has substantially the same size.
  • Micro hole 2 It is a photostimulable phosphor plate with 6 provided at each intersection in the intersection direction.
  • FIG. 2B shows, at each crossing position in the crossing direction, a hole forming part 2 which is processed to be opaque to excitation light and has a substantially equal size, and is arranged on the light transmitting side of the hole forming part 2.
  • the X-ray energy of the subject pattern which is irradiated with X-rays and transmitted through the subject, is distributed to each of the photostimulable phosphors 6 in the micro holes 2 6 that are regularly arranged in the photostimulable phosphor plate. Accumulated.
  • the excitation light beam is scanned on the photostimulable phosphor plate having this energy distribution pattern, and the subject pattern formed as an energy distribution pattern there is taken out as an electric signal pattern and used for its use.
  • the excitation light is scanned through the regularly arranged micro holes 26 of the photostimulable phosphor plate along one of the intersecting directions. Since the photostimulable phosphor irradiated with the excitation light is contained in the hole wall 2 impermeable to the excitation light, it does not scatter. Therefore, it is possible to completely prevent the spatial resolution from being degraded. Figure 3 shows how this is prevented.
  • This manufacturing method is a method by etching.
  • a resist pattern for forming micro holes in a thin stainless plate is manufactured using a known CAD technique.
  • the size of the hole-corresponding part of the pattern should be smaller than the size of the micro holes.
  • Masks 2 2 and 2 3 are formed on both sides of the stainless steel plate 20 using this resist pattern (see Fig. 4A).
  • 2 4 is a mask hole of masks 2 2 and 2 3.
  • An etching agent is applied to the stainless steel support 20 through the formed mask holes 24 to form micro holes 26 as shown in Fig. 4B.
  • 2 8 is a hole wall.
  • the adhesive 30 is applied to the hole wall plate surface area 29 by screen printing (Fig. 4C). As shown in Fig. 4C).
  • this adhesive 30 ⁇ is applied to both sides of the stainless steel plate 2 0 z sandwiched between them, and to the stainless steel plates 20 0 ,, 2 0 3 sandwiched between them. , it applied only to the stearyl emissions less plate surface sandwiching the stearyl emissions less plate 2 0 2.
  • G 32 is a glass frame. After bonding process is completed, overlapping if I have been three stearyl emissions less plate 2 0, or 2 0 3 has been made form, the deeper Ku powder stimulable ⁇ the light in summer and small holes 2 6 are After filling with 6 (BaFEr: Bu 2- ) (see Fig. 4E), a protective layer of polyester "34 (see Fig. 4F) is formed on it to form a photostimulable phosphor coating. Made Made (see Figure 5).
  • the wall surface of the minute hole 26 has an optical surface and efficiently reflects excitation light and stimulated emission light. As a result, the excitation light does not pass through the walls of the microholes, and the excitation light emitted from the excitation phosphor by irradiation of the excitation light can be efficiently collected (3rd step). (See figure). Therefore, it is possible to prevent deterioration of the spatial resolution of the image. Further, by the above-mentioned superposition, it is possible to increase the amount of photostimulable light emitted from the photostimulable phosphor by the excitation light irradiation. There is no reduction in spatial resolution.
  • the thin stainless plate in the above embodiment may be another thin metal plate, a plastic plate, or the like.
  • the method of forming the micro holes is not limited, but the micro holes 26 formed can have various shapes depending on the material and the forming means (see FIGS. 6 and 7). For example, if a hole with a diameter of 0.08 thighs is formed on a stainless steel plate with a thickness of 0. I ran by etching with vertical and horizontal pitches of 0.1 thighs each, the shape of the holes is completely straight. However, if the etching is performed from only one side, the other side becomes larger, and if the etching is performed from both sides, the center has a narrowed shape. Or it can be a different shape depending on how the mask holes are formed.
  • a hole when a hole is formed by electric discharge machining, it can have various shapes such as a relatively straight shape, but it is possible to carry out the present invention regardless of the shape.
  • the shape of the micropores is not particularly limited, but in practice, circles, ellipses, squares, rectangles, or polygons are used in manufacturing (see Fig. 6). If the wall surface of the micro hole formed in this way transmits the excitation light due to the property of the material, a material that does not transmit the excitation light may be applied to the wall surface of the micro hole or may be vapor-deposited to generate the excitation light. It is necessary to prevent penetration. Also, when the wall surface of the hole does not have surface accuracy in the optical sense, it is effective to apply resin to make it smooth and to form a highly reflective layer such as metal on it.
  • the size of the microholes is not particularly limited-due to the technical difficulty of embedding the photostimulable phosphor in the microholes of a certain thickness, the lower limit of the size is 0.01 The upper limit is about 0.4 in terms of the spatial resolution required for X-ray image diagnosis.
  • the direction of the minute holes with respect to the surface of the photostimulable phosphor plate is the vertical direction, but it may be completely vertical or oblique.
  • diagonal micro-holes can be formed by arranging a large number of capillaries whose inner diameter is the same as that of the micro-holes in a square array, or by stacking them one by one. It can be manufactured by cutting, polishing, and cleaning.
  • the shape of the inside of the hole may be straight or the size of the top and bottom may be different. Any forest material that forms a hole may have any mechanical strength after forming the hole.
  • the glass plate is used on one side of the stainless plate after forming the micro holes. It is also possible to use a force, ', a metal sheet or the like. , It is preferable that the sheet reflects excitation light and stimulated emission light. Alternatively, the excitation light may be reflected but the stimulated emission light may be transmitted, and in the opposite case, the usage method, that is, the direction of excitation light irradiation and the direction of collection of stimulated emission light Yes, depending on your choice. It is also effective to form a cover having a function of a selection mirror on both sides by adhesion or the like.
  • the type of force par is not particularly limited, but in order to prevent X-ray backscattering rays, it is also effective to use, for example, lead glass that passes excitation light and stimulated emission light and absorbs X-rays. It is also effective to stick a board.
  • the photostimulable phosphor embedded in each microhole may be either opaque so that excitation light is scattered or transparent to excitation light or stimulated emission light.
  • Any composition can be applied, and the composition is not limited, and the burying method is not limited, and the phosphor powder having a particle size of 5 m or less can be used.
  • the powder is dispersed in the binder solution and poured, the phosphor powder is pressed into the microholes as it is, and then the binder is soaked in and the lift-off method is applied. It is possible to use various methods such as a method of forming a soluble layer later on the part, filling the inside of the hole by vapor deposition of the phosphor, and then removing the phosphor other than the hole. it can.
  • a substrate having a regular array position which is the second embodiment, is displaced by a predetermined value necessary to bring the adjacent hole forming positions closer to each other.
  • Microholes 26 of approximately the same size and whose inner wall surface 2 are opaque to excitation light are provided at each hole formation position, and a photostimulable phosphor is embedded in each microhole 26.
  • the size is almost equal and the inner wall surface 2 has no excitation light.
  • a sealing material 5 arranged on the surface opposite to the surface on the side and the light-transmissive sealing material 4 and the sealing material (5).
  • the photostimulable phosphor 6 and the photostimulable phosphor 6 will be described.
  • micro holes in the photostimulable phosphor plate of Example 2 ⁇ are shown in Fig. 8. As shown in FIG.
  • the micro holes 26 are formed close to each other, the amount of the photostimulable phosphor plate embedded in the photostimulable phosphor plate is increased, and the amount of energy stored therein is increased. Helps prevent decline.
  • a side sectional view of this second embodiment is as shown in FIG.
  • the photostimulable phosphor irradiated with the excitation light is contained in the inner wall surface 2 which is impermeable to the excitation light as in the first embodiment, it is not scattered. Therefore, it is possible to completely prevent the spatial resolution from being lowered.
  • This photostimulable phosphor plate is the same as that of the first embodiment, and the resist pattern as shown in FIG. 8 may be used.
  • the photostimulable phosphor plate I 0 is composed of a plurality of stainless sheets 12. And each stainless sheet 12 has a thickness of 0.1 and a size of 380, and there are several micro holes in the central area (3 5 6 mra angle) 14. 1 6 are arranged in a grid.
  • the size of one pixel is decided. For example, in the case of a photostimulable phosphor plate or sheet for the purpose of diagnosing breast cancer, the size of one pixel is approximately 50 m square.
  • the unreasonable size is generated because it handles digital information and is not essential, but if it has a spatial resolution of about that level, it achieves the diagnostic purpose. Therefore, it is necessary to change the size of the pixel depending on the target diagnosis site, and in the present invention, it is possible to use various types of pixel-sized photostimulable phosphor plates or sheets.
  • the smallest feasible pixel size is determined by the achievable pumping light beam diameter, and is currently about 20 square.
  • the maximum pixel size is not limited in terms of feasibility, but in most cases, the pixel size larger than 0.4 is not sufficient for the diagnostic purpose. Therefore, the range of the size of one pixel in the present invention is 20 m square to 0.4 mm square, and the shape of the pixel may be not only square but also rectangular.
  • the vertical and horizontal pitches are 1 ⁇ 5 um-
  • the positional deviation ⁇ of the microholes 16 at the start and end points is 52.5 m
  • the array of each microhole 16 is the sub-axis of the excitation light scan.
  • the scanning direction longitudinal direction
  • the main scanning direction horizontal direction
  • the read line pitch which is the size of the pixel in the sub-scanning direction
  • the scanning of excitation light scanning is performed.
  • Etching is used to form the micro holes 16 in the stainless steel sheet 12, and the thermosetting epoxy resin is dissolved in an organic solvent to disperse the graphite powder.
  • minute holes 16 are formed in the stainless sheet 12.
  • Micro holes ! The stainless sheet 12 with 6 formed on it and the stainless sheet 12 coated with resin only on one surface are overlapped, and the thickness 0.2 without micro holes 16 is further Place the stainless steel sheet on one side, put a weight on it and set it at 180 and cure it.
  • a reflective film for reflecting the excitation light is fixed to the wall of each microhole 16 c
  • a phosphor powder consisting of BaClBr: Eu with a particle size of 5 m or less is dispersed in an organic solvent solution containing a binding agent, epoquine resin, and poured onto the above sheet under reduced pressure. Embed in the hole and dry. Repeat this operation 3 times to confirm that the photostimulable phosphor has been embedded up to the surface of the hole, and then wipe off the mixture of photostimulable phosphor and epoxy resin on the surface. It is then cured, and then a transparent polyester sheet is adhered to the surface as a protective layer.
  • the photostimulable phosphor plate 10 produced as described above is
  • the laser beam system is fixed to the stage and consists of a semiconductor laser with a wavelength of 780-lens diameter, a galvanometer, etc., and a laser beam system with a scanning efficiency of 70% is used.
  • the 40 O laser was irradiated onto the photostimulable phosphor plate 10 in the scanning direction, the excitation light was transmitted through the photostimulable phosphors in the micro holes 16 and the other micro holes 16 It was confirmed that the particles were prevented from being scattered.
  • the surface of the photostimulable phosphor substrate 10 is irradiated with X-rays, and the photostimulable light emitted as a result of the excitation by the pulsed laser is condensed by the converging mirror and the glass fiber array and is in the normal state.
  • the light is received, the signal is A / D converted, and then the digital signal processing is performed.
  • a fiber array other than the fiber array collects the reflected light of the excitation light from the wall surface of the micro hole 16 and collects it from the fiber array! ⁇ The received light.
  • the e excitation light from the light receiving quantity is this Toga ⁇ IS is reflected from the wall surface also in this case is irradiated with X-ray of a standard dose, the standard output of each pixel It was possible to obtain a normal image by inputting it in the memory and correcting the change of the stimulated emission light amount over time and the correction 0 of the variation over time between each pixel.
  • the size of the excitation light beam on the fluorescence plate or the node is It must be smaller than the length of one pixel in the sub-scanning direction.
  • the degree is determined from the degree of wobble.
  • Main scanning direction It is desirable that the length of each pixel be smaller than the length of one pixel in the secondary scanning direction.
  • the excitation light may be continuous light or pulsed light, but the length of the excitation light beam in the main scanning direction is preferably as small as possible. Needless to say, it is necessary to scan so that the excitation light beam does not pass over the pixel that is adjacent in the sub-scanning direction. By paying attention to these points, it is possible to read an image with a predetermined spatial resolution without being affected by excitation light scattering.
  • the excitation light scanning system and the condensing light receiving system are fixed and the photostimulable phosphor plate or sheet is moved or vice versa, the photostimulable phosphor plate or sheet and the sub-scanning direction
  • the angle of is uniquely determined in relation to the excitation light scanning efficiency and the size of one pixel.
  • Figure 1Q is a photostimulable phosphor reader.
  • the latent image of the subject is formed by using X-ray energy and the latent image of the subject is formed as an energy distribution pattern on the photostimulable fluorescent plate 105 by using energy, and the latent image is read by using excitation light. It is a thing.
  • the laser beam is scanned from the excitation light source 1 0 1 by the scanner 1 0 2 consisting of a galvanometer mirror or a polygon mirror.
  • the scanned laser beam is composed of optical components such as an ⁇ lens for beam shape correction and a reflection mirror.
  • the photostimulable phosphor 1 0 5 is scanned through 10 4 etc.
  • Fluorescent light is collected by a condenser of 10 ⁇ such as a fiber array. The condensed light does not pass the excitation light from the fiber array, etc.
  • the photoelectric converter such as a photoelectron tube
  • the photoelectric converter such as a photoelectron tube
  • the quantity is converted into an electrical signal, amplified by an amplifier 1109 and then exchanged into a digital signal by an A / D converter 1109.
  • Di Sita Le signal temporarily stored in the off Remume mode Li 1 1 1, Oh Rui after 3 ⁇ 4 This stored without passing through the full Remume mode Li to the optical de-shrugging mode Li 1 1 2, the image processing at any time Processing such as gradation processing is performed in the processing unit 1 1 3 and displayed as an X-ray image on the image display unit 1 1 4 such as a CRT, or the X-ray film is displayed in a film writing device. It can be directly written and developed to obtain an X-ray image.
  • This example is for reading the photostimulable phosphors of the first to third examples.
  • the laser beam diameter on the surface of the photostimulable phosphor plate is the sub-scanning direction (the moving direction of the photostimulable phosphor) and the laser beam diameter is 70 m in the sub-scanning direction and 40 in the main scanning direction. ⁇ m
  • the size of the laser beam is generally larger than that of the sub-scanning direction of 1 pixel. It is desirable that the length is less than.
  • one standard pixel focused on this is set to be 176 m square, and there are 16 holes in each pixel (see I in Fig. 11-1). ) Exists.
  • one pixel is to be 1 3 2 / m square, there are 9 holes (see E in Fig. I 1) in one pixel. At this time, the laser beam diameter in the sub-scanning direction is 1 2 ⁇ m, "5.
  • one pixel is an 88 m square
  • there are four holes (see ⁇ in Fig. 11) in one pixel one laser beam in the sub-scanning direction is used.
  • Main scanning direction I set to 20 ⁇ m.
  • the purpose of the present invention is achieved by setting the number of holes for one pixel to be 1 to 400.
  • the reason for using an integral number of small holes in one pixel is that if two pixels share a part of a certain small hole, the spatial resolution will decrease accordingly.
  • the scanning line for the photostimulable phosphor is Assume that there is a deviation. That is, the holes located on a certain main scanning line are arranged on a certain straight line, but consider the case where the excitation light is slightly deviated from that line. Excitation light does not necessarily illuminate the entire surface of one hole. That is, a certain hole is irradiated with the exciting light only in a part of the hole.
  • the ratio of non-irradiation is relatively small when one pixel is formed by multiple holes compared to when one pixel is formed by one hole. Therefore, if a plurality of holes are set to one pixel, the reading accuracy will be improved and the reliability of the reading device will be increased.
  • the light is condensed as shown in FIG. 10 in the scanning of the photostimulable phosphor plate.
  • a G-beam array or a plastic fiber concentrator separate from the F,., And I-arrays in FIG.
  • the reflected wave of the excitation light from the wall surface that does not form the hole of the body is condensed, and the light and the light from the photostimulable phosphor are synchronized, and the light from the photostimulable phosphor is emitted. It collects light.
  • the excitation light & reflection from the wall surface is the photostimulable phosphor plate of the first to third embodiments configured so as to reflect the surface other than forming the hole of the photostimulable phosphor plate. It is realized by using it.
  • Figure 12 shows the reflected excitation light pattern that collects the excitation light.
  • the thing provided with the light guide path 113 is shown in figure.
  • the same reference numerals as those in FIG. 10 are the same as those in FIG. 1 0 7 1 is an excitation light absorption filter. Since 10 7 collects photostimulable light, it must absorb the reflected wave of the excitation light.
  • Excitation light absorption filter 10 * 71 absorbs light of 600 to 900 nm (wavelength of excitation light) and transmits light of 400 nm (wavelength of photostimulable light).
  • Is. 1 15 is a condenser mirror that collects excitation light and photostimulable light so as not to scatter.
  • 20 7 is a collection optical path for reflected excitation light.
  • FIG. 2 0 7 1 is a photostimulable absorption filter, which absorbs light in the vicinity of 400 nm (wavelength of photostimulable light) and absorbs light of 600 to 900 nm (excitation light). Wavelengths).
  • 208 is an optical sensor.
  • This photosensor is a semiconductor sensor such as a photomultiplier tube or photo diode.
  • the above photostimulable fluorescent absorption filter 2071 can be labor-saving by selecting an appropriate type of photomultiplier tube.
  • Figure 12 is a picture of the timing of the sampling.
  • reference numeral 108 is a photoelectric converter
  • reference numeral 208 is an optical sensor, which are the same as those in FIG.
  • Photostimulation and excitation light are input to the photoelectric converter 1 0 8 and the optical sensor 2 0 8 through the fiber array 1 0 7 and the reflection excitation light condensing light guide 2 0 7, respectively. ..
  • the photostimulable fluorescent light input from the photoelectric converter 108 described above is converted into an electric signal and is converted into an A / D signal through the amplifier 109. Input to converter 1 1 0.
  • the pumping light converted into an electric signal by the optical sensor 208 is compared with the reference voltage by the comparison circuit 209.
  • Figure 14 shows the signal timing output from the circuit in Figure 13. As shown in Fig. 13, the comparator circuit 209 outputs a signal when the electrical signal from the optical sensor is below the reference voltage.
  • the optical sensor 208 receives the excitation light.
  • the excitation light scans line L in Fig. 11 1.
  • the surface other than the holes strongly reflects the excitation light.
  • the excitation light is absorbed and emits photoluminescent light, but there is some reflection. Therefore, the electric signal obtained from the excitation light received by the optical sensor 208 is as shown in 208 in Fig. 14 below.
  • the voltage is high, it is the excitation light from the reflection part, and when it is low, it is the reflection from the hole where the photostimulable phosphor is embedded.
  • the reason for comparing the reference voltage in the comparative image path 209 is to distinguish the hole portion and the reflection portion.
  • the output of the comparator circuit 209 is input to the fly ':' flop loop 210, and the flip flop 210 is a signal synchronized with the clock input to itself. Is output.
  • the output of the above-mentioned frisotop flosc 210 is clocked and added at the address 211, and the operation clock is output to the ⁇ -D converter 1 110. Is entered. That is, encouragement When the electrical signal of the light (the output of the optical sensor 208) is lower than the reference voltage, the A / D converter 110 operates and the electrical signal of the fluorescent emission (the output of the amplifier 109) is generated. Digitally converted. The digitally converted value is added by an adder 2 17 while the output of the analog gate 2 11 is on, and a flip-flop 2 1 8 (this flip-flop is added). Is stored in multiple drawings and is omitted in the drawing).
  • the adder 218 While the adder 218 is performing the addition, the output of the aggregate 211 is input to the counter 216 and the number of clocks is counted. When the output of flip-flop 210 is turned off, the counter is cleared and its value is stored in flip-flop 211.
  • the sum of the outputs of the 8 A / D converters is divided by the value of the power counter stored in the flyback flow knob 2 15 and the value is output to the memory 1 11 1. That is, by receiving the excitation light, the excitation light is sampled while the excitation light is passing through the hole in which the excitation light body is embedded. The outputs were added and the average was calculated, but the present invention is not limited to this. The added value may be simply obtained or integrated. By receiving the excitation light at the time when the addition timing or integration is performed at that time, the timing can be changed as described above. o 5 should be taken.
  • the excitation light opaque microscopic region is formed, and the photostimulable phosphor plate having a structure in which the photostimulable phosphor is embedded in the microscopic region is also provided.

Abstract

An accelerated phosphor plate and a reader having high accuracy at the time of reading when the plate is irradiated with an excited beam and high spatial resolution. The plate is provided with micropores (26) each having a wall (2) impervious to excited light and filled with an accelerated phosphor (6), wherein the micropores are provided at each of the intersections of crossing directions.

Description

明 細 書  Specification
〔発明の名称〕  [Title of Invention]
輝尽螢光体板及び輝尽螢光体読取装置 〔技術の分野〕  Photostimulable phosphor plate and photostimulable phosphor reader [Technical field]
本発明は、 励起光又は励起光及び輝尽螢光光に対 する散乱防止手段を用いた輝尽螢光体板とその読み 取り装置に関する β 更に、 詳し く 言えば、 X線画像 の様な放射線画像は、 病気診断用等に多 く 用いられ ている。 こ の X線画像を得る為に、 被写体を透過し た X線を螢光体層 (螢光スク リ ー ン) に照射し、 そ こから可視光を生じさせて この可視光を、 銀塩を使 用したフ ィ ルムに照射して現像した、 所謂放射線写 真が利用されているが、 この従来の銀塩感光剤をシ — ト抆に塗布したフ ィ ルムに間接、 或いは直接に放 射線 G二次元像を記録する X線撮像装置に変わる シ ステム と して、 高感度、 高解像度の X線撮像システ ムが開発されている。 背景技術 The present invention further β about the excitation light or excitation light and bright尽螢light in the photostimulable尽螢light body plate using the scatter preventing means against its read-device, speaking For more information, such as X-ray images Radiation images are often used for disease diagnosis and the like. In order to obtain an X-ray image of this, the X-rays that have passed through the subject are irradiated onto the phosphor layer (fluorescent screen) to generate visible light, which is then converted into silver salt. A so-called radiographic image is used, which is developed by irradiating a film using a so-called photographic film, and the conventional silver salt sensitizer is directly or indirectly applied to the film coated on the sheet. A high-sensitivity, high-resolution X-ray imaging system has been developed as a system that can replace the X-ray imaging device that records two-dimensional G-ray images. Background technology
前述の高感度, 高解像度の X線撮像装置  The high-sensitivity and high-resolution X-ray imaging device described above
性螢光体を使用する システムである。 こ のよ う な方 式に関しての基本的な方式は、 米国特許第 3 , 8 5 9 , 5 2 7 号に詳し く 述べられている。 この システ ムに使用される螢光体は、 X線などの放射線のェネ ルギーを受けると、 そのエネルギーの一部を蓄積す る。 この状態は比較的安定であり、 しばら く或いは 長時間にわたって保持される。 この状態にある螢光 体に、 励起光として働く第一の光を照射すると、 蓄 積されているエネルギーが第二の光となつて放出さ れる。 この時、 第一の光は、 可視光に限らず、 赤外 線から紫外線の範囲の広い波長の光が使われる。 た だし、 その選択は、 使われる螢光体材料によって異 なる。 第二の'光も赤外線のものから紫外線のものま で各種ある。 その違いも、 使用する螢光体材料に依 存する。 この第二の電磁波を受光し、 光電変換器で 電気信号に変換した後ディ ジタル信号化してディ ジ タル画像情報として得るようにして成るものである, 従来用いられてきた輝尽螢光体層は第一の光すな わち励起光に対しても、 第二の光すなわち輝尽発光 光に対しても透明ではなく、 強度の散乱現象を示し ていた。 そのため 1画素と同じ程度或いは以下の大 きさの励起光光束を輝尽螢光体層に照射しても励起 光光束は非常に幅広く散乱し、 例えば 0. 3 讓の厚さ の螢光体層に直径 0. 1 議の励起光光束を照射すると 照射面と反対の面においては直径 1 讓以上の大きさ 場合によつては直径 3 讓以上にまで広がつてしまう ことが観測されている。 This is a system that uses a sex fluorescent substance. The basic scheme for such a scheme is described in detail in U.S. Pat. No. 3,859,522. The fluorophores used in this system are sources of radiation such as X-rays. When it receives ruggy, it stores some of its energy. This condition is relatively stable and can be maintained for a long time or for a long time. When the phosphor in this state is irradiated with the first light that acts as the excitation light, the stored energy is emitted as the second light. At this time, the first light is not limited to visible light, but light of a wide wavelength range from infrared rays to ultraviolet rays is used. However, the choice depends on the phosphor material used. The second'lights also vary from infrared to ultraviolet. The difference also depends on the fluorescent material used. This second electromagnetic wave is received, converted into an electric signal by a photoelectric converter, and then converted into a digital signal to obtain digital image information. The photostimulable phosphor layer that has been conventionally used. Was not transparent to the first light, that is, the excitation light, or to the second light, that is, the stimulated emission light, and showed a strong scattering phenomenon. Therefore, even if the excitation light flux of the same size as or less than one pixel is applied to the photostimulable phosphor layer, the excitation light flux is scattered very widely, and, for example, a phosphor with a thickness of 0.3% is used. It has been observed that when a layer is irradiated with an excitation light beam with a diameter of 0.1, the surface opposite to the irradiation surface has a diameter of 1 yr or more and, in some cases, a diameter of 3 yr or more. ..
第 1図にそれを示す。 このような励起光の散乱は 上記例の場合に、 若し 1画素の大きさが 0. 1 讓角の 大きさである とする と、 1 画素を読み取る とき隣接 する 1 0 0乃至 9 0 0画素の部分の情報の一部を誤 差として取り込む結果、 得られる画像の空間分解能 が著し く 劣化したものとなり著し く 不鮮鋭な画像と なる こ とは当然である。 こ の励起光散乱の現象を緩 和する試みは幾つかなされている。 たとえば特開昭 5 5 — 1 4 6 4 4 7号公報, 特開昭 5 8 — 5 8 5 0 0号公報に示されている螢光体層の中に白色微粒子 を分解させる方法、 あるいは特開昭 6 1 — 1 7 0 7 4 0号公報に示されている励起光を吸収するような 着色剤を添加する方法、 あるいは特開昭 6 2 - 2 1 1 6 0 0号公報に示されているような輝尽螢光体の 支持基板に着色剤或いは白色微粒子を形成する方法 などがある。 このような方法は従来の X線フ ィ ルム の増感紙に対しても為されてきた鮮鋭度改良のため の方法ではあるが、 しかし、 励起光散乱を完全に除 まする方法でないこ とは明らかである。 また、 特開 昭 6 0 — 1 7 1 5 0 0号公報などに示されている輝 尽螢光体の層の中に垂直方向に亀裂を形成させたり - ハニカ ム構造を形成する方法或いは基板表面に凹凸 パター ンやモザィ クパター ンを形成して、 散乱を防 ごう とする試みもある。 しかし、 これらの方法も完 全に励起光の散乱を防止する ものではな く 、 得られ た画像にモア レパター ンを形成させる可能性を生じ させる。 〔発明の開示〕 Figure 1 shows this. In the case of the above example, such excitation light scatters if the size of one pixel is 0.1 If the size is large, when one pixel is read, a part of the information of the adjacent 100 to 900 pixels is taken in as an error, and as a result, the spatial resolution of the obtained image is significantly degraded. It is natural that the image will be extremely sharp and unsharp. Several attempts have been made to mitigate this phenomenon of excitation light scattering. For example, a method of decomposing white fine particles in a fluorescent material layer as disclosed in JP-A-5-5-1464647 and JP-A-558-5850, or The method of adding a coloring agent capable of absorbing excitation light, which is disclosed in Japanese Laid-Open Patent Publication No. 61-170740, or the method disclosed in Japanese Laid-Open Patent Publication No. 6-21-211600. There is a method of forming a colorant or white fine particles on a supporting substrate of such a photostimulable phosphor. Although such a method is a method for improving the sharpness, which has been done for the intensifying screen of the conventional X-ray film, it is not a method for completely eliminating the excitation light scattering. Is clear. In addition, a method of forming cracks in a vertical direction in a layer of a photoluminescent material, such as disclosed in Japanese Patent Laid-Open No. 60-171500, or a method of forming a honeycomb structure or a substrate There are also attempts to prevent scattering by forming uneven patterns or mosaic patterns on the surface. However, these methods also do not completely prevent the excitation light from being scattered, and they give rise to the possibility of forming moire patterns in the obtained image. [Disclosure of Invention]
本発明は斯かる技術的課題に鑑みて創作されたも ので、 励起光、 輝尽螢光光に対する散乱性のない輝 尽螢光体扳を提供するこ とをその目的とする。  The present invention was created in view of such technical problems, and an object of the present invention is to provide a photostimulable phosphor body that does not scatter excitation light and photostimulable light.
前記目的を達成するために第 1 の手段として、 ほ ぼ等しい大きさで励起光不透過性に加工された穴形 成部 2内に輝尽螢光体 6を埋設した微小穴 2 6を交 差方向の各交差位置に設けて構成され、 又交差方向 の各交差位置毎に、 ほぼ等しい大きさで励起光不透 過性に加工された穴形成部 2 と、 該穴形成部 2の光 透過側に配置された光透過性封止材 4 と、 前記穴形 成部形成基板の光透過側の面とは反対側の面に配置 された封止材 5 と、 前記光透過性封止材 4 と前記封 止材 5 とによって封止された前記穴形成部 2内に充 塡された輝尽螢光体 6を構成することで達成される ; 更に第 2の手段として、 膦り合う穴形成位置を互 いに接近させるのに必要な予め決められた値だけ変 位させた規則的配列位置とした基板の穴形成位置毎 に、 ほぼ等しい大きさであり、 且つその内壁面 2が 励起光不透過性である微小穴 2 6を設け、 その各微 小穴 2 6内に輝尽螢光体を埋設して構成され、 又少 な く とも瞵り合う穴形成位置を予め決められた値だ け変位させた規則的配列位置とした基板の穴形成位 置毎に、 ほぼ等しい大きさで、 且つ内壁面 2が励起 光不透過性に加工された微小穴 2 6 と、 該微小穴 2 6形成基板の光透過側の面に配置された光透過性封 止材 4 と、 前記微小穴 2 6形成基板の光透過側の面 とは反対側の面に配置された封止材 5 と、 前記該光 透過性封止材 4 と前記封止材 5 とによって封止され た前記微小穴 2 6 内に充塡された輝尽螢光体 6 とを 設けて達成される。 As a first means for achieving the above-mentioned object, micro holes 2 6 in which a photostimulable phosphor 6 is embedded in a hole forming part 2 which is processed to be opaque to excitation light and has almost the same size are intersected. The hole forming part 2 is provided at each intersecting position in the difference direction, and the exciting light is impermeable to each other at each intersecting position in the intersecting direction. A light-transmissive encapsulant 4 disposed on the transmissive side; a encapsulant 5 disposed on a surface opposite to the light-transmissive side surface of the hole forming part forming substrate; and the light-transmissive encapsulant. This can be achieved by constructing a photostimulable phosphor 6 filled in the hole forming portion 2 sealed by the material 4 and the sealing material 5 ; and as a second means, meet each other. Each of the hole forming positions of the substrate, which is a regularly arranged position in which the hole forming positions are displaced by a predetermined value necessary to bring them closer to each other, has substantially the same size, and the inner wall surface 2 thereof is Micro holes 26 that are opaque to excitation light are provided, and photostimulable phosphors are embedded in each of the micro holes 26, and the hole forming positions for at least the eye contact are predetermined. Microholes 26 that are approximately equal in size and whose inner wall surface 2 is processed to be opaque to excitation light at each hole formation position of the substrate that is displaced by a value and has a regular array position, and the microholes. 2 6 A light-transmissive sealing material 4 arranged on the light-transmitting side surface of the forming substrate, and a sealing material 5 arranged on the surface opposite to the light-transmitting side surface of the 6-forming substrate. This is achieved by providing a photostimulable phosphor 6 filled in the minute holes 26 sealed by the light transmissive sealing material 4 and the sealing material 5.
又、 第 3 の手段と して、 各微小穴 1 6 は格子状に 配列され、 前記微小穴 1 6 の配列は、 励起光走査の 副走査方向ではその方向に一致し、 主走查方向では、 画素の副走查方向の大き さである読取ラ イ ンのピッ チを b、 励起光走査の走査効率を ??、 1 つの読取ラ ィ ン上の微小穴 1 6 の起点と終点の副走査方向での 位置ずれを△と したとき、 Δ = 1) — b ( 1 — ?? ) の 関係を有する直線と一致するよう に設定されている ものを構成したものである c Further, as a third means, the micro holes 16 are arranged in a grid pattern, and the micro holes 16 are arranged in the sub-scanning direction of the excitation light scanning, and in the main scanning direction. , The read line pitch, which is the size of the pixel in the secondary scanning direction, and the scanning efficiency of the excitation light scan? ? , Where Δ is the positional deviation between the starting and ending points of the micro hole 16 on one scanning line in the sub-scanning direction, it agrees with the straight line having the relationship of Δ = 1) — b (1 — ??). Is configured to be c
更に、 第 4 の手段と して、 X線エネルギーを用い て被写体の潜像をエネルギー分布パターンと して輝 尽螢光体板 1 0 5 に形成し、 その潜像を励起光を用 いて読み取るディ ジタル X線装置において、 前記被 写体の潜像形成に際して、 等しい大きさで、 且つ少 な く と も励起光不透過性基板に加工された穴形成部 2 内に輝尽螢光体を埋設した微小穴 2 を交差方向の 各交差位置に形成して成る輝尽螢光体板の対応する 1 以上の整数個の微小穴に前記被写体像の 1画素の 各々を形成し、 それら 1 以上の整数個の微小穴に蓄 積されている画素の各々を読み出して再生に供する よう にして達成される。 Furthermore, as a fourth means, a latent image of the subject is formed as an energy distribution pattern using X-ray energy on the photoluminescent plate 105, and the latent image is read using excitation light. In the digital X-ray apparatus, when forming the latent image of the object, a stimulable phosphor is formed in the hole forming part 2 which is processed to the excitation light opaque substrate with the same size. One pixel of the subject image is formed in each of the corresponding integer holes of 1 or more of the photostimulable phosphor plate formed by forming the embedded micro holes 2 at each intersection position. Stored in an integer number of small holes This is achieved by reading out each of the stacked pixels and reproducing them.
更に、 第 5 の手段としては、 X線エネルギーを用 いて被写体の潜像エネルギー分布パターンとして輝 尽螢光体 1 0 5 に形成し、 その潜像を励起光を用い て読み取るディ ジタル X線装置において、 前記励起 光不透過性に加工された穴形成部 ( 2 ) 内に輝尽螢 光体を埋設した微小穴を有し且つ微小穴以外の板表 面は励起光に対し反射性を呈する輝尽螢光体板の穴 の配列方向に励起光を走査する手段と、 前記微小穴 に埋設された輝尽螢光体から前記励起光により励起 された輝尽螢光を集光する輝尽螢光集光手段と、 前 記励起光が輝尽螢光体板から反射された光を集光す る反射励起光集光手段と、 前記反射励起光集光手段 から得られた信号から前記輝尽螢光体が埋設された 微小穴に励起光が照射されている期間を求める励起 光照射期間判定手段と、 前記励起光照射期間判定手 段により求められた期間に、 前記輝尽螢光集光手段 によ 得られた輝尽螢光を画素情報としてサンプリ ングすることにより 目的を達成する。  Furthermore, as a fifth means, a digital X-ray device that uses X-ray energy to form a latent image energy distribution pattern of the subject on the photoluminescent body 105 and reads the latent image using excitation light is used. In, in the hole forming part (2) processed to be opaque to the excitation light, there is a micro hole in which a photostimulable phosphor is embedded, and the plate surface other than the micro hole is reflective to the excitation light. A means for scanning the excitation light in the array direction of the holes of the photostimulable phosphor plate; and a photostimulant for concentrating the photostimulable light excited by the excitation light from the photostimulable phosphors embedded in the minute holes. Fluorescence condensing means, reflection excitation light condensing means for condensing the light in which the excitation light is reflected from the photostimulable phosphor plate, and a signal obtained from the reflection excitation light condensing means Excitation light irradiation period determination means for determining the period during which the excitation light is irradiated to the microhole in which the photostimulable phosphor is embedded; and the excitation light irradiation period determination means for determining the period during which the excitation light irradiation period is determined. The purpose is achieved by sampling the photostimulable light obtained by the light collecting means as pixel information.
〔図面の説明〕 [Description of Drawings]
第 1図は従来の輝尽螢光体での励起光散乱の説明 図、  Figure 1 is an illustration of excitation light scattering in a conventional photostimulable phosphor,
第 2図は本発明の輝尽螢光体の断面図、 第 3図は本発明の輝尽螢光体での励起光散乱の説 明図、 FIG. 2 is a cross-sectional view of the photostimulable phosphor of the present invention, FIG. 3 is an explanatory diagram of excitation light scattering in the photostimulable phosphor of the present invention,
第 4図 Aは本発明の輝尽螢光体の製造工程を示す 図、  FIG. 4A is a diagram showing a manufacturing process of the photostimulable phosphor of the present invention,
第 4図 Bは本発明の輝尽螢光体の製造工程を示す 図、  FIG. 4B is a diagram showing a manufacturing process of the photostimulable phosphor of the present invention,
第 5図は微小穴円形の輝尽螢光体板の図、 第 6図は微小穴の各種平面形状を示す図、 第 7図は微小穴の各種断面形状を示す図、 第 8図は円形微小穴を最密充塡配列した輝尽螢光 体の図、  Fig. 5 is a diagram of a photostimulable phosphor plate with circular microholes, Fig. 6 is a diagram showing various planar shapes of microholes, Fig. 7 is a diagram showing various cross-sectional shapes of microholes, and Fig. 8 is a circle. Figure of a photostimulable phosphor in which micro holes are arranged in a close-packed manner,
第 9図は第 3 の実施例の輝尽螢光体板、  FIG. 9 shows the photostimulable phosphor plate of the third embodiment,
第 1 0図はディ ジタル X線読み取り装置の構成図 第 1 1図は画素形成形態とその中の微小穴数を示 す図、  Fig. 10 is a block diagram of a digital X-ray reader. Fig. 11 is a diagram showing the pixel formation form and the number of minute holes in it.
第 1 2図は反射励起光を同期とするディ ジタ ル X 線の構成図  Fig. 12 shows the configuration of the digital X-ray that synchronizes the reflected excitation light.
第 1 3図は反射励起光同期する為の回路図、 第 1 4図は反射励起光同期する為の画路図のタイ ムチ ャー トである。  Figure 13 is a circuit diagram for synchronizing the reflection excitation light, and Figure 14 is a timing chart of the circuit diagram for synchronizing the reflection excitation light.
〔実施例〕 〔Example〕
第 2図は、 本発明の第 1 の実施例であり、 第 2図 Aはほぼ等しい大きさで励起光不透過性に加工され た穴形成部 2内に輝尽螢光体 6を埋設した微小穴 2 6を交差方向の各交差位置に設けた輝尽螢光体板で ある。 FIG. 2 shows the first embodiment of the present invention, and FIG. 2A shows that the photostimulable phosphor 6 is embedded in the hole forming portion 2 which is processed to be opaque to excitation light and has substantially the same size. Micro hole 2 It is a photostimulable phosphor plate with 6 provided at each intersection in the intersection direction.
又、 第 2図 Bは、 交差方向の各交差位置毎に、 ほ ぼ等しい大きさで励起光不透過性に加工された穴形 成部 2 と、 該穴形成部 2 の光透過側に配置された光 透過性封止材 4 と、 前記穴形成部形成基板の光透過 側の面とは反対側の面に配置された封止材 5 と、 前 記光透過性封止材 4 と前記封止材 5 とによって封止 された前記穴形成部 2内に充塡された輝尽螢光体 6 である。  Further, FIG. 2B shows, at each crossing position in the crossing direction, a hole forming part 2 which is processed to be opaque to excitation light and has a substantially equal size, and is arranged on the light transmitting side of the hole forming part 2. The light-transmissive sealing material 4, the sealing material 5 arranged on the surface opposite to the light-transmissive side surface of the hole forming portion forming substrate, the light-transmissive sealing material 4 and A photostimulable phosphor 6 filled in the hole forming portion 2 sealed by a sealing material 5.
被写体に X線を照射されてこれを透過した被写体 パターンの X線エネルギーは、 輝尽螢光体板に規則 的に配列されている微小穴内 2 6 の輝尽螢光体 6 の 各々に分布して蓄積される。 このエネルギー分布パ ターンを有する輝尽螢光体板に対し励起光を走査し- そこにェネルギ一分布パターンと して形成されてい る被写体バタ一ンを電気信号パターンを取り出して その利用に供される。  The X-ray energy of the subject pattern, which is irradiated with X-rays and transmitted through the subject, is distributed to each of the photostimulable phosphors 6 in the micro holes 2 6 that are regularly arranged in the photostimulable phosphor plate. Accumulated. The excitation light beam is scanned on the photostimulable phosphor plate having this energy distribution pattern, and the subject pattern formed as an energy distribution pattern there is taken out as an electric signal pattern and used for its use. It
その電気信号パターンを出力する際に、 輝尽螢光 体板の規則配列された微小穴 2 6をその交差方向の 1 つの方向に沿って励起光が走査される。 その励起 光を照射される輝尽螢光体は励起光不透過性の穴壁 2 の中に入っているから、 散乱することはない。 従 つて、 空間分解能が低下されるのを完全に防止する ことができる。 第 3図にその防止の様子を示す c 第 4図を参照して本発明の輝尽螢光体板の製造方 法を以下に説明する。 こ の製造方法はエ ッ チ ングに よる方法である。 When the electric signal pattern is output, the excitation light is scanned through the regularly arranged micro holes 26 of the photostimulable phosphor plate along one of the intersecting directions. Since the photostimulable phosphor irradiated with the excitation light is contained in the hole wall 2 impermeable to the excitation light, it does not scatter. Therefore, it is possible to completely prevent the spatial resolution from being degraded. Figure 3 shows how this is prevented. C The method for producing the photostimulable phosphor plate of the present invention will be described below with reference to FIG. This manufacturing method is a method by etching.
先ず、 薄いステ ン レス板に微小穴を形成するため の レジス トパターン (第 5図参照) を公知の C A D 技法を用いて製作する。 そのパター ンの穴対応部分 の大きさは微小穴の大き さよ り小さ 目 とする。 こ の レ ジス トパター ンを用いてステ ン レス板 2 0両面に マス ク 2 2 , 2 3 を形成する (第 4図 A参照) 。 2 4 はマス ク 2 2 , 2 3 のマスク穴である。 形成され たマス ク穴 2 4 を介してステ ン レス扳 2 0 へエ ッ チ ング剤を作用させて第 4図 Bに示すよう に微小穴 2 6 を形成する。 2 8 は穴壁である。 その穴壁板面域 2 9 にスク リ ー ン印刷によ つて接着剤 3 0 を塗布す る (第 4図 C ) 。 この接着剤 3 0 ©塗布は、 第 4図 Dに示すよう に、 間に挟まれるステ ン レス板 2 0 z についてはその両面に、 又挟むステ ン レス板 2 0 , , 2 0 3 については、 そのステ ン レス板 2 0 2 を挟む ステ ン レス板面にのみ施される。 第 4図 Dにおいて,G 3 2 はガラス扳である。 接着処理完了後に、 重ね合 わされた 3枚のステ ン レス板 2 0 , 乃至 2 0 3 に形 成されている、 より深 く なつている微小穴 2 6 内に 粉末の輝尽螢光体 6 (BaFEr:Bu2-) を充塡した後 (第 4図 E参照) 、 その上にボリ エステルの保護層 " 3 4 (第 4図 F参照) を形成して輝尽螢光体扳を製 造した (第 5図参照) 。 First, a resist pattern (see Fig. 5) for forming micro holes in a thin stainless plate is manufactured using a known CAD technique. The size of the hole-corresponding part of the pattern should be smaller than the size of the micro holes. Masks 2 2 and 2 3 are formed on both sides of the stainless steel plate 20 using this resist pattern (see Fig. 4A). 2 4 is a mask hole of masks 2 2 and 2 3. An etching agent is applied to the stainless steel support 20 through the formed mask holes 24 to form micro holes 26 as shown in Fig. 4B. 2 8 is a hole wall. The adhesive 30 is applied to the hole wall plate surface area 29 by screen printing (Fig. 4C). As shown in Fig. 4D, this adhesive 30 © is applied to both sides of the stainless steel plate 2 0 z sandwiched between them, and to the stainless steel plates 20 0 ,, 2 0 3 sandwiched between them. , it applied only to the stearyl emissions less plate surface sandwiching the stearyl emissions less plate 2 0 2. In Figure 4D, G 32 is a glass frame. After bonding process is completed, overlapping if I have been three stearyl emissions less plate 2 0, or 2 0 3 has been made form, the deeper Ku powder stimulable尽螢the light in summer and small holes 2 6 are After filling with 6 (BaFEr: Bu 2- ) (see Fig. 4E), a protective layer of polyester "34 (see Fig. 4F) is formed on it to form a photostimulable phosphor coating. Made Made (see Figure 5).
前記微小穴 2 6 の壁面は光学面を有し、 励起光及 び輝尽発光光を効率よ く反射する。 これにより、 微 小穴の壁面を介して励起光は透過せず、 励起光照射 によって輝尽螢光体から放出される輝尽螢光光は効 率よ く 集光する こ とができる (第 3図参照) 。 従つ て、 画像の空間分解能の低下を防止する こ とができ る。 又、 上述のような重ね合わせにより、 励起光照 射で輝尽螢光体から放出される輝尽螢光光量の増大 が図れる。 それによる空間分解能の低下はない。  The wall surface of the minute hole 26 has an optical surface and efficiently reflects excitation light and stimulated emission light. As a result, the excitation light does not pass through the walls of the microholes, and the excitation light emitted from the excitation phosphor by irradiation of the excitation light can be efficiently collected (3rd step). (See figure). Therefore, it is possible to prevent deterioration of the spatial resolution of the image. Further, by the above-mentioned superposition, it is possible to increase the amount of photostimulable light emitted from the photostimulable phosphor by the excitation light irradiation. There is no reduction in spatial resolution.
なお、 前記実施例における薄いステ ン レス板は、 薄い他の金属板若し く はプラ スチ ッ ク板等と しても よい。 薄い金属板あるいはプラ スチ ッ ク板等に多数 の微小穴を形成する方法は、 エ ッチングによる方法: 機械加工による方法など種々あるが、 その方法によ る限定はない。  The thin stainless plate in the above embodiment may be another thin metal plate, a plastic plate, or the like. There are various methods for forming a large number of minute holes in a thin metal plate, a plastic plate, or the like, such as a method by etching: a method by machining, but the method is not limited.
微小穴の形成方法には、 制限はないが、 材料及び 形成手段によって、 形成される微小穴 2 6 は多様な 形をとる (第 6図及び第 7図参照) 。 たとえば厚さ 0. I ranのステ ン レス板に直径 0. 0 8 腿の穴を縦横の ピッチがそれぞれ 0. 1 腿でエ ッチングによって形成 したとする と、 穴の形状は完全にス ト レー トなもの となる こ とはな く 、 エ ッ チ ングの方法たとえば片面 からのみエ ッチングする場合は片方が大き く なり、 両面からエ ッチングする場合は中央がく びれた形状 になったり、 あるいはマス ク の穴の形成の仕方によ つては別の形状にもなる。 あるいは放電加工によつ て穴を形成する ときには比較的ス ト レー トな形状に なるなど、 多様な形状を取り得るが、 形状に無関係 に本発明を実施する こ とは可能である。 微小穴の形 状は特に限定されないが、 しかし、 実際には円形, 楕円状, 正方形, 長方形あるいは多角形が製造上用 いられる (第 6図参照) 。 こ う して形成される微小 穴の壁面がその材料の性質により励起光を透過する ものである場合は励起光を透過しないものを微小穴 の壁面に塗布したり、 蒸着するなどで励起光の透過 を防ぐこ とが必要である。 また、 穴の壁面が光学的 な意味で面精度が出ていないときには樹脂の塗布に よって滑らかにし、 その上に金属など反射率の高い 層を形成する こ とが有効である。 The method of forming the micro holes is not limited, but the micro holes 26 formed can have various shapes depending on the material and the forming means (see FIGS. 6 and 7). For example, if a hole with a diameter of 0.08 thighs is formed on a stainless steel plate with a thickness of 0. I ran by etching with vertical and horizontal pitches of 0.1 thighs each, the shape of the holes is completely straight. However, if the etching is performed from only one side, the other side becomes larger, and if the etching is performed from both sides, the center has a narrowed shape. Or it can be a different shape depending on how the mask holes are formed. Alternatively, when a hole is formed by electric discharge machining, it can have various shapes such as a relatively straight shape, but it is possible to carry out the present invention regardless of the shape. The shape of the micropores is not particularly limited, but in practice, circles, ellipses, squares, rectangles, or polygons are used in manufacturing (see Fig. 6). If the wall surface of the micro hole formed in this way transmits the excitation light due to the property of the material, a material that does not transmit the excitation light may be applied to the wall surface of the micro hole or may be vapor-deposited to generate the excitation light. It is necessary to prevent penetration. Also, when the wall surface of the hole does not have surface accuracy in the optical sense, it is effective to apply resin to make it smooth and to form a highly reflective layer such as metal on it.
また、 微小穴の大きさは特に限定の必要はないが- ある程度の厚さの微小穴に輝尽螢光体を埋め込む技 術的な困難性の故に、 大きさの下限は 0. 0 1 細程度 であり、 また X線画像診断に要求される空間分解能 の点から上限は 0. 4 讓程度である。 輝尽螢光体板の 面に対する微小穴の方向は垂直方向であるが、 完全 に垂直であってもよいが斜めであってもよい。 斜め の微小穴は、 たとえば、 内径が微小穴の径と同じ多 数の毛細管を正方配列して束ね、 あるいは一層ずつ 重ね、 毛細管の間に接着剤を充塡, 硬化後、 斜めに 切断, 研磨, 洗浄する こ とで製作する こ とができる c また、 穴内部の形状はス ト レー ト であっても、 上下 の大きさが異なっていてもよい。 穴を形成する林料 も穴を形成した後、 ある程度の機搣的強度がある も のならなんでもよい。 Also, the size of the microholes is not particularly limited-due to the technical difficulty of embedding the photostimulable phosphor in the microholes of a certain thickness, the lower limit of the size is 0.01 The upper limit is about 0.4 in terms of the spatial resolution required for X-ray image diagnosis. The direction of the minute holes with respect to the surface of the photostimulable phosphor plate is the vertical direction, but it may be completely vertical or oblique. For example, diagonal micro-holes can be formed by arranging a large number of capillaries whose inner diameter is the same as that of the micro-holes in a square array, or by stacking them one by one. It can be manufactured by cutting, polishing, and cleaning. Also, the shape of the inside of the hole may be straight or the size of the top and bottom may be different. Any forest material that forms a hole may have any mechanical strength after forming the hole.
また、 前記実施例においては、 微小穴形成後のス テ ン レス板の片面にガラ ス板を使用する例を示した 力、'、 金属シー ト等を用いる こ とも可能であり、 その ときは、 そのシー トは励起光および輝尽発光光を反 射するものであるこ とが好ま しい。 あるいは、 励起 光は反射するが輝尽発光光は透過する ものであって もよ く 、 その逆の場合も使甩の仕方即ち励起光の照 射方向と輝尽発光光の集光の方向の選択によっては 可能である。 選択ミ ラーの働きを有するカバーは両 面に接着等によつて形成する こ と も効果的である。 力パーの種類は特に限定はないが、 X線の後方散乱 線を防ぐため、 励起光と輝尽発光光は通し、 X線を 吸収する例えば鉛ガラ スを用いる こ とも有効である , あるいは鉛板を貼る こ とも有効である。  Further, in the above-mentioned embodiment, an example in which the glass plate is used on one side of the stainless plate after forming the micro holes is shown. It is also possible to use a force, ', a metal sheet or the like. , It is preferable that the sheet reflects excitation light and stimulated emission light. Alternatively, the excitation light may be reflected but the stimulated emission light may be transmitted, and in the opposite case, the usage method, that is, the direction of excitation light irradiation and the direction of collection of stimulated emission light Yes, depending on your choice. It is also effective to form a cover having a function of a selection mirror on both sides by adhesion or the like. The type of force par is not particularly limited, but in order to prevent X-ray backscattering rays, it is also effective to use, for example, lead glass that passes excitation light and stimulated emission light and absorbs X-rays. It is also effective to stick a board.
各微小穴に埋設される輝尽螢光体と しては、 励起 光の散乱が起きるよう な不透明のものであっても、 励起光あるいは輝尽発光光に対し透明なものであつ てもよ く 、 その組成はどのよう なものであっても適 用可能であり、 限定されないし、 その埋設方法につ いても、 制限な く 、 粒径 5 m以下の輝尽螢光体粉 末を結合剤の溶液に分散させて流し込む方法、 輝尽 螢光体粉末をそのまま微小穴に押し込み、 その後結 合剤を浸み込ませる方法、 リ フ トオフの方法を適用 し、 穴部以外の部分にあとで可溶な層を形成し、 輝 尽螢光体を蒸着等で穴内部を埋め、 その後穴部以外 の輝尽螢光体を除去する方法など種々 の方法を用い る こ とができ る。 The photostimulable phosphor embedded in each microhole may be either opaque so that excitation light is scattered or transparent to excitation light or stimulated emission light. Any composition can be applied, and the composition is not limited, and the burying method is not limited, and the phosphor powder having a particle size of 5 m or less can be used. The powder is dispersed in the binder solution and poured, the phosphor powder is pressed into the microholes as it is, and then the binder is soaked in and the lift-off method is applied. It is possible to use various methods such as a method of forming a soluble layer later on the part, filling the inside of the hole by vapor deposition of the phosphor, and then removing the phosphor other than the hole. it can.
次に第 8図を用いて、 第 2 の実施例である所の隣 り合う穴形成位置を互いに接近させるのに必要な予 め決められた値だけ変位させた規則的配列位置と し た基板の穴形成位置毎に、 ほぼ等しい大き さであり、 且つその内壁面 2が励起光不透過性である微小穴 2 6 を設け、 その各微小穴 2 6 内に輝尽螢光体を埋設 ϊ 又、 少な く と も隣り合う穴形成位置を予め決めら れた値だけ変位させた規則的配列位置と した基板の 穴形成位置毎に、 ほぼ等しい大きさで、 且つ内壁面 2 が励起光不透過性に加工された微小穴 2 6 と、 該 微小穴 2 6形成基板の光透過側の面に配置された光 透過性封止材 4 と .、 前記微小穴 2 6形成基板の光透 過側の面とは反対側の面に配置された封止材 5 と、 前記該光透過性封止材 4 と前記封止材 ( 5 ) とによ つて封止された前記微小穴 2 S 内に充塡された輝尽 螢光体 6 とより成る輝尽螢光体を説明する。  Next, referring to FIG. 8, a substrate having a regular array position, which is the second embodiment, is displaced by a predetermined value necessary to bring the adjacent hole forming positions closer to each other. Microholes 26 of approximately the same size and whose inner wall surface 2 are opaque to excitation light are provided at each hole formation position, and a photostimulable phosphor is embedded in each microhole 26. In addition, at least for each hole forming position of the substrate, which is a regular array position where the adjacent hole forming positions are displaced by a predetermined value, the size is almost equal and the inner wall surface 2 has no excitation light. A micro hole 26 processed to be transparent, a light-transmissive encapsulant 4 disposed on the light transmission side surface of the micro hole 26 forming substrate, and a light transmissive material of the micro hole 26 forming substrate. Inside the micro hole 2 S sealed by the sealing material 5 arranged on the surface opposite to the surface on the side, and the light-transmissive sealing material 4 and the sealing material (5). The photostimulable phosphor 6 and the photostimulable phosphor 6 will be described.
第 2 ©実施例の輝尽螢光体板の微小穴は、 第 8図 に示すように、 最密充塡配列される。 The micro holes in the photostimulable phosphor plate of Example 2 © are shown in Fig. 8. As shown in FIG.
即ち、 微小穴 2 6 は、 互いに接近させて形成され ているから、 輝尽螢光体板に埋設されている輝尽螢 光体板の量が増大され、 そこに蓄積されるエネルギ 一量の低下を防ぐのに役立つ。  That is, since the micro holes 26 are formed close to each other, the amount of the photostimulable phosphor plate embedded in the photostimulable phosphor plate is increased, and the amount of energy stored therein is increased. Helps prevent decline.
この第 2の実施例の側断面図は、 第 2図の通りで ある。  A side sectional view of this second embodiment is as shown in FIG.
第 1 の実施例同様その励起光を照射される輝尽螢 光体は励起光不透過性の内壁面 2 の中に入っている から、 散乱することはない。 従って、 空間分解能が 低下されるのを完全に防止することができる。  Since the photostimulable phosphor irradiated with the excitation light is contained in the inner wall surface 2 which is impermeable to the excitation light as in the first embodiment, it is not scattered. Therefore, it is possible to completely prevent the spatial resolution from being lowered.
この輝尽螢光体板の製造方法は、 第 1 の実施例と 同様であり、 第 8図のようなレジス トパターンを用 いれば良い。  The manufacturing method of this photostimulable phosphor plate is the same as that of the first embodiment, and the resist pattern as shown in FIG. 8 may be used.
次に、 第 3 の実施例を第 9図に基づいて説明する, 第 9図において、 輝尽螢光体板 I 0 は複数枚のス テンレスシー ト 1 2により構成されている。 そして. 各ステ ン レス シー ト 1 2 は厚さ 0. 1讓、 大きさが 3 8 0讓角であり、 中央部のエリ ア ( 3 5 6 mra角) 1 4内には複数の微小穴 1 6が格子状に配列されてい る。 この微小穴 1 6を形成するに際しては、 1画素 の大きさを決定することとしている。 例えば、 乳癌 を診断する目的の輝尽螢光体板あるいはシー トの場 合は 1画素の大きさをほぼ 5 0 m角とする。 胸部 X線画像の場合は 8 7. 5 m角ないし 1 7 5 mと いつた半端な大き さはディ ジタル情報を扱う ために 生ずる ものであり、 本質的なものではないが、 ほぼ その程度の空間分解能があれば診断目的を達する。 したがって、 対象とする診断部位によって画素の大 き さを変える必要があり、 本発明においては多種類 の画素の大きさの輝尽螢光体板あるいはシー トを用 意してもよい。 実現可能な最小の画素の大き さは実 現可能な励起光ビーム径で決められ、 現状では 2 0 角程度である。 最大の画素の大きさは、 実現の 可能性の点では限定がないが、 0. 4 讓角以上の大き さの画素ではほとんどの場合診断目的を達しない。 したがって、 本発明における 1画素の大きさの範囲 は 2 0 m角ないし 0. 4 mm角であり、 画素の形状は 正方形だけではな く .、 長方形であってもよい。 Next, a third embodiment will be described based on FIG. 9. In FIG. 9, the photostimulable phosphor plate I 0 is composed of a plurality of stainless sheets 12. And each stainless sheet 12 has a thickness of 0.1 and a size of 380, and there are several micro holes in the central area (3 5 6 mra angle) 14. 1 6 are arranged in a grid. When forming the minute holes 16, the size of one pixel is decided. For example, in the case of a photostimulable phosphor plate or sheet for the purpose of diagnosing breast cancer, the size of one pixel is approximately 50 m square. 87.5 m square or 17.5 m for chest radiographs The unreasonable size is generated because it handles digital information and is not essential, but if it has a spatial resolution of about that level, it achieves the diagnostic purpose. Therefore, it is necessary to change the size of the pixel depending on the target diagnosis site, and in the present invention, it is possible to use various types of pixel-sized photostimulable phosphor plates or sheets. The smallest feasible pixel size is determined by the achievable pumping light beam diameter, and is currently about 20 square. The maximum pixel size is not limited in terms of feasibility, but in most cases, the pixel size larger than 0.4 is not sufficient for the diagnostic purpose. Therefore, the range of the size of one pixel in the present invention is 20 m square to 0.4 mm square, and the shape of the pixel may be not only square but also rectangular.
1画素の大き さが决定したら、 この決定に徒って- 4枚のステ ン レス シ一 ト 1 2 に 1 画素の大きさよ り 小さな直径の円形あるいは正方形の微小穴 1 6 を形 成する。 この場合、 縦 · 横のピ ン チを 1 Ί 5 u m -、 起点と終点の微小穴 1 6 の位置ずれ Δを 5 2. 5 m とし、 各微小穴 1 6 の配列が励起光走査の副走査方 向 (縦方向) ではその方向に一致し、 主走査方向 (横方向) では、 画素の副走査方向の大きさである 読取り ラ イ ンの ピ ッ チを b、 励起光走査の走查効率 を ?? と したとき、 A = b — b ( I - V ) の関係を有 する直線と一致するよ う に形成する。 なお、 走査効 率?? は読取り ライ ン長を (:、 励起光の実走查長を s と したとき ?7 = s / c で表される。 Once the size of one pixel has been determined, this decision is followed-by forming four circular holes or square micro holes 16 with a diameter smaller than the size of one pixel on four stainless sheets 12. In this case, the vertical and horizontal pitches are 1 Ί 5 um-, the positional deviation Δ of the microholes 16 at the start and end points is 52.5 m, and the array of each microhole 16 is the sub-axis of the excitation light scan. In the scanning direction (longitudinal direction), it coincides with that direction, and in the main scanning direction (horizontal direction), the read line pitch, which is the size of the pixel in the sub-scanning direction, is set to b, and the scanning of excitation light scanning is performed. Efficiency? ? Then, it is formed so as to coincide with a straight line having the relation of A = b — b (I-V). Note that the scanning effect rate? ? Is expressed as (7: s / c where the reading line length is (:, the actual scanning length of the excitation light is s.
ステ ン レス シー ト 1 2 に微小穴 1 6 を形成する処 理としては、 エ ッチング処理が採用されており、 熱 硬化型エポキ シ樹脂を有機溶剤に溶解し、 グラファ ィ ト粉末を分散させた溶液を、 ス ク リ ー ン印刷によ つて微小穴部を除いた両面に塗布し、 そ G 後これら を乾燥させる とステ ン レス シー ト 1 2 に微小穴 1 6 が形成される。 微小穴 ;! 6 が形成されたステ ン レス シー ト 1 2 と 1 面だけに樹脂が塗布されたステ ン レ スシー ト 1 2 を重ね、 さ らに微小穴 1 6 が形成され ていない厚さ 0. 2卿のステ ン レス シー トを片面に置 き、 重石を乗せて 1 8 0 てで硬化し、 接着する。 さ らに各微小穴 1 6 の壁面に 、 励起光を反射させる ための反射膜を固着する c Etching is used to form the micro holes 16 in the stainless steel sheet 12, and the thermosetting epoxy resin is dissolved in an organic solvent to disperse the graphite powder. When the solution is applied to both sides excluding the minute holes by screen printing and then G is dried, minute holes 16 are formed in the stainless sheet 12. Micro holes ;! The stainless sheet 12 with 6 formed on it and the stainless sheet 12 coated with resin only on one surface are overlapped, and the thickness 0.2 without micro holes 16 is further Place the stainless steel sheet on one side, put a weight on it and set it at 180 and cure it. In addition, a reflective film for reflecting the excitation light is fixed to the wall of each microhole 16 c
一方、 結合剂であるェポキ ン樹脂を舍む有機溶剤 溶液に粒径が 5 m以下の Ba C l B r : Eu からなる螢光 体粉末を分散させ、 減圧下で上記シー トの上に流し. 穴中に埋め込み、 乾燥する。 こ の操作を 3 回繰り返 し、 穴の表面まで輝尽螢光体が埋め込まれたことを 確認してから、 表面の輝尽螢光体とエポキ シ樹脂の 混合物を拭い取り、 1 8 0 てで硬化し、 さ らに、 表 面に保護層と して透明のポリ エステルシー トを接着 する。  On the other hand, a phosphor powder consisting of BaClBr: Eu with a particle size of 5 m or less is dispersed in an organic solvent solution containing a binding agent, epoquine resin, and poured onto the above sheet under reduced pressure. Embed in the hole and dry. Repeat this operation 3 times to confirm that the photostimulable phosphor has been embedded up to the surface of the hole, and then wipe off the mixture of photostimulable phosphor and epoxy resin on the surface. It is then cured, and then a transparent polyester sheet is adhered to the surface as a protective layer.
上述の如く して製造された輝尽螢光体板 1 0 を X ステージに固定し、 波長 7 8 0舰の半導体レーザ- レンズ径, ガルバノ ミ ラーなどからなり、 走査効率 が 7 0 %のレーザ走査系を用いて、 レーザビーム系 が走査方向で 1 Ί 0 m 主走査方向で 4 0 O レーザを輝尽螢光体板 1 0上に照射したと こ ろ、 励 起光が微小穴 1 6 内の輝尽螢光体を透過し、 他の微 小穴 1 6 肉に散乱するのが防止される こ とが確認さ れた。 即ち、 輝尽螢光体扳 1 0 の表面に X線を照射 し、 パルス レーザによる励起の結果生じる輝尽発光 光は集光ミ ラ一とグラスフ ァ イ バーア レイ で集光し フォ ト マルで受光し、 その信号を A / D変換した後 ディ ジクル信号処理する。 そのファ イ バ一ア レイ と は別のファ イ バ一ア レイ によって微小穴 1 6 の壁面 からの励起光の反射光を集光してフ トダイ ォー !· によって受光し.、 この受光量から励起光が壁面から 反射されている こ とが確 ISされている e また、 この 場合標準の線量の X線を照射し、 各画素の標準の出 力をメ モ リ に入力しておき、 輝尽発光光量の経時変 化の補正、 各画素間の経時等のばらつきなどの補正0 を行なって正常な画像を得る こ とができた。 The photostimulable phosphor plate 10 produced as described above is The laser beam system is fixed to the stage and consists of a semiconductor laser with a wavelength of 780-lens diameter, a galvanometer, etc., and a laser beam system with a scanning efficiency of 70% is used. When the 40 O laser was irradiated onto the photostimulable phosphor plate 10 in the scanning direction, the excitation light was transmitted through the photostimulable phosphors in the micro holes 16 and the other micro holes 16 It was confirmed that the particles were prevented from being scattered. That is, the surface of the photostimulable phosphor substrate 10 is irradiated with X-rays, and the photostimulable light emitted as a result of the excitation by the pulsed laser is condensed by the converging mirror and the glass fiber array and is in the normal state. The light is received, the signal is A / D converted, and then the digital signal processing is performed. A fiber array other than the fiber array collects the reflected light of the excitation light from the wall surface of the micro hole 16 and collects it from the fiber array! · The received light. The e excitation light from the light receiving quantity is this Toga確IS is reflected from the wall surface also in this case is irradiated with X-ray of a standard dose, the standard output of each pixel It was possible to obtain a normal image by inputting it in the memory and correcting the change of the stimulated emission light amount over time and the correction 0 of the variation over time between each pixel.
本発明ては輝尽螢光体扳ぁるいはシ一 ト上に励起 光ビームを走査する とき、 励起光ビームの螢光体板 あるいはノ一 ト上での大き さは、 副走查方向は 1 画 素の副走査方向の長さより小さい必要があり、 その: 程度はゥ ォ ブルの程度から決め られる。 主走査方向 の長さは 1 画素の副走查方向長さより小さいこ とが 望ま しい。 励起光は連続光であってもパルス光であ つてもよいが、 励起光ビームの主走査方向の長さは できるだけ小さい方がよい。 また、 副走査方向で隣 接する画素の上を励起光ビームが通過しないよう に 走查する必要がある こ とはいう までもない。 これら のこ とに注意する こ とによつて励起光散乱の影響を 全く 受けずに所定の空間分解能の画像を読み取る こ とができる。 In the present invention, when the excitation light beam is scanned on the photoluminescent substrate or sheet, the size of the excitation light beam on the fluorescence plate or the node is It must be smaller than the length of one pixel in the sub-scanning direction. The degree is determined from the degree of wobble. Main scanning direction It is desirable that the length of each pixel be smaller than the length of one pixel in the secondary scanning direction. The excitation light may be continuous light or pulsed light, but the length of the excitation light beam in the main scanning direction is preferably as small as possible. Needless to say, it is necessary to scan so that the excitation light beam does not pass over the pixel that is adjacent in the sub-scanning direction. By paying attention to these points, it is possible to read an image with a predetermined spatial resolution without being affected by excitation light scattering.
励起光走査系および集光受光系を固定し、 輝尽螢 光体板あるいはシー トを移動させる場合でもその逆 の場合であっても、 輝尽螢光体板あるいはシー ト と 副走査方向との角度は励起光走査の効率と 1画素の 大きさに関係して一義的に決定される。  Whether the excitation light scanning system and the condensing light receiving system are fixed and the photostimulable phosphor plate or sheet is moved or vice versa, the photostimulable phosphor plate or sheet and the sub-scanning direction The angle of is uniquely determined in relation to the excitation light scanning efficiency and the size of one pixel.
以下、 第 4 の実施例を説明する。  The fourth embodiment will be described below.
第 1 Q図 、 輝尽螢光体の読取装置である。 X線 エネルギーを用いて、 被写体の潜像をエネルギーを 用いて、 被写体の潜像をエネルギー分布パターンと して輝尽螢光板 1 0 5 に形成し、 その潜像を、 励起 光を用いて読み取る ものである。  Figure 1Q is a photostimulable phosphor reader. The latent image of the subject is formed by using X-ray energy and the latent image of the subject is formed as an energy distribution pattern on the photostimulable fluorescent plate 105 by using energy, and the latent image is read by using excitation light. It is a thing.
第 1 0図に示す様に、 励起光光源 1 0 1 から レー ザ一ビ一厶はガルバノ ミ ラ一又は、 ポリ ゴン ミ ラー から成るスキャナー 1 0 2 によって走査される。 そ の走査される レーザービームは、 ί Θ レンズ等のビ ーム形状補正の為の光学部品 1 0 3及び反射ミ ラ一 1 0 4等を介して、 輝尽螢光体 1 0 5 が走査される c 前記レーザビーム径のレーザビームで走查される こ とによって、 輝尽螢光板 1 0 5 から放出される輝 尽螢光光は、 フ ァ イ バ一ア レイ等 1 0 Ί の集光体に よって集光される。 集光された光は、 フ ァ イ バーァ レイ等 1 0 7 からの励起光は通さず、 輝尽発光光だ けを通すフ ィ ルタを介して光電子管等の光電変換器 1 0 8 において受光量は電気信号に変換され、 増幅 器 1 0 9 によつて増幅された後、 A / D変換器 1 1 0 によってディ ジタル信号に交換される。 ディ ジタ ル信号はフ レームメ モ リ 1 1 1 に一旦記憶され、 あ るいはフ レームメ モ リ を通さずに光ディ スクメ モ リ 1 1 2 に記憶される ¾ この後、 任意のときに画像処 理部 1 1 3 で階調処理等の処理が行われ、 C R T等 の画像表示部 1 1 4 に X線画像と して表示するか、 あるいは、 フ ィ ルム書き込み装置で X線フ ィ ルムに 直接書き込み、 現像して X線撮影像を得る こ とがで きる ものである。 As shown in FIG. 10, the laser beam is scanned from the excitation light source 1 0 1 by the scanner 1 0 2 consisting of a galvanometer mirror or a polygon mirror. The scanned laser beam is composed of optical components such as an Θ lens for beam shape correction and a reflection mirror. The photostimulable phosphor 1 0 5 is scanned through 10 4 etc. c The photostimulable light emitted from the photostimulable fluorescent plate 1 0 5 by being scanned with the laser beam having the above laser beam diameter. Fluorescent light is collected by a condenser of 10 Ί such as a fiber array. The condensed light does not pass the excitation light from the fiber array, etc. 107, but is received by the photoelectric converter, such as a photoelectron tube, through a filter that allows only stimulated emission light to pass. The quantity is converted into an electrical signal, amplified by an amplifier 1109 and then exchanged into a digital signal by an A / D converter 1109. Di Sita Le signal temporarily stored in the off Remume mode Li 1 1 1, Oh Rui after ¾ This stored without passing through the full Remume mode Li to the optical de-shrugging mode Li 1 1 2, the image processing at any time Processing such as gradation processing is performed in the processing unit 1 1 3 and displayed as an X-ray image on the image display unit 1 1 4 such as a CRT, or the X-ray film is displayed in a film writing device. It can be directly written and developed to obtain an X-ray image.
本実施例は、 前述の第 1 乃至第 3 の実施例の輝尽 螢光体を読み取る際のものである。  This example is for reading the photostimulable phosphors of the first to third examples.
輝尽螢光体板表面における レーザービ一ム径は副 走査方向 (輝尽螢光体の移動する方向) における レ 一ザ一ビーム径は副走査方向で Ϊ 7 0 m , 主走査 方向で 4 0 〃 mとする。 その レ一 一ビーム径の大 き さは一般には、 副走查方向は 1 画素の副走查方向 の長さより小さいこ とが望ま しい。 The laser beam diameter on the surface of the photostimulable phosphor plate is the sub-scanning direction (the moving direction of the photostimulable phosphor) and the laser beam diameter is 70 m in the sub-scanning direction and 40 in the main scanning direction. 〃 m The size of the laser beam is generally larger than that of the sub-scanning direction of 1 pixel. It is desirable that the length is less than.
前記レーザービームで走査される とする と、 こ の 集光される標準的な 1 画素を 1 7 6 m角とし、 こ の 1 画素内には 1 6個の穴 (第 1 1 図の I 参照) が 存在する。  When the laser beam is used for scanning, one standard pixel focused on this is set to be 176 m square, and there are 16 holes in each pixel (see I in Fig. 11-1). ) Exists.
仮に、 1 画素を 1 3 2 / m角とする場合は、 1画 素内には、 9個の穴 (第 i 1 図の E参照) が存在す る。 この時は、 副走査方向のレーザービーム径は 1 2 δ mと "5 る。  If one pixel is to be 1 3 2 / m square, there are 9 holes (see E in Fig. I 1) in one pixel. At this time, the laser beam diameter in the sub-scanning direction is 1 2 δ m, "5.
更に仮に、 1画素を 8 8 m角とする場合は、 1 画素内には、 4個の穴 (第 1 1図の ΠΙ参照) が存在 十る の時は、 副走查方向のレーザ一ビーム径 Further, assuming that one pixel is an 88 m square, if there are four holes (see ΠΙ in Fig. 11) in one pixel, one laser beam in the sub-scanning direction is used. Diameter
8 3 〃 mとする。 8 3 〃 m
1 画素を 4 4 m角 とする場合は、 1 画素内には 1 個の穴 (第 1 1 図 © I 参照) が存在し、 副走査方 向のレーザービーム径を 3 9 m . 主走査方向は 2 0 〃 mとする。  If one pixel is 44 m square, there is one hole (see Fig. 1 1 © I) in each pixel, and the laser beam diameter in the sub-scanning direction is 39 m. Main scanning direction Is set to 20 〃 m.
1画素分の穴の数は、 1 乃至 4 0 0 とする と本発 明の目的は達成される。  The purpose of the present invention is achieved by setting the number of holes for one pixel to be 1 to 400.
この様に、 1 画素に整数個の微小穴を用いる理由 は、 も しある微小穴の一部分を 2 つの画素が共有す るなら、 その分だけ空間分解能が低下するからであ る。  In this way, the reason for using an integral number of small holes in one pixel is that if two pixels share a part of a certain small hole, the spatial resolution will decrease accordingly.
更に又、 複数穴を 1 画素と した場合を考える。 も し仮に、 読み取り時に、 輝尽螢光体に対して走査線 がずれた場合を想定する。 即ち、 ある主走査線上に 位置する穴は、 ある直線上に配置されるのであるが、 その線とは、 励起光が若干ずれた場合を考える。 あ るひとつの穴は、 励起光がその穴の全面に照射され る とは限らない。 即ち、 ある穴は、 穴の一部しか励 起光が照射されないこ とになる。 しかし、 複数個の 穴て 1 画素を形成する場合は、 1 つの穴で 1 画素を 形成する場合に比べて、 相対的に照射されない割合 が小さいこ とは明確である。 従って、 複数個の穴を 1 画素と した場合は、 読み取り精度が向上し、 読み 取り装置の信頼性が高く なる効果も生じるのである。 Furthermore, consider the case where multiple holes are set to one pixel. If, for example, the scanning line for the photostimulable phosphor is Assume that there is a deviation. That is, the holes located on a certain main scanning line are arranged on a certain straight line, but consider the case where the excitation light is slightly deviated from that line. Excitation light does not necessarily illuminate the entire surface of one hole. That is, a certain hole is irradiated with the exciting light only in a part of the hole. However, it is clear that the ratio of non-irradiation is relatively small when one pixel is formed by multiple holes compared to when one pixel is formed by one hole. Therefore, if a plurality of holes are set to one pixel, the reading accuracy will be improved and the reliability of the reading device will be increased.
以下、 第 1 2図, 第 1 3図, 第 1 4図を使用して、 第 5 の実施例を説明する。  The fifth embodiment will be described below with reference to FIGS. 12, 13, and 14.
前記 Ο実施例では、 輝尽螢光体板の走査では、 第 1 0図 様に集光を行う。 本実施例は、 第 1 0図中 のフ ., イ ノ、一ア レ イ とは別 Gっ ァ ィ パ— ア レ イ ある いはプラスチ 'ノ ク集光体によつて輝尽螢光体の穴部 を形成していない壁面からの励起光の反射波を集光 し、 その光と、 、 輝尽螢光体からの光とて同期をとC り、 輝尽螢光体からの光を集光する ものである。 前 記壁面から Ο励起光&反射は、 輝尽螢光体板の穴部 を形成する以外の表面を反射するよう に構成された 第 1 乃至第 3 の実施例の輝尽螢光体板を用いる こ と で実現される。 In the above-mentioned Example, the light is condensed as shown in FIG. 10 in the scanning of the photostimulable phosphor plate. In this embodiment, a G-beam array or a plastic fiber concentrator separate from the F,., And I-arrays in FIG. The reflected wave of the excitation light from the wall surface that does not form the hole of the body is condensed, and the light and the light from the photostimulable phosphor are synchronized, and the light from the photostimulable phosphor is emitted. It collects light. The excitation light & reflection from the wall surface is the photostimulable phosphor plate of the first to third embodiments configured so as to reflect the surface other than forming the hole of the photostimulable phosphor plate. It is realized by using it.
5 第 1 2図に前記励起光を集光する反射励起光様集 光導光路 1 1 3を設けたものを図示する。 尚、 第 1 0図と同じ符号のものは、 第 1 0 と同様のものとす る。 1 0 7 1 は、 励起光吸収フ ィ ルタである。 1 0 7 は輝尽螢光を集光する ものであるので、 励起光の 反射波を吸収しなければならない。 励起光吸収フ ィ ルタ 1 0 *7 1 は 6 0 0 〜 9 0 0 n m (励起光の波長) の光を吸収し、 4 0 0 n m (輝尽螢光の波長) の光 を透過する ものである。 1 1 5 は集光ミ ラ一であり、 励起光及び輝尽螢光が散乱しない様に集光する もの。 2 0 7 は反射励起光用集光導路。 2 0 7 1 は、 輝尽 螢光吸収フ ィ ルタで、 4 0 0 n m近傍 (輝尽螢光の 波長) の光を吸収し、 6 0 0 〜 9 0 0 n mの光 (励 起光の波長) を通過する もの。 但し、 2 0 8 は光セ ンサである。 この光セ ンサは光電子増倍管あるいは フォ トダイ オー ドの様な半導体セ ンサである。 前記 輝尽螢光吸収フ ィ ルタ 2 0 7 1 は適当な光電子増倍 管の種類の選択で省力が可能である。 第 1 2図は、 サンプリ ングのタイ ミ ングを決定する画路である。 第 1 2図中、 1 0 8 は光電変換器であり、 2 0 8 は 光セ ンサであり、 第 1 1 図のものと同一である。 光 電変換器 1 0 8 , 光セ ンサ 2 0 8 にはそれぞれ、 フ ア イ バーア レイ 1 0 7 , 反射励起光用集光導光路 2 0 7 を通じて、 輝尽螢光, 励起光が入力される。 前 記光電変換器 1 0 8から入力された輝尽螢光は、 電 気信号に変換されア ンプ 1 0 9 を通じて、 A/D変 換器 1 1 0 に入力される。 一方、 光セ ンサ 2 0 8 で 電気信号に変化された励起光は比較回路 2 0 9 で基 準電圧と比較される。 第 1 4図は、 第 1 3図中の回 路が出力する信号のタ イ ムチャー トである。 第 1 3 図に示す通り、 光セ ンサからの電気信号が基準電圧 以下の時に、 比較回路 2 0 9 は信号を出力する。 光 セ ンサ 2 0 8 は、 励起光を受光する ものである。 仮 に、 励起光が第 1 1 図の線 L上を走査したとする。 この時、 第 1 1 図では穴 (輝尽螢光が埋設されてい る) 以外の所の表面は、 励起光を強く 反射する。 輝 尽螢光体が埋設されている穴部では、 励起光は吸収 されて、 輝尽螢光を発するのであるが、 若干の反射 がある。 従って、 その光セ ンサ 2 0 8 で受光される 励起光から得られる電気信号 、 第 1 4 図の 2 0 8 の様になる。 電圧が高いとこ ろは、 反射部からの励 起光て、 低いとこ ろは輝尽螢光体が埋設された穴部 からの反射である。 比較画路 2 0 9 で基準電圧で比 較するのは穴部と反射部を見分ける為である。 5 Figure 12 shows the reflected excitation light pattern that collects the excitation light. The thing provided with the light guide path 113 is shown in figure. The same reference numerals as those in FIG. 10 are the same as those in FIG. 1 0 7 1 is an excitation light absorption filter. Since 10 7 collects photostimulable light, it must absorb the reflected wave of the excitation light. Excitation light absorption filter 10 * 71 absorbs light of 600 to 900 nm (wavelength of excitation light) and transmits light of 400 nm (wavelength of photostimulable light). Is. 1 15 is a condenser mirror that collects excitation light and photostimulable light so as not to scatter. 20 7 is a collection optical path for reflected excitation light. 2 0 7 1 is a photostimulable absorption filter, which absorbs light in the vicinity of 400 nm (wavelength of photostimulable light) and absorbs light of 600 to 900 nm (excitation light). Wavelengths). However, 208 is an optical sensor. This photosensor is a semiconductor sensor such as a photomultiplier tube or photo diode. The above photostimulable fluorescent absorption filter 2071 can be labor-saving by selecting an appropriate type of photomultiplier tube. Figure 12 is a picture of the timing of the sampling. In FIG. 12, reference numeral 108 is a photoelectric converter and reference numeral 208 is an optical sensor, which are the same as those in FIG. Photostimulation and excitation light are input to the photoelectric converter 1 0 8 and the optical sensor 2 0 8 through the fiber array 1 0 7 and the reflection excitation light condensing light guide 2 0 7, respectively. .. The photostimulable fluorescent light input from the photoelectric converter 108 described above is converted into an electric signal and is converted into an A / D signal through the amplifier 109. Input to converter 1 1 0. On the other hand, the pumping light converted into an electric signal by the optical sensor 208 is compared with the reference voltage by the comparison circuit 209. Figure 14 shows the signal timing output from the circuit in Figure 13. As shown in Fig. 13, the comparator circuit 209 outputs a signal when the electrical signal from the optical sensor is below the reference voltage. The optical sensor 208 receives the excitation light. Suppose that the excitation light scans line L in Fig. 11 1. At this time, in Fig. 11 1, the surface other than the holes (where the photostimulable fluorescent light is buried) strongly reflects the excitation light. At the hole where the photoluminescent material is embedded, the excitation light is absorbed and emits photoluminescent light, but there is some reflection. Therefore, the electric signal obtained from the excitation light received by the optical sensor 208 is as shown in 208 in Fig. 14 below. When the voltage is high, it is the excitation light from the reflection part, and when it is low, it is the reflection from the hole where the photostimulable phosphor is embedded. The reason for comparing the reference voltage in the comparative image path 209 is to distinguish the hole portion and the reflection portion.
比較回路 2 0 9 の出力はフ リ ':'プフロ ッ プ 2 1 0 に入力され、 前記フ リ ップフ口 ップ 2 1 0 はそれ自 身に入力されているク ロ ッ ク と同期した信号を出力 する。  The output of the comparator circuit 209 is input to the fly ':' flop loop 210, and the flip flop 210 is a signal synchronized with the clock input to itself. Is output.
前記フ リ ソ プフ ロ ソ プ 2 1 0 の出力はア ン ドゲ一 ト 2 1 1 でク ロ ッ ク とア ドが取られ、 Αノ D変換器 1 1 0 に動作ク ロ ッ ク と して入力される。 即ち、 励 起光の電気信号 (光センサ 2 0 8 の出力) が基準電 圧より低い時に、 A / D変換器 1 1 0が動作し輝尽 螢光の電気信号 (ア ンプ 1 0 9 の出力) がディ ジタ ル変換される。 前記ディ ジタル変換された値は、 加 算器 2 1 7 によって、 ア ン ドゲー ト 2 1 1 の出力が オンの間、 加算され、 フ リ ップフロ ップ 2 1 8 (こ のフ リ ップフロ ップは複数ビソ ト分備えられている 力 図面では省略した) に加箕値が格納される。 The output of the above-mentioned frisotop flosc 210 is clocked and added at the address 211, and the operation clock is output to the α-D converter 1 110. Is entered. That is, encouragement When the electrical signal of the light (the output of the optical sensor 208) is lower than the reference voltage, the A / D converter 110 operates and the electrical signal of the fluorescent emission (the output of the amplifier 109) is generated. Digitally converted. The digitally converted value is added by an adder 2 17 while the output of the analog gate 2 11 is on, and a flip-flop 2 1 8 (this flip-flop is added). Is stored in multiple drawings and is omitted in the drawing).
前記加算器 2 1 8 で加算が行われている間、 ア ン ドゲー ト 2 1 1 の出力はカウ ンタ 2 1 4 に入力され, ク ロ ッ ク数がカウ ン ト される。 フ リ ップフロ ップ 2 1 0 の出力がオフになった時に、 前記カ ウ ンタはク リ アされる と共に、 フ リ ソ ブフロ ップ 2 1 5 にその 値が格納される。  While the adder 218 is performing the addition, the output of the aggregate 211 is input to the counter 216 and the number of clocks is counted. When the output of flip-flop 210 is turned off, the counter is cleared and its value is stored in flip-flop 211.
最後に、 割算器 2 1 9 力";、 フ リ ップフ ロ ップ 2 1 Finally, the divider 2 1 9 force ";, the flip-flop 2 1
8 の A / D変換器の出力の和を、 フ リ ソプフロ ノブ 2 1 5 に格納された力 ゥ ンタの値で割つた値をメ モ リ 1 1 1 へ出力する。 即ち、 励起光を受光する こ と により、 輝尽螢光体が埋設されている穴を前記励起 光が通過する間の輝尽螢光をサンプリ ングしている 実施例では A / D変換器の出力を加算し、 その平 均を求めたがそれに限られる ものでは無い。 単に、 加算値を求めても良いし、 積分しても良い。 その時 の加算のタイ ミ ングゃ積分が行われる時間を励起光 を受光する こ とにより、 前記と同様にタ イ ミ ングを o 5 取れば良い。 The sum of the outputs of the 8 A / D converters is divided by the value of the power counter stored in the flyback flow knob 2 15 and the value is output to the memory 1 11 1. That is, by receiving the excitation light, the excitation light is sampled while the excitation light is passing through the hole in which the excitation light body is embedded. The outputs were added and the average was calculated, but the present invention is not limited to this. The added value may be simply obtained or integrated. By receiving the excitation light at the time when the addition timing or integration is performed at that time, the timing can be changed as described above. o 5 should be taken.
〔発明の効果〕 〔The invention's effect〕
以上述べた様に、 本発明によれば、 励起光不透過 性の微小領域を形成し、 その微小領域内に輝尽螢光 体を埋設した構造の輝尽螢光体板により、 又、 その 輝尽螢光体を上記の構成で読み取る こ とにより、 空 間分解能の悪化を完全に防止する こ とが可能となる 0  As described above, according to the present invention, the excitation light opaque microscopic region is formed, and the photostimulable phosphor plate having a structure in which the photostimulable phosphor is embedded in the microscopic region is also provided. By reading the photostimulable phosphor with the above configuration, it is possible to completely prevent the deterioration of the spatial resolution.

Claims

請 求 の 範 囲 The scope of the claims
1. ほぼ等しい大きさで励起光不透過性に加工され た穴形成部 ( 2 ) 内に輝尽螢光体 ( 6 ) を埋設した 微小穴 ( 2 6 ) を交差方向の各交差位置に設けた輝 尽螢光体板。  1. Micro holes (2 6) in which photostimulable phosphors (6) are embedded in hole forming parts (2) of approximately the same size and processed to be opaque to excitation light are provided at each crossing position in the crossing direction. A bright phosphor plate.
2. 前記輝尽螢光体が励起光散乱性であるこ とを特 徴とする請求項 1記載の輝尽螢光体板。  2. The photostimulable phosphor plate according to claim 1, wherein the photostimulable phosphor has excitation light scattering properties.
3. 前記穴形成部 ( 2 ) の壁面が励起光及び輝尽螢 光光に対し反射性を有することを特徴とする請求項 1記載の輝尽螢光体板。  3. The photostimulable phosphor plate according to claim 1, wherein a wall surface of the hole forming part (2) is reflective to excitation light and photostimulable light.
4. 励起光走査側の、 微小穴以外の板表面が励起光 に対し反射性を呈することを特徴とする請求項 1記 載の輝尽螢光体板。  4. The photostimulable phosphor plate according to claim 1, wherein the plate surface other than the minute holes on the excitation light scanning side exhibits reflectivity for the excitation light.
5. 交差方向の各交差位置毎に、 ほぼ等しい大きさ で励起光不透過性に加工された穴形成部 ( 2 ) と、 該穴形成図 ( 2 ) の光通過側に配置された光透過 性封止剤 ( 4 ) と、  5. At each crossing position in the crossing direction, a hole forming part (2) of approximately the same size is processed to be opaque to excitation light, and a light transmitting part arranged on the light passage side of the hole forming diagram (2). Sealing compound (4),
前記穴形成部 ( 2 ) 形成基板の光透過側の面とは 反対側の面に配置された封止材 ( 5 ) と、  A sealing material (5) arranged on the surface opposite to the surface on the light transmission side of the hole forming part (2) forming substrate;
前記光透過性封止材 ( 4 ) と前記封止材 ( 5 ) と によって封止された前記穴形成部 ( 2 ) 内に充塡さ れた輝尽螢光体 ( 6 ) とより成る輝尽螢光体板。 A luminescent material composed of the light-transmissive encapsulant (4) and a photostimulable phosphor (6) filled in the hole forming part (2) encapsulated by the encapsulant (5). Exciting plate.
6. 前記輝尽螢光板 ( 6 ) は励起光散乱性であるこ とを特徴とする請求項 5記載の輝尽螢光体板。 6. The photostimulable phosphor plate according to claim 5, wherein the photostimulable phosphor plate (6) has an excitation light scattering property.
7. 前記穴形成部 ( 2 ) の壁面が励起光及び輝尽螢 光光に対し反射性を有する こ とを特徴とする請求項 5記載の輝尽螢光体板。 7. The wall of the hole forming part (2) has excitation light and 6. The photostimulable phosphor plate according to claim 5, which is reflective to light.
8. 励起走査側の、 微小穴以外の板表面が励起光に 対し反射性を呈する こ とを特徴とする請求項 5記載 の輝尽螢光体板。  8. The photostimulable phosphor plate according to claim 5, wherein the plate surface other than the minute holes on the excitation scanning side exhibits reflectivity with respect to the excitation light.
9. 隣り合う穴形成位置を互いに接近させるのに必 要な予め決められた値だけ変位させた規則的配列位 置とした基板の穴形成位置毎に、 ほぼ等しい大きさ であり、 且つその内壁面 ( 2 ) が励起光不透過性で ある微小穴 ( 2 6 ) を設け、 その各微小穴 ( 2 6 ) 內に輝尽螢光体を埋設したこ とを特徴とする輝尽螢 光体板。  9. The hole forming positions of the regularly arranged substrate, which are displaced by a predetermined value required to bring the adjacent hole forming positions closer to each other, have substantially the same size, and A photostimulable phosphor characterized in that the wall surface (2) is provided with micropores (2 6) that are impermeable to excitation light, and a photostimulable phosphor is embedded in each microhole (2 6). Board.
10. 前記輝尽螢光板 ( 6 ) は励起光散乱性である こ とを特徴とする請求項 9記載の輝尽螢光体板。  10. The photostimulable phosphor plate according to claim 9, wherein the photostimulable phosphor plate (6) has an excitation light scattering property.
11. 前記微小穴 ( 3 6 ) は励起光及び輝尽螢光光に 対し反射性を有する こ とを特徴とする請求項 9記載 の輝尽螢光体板。 11. The photostimulable phosphor plate according to claim 9, wherein the minute holes (36) have reflectivity for excitation light and photostimulable light.
12. 励起光走査側の、 微小穴以外の板表面が励起光 に対し反射性を呈する こ とを特徴とする請求項 9記 載の輝尽螢光体板。  12. The photostimulable phosphor plate according to claim 9, wherein the surface of the plate other than the minute holes on the excitation light scanning side exhibits reflectivity for the excitation light.
13. 少な く とも隣り合う穴形成位置を予め決められ た値だけ変位させた規則的配列位置と した基板の穴 形成位置毎に、 ほぼ等しい大き さて、 且つ内壁面 13. Each hole forming position of the substrate is a regular array position where at least adjacent hole forming positions are displaced by a predetermined value, and the size is almost equal and the inner wall surface is
( 2 ) が励起光不透過性に加工された微小穴 ( 3 6 ) と、 該微小穴 ( 3 6 ) 形成基板の光透過側の面に配置 された光透過性封止材 ( 4 ) と、 (2) is a micro hole (36) processed to be opaque to excitation light, A light-transmissive encapsulant (4) arranged on the light-transmissive side surface of the microhole (36) formation substrate,
前記微小穴 ( 3 6 ) 形成基板の光透過側の面とは 反射側の面に配置された封止材 ( 5 ) と、  The light transmission side surface of the microhole (36) forming substrate is a sealing material (5) arranged on the reflection side surface,
δ 前記該光透過性封止材 ( 4 ) と前記封止材 ( 5 ) とによって封止された前記微小穴 ( 3 6 ) 内に充塡 された輝尽螢光体 ( 6 ) とより成る輝尽螢光体板。 δ consisting of the light-transmissive encapsulant (4) and a photostimulable phosphor (6) filled in the minute holes (3 6) encapsulated by the encapsulant (5). A bright phosphor plate.
14. 前記輝尽螢光体 ( 6 ) は励起光散乱性である こ とを特徴とする請求項 1 3記載の輝尽螢光体板。 014. The photostimulable phosphor plate according to claim 13, wherein the photostimulable phosphor (6) has an excitation light scattering property. 0
15. 前記微小穴 ( 3 6 ) は励起光及び輝尽螢光光に 対し反射性を有する こ とを特徴とする請求項 1 3記 載の輝尽螢光体板。 15. The photostimulable phosphor plate according to claim 13, wherein the minute holes (36) have reflectivity with respect to excitation light and photostimulable light.
16. 前記光走査側の、 微小穴以外の板表面は励起光 に対し反射性を呈する こ とを特徴とする請求項 1 5 5 記載の輝尽螢光体板。  16. The photostimulable phosphor plate according to claim 155, characterized in that the surface of the plate other than the minute holes on the optical scanning side exhibits reflectivity for excitation light.
17. 互いに隔離された複数の微小穴 ( 1 6 ) を有し 各微小穴 ( 1 6 ) 内に輝尽螢光体が埋め込まれ、 前 記各微小穴は格子状に配列され、 前記微小穴の配列 は、 励起光走査の副走査方向ではその方向に一致し 0 主走査方向では、 画素の副走査方向の大き さである 読み取り ラ イ ンの ピ ッ チを b、 励起光走査の走查効 率を r/、 1 つの読み取り ラ イ ン上の微小穴 ( 1 6 ) の起点と終点の副走査方向での位置ずれを△と した とき、 Δ = b の関係を有する直線と一致するよう 5 に設定されている輝尽螢光体板。 17. A plurality of microholes (16) are isolated from each other, and a photostimulable phosphor is embedded in each microhole (16), and the microholes are arranged in a grid pattern. Is aligned with the sub-scanning direction of the excitation light scan, and 0 in the sub-scanning direction, which is the size of the pixel in the sub-scanning direction in the main scanning direction, and the scan line of the excitation light scan is b. When the efficiency is r / and the positional deviation in the sub-scanning direction between the starting point and the ending point of the minute hole (16) on one reading line is Δ, it should match the straight line with the relationship of Δ = b. Photoluminescent plate set to 5.
18. X線エネルギーを用いて被写体の潜像をェネル ギー分布パ夕一ンと して輝尽螢光体板 ( 1 0 5 ) に 形成し、 その潜像を励起光を用いて読み取る輝尽螢 光体扳読取装置において、 18. A latent image of the subject is formed on the photostimulable phosphor plate (1 0 5) as an energy distribution pattern using X-ray energy, and the latent image is read using excitation light. In the fluorescent reading device,
前記被写体の潜像形成に際して、 等しい大きさで- 且つ少な く と も励起光不透過性に加工された穴形成 部 ( 2 ) 内に輝尽螢光休を埋設した微小穴 ( 2 ) を 交差方向の各交差位置に形成して成る輝尽螢光体板 の対応する 1 以上の整数個の微小穴に前記被写体像 の 1 画素の各々を読み出して再生に供する こ とを特 徴とする輝尽螢光体扳読取装置。  When forming the latent image of the subject, cross the micro holes (2) embedded with photostimulable fluorescent light in the hole forming part (2) of equal size and processed to be at least opaque to excitation light. The characteristic is that each pixel of the subject image is read out for reproduction by reading into each of the corresponding 1 or more small holes of the photostimulable phosphor plate formed at each crossing position in the direction. Exciting body reading device.
19. X線エネルギ一を用いて被写体の潜像ェネルギ —分布パターンと して輝尽螢光体 ( 1 0 5 ) に形成 し、 その潜像を励起光を用いて読み取るデ ィ ジタル X線装置において、  19. A digital X-ray device that uses X-ray energy to form a latent image of a subject on a photostimulable phosphor (1 0 5) as a distribution pattern and reads the latent image using excitation light. At
前記励起光不透過性に加工された穴形成部 ( 2 ) 内に輝尽螢光体を埋設した微小穴を有し且つ微小穴 以外の板表面は励起光に対し反射性を呈する輝尽螢 光体板の穴の配列方向に励起光を走査する手段 ( 1 0 2 ) と、  The hole forming part (2) processed to be opaque to the excitation light has microholes in which photostimulable phosphors are embedded, and the surface of the plate other than the microholes exhibits the reflectivity to the excitation light. Means (1 0 2) for scanning the excitation light in the direction of arrangement of the holes in the optical plate,
前記微小穴に埋設された輝尽螢光体から前記励起 光により励起された輝尽螢光を集光する輝尽螢光集 光手段 ( 1 0 7 , 1 0 7 1 ) と、  Photostimulable light collecting means (1 0 7, 1 0 7 1) for concentrating the photostimulable light excited by the excitation light from the photostimulable phosphor embedded in the minute hole, and
前記励起光が輝尽螢光体板から反射された光を集 光する反射励起光集光手段 ( 2 0 7 , 2 0 7 1 ) と 前記反射励起光集光手段から得られた信号と輝尽 螢光集光手段から得られた信号によって、 前記励起 光が輝尽螢光体板に埋設された微小穴に励起光が照 射されたこ とによって生じた輝尽螢光を反射励起光 に同期してサンプリ ングする手段を有することを特 徴とする輝尽螢光体扳読取装置。 Reflection excitation light condensing means (2 0 7, 2 0 7 1) for collecting the light reflected from the photostimulable phosphor plate by the excitation light, and With the signal obtained from the reflected excitation light condensing means and the signal obtained from the photostimulable fluorescence condensing means, the excitation light is irradiated to the microholes embedded in the photostimulable phosphor plate. A photostimulable phosphor panel reader having a means for sampling the photostimulable light generated by the octopus in synchronization with the reflected excitation light.
20. X線エネルギーを用いて被写体の潜像エネルギ 一分布パターンとして輝尽螢光体 ( 1 0 5 ) に形成 し、 その潜像を励起光を用いて読み取る輝尽螢光体 板読取装置において、 20. A photostimulable phosphor plate reader that uses X-ray energy to form a latent image energy distribution pattern of a subject on a photostimulable phosphor (1 0 5) and reads the latent image using excitation light. ,
前記励起光不透過性に加工された穴形成部 ( 2 ) 内に輝尽螢光体を埋設した微小穴を有し且つ微小穴 以外の板表面は励起光に対し反射性を呈する輝尽螢 光体板の穴の配列方向に励起光を走査する手段 ( 1 0 2 ) と、  The hole forming part (2) processed to be opaque to the excitation light has microholes in which photostimulable phosphors are embedded, and the surface of the plate other than the microholes exhibits the reflectivity to the excitation light. Means (1 0 2) for scanning the excitation light in the direction of arrangement of the holes in the optical plate,
前記微小穴に埋設された輝尽螢光体から前記励起 光により励起された輝尽螢光を集光する輝尽螢光集 光手段 ( 1 0 7 , 1 0 7 1 ) と、  Photostimulable light collecting means (1 0 7, 1 0 7 1) for concentrating the photostimulable light excited by the excitation light from the photostimulable phosphor embedded in the minute hole, and
前記励起光が輝尽螢光体板から反射された光を集 光する反射励起光集光手段 ( 2 0 7 , 2 0 7 1 ) と. 前記反射励起光集光手段 ( 2 0 7 , 2 0 7 1 , 2 0 8 ) から得られた信号から前記輝尽螢光体が埋設 された微小穴に励起光が照射されている期間を求め る励起光照射期間判定手段 ( 2 0 9 , 2 1 0 , 2 1 1 , 2 1 4 , 2 1 5 ) と、 前記励起光照射期間判定手段により求められた期 間、 前記輝尽螢光集光手段により得られた輝尽螢光 を画素情報と してサ ンプリ ングする手段 ( 1 1 0 , 2 1 8 , 2 1 7 , 2 1 9 ) を有するを特徴とする輝 尽螢光体板読取装置。 Reflection excitation light condensing means (207, 207 1) for concentrating the excitation light reflected from the photostimulable phosphor plate, and reflection excitation light condensing means (207, 2) Excitation light irradiation period determination means (209, 2) for obtaining the period during which excitation light is radiated to the microhole in which the photostimulable phosphor is embedded, from the signal obtained from 1 0, 2 1 1, 2 1 4, 2 1 5), A means for sampling the photostimulable light obtained by the photostimulable light condensing means as pixel information for the period of time determined by the excitation light irradiation period determination means (1 1 0, 2 1 8, 2 1 7, 2 1 9), and a photoluminescent plate reader.
21 . 少な く とも、 金属シー トに 1 個以上の整数個の ほぼ等しい穴が 1 画素に対応するよう に、 エ ツチ ン グで貫通穴を形成する工程、 該金属シー トの片面に 光反射層を形成する工程、 該金属シー トの穴部に輝 尽螢光体を埋め込む工程、 および、 該金属シー ト の 光反射面の反対の面に透明の保護膜層を形成するェ 程からなる 1 ないし 1 7項の輝尽螢光体板の製造方 法。  21. Forming a through-hole by etching so that at least one integer number of at least one approximately equal hole in the metal sheet corresponds to one pixel, and light reflection on one side of the metal sheet A step of forming a layer, a step of embedding a phosphor in the hole of the metal sheet, and a step of forming a transparent protective film layer on the surface of the metal sheet opposite to the light reflecting surface. The method for manufacturing a photostimulable phosphor plate of paragraphs 1 to 17.
22. 少な く とも、 金属シ一 トに 1 個以上の整数個の ほほし等しい穴が 1 画素に対応するように、 エ ッチ ングで貫通穴を形成する工程、 該貫通穴を形成され た複数の金属シー トをスク リ ーン印刷によって接着 する工程、 該複数の接着された金属シー トの片面に 光反射層を形成する工程、 該金属シー ト の穴部に輝 尽螢光体を埋め込む工程、 および、 該金属シー トの 光反射面の反対の面に透明の保護膜層を形成するェ 程からなる 1 ないし 1 7 項の輝尽螢光体板の製造方 法。  22. A step of forming through holes by etching so that at least one integer number of at least one uniform hole in the metal sheet corresponds to one pixel, and the through holes are formed. The step of adhering a plurality of metal sheets by screen printing, the step of forming a light-reflecting layer on one side of the plurality of adhered metal sheets, and the step of forming a photoluminescent material in the holes of the metal sheets. The method for producing a photostimulable phosphor plate according to any one of items 1 to 17, which comprises a step of embedding and a step of forming a transparent protective film layer on the surface of the metal sheet opposite to the light reflecting surface.
PCT/JP1990/000434 1989-04-03 1990-03-30 Accelerated phosphor plate and accelerated phosphor reader WO1990012405A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP90905637A EP0426865B1 (en) 1989-04-03 1990-03-30 Phosphor plate and method for manufacturing the phosphor plate
DE69024610T DE69024610T2 (en) 1989-04-03 1990-03-30 PHOSPHORIC PLATE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP1/84253 1989-04-03
JP8425389A JPH02262100A (en) 1989-04-03 1989-04-03 Accelerated phosphorescence plate
JP1130739A JPH02308238A (en) 1989-05-24 1989-05-24 Image reading system for digital x-ray image pickup device
JP1/130739 1989-05-24
JP13557389A JPH032599A (en) 1989-05-29 1989-05-29 Stimulable phosphor plate
JP1/135573 1989-05-29
JP14434989A JPH039300A (en) 1989-06-07 1989-06-07 Stimulable phosphor plate
JP1/144349 1989-06-07

Publications (1)

Publication Number Publication Date
WO1990012405A1 true WO1990012405A1 (en) 1990-10-18

Family

ID=27466943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000434 WO1990012405A1 (en) 1989-04-03 1990-03-30 Accelerated phosphor plate and accelerated phosphor reader

Country Status (3)

Country Link
EP (1) EP0426865B1 (en)
DE (1) DE69024610T2 (en)
WO (1) WO1990012405A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534702A (en) * 1994-08-08 1996-07-09 Hewlett-Packard Company Resolution improvement of images recorded using storage phosphors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512636A (en) * 1994-04-29 1997-12-16 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Method for producing pixelated phosphor
EP0760520A1 (en) * 1995-08-29 1997-03-05 Hewlett-Packard Company Resolution improvement of images recorded using storage phosphors
DE19930645A1 (en) * 1999-07-02 2001-01-11 Rainer Kassing Reusable image plate with a storage phosphor for storing X-ray images and manufacturing method for a reusable image plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202100A (en) * 1983-04-30 1984-11-15 コニカ株式会社 Radiation image conversion panel and manufacture thereof
JPS62209397A (en) * 1986-03-11 1987-09-14 コニカ株式会社 Radiation picture conversion panel with phosphor layer, section between cracked interface thereof is shielded
JPH06236600A (en) * 1993-02-09 1994-08-23 Sony Corp Magnetic recording and reproducing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2827571A (en) * 1955-05-23 1958-03-18 Philips Corp Intensifying screen for making x-ray registrations
DE2347923C2 (en) * 1973-01-17 1983-11-24 Douglas F. Los Altos Hills Calif. Winnek High definition radiation intensifier film for radiation
US4059707A (en) * 1975-08-29 1977-11-22 Rca Corporation Method of filling apertures with crystalline material
DE2929745C2 (en) * 1979-07-23 1986-03-27 Siemens AG, 1000 Berlin und 8000 München Method for producing a fluorescent input screen of an X-ray image intensifier
DE3325035A1 (en) * 1983-07-11 1985-01-24 Siemens AG, 1000 Berlin und 8000 München Fluorescent X-ray screen
US4730107A (en) * 1986-03-10 1988-03-08 Picker International, Inc. Panel type radiation image intensifier
JPS643599A (en) * 1987-06-25 1989-01-09 Seiko Instr & Electronics Fluorescent screen and its production
JPH02152143A (en) * 1988-12-02 1990-06-12 Toshiba Corp X-ray image tube and its manufacture
DE3909449A1 (en) * 1989-03-22 1990-11-22 Kernforschungsz Karlsruhe METHOD FOR PRODUCING LUMINAIRE, REINFORCEMENT OR STORAGE FILMS FOR X-RAY DIAGNOSTICS
DE3909450A1 (en) * 1989-03-22 1990-09-27 Kernforschungsz Karlsruhe Method for the production of fluorescent screens, amplification films or storage films for X-ray diagnostics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202100A (en) * 1983-04-30 1984-11-15 コニカ株式会社 Radiation image conversion panel and manufacture thereof
JPS62209397A (en) * 1986-03-11 1987-09-14 コニカ株式会社 Radiation picture conversion panel with phosphor layer, section between cracked interface thereof is shielded
JPH06236600A (en) * 1993-02-09 1994-08-23 Sony Corp Magnetic recording and reproducing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0426865A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534702A (en) * 1994-08-08 1996-07-09 Hewlett-Packard Company Resolution improvement of images recorded using storage phosphors

Also Published As

Publication number Publication date
DE69024610T2 (en) 1996-05-15
EP0426865B1 (en) 1996-01-03
DE69024610D1 (en) 1996-02-15
EP0426865A4 (en) 1991-08-07
EP0426865A1 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
EP0126564B1 (en) Method for reproducing a radiation image
JPH09211139A (en) Radiation detector
JP2000505886A (en) Photostimulable phosphor screen suitable for dual energy recording
US5444266A (en) Photostimulable phosphor plate and photostimulable phosphor reader
JP2002541461A (en) High resolution imaging using optically transparent phosphors
WO1990012405A1 (en) Accelerated phosphor plate and accelerated phosphor reader
JPH04102098U (en) Memory luminescent screen with inducible memory luminescent material
EP1031854B1 (en) Method for processing electric signals of a radiographic image recorded in a stimulable phosphor sheet
JP3330895B2 (en) Stimulable phosphor sheet and radiation image recording / reproducing method
JPH02129600A (en) Phosphor plate for radiation image reading
JPH0445800B2 (en)
JPH032599A (en) Stimulable phosphor plate
JPH02199188A (en) Memorizing,light emitting plate having stimulable memorizing emitter
JPH02262100A (en) Accelerated phosphorescence plate
JP2002071815A (en) X-ray image fluorograph
JP3537345B2 (en) Stimulable phosphor sheet and radiation image recording / reproducing method
US6441389B1 (en) Process for reproducing radiation image using stimulable phosphor sheet having one-dimensionally extended partitions
JP2784260B2 (en) Transparent storage phosphor scanning using telecentric optics
JPH08184937A (en) Production of stimulable phosphor plate
JPH039300A (en) Stimulable phosphor plate
JP2003315944A (en) Image reader
JP2667976B2 (en) Phosphor plate for radiation image reading and method of manufacturing the same
JPH02308238A (en) Image reading system for digital x-ray image pickup device
JP2913404B2 (en) Radiation image information reading apparatus and radiation image information reading method
JP2001141897A (en) Stiumulable phosphor sheet and radiation image recording and regeneration method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990905637

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990905637

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990905637

Country of ref document: EP